1
|
朱 生, 李 忠. [Mechanism of extracellular vesicles in the repair of intervertebral disc degeneration]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2025; 42:409-416. [PMID: 40288986 PMCID: PMC12035626 DOI: 10.7507/1001-5515.202403046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 01/26/2025] [Indexed: 04/29/2025]
Abstract
Extracellular vesicles (EVs), defined as cell-secreted nanoscale vesicles that carry bioactive molecules, have emerged as a promising therapeutic strategy in tumor and tissue regeneration. Their potential in repairing intervertebral disc degeneration (IDD) through multidimensional regulatory mechanisms is a rapidly advancing field of research. This paper provided an overview of the mechanisms of EVs in IDD repair, thoroughly reviewed recent literature on EVs for IDD, domestically and internationally, and summarized their therapeutic mechanisms. In IDD repair, EVs could act through different mechanisms at the molecular, cellular, and tissue levels. At the molecular level, EVs could treat IDD by inhibiting inflammatory reactions, suppressing oxidative stress, and regulating the synthesis and decomposition of extracellular matrix. At the cellular level, EVs could treat IDD by inhibiting cellular pyroptosis, ferroptosis, and apoptosis and promoting cell proliferation and differentiation. At the tissue level, EVs could treat IDD by inhibiting neovascularization. EVs have a strong potential for clinical application in the treatment of IDD and deserve more profound study.
Collapse
Affiliation(s)
- 生旭 朱
- 大连医科大学附属第一医院 骨科(辽宁大连 116011)Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P. R. China
| | - 忠海 李
- 大连医科大学附属第一医院 骨科(辽宁大连 116011)Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P. R. China
| |
Collapse
|
2
|
Li Q, Guo R, Zhao C, Chen X, Wang H, Shen C. End Plate Chondrocyte-Derived Exosomal miR-133a-3p Alleviates Intervertebral Disc Degeneration by Targeting the NF-κB Signaling Pathway through the miR-133a-3p/MAML1 Axis. Mol Pharm 2025; 22:1262-1279. [PMID: 39898539 DOI: 10.1021/acs.molpharmaceut.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Chondrocyte-derived exosomes have shown efficacy in differentiating osteoarthritis-affected cartilage. Intervertebral disc degeneration (IVDD) and osteoarthritis often affect facet joints of the spine and show common epidemiological and pathophysiological characteristics. However, the potential of chondrocyte-derived exosomes for treating IVDD remains unclear. The present study aimed to confirm the effect of end plate chondrocyte-derived exosomes (EPC-Exo) on IVDD and elucidate the underlying mechanism. EPC-Exos were isolated and identified by ultracentrifugation, Western blotting, electron microscopy, and nanoparticle tracking analysis. In the in vitro, EPC-Exo uptake by nucleus pulposus (NP) cells reduced cell death by blocking the nuclear factor-κB (NF-κB) signaling pathway. In the in vivo study, EPC-Exos injected into rat intervertebral discs mitigated lipopolysaccharide-induced IVDD, as revealed by a decreased loss of disc height and improved magnetic resonance imaging findings and histological scores. Bioinformatics and sequencing analyses indicated that EPC-Exos alleviated IVDD through the miR-133a-3p/MAML1 axis. The present study suggests that EPC-Exos reduced IVDD incidence via the miR-133a-3p/MAML1 axis-mediated suppression of NF-κB signaling, which prevented the pyroptosis of NP cells.
Collapse
Affiliation(s)
- Qiuwei Li
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Ruocheng Guo
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Chenhao Zhao
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| | - Xuewu Chen
- Spinal Surgery Division of Yijishan Hospital and Wannan Medical College in Wuhu, Wuhu, Anhui 241000, China
| | - Hong Wang
- Spinal Surgery Division of Yijishan Hospital and Wannan Medical College in Wuhu, Wuhu, Anhui 241000, China
| | - Cailiang Shen
- Department of Orthopedics and Spine Surgery, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022, China
| |
Collapse
|
3
|
Lian SL, Huang J, Zhang Y, Ding Y. The effect of platelet-rich plasma on ferroptosis of nucleus pulposus cells induced by Erastin. Biochem Biophys Rep 2025; 41:101900. [PMID: 39811190 PMCID: PMC11732229 DOI: 10.1016/j.bbrep.2024.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/15/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background Intervertebral disc degeneration (IVDD) has been linked to ferroptosis, a type of programmed cell death. The role of platelet-rich plasma (PRP) in mitigating ferroptosis in nucleus pulposus (NP) cells within IVDD remains unclear. Purpose This study aims to verify the effectiveness of PRP in reducing ferroptosis in NP cells induced by Erastin. Methods Primary NP cells were isolated from SD rats, and a ferroptosis model was established using Erastin. PRP was prepared and applied to assess its impact on ferroptosis-related markers, including reactive oxygen species (ROS), iron content, and glutathione peroxidase 4 (GPX4). The effects of PRP on the ultrastructure of NP cells were also observed using transmission electron microscopy (TEM). Results PRP treatment significantly restored GPX4 levels (431.47 ± 4.70 ng/L vs. 69.70 ± 4.06 ng/L, P < 0.05), reduced ROS levels (45.06 ± 3.78 vs. 155.36 ± 3.56, P < 0.05), and decreased iron content (32.24 ± 096 μg/L vs. 59.25 ± 3.72 μg/L, P < 0.05) in ferroptotic NP cells compared to the sham group. Additionally, PRP significantly increased the expression levels of collagen Ⅱ (0.72 ± 0.02 vs. 0.33 ± 0.02, P < 0.05) and aggrecan (0.81 ± 0.01 vs. 0.31 ± 0.02, P < 0.05) compared to the sham group. TEM analysis also showed improvements in mitochondrial ultrastructure. These findings suggest that PRP can alleviate ferroptosis and promote cellular recovery. Conclusions The study demonstrates the potential of PRP as a therapeutic intervention in IVDD by mitigating ferroptosis in NP cells, offering a new theoretical basis for PRP treatment in degenerative disc diseases.
Collapse
Affiliation(s)
- Shi-lin Lian
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
- Department of Orthopedics, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jie Huang
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
- Department of Orthopedics, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yan Zhang
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Yu Ding
- Orthopedics of TCM Senior Department, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| |
Collapse
|
4
|
Mai Y, Wu S, Zhang P, Chen N, Wu J, Wei F. The anti-oxidation related bioactive materials for intervertebral disc degeneration regeneration and repair. Bioact Mater 2025; 45:19-40. [PMID: 39588482 PMCID: PMC11585838 DOI: 10.1016/j.bioactmat.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/27/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent chronic spinal condition characterized by the deterioration of the intervertebral discs (IVD), leading to structural damage and associated pain. This degenerative process is closely linked to oxidative stress injury, which plays a pivotal role in its onset and progression. Oxidative stress in IVDD results from the excessive production of reactive oxygen species (ROS) and impaired ROS clearance mechanisms, disrupting the redox balance within the intervertebral disc. Consequently, oxidative stress contributes to the degradation of the extracellular matrix (ECM), promotes cell apoptosis, and exacerbates disc tissue damage. Current treatment options for IVDD face significant challenges in effectively alleviating the oxidative stress-induced damage and facilitating disc tissue repair. However, recent advancements in biomaterials have opened new avenues of hope for IVDD treatment by addressing oxidative stress. In this review, we first provide an overview of the pathophysiological process of IVDD and explore the mechanisms and pathways associated with oxidative stress injury. Then, we delve into the current research on antioxidant biomaterials employed in the treatment of IVDD, and outline the advantages and limitations of hydrogel, nanomaterials, polyphenol and inorganic materials. Finally, we propose the future research direction of antioxidant biomaterials in IVDD treatment. The main idea of this review is shown in Scheme 1.
Collapse
Affiliation(s)
- Yingjie Mai
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Siying Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science & Technology (Guangzhou), Nansha, Guangzhou, Guangdong Province, 511400, China
| | - Penghui Zhang
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Ningning Chen
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science & Technology (Guangzhou), Nansha, Guangzhou, Guangdong Province, 511400, China
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong SAR, 999077, China
| | - Fuxin Wei
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| |
Collapse
|
5
|
Cai Z, Wang Y, Hu S, Yuan Q, Liu J, Luo C, Jiang L, Huang Y. The efficacy of platelet-derived extracellular vesicles in the treatment of diabetic wounds: a systematic review and meta-analysis of animal studies. Arch Dermatol Res 2025; 317:244. [PMID: 39812853 DOI: 10.1007/s00403-024-03781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
Platelet-derived extracellular vesicles (PEVs) are rich in growth factors and have significant potential for facilitating tissue repair and regeneration. Therefore, we conducted this meta-analysis to assess the efficacy of PEVs in treating diabetic wounds. To assess the efficacy and safety of PEVs in treating diabetic wounds, we conducted a systematic review of several databases and performed a meta-analysis using a random effects model. Nine studies (n = 128 animals) meeting the inclusion criteria for this review were identified. The pooled analysis revealed that compared to the control group, wounds treated with PEVs had a higher healing rate (SMD = 4.43, 95% CI = 2.85-6.01, P < 0.00001). In subgroup analysis, PEVs combined with hydrogel showed better efficacy than PEVs alone (SMD = 7.96, 95% CI = 5.05-10.87, P < 0.00001). Additionally, the PEVs treatment group outperformed the control group in other outcomes, such as vessel density and number, re-epithelialization rate, and collagen deposition. PEVs have the potential to promote angiogenesis at diabetic wound sites and alleviate inflammatory responses, ultimately aiding in wound healing, especially when combined with hydrogels or other medications.
Collapse
Affiliation(s)
- Zhi Cai
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, Luzhou, People's Republic of China
| | - Yuhan Wang
- Department of Clinical Laboratory, Longmatan District People's Hospital of Luzhou, Luzhou, People's Republic of China
| | - Shan Hu
- Department of Transfusion, Guanghan People's Hospital, Deyang, People's Republic of China
| | - Qiong Yuan
- Department of Transfusion, Zigong First People's Hospital, Zigong, People's Republic of China
| | - Jusong Liu
- Department of Transfusion, Zigong First People's Hospital, Zigong, People's Republic of China
| | - Chengcen Luo
- Department of Transfusion, Zigong Fourth People's Hospital, Zigong, People's Republic of China
| | - Ling Jiang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, Luzhou, People's Republic of China.
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
| | - Yuanshuai Huang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, Luzhou, People's Republic of China.
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
| |
Collapse
|
6
|
Fan Z, Gan Y, Hu Y. The potential utilization of platelet-derived extracellular vesicles in clinical treatment. Platelets 2024; 35:2397592. [PMID: 39287127 DOI: 10.1080/09537104.2024.2397592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024]
Abstract
Platelet-derived extracellular vesicles (PEVs) are released by platelets in the blood circulation, which carry a rich bio-molecular cargo influential in intercellular communications. PEVs can enter the lymph, bone marrow, and synovial fluid as nano-sized particles, while platelets cannot cross tissue barriers. Considering the advantages of PEVs such as low immunogenicity, high regulation of signal transduction, and easy obtainment, PEVs may be promising therapeutic tools for medical applications. The exceptional functional roles played by PEVs explain the recent interest in exploring new cell-free therapies that could address needs in angiogenesis, regenerative medicine, and targeted drug delivery. The review takes a critical look at the main advances of PEVs in the treatment of diseases by presenting the latest knowledge from the performed studies, in order to enhance the further translation of the PEVs research into feasible therapeutic applications.
Collapse
Affiliation(s)
- Zhijia Fan
- Department of Laboratory Medicine, Beijing Chaoyang Hospital, Beijing Center for Clinical Laboratories, The Third Clinical Medical College of Capital Medical University, Beijing, PR China
| | - Yixiao Gan
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yanwei Hu
- Department of Laboratory Medicine, Beijing Chaoyang Hospital, Beijing Center for Clinical Laboratories, The Third Clinical Medical College of Capital Medical University, Beijing, PR China
| |
Collapse
|
7
|
Liu X, Chen R, Cui G, Feng R, Liu K. Exosomes derived from platelet-rich plasma present a novel potential in repairing knee articular cartilage defect combined with cyclic peptide-modified β-TCP scaffold. J Orthop Surg Res 2024; 19:718. [PMID: 39497084 PMCID: PMC11533314 DOI: 10.1186/s13018-024-05202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND The aim of this study was to investigate the therapeutic effects and mechanisms of PRP-exos combined with cyclic peptide-modified β-TCP scaffold in the treatment of rabbit knee cartilage defect. METHODS PRP-exos were extracted and characterized by TEM, NTA and WB. The therapeutic effects were evaluated by ICRS score, HE staining, Immunohistochemistry, qRT-PCR and ELISA. The repair mechanism of PRP-exos was estimated and predicted by miRNA sequencing analysis and protein-protein interaction network analysis. RESULTS The results showed that PRP-exos had a reasonable size distribution and exhibited typical exosome morphology. The combination of PRP-exos and cyclic peptide-modified β-TCP scaffold improved ICRS score and the expression level of COL-2, RUNX2, and SOX9. Moreover, this combination therapy reduced the level of MMP-3, TNF-α, IL-1β, and IL-6, while increasing the level of TIMP-1. In PRP-exos miRNA sequencing analysis, the total number of known miRNAs aligned across all samples was 252, and a total of 91 differentially expressed miRNAs were detected. The results of KEGG enrichment analysis and the protein-protein interaction network analysis indicated that the PI3K/AKT signaling pathway could impact the function of chondrocytes by regulating key transcription factors to repair cartilage defect. CONCLUSION PRP-exos combined with cyclic peptide-modified β-TCP scaffold effectively promoted cartilage repair and improved chondrocyte function in rabbit knee cartilage defect. Based on the analysis and prediction of PRP-exos miRNAs sequencing, PI3K/AKT signaling pathway may contribute to the therapeutic effect. These findings provide experimental evidence for the application of PRP-exos in the treatment of cartilage defect.
Collapse
Affiliation(s)
- Xuchang Liu
- Department of Orthopedic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong, China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong, China
| | - Rudong Chen
- Department of Orthopedic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Guanzheng Cui
- Department of Orthopedic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China
| | - Rongjie Feng
- Department of Orthopedic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250021, Shandong, China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong, China.
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong, China.
| |
Collapse
|
8
|
Qiu M, Ma K, Zhang J, Zhao Z, Wang S, Wang Q, Xu H. Isoliquiritigenin as a modulator of the Nrf2 signaling pathway: potential therapeutic implications. Front Pharmacol 2024; 15:1395735. [PMID: 39444605 PMCID: PMC11496173 DOI: 10.3389/fphar.2024.1395735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2), a transcription factor responsible for cytoprotection, plays a crucial role in regulating the expression of numerous antioxidant genes, thereby reducing reactive oxygen species (ROS) levels and safeguarding cells against oxidative stress. Extensive research has demonstrated the involvement of Nrf2 in various diseases, prompting the exploration of Nrf2 activation as a potential therapeutic approach for a variety of diseases. Consequently, there has been a surge of interest in investigating the Nrf2 signaling pathway and developing compounds that can modulate its activity. Isoliquiritigenin (ISL) (PubChem CID:638278) exhibits a diverse range of pharmacological activities, including antioxidant, anticancer, and anti-tumor properties. Notably, its robust antioxidant activity has garnered significant attention. Furthermore, ISL has been found to possess therapeutic effects on various diseases, such as diabetes, cardiovascular diseases, kidney diseases, and cancer, through the activation of the Nrf2 pathway. This review aims to evaluate the potential of ISL in modulating the Nrf2 signaling pathway and summarize the role of ISL in diverse diseases prevention and treatment through modulating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Mangmang Qiu
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| | - Kang Ma
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Junfeng Zhang
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| | - Zhaohua Zhao
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| | - Shan Wang
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qing Wang
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hao Xu
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| |
Collapse
|
9
|
Hou Q, Ouyang S, Xie Z, He Y, Deng Y, Guo J, Yu P, Tan X, Ma W, Li P, Yu J, Mo Q, Zhang Z, Chen D, Lin X, Liu Z, Chen X, Peng T, Li L, Xie W. Exosome is a Fancy Mobile Sower of Ferroptosis. J Cardiovasc Transl Res 2024; 17:1067-1082. [PMID: 38776048 DOI: 10.1007/s12265-024-10508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/01/2024] [Indexed: 10/29/2024]
Abstract
Exosomes, nano-sized small extracellular vesicles, have been shown to serve as mediators between intercellular communications by transferring bioactive molecules, such as non-coding RNA, proteins, and lipids from secretory to recipient cells, modulating a variety of physiological and pathophysiological processes. Recent studies have gradually demonstrated that altered exosome charges may represent a key mechanism driving the pathological process of ferroptosis. This review summarizes the potential mechanisms and signal pathways relevant to ferroptosis and then discusses the roles of exosome in ferroptosis. As well as transporting iron, exosomes may also indirectly convey factors related to ferroptosis. Furthermore, ferroptosis may be transmitted to adjacent cells through exosomes, resulting in cascading effects. It is expected that further research on exosomes will be conducted to explore their potential in ferroptosis and will lead to the creation of new therapeutic avenues for clinical diseases.
Collapse
Affiliation(s)
- Qin Hou
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Ouyang
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongcheng Xie
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yinling He
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yunong Deng
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiamin Guo
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Panpan Yu
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoqian Tan
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wentao Ma
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Pin Li
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiang Yu
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qinger Mo
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhixia Zhang
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Dandan Chen
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoyan Lin
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhiyang Liu
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Liang Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
10
|
Zhao Y, Xia Q, Zhu L, Xia J, Xiang S, Mao Q, Dong H, Weng Z, Liao W, Xin Z. Mapping knowledge structure and themes trends of non-surgical treatment in intervertebral disc degeneration. Heliyon 2024; 10:e36509. [PMID: 39286189 PMCID: PMC11402762 DOI: 10.1016/j.heliyon.2024.e36509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/23/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a chronic disabling disease caused by degeneration of nucleus pulposus cells, decreased activity and the number of nucleus pulposus cells, decreased extracellular matrix, and infiltration of inflammatory factors, resulting in low back and leg pain. Recent studies have shown that non-surgical treatment is of great significance in reversing the progression of degenerative disc disease, and there are more relevant literature reports. However, there is no bibliometric analysis in this area. This study aimed to describe the knowledge structure and thematic trends of non-surgical treatment methods for IDD through bibliometrics. Methods Articles and reviews on non-surgical treatment of disc degeneration from 1998 to 2022 were collected on the Web of Science. VOSviewer 1.6.18, CiteSpace 6.1.R3, R package "bibliometrix" and two online analysis platforms were used for bibliometric and visual literature analysis. Results 961 articles were screened for inclusion, including 821 articles and 140 reviews. The analysis of our study shows that publications in the non-surgical treatment of disc degeneration are increasing annually, with publications coming mainly from North America and Asia, with China and the United States dominating. Huazhong Univ Sci & Technol and Wang K are the most prolific institutions and authors, respectively, and Le Maitre CL is the most co-cited author. However, there is less collaboration between institutions in different countries. Spine is both the most published and the most cited journal. According to the co-citation and co-occurrence analysis results, "mesenchymal stem cells," "exosomes," "medication," and "tissue engineering" are the current research hotspots in this field. Conclusions This study employs bibliometric analysis to explore the knowledge structure and trends of non-surgical treatments for IDD from 2013 to 2022. Key research hotspots include mesenchymal stem cells, exosomes, medication, and tissue engineering. The number of publications, especially from China and the USA, has increased significantly, though international collaboration needs improvement. Influential contributors include Wang K and the journal Spine. These findings provide a comprehensive overview and highlight important future directions for the field.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Shaojie Xiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
11
|
Zhang CH, Lu DC, Liu Y, Wang L, Sethi G, Ma Z. The role of extracellular vesicles in pyroptosis-mediated infectious and non-infectious diseases. Int Immunopharmacol 2024; 138:112633. [PMID: 38986299 DOI: 10.1016/j.intimp.2024.112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Pyroptosis, a lytic and pro-inflammatory cell death, is important in various pathophysiological processes. Host- and bacteria-derived extracellular vesicles (EVs), as natural nanocarriers messengers, are versatile mediators of intercellular communication between different types of cells. Recently, emerging research has suggested that EVs exhibit multifaceted roles in disease progression by manipulating pyroptosis. This review focuses on new findings concerning how EVs shape disease progression in infectious and non-infectious diseases by regulating pyroptosis. Understanding the characteristics and activity of EVs-mediated pyroptotic death may conducive to the discovery of novel mechanisms and more efficient therapeutic targets in infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Cai-Hua Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China; Department of Oncology, People's Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing 404100, China
| | - Ding-Ci Lu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Ying Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.
| |
Collapse
|
12
|
Ekram S, Khalid S, Ramzan F, Salim A, Bashir I, Durrieu MC, Khan I. Mesenchymal Stem Cell-Derived Extracellular Vesicles Protect Rat Nucleus Pulposus Cells from Oxidative Stress. Cartilage 2024; 15:328-344. [PMID: 37139781 PMCID: PMC11418459 DOI: 10.1177/19476035231172154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Oxidative stress (OS) is mainly associated with the pathogenesis of intervertebral disc (IVD) degeneration; it causes nucleus pulposus cells (NPCs) to undergo senescence and triggers autophagy and apoptosis. This study aims to evaluate the regeneration potential of extracellular vesicles (EVs) derived from human umbilical cord-mesenchymal stem cells (hUC-MSCs) in an in vitro rat NPC-induced OS model. DESIGN NPCs were isolated from rat coccygeal discs, propagated, and characterized. OS was induced by hydrogen peroxide (H2O2), which is confirmed by 2,7-dichlorofluorescein diacetate (H2DCFDA) assay. EVs were isolated from hUC-MSCs and characterized by analyzing the vesicles using fluorescence microscope, scanning electron microscope (SEM), atomic force microscope (AFM), dynamic light scattering (DLS), and Western blot (WB). The in vitro effects of EVs on migration, uptake, and survival of NPCs were determined. RESULTS SEM and AFM topographic images revealed the size distribution of EVs. The phenotypes of isolated EVs showed that the size of EVs was 403.3 ± 85.94 nm, and the zeta potential was -0.270 ± 4.02 mV. Protein expression analysis showed that EVs were positive for CD81 and annexin V. Treatment of NPCs with EVs reduced H2O2-induced OS as evidenced by a decrease in reactive oxygen species (ROS) levels. Co-culture of NPCs with DiI-labeled EVs showed the cellular internalization of EVs. In the scratch assay, EVs significantly increased NPC proliferation and migration toward the scratched area. Quantitative polymerase chain reaction analysis showed that EVs significantly reduced the expression of OS genes. CONCLUSION EVs protected NPCs from H2O2-induced OS by reducing intracellular ROS generation and improved NPC proliferation and migration.
Collapse
Affiliation(s)
- Sobia Ekram
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shumaila Khalid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Faiza Ramzan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Imtiaz Bashir
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
| | | | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
13
|
Chen X, Zhang A, Zhao K, Gao H, Shi P, Chen Y, Cheng Z, Zhou W, Zhang Y. The role of oxidative stress in intervertebral disc degeneration: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 98:102323. [PMID: 38734147 DOI: 10.1016/j.arr.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Oxidative stress is one of the main driving mechanisms of intervertebral disc degeneration(IDD). Oxidative stress has been associated with inflammation in the intervertebral disc, cellular senescence, autophagy, and epigenetics of intervertebral disc cells. It and the above pathological mechanisms are closely linked through the common hub reactive oxygen species(ROS), and promote each other in the process of disc degeneration and promote the development of the disease. This reveals the important role of oxidative stress in the process of IDD, and the importance and great potential of IDD therapy targeting oxidative stress. The efficacy of traditional therapy is unstable or cannot be maintained. In recent years, due to the rise of materials science, many bioactive functional materials have been applied in the treatment of IDD, and through the combination with traditional drugs, satisfactory efficacy has been achieved. At present, the research review of antioxidant bioactive materials in the treatment of IDD is not complete. Based on the existing studies, the mechanism of oxidative stress in IDD and the common antioxidant therapy were summarized in this paper, and the strategies based on emerging bioactive materials were reviewed.
Collapse
Affiliation(s)
- Xianglong Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiyang Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenjuan Zhou
- Department of Operating Room, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
14
|
Li Z, Cheng W, Gao K, Liang S, Ke L, Wang M, Fan J, Li D, Zhang P, Xu Z, Li N. Pyroptosis: A spoiler of peaceful coexistence between cells in degenerative bone and joint diseases. J Adv Res 2024:S2090-1232(24)00247-9. [PMID: 38876191 DOI: 10.1016/j.jare.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND As people age, degenerative bone and joint diseases (DBJDs) become more prevalent. When middle-aged and elderly people are diagnosed with one or more disorders such as osteoporosis (OP), osteoarthritis (OA), and intervertebral disc degeneration (IVDD), it often signals the onset of prolonged pain and reduced functionality. Chronic inflammation has been identified as the underlying cause of various degenerative diseases, including DBJDs. Recently, excessive activation of pyroptosis, a form of programed cell death (PCD) mediated by inflammasomes, has emerged as a primary driver of harmful chronic inflammation. Consequently, pyroptosis has become a potential target for preventing and treating DBJDs. AIM OF REVIEW This review explored the physiological and pathological roles of the pyroptosis pathway in bone and joint development and its relation to DBJDs. Meanwhile, it elaborated the molecular mechanisms of pyroptosis within individual cell types in the bone marrow and joints, as well as the interplay among different cell types in the context of DBJDs. Furthermore, this review presented the latest compelling evidence supporting the idea of regulating the pyroptosis pathway for DBJDs treatment, and discussed the potential, limitations, and challenges of various therapeutic strategies involving pyroptosis regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW In summary, an interesting identity for the unregulated pyroptosis pathway in the context of DBJDs was proposed in this review, which was undertaken as a spoiler of peaceful coexistence between cells in a degenerative environment. Over the extended course of DBJDs, pyroptosis pathway perpetuated its activity through crosstalk among pyroptosis cascades in different cell types, thus exacerbating the inflammatory environment throughout the entire bone marrow and joint degeneration environment. Correspondingly, pyroptosis regulation therapy emerged as a promising option for clinical treatment of DBJDs.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jilin Fan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000 China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300 China.
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
15
|
Tolson JK, Menuet RL, Ly GH, Chanes BA, Bryan EA, Kataria S, Kim J, Ahmadzadeh S, Shekoohi S, Kaye AD. Evolving role of VIADISC for chronic low back and discogenic pain: a narrative review. Expert Opin Emerg Drugs 2024; 29:155-164. [PMID: 38602142 DOI: 10.1080/14728214.2024.2339912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
INTRODUCTION Chronic lower back pain is a leading cause of disability and healthcare spending worldwide. Discogenic pain, pain originating from the intervertebral disk, is a common etiology of chronic lower back pain. Currently, accepted treatments for chronic discogenic pain focus only on the management of symptoms, such as pain. There are no approved treatments that stop or reverse degenerating intervertebral discs. Biologic therapies promoting disc regeneration have been developed to expand treatment options. VIADISC™ NP, is a viable disc allograft supplementation that, in a recent trial, demonstrated a significant reduction in pain and increased function in patients suffering from symptomatic degenerative disc disease. AREAS COVERED This manuscript summarizes the epidemiology and etiology of low back pain, the pathophysiology of degenerative disc disease, current treatments, and a need for newer therapies. The rationale behind intradiscal biologics for the treatment of symptomatic degenerative disc disease is also discussed. EXPERT OPINION Characterization of the biology leading to disc degeneration has allowed for the development of intradiscal biologics. They may soon be capable of preventing and reversing disc degeneration. Clinical trials have shown promise, but further research into efficacy and safety is needed before these therapies are widely employed.
Collapse
Affiliation(s)
- Jack K Tolson
- School of Medicine, Louisiana State University Health Science Center Shreveport, Shreveport, LA, USA
| | - Robert L Menuet
- School of Medicine, Louisiana State University Health Science Center Shreveport, Shreveport, LA, USA
| | - Gianni H Ly
- School of Medicine, Louisiana State University Health Science Center Shreveport, Shreveport, LA, USA
| | - Benjamin A Chanes
- School of Medicine, Louisiana State University Health Science Center Shreveport, Shreveport, LA, USA
| | - Elizabeth A Bryan
- School of Medicine, Louisiana State University Health Science Center Shreveport, Shreveport, LA, USA
| | - Saurabh Kataria
- Department of Neurology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Julian Kim
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| |
Collapse
|
16
|
Tao X, Xue F, Xu J, Wang W. Platelet-rich plasma-derived extracellular vesicles inhibit NF-κB/NLRP3 pathway-mediated pyroptosis in intervertebral disc degeneration via the MALAT1/microRNA-217/SIRT1 axis. Cell Signal 2024; 117:111106. [PMID: 38373669 DOI: 10.1016/j.cellsig.2024.111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a main contributor to lower back pain, and compression stress-induced apoptosis of nucleus pulposus (NP) cells and extracellular matrix (ECM) degradation has been implicated in the IDD progression. The functions of platelet-rich plasma (PRP)-derived extracellular vesicles (PRP-EVs) in regulating these biological processes remain unclear in IDD. Here, we aimed to investigate the key role of long noncoding RNA (lncRNA) MALAT1 incorporated in PRP-EVs in IDD. METHODS Tert-butyl hydroperoxide (TBHP)-induced damage in NP cells was treated with PRP-EVs extracted from healthy volunteers, followed by MTT, EdU, TUNEL, and Western blot assays. IDD mice were also treated with PRP-EVs. Histomorphological and pathological changes were evaluated. The pyroptosis of cells and the degradation of ECM were detected by ELISA and immunohistochemistry. We screened the differentially expressed lncRNAs in NP cells after PRP-EVs treatment by microarray analysis. The downstream targets of MALAT1 in NP cells were predicted and validated by rescue experiments. FINDINGS TBHP induction reduced cell proliferation and exacerbated pyroptosis and ECM degradation, and PRP-EVs inhibited TBHP-induced cell damage. PRP-EVs-treated mice with IDD had reduced Thompson scores, increased NP tissue content, and restored ECM. PRP-EVs upregulated MALAT1 expression in vivo and in vitro, whereas MALAT1 downregulation exacerbated NP cell pyroptosis and ECM degradation. MALAT1 upregulated SIRT1 expression by downregulating microRNA (miR)-217 in NP cells. SIRT1 blocked the NF-κB/NLRP3 pathway-mediated pyroptosis, thereby alleviating IDD. INTERPRETATION PRP-EVs deliver MALAT1 to regulate miR-217/SIRT1, thereby controlling NP cell pyroptosis in IDD.
Collapse
Affiliation(s)
- Xueqiang Tao
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China; Department of Orthopaedics, The Fourth Hospital of BaoTou, Baotou 014030, Inner Mongolia, China
| | - Fen Xue
- Department of Obstetrics and Gynecology, The Fourth Hospital of BaoTou, Baotou 014030, Inner Mongolia, China
| | - Jiayuan Xu
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China
| | - Wenbo Wang
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China.
| |
Collapse
|
17
|
Li X, Liu H, Lin G, Xu L. The effect of ovarian injection of autologous platelet rich plasma in patients with poor ovarian responder: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1292168. [PMID: 38155954 PMCID: PMC10754527 DOI: 10.3389/fendo.2023.1292168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Objective To evaluate the effects of ovarian injection of autologous platelet rich plasma (aPRP) on patients with poor ovarian responder (POR) based on the existing clinical evidence. Methods According to systematic review and meta-analysis, we comprehensively searched nine databases established as of September 6, 2023, and evaluated the impact of ovarian PRP infusion on poor ovarian responder. The research results include serum follicle-stimulating hormone(FSH) and anti-Mullerian hormone(AMH) levels, antral Follicle Count(AFC), oocyte number, and embryo number. The Newcastle Ottawa Scale (NOS) was used to evaluate the quality of inclusion in trials. Results Add up to 10 studies consisting of 793 participants were included in the meta-analysis. A review of existing evidence showed that intraovarian injection of PRP has significant therapeutic effects in increasing levels of anti-Müllerian hormone (AMH) (SMD=0.44,95% CI [0.07,0.81], p=0.02), antral follicle count (AFC) (MD=1.15,95% CI [0.4,1.90], p=0.003), oocyte count (MD=0.91, 95% CI [0.40, 1.41], p=0.0004), and embryo number (MD=0.78, 95% CI [0.5,1.07], p<0.0001). We compared the relevant data of patients before and after treatment after 2 months of intervention. It can be seen that ovarian injection of PRP treatment for 2 months has better effects in reducing FSH levels, increasing AMH levels, increasing antral follicle count, and increasing the number of oocytes and embryos (p<0.05). When the dose of PRP injected into each ovary was ≥ 4ml, there was also a significant correlation (p<0.05) with improving the number of AFC, oocytes and embryos. Significant heterogeneity existed among the studies. Conclusion The pooled results suggest that intra-ovarian injection of PRP can promote ovarian regeneration and improve the reproductive outcomes of patients with ovarian dysfunction. This therapy may have significant clinical potential in improving sex hormone levels, increasing AFC, oocyte count, and embryo count. However, this findings still requires more rigorous and extensive trials worldwide to determine the value of intra-ovarian injection of PRP in POR patients. Systematic review registration https://www.crd.york.ac.uk, Identifier CRD42023451232.
Collapse
Affiliation(s)
| | | | | | - Lianwei Xu
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Yi D, Zhang Y, Li M, Chen J, Chen X, Wang L, Xing G, Chen S, Zhu Y, Wang Y. Ultrasound-Targeted Microbubble Destruction Assisted Delivery of Platelet-Rich Plasma-Derived Exosomes Promoting Peripheral Nerve Regeneration. Tissue Eng Part A 2023; 29:645-662. [PMID: 37612613 DOI: 10.1089/ten.tea.2023.0133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Peripheral nerve injury is prevalent and has a high disability rate in clinical settings. Current therapeutic methods have not achieved satisfactory efficacy, underscoring the need for novel approaches to nerve restoration that remains an active area of research in neuroscience and regenerative medicine. In this study, we isolated platelet-rich plasma-derived exosomes (PRP-exos) and found that they can significantly enhance the proliferation, migration, and secretion of trophic factors by Schwann cells (SCs). In addition, there were marked changes in transcriptional and expression profiles of SCs, particularly via the upregulation of genes related to biological functions involved in nerve regeneration and repair. In the rat model of sciatic nerve crush injury, ultrasound-targeted microbubble destruction (UTMD) enhanced the efficiency of PRP-exos delivery to the injury site. This approach ensured a high concentration of PRP-exos in the injured nerve and improved the therapeutic outcomes. In conclusion, PRP-exos may promote nerve regeneration and repair, and UTMD may increase the effectiveness of targeted PRP-exos delivery to the injured nerve and enhance the therapeutic effect.
Collapse
Affiliation(s)
- Dan Yi
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yongyi Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Rehabilitation Medicine, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
- No.962 Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Molin Li
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jian Chen
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical College of Nankai University, Tianjin, China
| | - Xianghui Chen
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Li Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Guanghui Xing
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Siming Chen
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yaqiong Zhu
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuexiang Wang
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
19
|
Zhu S, Wang J, Suo M, Huang H, Liu X, Wang J, Li Z. Can extracellular vesicles be considered as a potential frontier in the treatment of intervertebral disc disease? Ageing Res Rev 2023; 92:102094. [PMID: 37863436 DOI: 10.1016/j.arr.2023.102094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
As a global public health problem, low back pain (LBP) caused by intervertebral disc degeneration (IDD) seriously affects patients' quality of life. In addition, the prevalence of IDD tends to be younger, which brings a huge burden to individuals and society economically. Current treatments do not delay or reverse the progression of IDD. The emergence of biologic therapies has brought new hope for the treatment of IDD. Among them, extracellular vesicles (EVs), as nanoscale bioactive substances that mediate cellular communication, have now produced many surprising results in the research of the treatment of IDD. This article reviews the mechanisms and roles of EVs in delaying IDD and describes the prospects and challenges of EVs.
Collapse
Affiliation(s)
- Shengxu Zhu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Junlin Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China.
| |
Collapse
|
20
|
Shu QH, Zuo RT, Chu M, Shi JJ, Ke QF, Guan JJ, Guo YP. Fiber-reinforced gelatin/β-cyclodextrin hydrogels loaded with platelet-rich plasma-derived exosomes for diabetic wound healing. BIOMATERIALS ADVANCES 2023; 154:213640. [PMID: 37804684 DOI: 10.1016/j.bioadv.2023.213640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023]
Abstract
Diabetic complications with high-glucose status (HGS) cause the dysregulated autophagy and excessive apoptosis of multiple-type cells, leading to the difficulty in wound self-healing. Herein, we firstly developed fiber-reinforced gelatin (GEL)/β-cyclodextrin (β-CD) therapeutic hydrogels by the modification of platelet-rich plasma exosomes (PRP-EXOs). The GEL fibers that were uniformly dispersed within the GEL/β-CD hydrogels remarkably enhanced the compression strengths and viscoelasticity. The PRP-EXOs were encapsulated in the hydrogels via the covalent crosslinking between the PRP-EXOs and genipin. The diabetic rat models demonstrated that the GEL/β-CD hydrogels and PRP-EXOs cooperatively promoted diabetic wound healing. On the one hand, the GEL/β-CD hydrogels provided the biocompatible microenvironments and active components for cell adhesion, proliferation and skin tissue regeneration. On the other hand, the PRP-EXOs in the therapeutic hydrogels significantly activated the autophagy and inhibited the apoptosis of human umbilical vein endothelial cells (HUVECs) and human skin fibroblasts (HSFs). The activation of autophagy and inhibition of apoptosis in HUVECs and HSFs induced the blood vessel creation, collagen formation and re-epithelialization. Taken together, this work proved that the incorporation of PRP-EXOs in a wound dressing was an effective strategy to regulate autophagy and apoptosis, and provide a novel therapeutic platform for diabetic wound healing.
Collapse
Affiliation(s)
- Qiu-Hao Shu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Rong-Tai Zuo
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Min Chu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Jing-Jing Shi
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Jun-Jie Guan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
21
|
Anitua E, Troya M, Falcon-Pérez JM, López-Sarrio S, González E, Alkhraisat MH. Advances in Platelet Rich Plasma-Derived Extracellular Vesicles for Regenerative Medicine: A Systematic-Narrative Review. Int J Mol Sci 2023; 24:13043. [PMID: 37685849 PMCID: PMC10488108 DOI: 10.3390/ijms241713043] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The use of platelet-rich plasma (PRP) has gained increasing interest in recent decades. The platelet secretome contains a multitude of growth factors, cytokines, chemokines, and other biological biomolecules. In recent years, developments in the field of platelets have led to new insights, and attention has been focused on the platelets' released extracellular vesicles (EVs) and their role in intercellular communication. In this context, the aim of this review was to compile the current evidence on PRP-derived extracellular vesicles to identify the advantages and limitations fortheir use in the upcoming clinical applications. A total of 172 articles were identified during the systematic literature search through two databases (PubMed and Web of Science). Twenty publications met the inclusion criteria and were included in this review. According to the results, the use of PRP-EVs in the clinic is an emerging field of great interest that represents a promising therapeutic option, as their efficacy has been demonstrated in the majority of fields of applications included in this review. However, the lack of standardization along the procedures in both the field of PRP and the EVs makes it extremely challenging to compare results among studies. Establishing standardized conditions to ensure optimized and detailed protocols and define parameters such as the dose or the EV origin is therefore urgent. Further studies to elucidate the real contribution of EVs to PRP in terms of composition and functionality should also be performed. Nevertheless, research on the field provides promising results and a novel basis to deal with the regenerative medicine and drug delivery fields in the future.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, 01007 Vitoria-Gasteiz, Spain; (M.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - María Troya
- BTI-Biotechnology Institute, 01007 Vitoria-Gasteiz, Spain; (M.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - Juan Manuel Falcon-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, 48160 Derio, Spain; (J.M.F.-P.); (S.L.-S.); (E.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas, 28029 Madrid, Spain
- Metabolomics Platform, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Silvia López-Sarrio
- Exosomes Laboratory, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, 48160 Derio, Spain; (J.M.F.-P.); (S.L.-S.); (E.G.)
| | - Esperanza González
- Exosomes Laboratory, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, 48160 Derio, Spain; (J.M.F.-P.); (S.L.-S.); (E.G.)
| | - Mohammad H. Alkhraisat
- BTI-Biotechnology Institute, 01007 Vitoria-Gasteiz, Spain; (M.T.); (M.H.A.)
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| |
Collapse
|
22
|
Samanta A, Lufkin T, Kraus P. Intervertebral disc degeneration-Current therapeutic options and challenges. Front Public Health 2023; 11:1156749. [PMID: 37483952 PMCID: PMC10359191 DOI: 10.3389/fpubh.2023.1156749] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a normal part of aging. Due to the spine's declining function and the development of pain, it may affect one's physical health, mental health, and socioeconomic status. Most of the intervertebral disc degeneration (IVDD) therapies today focus on the symptoms of low back pain rather than the underlying etiology or mechanical function of the disc. The deteriorated disc is typically not restored by conservative or surgical therapies that largely focus on correcting symptoms and structural abnormalities. To enhance the clinical outcome and the quality of life of a patient, several therapeutic modalities have been created. In this review, we discuss genetic and environmental causes of IVDD and describe promising modern endogenous and exogenous therapeutic approaches including their applicability and relevance to the degeneration process.
Collapse
Affiliation(s)
| | | | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
23
|
Chen XW, Li QW, Wang H. Sequencing and bioinformatics analysis of miRNA from rat endplate chondrogenic exosomes. Exp Ther Med 2023; 25:267. [PMID: 37206570 PMCID: PMC10189748 DOI: 10.3892/etm.2023.11966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/16/2023] [Indexed: 05/21/2023] Open
Abstract
Exosomes have a key role in various diseases, such as arthritis, heart disease and respiratory disease. Exosomes from various sources have also been indicated to improve intervertebral disc degeneration. However, the role of endplate chondrogenic exosomes in intervertebral disc degeneration has remained largely elusive. The aim of the present study was to compare exosomal microRNA (miRNA) expression patterns in endplate chondrocytes before and after degeneration, and their potential roles in the pathogenesis of intervertebral disc degeneration (IVDD). Endplate chondrocytes were extracted from rats and cultured to obtain pre- and post-degeneration chondrocytes. Exosomes were obtained from the chondrocytes by centrifugation. The two groups of exosomes were subjected to small RNA sequencing, miRNA identification, novel miRNA prediction, quantitative analysis of miRNA expression and differentially expressed (DE) miRNA screening, in addition to miRNA target gene (TG) prediction and TG functional annotation and enrichment analysis. The percentage of miRNAs isolated from the exosomes before and after degeneration was found to differ. A total of 58 DE miRNAs were analyzed, the expression levels of which were significantly different post-degeneration compared with pre-degeneration. Cell experiments were also performed, in which the exosomes were co-cultured with nucleus pulposus (NP) cells. The results indicated that the chondrocyte-derived exosomes were taken up by the NP cells and influenced the expression of aggrecan and collagen 1A and 2A, suggesting that they may inhibit IVDD via their action on NP cells. The specific miRNAs present in exosomes during IVDD may be used to develop new targets for the treatment and diagnosis of this condition. DE exosomal miRNAs derived from endplate cartilage pre- and post-degeneration may be associated with the risk of IVDD and could help to distinguish patients with IVDD. Furthermore, the expression of certain miRNAs may be associated with disease progression, which may contribute to understanding the pathophysiology of IVDD from an epigenetic perspective.
Collapse
Affiliation(s)
- Xue-Wu Chen
- Department of Spinal Orthopedics, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Qiu-Wei Li
- Department of Spinal Orthopedics, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Hong Wang
- Department of Spinal Orthopedics, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
- Correspondence to: Professor Hong Wang, Department of Spinal Orthopedics, Yijishan Hospital of Wannan Medical College, 2 Zheshan West Road, Jinghu, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
24
|
Kawabata S, Akeda K, Yamada J, Takegami N, Fujiwara T, Fujita N, Sudo A. Advances in Platelet-Rich Plasma Treatment for Spinal Diseases: A Systematic Review. Int J Mol Sci 2023; 24:ijms24087677. [PMID: 37108837 PMCID: PMC10145581 DOI: 10.3390/ijms24087677] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Spinal diseases are commonly associated with pain and neurological symptoms, which negatively impact patients' quality of life. Platelet-rich plasma (PRP) is an autologous source of multiple growth factors and cytokines, with the potential to promote tissue regeneration. Recently, PRP has been widely used for the treatment of musculoskeletal diseases, including spinal diseases, in clinics. Given the increasing popularity of PRP therapy, this article examines the current literature for basic research and emerging clinical applications of this therapy for treating spinal diseases. First, we review in vitro and in vivo studies, evaluating the potential of PRP in repairing intervertebral disc degeneration, promoting bone union in spinal fusion surgeries, and aiding in neurological recovery from spinal cord injury. Second, we address the clinical applications of PRP in treating degenerative spinal disease, including its analgesic effect on low back pain and radicular pain, as well as accelerating bone union during spinal fusion surgery. Basic research demonstrates the promising regenerative potential of PRP, and clinical studies have reported on the safety and efficacy of PRP therapy for treating several spinal diseases. Nevertheless, further high-quality randomized controlled trials would be required to establish clinical evidence of PRP therapy.
Collapse
Affiliation(s)
- Soya Kawabata
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Koji Akeda
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Junichi Yamada
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Norihiko Takegami
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Tatsuhiko Fujiwara
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| |
Collapse
|
25
|
Chen C, Wang Q, Li D, Qi Z, Chen Y, Wang S. MALAT1 participates in the role of platelet-rich plasma exosomes in promoting wound healing of diabetic foot ulcer. Int J Biol Macromol 2023; 238:124170. [PMID: 36963542 DOI: 10.1016/j.ijbiomac.2023.124170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
Exosomes isolated from platelet-rich plasma (PRP-exos) have been recently deemed as an optimized therapeutic strategy in Diabetic foot ulcer (DFU) treatment. Herein, we aimed to explore whether MALAT1 participates in DFU wound healing by PRP-exos treatment and the related preliminary mechanism. Fibroblasts were isolated from healthy donors and DFU patients, and the expression of MALAT1, miR-374a-3p and DNMT3A were detected by RT-PCR. The effect of MALAT1 and miR-374a-3p on DFU fibroblast function was verified by gain/loss of function experiment. The targeted binding of MALAT and miRNA was verified by double luciferase reporter gene assay. PRP-exos were isolated from normal human blood and characterized, and then co-cultured with DFU fibroblasts. The MALAT1 expression was donwregulated while the miR-374a-5p expression was upregulated in DFU fibroblasts. Double luciferase reporter gene assay demonstrated the targeted binding of MALAT and miR-374a-5p. Overexpression of MALAT1 or knockdown of miR-374a-5p could increase viability and inhibit apoptosis and pyroptosis of DFU fibroblast. And overexpression of miR-374a-5p reversed the effect of PRR-exos or MALAT1 overexpression on cell viability, apoptosis and pyroptosis. Collectively, MALAT1 mediated signal axis participates in the role of PRP-exos in promoting DFU wound healing, which may help identify optimal targets and effective therapies for DFU treatment.
Collapse
Affiliation(s)
- Changhong Chen
- Department of Orthopaedics, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214400, PR China
| | - Qinghua Wang
- Department of Orthopaedics, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214400, PR China
| | - Daibin Li
- Department of Orthopaedics, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214400, PR China
| | - Zhijian Qi
- Department of Orthopaedics, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214400, PR China
| | - Yaofei Chen
- Department of Orthopaedics, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214400, PR China
| | - Shanzheng Wang
- Department of Orthopaedics, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
26
|
Xiao L, Gao D, Zhang Y, Liu C, Yin Z. Codelivery of TGF-β1 and anti-miR-141 by PLGA microspheres inhibits progression of intervertebral disc degeneration. J Orthop Surg Res 2023; 18:17. [PMID: 36609253 PMCID: PMC9817358 DOI: 10.1186/s13018-023-03501-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cervical and lumbar pain is usually caused by degeneration of the nucleus pulposus (NP). As a powerful therapeutic strategy, tissue engineering can effectively restore the normal biological properties of the spinal unit. Previous studies suggested that poly(lactic-co-glycolic acid) (PLGA) microspheres are effective carriers of cells and biomolecules in NP tissue engineering. This study aims to explore the therapeutic effect of PLGA microspheres coloaded with transforming growth factor-β1 (TGF-β1) and anti-miR-141 on intervertebral disc degeneration (IDD). METHODS PLGA microspheres were characterized by scanning electron microscopy, a laser particle size analyzer, and laser confocal microscopy. The in vitro release rate of biomolecules from the microspheres was analyzed by reversed-phase high-performance liquid chromatography and agarose gel electrophoresis. The rat NP cells (NPCs) treated with the solutions released from microspheres for different lengths of time were assigned to a control group (Ctrl), an empty PLGA microsphere group (Mock microsphere, MS), a TGF-β1-loaded PLGA microsphere group (TMS), an anti-miR-141-loaded PLGA microsphere group (AMS), and an anti-miR-141 + TGF-β1-loaded PLGA microsphere group (ATMS). The proliferation and apoptosis of NPCs were observed by alamar blue and flow cytometry. The gene and protein expression of cartilage markers COL2A1 and ACAN were observed by RT-qPCR and Western blot. The rat model of IDD was established by tail puncture. Rats were divided into a control group (Ctrl), a mock operation group (Mock), a TGF-β1 microsphere group (TMS), an anti-miR-141 microsphere group (AMS), and an anti-miR-141 + TGF-β1 microsphere group (ATMS). The degree of rat tail IDD was assessed in each group through magnetic resonance imaging (MRI), safranin O-fast green staining, immunohistochemistry, and Western blotting. RESULTS PLGA microspheres were stably coloaded and could sustainably release TGF-β1 and anti-miR-141. The results of in vitro cell experiments showed that the release solution of PLGA microspheres significantly enhanced the proliferation of NPCs without inducing their apoptosis and significantly upregulated cartilage markers in NPCs. The effect of microspheres was greater in the ATMS group than that in the TMS group and AMS group. In vivo experiments showed that IDD could be effectively inhibited and reversed by adding microspheres coloaded with TGF-β1 and/or anti-miR-141, and the effect was greatest in the ATMS group. CONCLUSION PLGA microspheres coloaded with TGF-β1 and anti-miR-141 can reverse IDD by inhibiting the degeneration of NPCs.
Collapse
Affiliation(s)
- Liang Xiao
- grid.412679.f0000 0004 1771 3402Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Daokuan Gao
- grid.452929.10000 0004 8513 0241Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 China
| | - Yu Zhang
- grid.452929.10000 0004 8513 0241Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 China
| | - Chen Liu
- grid.452929.10000 0004 8513 0241Department of Spine Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 China
| | - Zongsheng Yin
- grid.412679.f0000 0004 1771 3402Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China ,grid.412679.f0000 0004 1771 3402Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei, 230022 Anhui China
| |
Collapse
|
27
|
Role of Pyroptosis in Intervertebral Disc Degeneration and Its Therapeutic Implications. Biomolecules 2022; 12:biom12121804. [PMID: 36551232 PMCID: PMC9775394 DOI: 10.3390/biom12121804] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc degeneration (IDD), a progressive and multifactorial pathological process, is predominantly associated with low back pain and permanent disability. Pyroptosis is a type of lytic programmed cell death triggered by the activation of inflammasomes and caspases. Unlike apoptosis, pyroptosis is characterized by the rupture of the plasma membrane and the release of inflammatory mediators, accelerating the destruction of the extracellular matrix (ECM). Recent studies have shown that pyrin domain-containing 3 (NLRP3) inflammasome-mediated pyroptosis in nucleus pulposus (NP) cells is activated in the progression of IDD. Furthermore, targeting pyroptosis in IDD demonstrates the excellent capacity of ECM remodeling and its anti-inflammatory properties, suggesting that pyroptosis is involved in the IDD process. In this review, we briefly summarize the molecular mechanism of pyroptosis and the pathogenesis of IDD. We also focus on the role of pyroptosis in the pathological progress of IDD and its targeted therapeutic application.
Collapse
|
28
|
Li Z, Wu Y, Tan G, Xu Z, Xue H. Exosomes and exosomal miRNAs: A new therapy for intervertebral disc degeneration. Front Pharmacol 2022; 13:992476. [PMID: 36160436 PMCID: PMC9492865 DOI: 10.3389/fphar.2022.992476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Low back pain has been found as a major cause of global disease burden and disability. Intervertebral disc degeneration is recognized as the vital factor causing low back pain. Intervertebral disc degeneration has a complex mechanism and cannot be avoided. Traditional strategies for the treatment of intervertebral disc degeneration cannot meet the needs of intervertebral disc regeneration, so novel treatment methods are urgently required. Exosomes refer to extracellular vesicles that can be released by most cells, and play major roles in intercellular material transport and information transmission. MicroRNAs have been identified as essential components in exosomes, which can be selectively ingested by exosomes and delivered to receptor cells for the regulation of the physiological activities and functions of receptor cells. Existing studies have progressively focused on the role of exosomes and exosomal microRNAs in the treatment of intervertebral disc degeneration. The focus on this paper is placed on the changes of microenvironment during intervertebral disc degeneration and the biogenesis and mechanism of action of exosomes and exosomal microRNAs. The research results and deficiencies of exosomes and exosomal microRNAs in the regulation of apoptosis, extracellular matrix homeostasis, inflammatory response, oxidative stress, and angiogenesis in intervertebral disc degeneration are primarily investigated. The aim of this paper is to identify the latest research results, potential applications and challenges of this emerging treatment strategy.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wu
- Department of Orthopedics, The First Affiliated Hospital of Shandong First Medcial Unversity, Jinan, China
| | - Guoqing Tan
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Haipeng Xue,
| |
Collapse
|
29
|
The Nrf2 antioxidant defense system in intervertebral disc degeneration: Molecular insights. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1067-1075. [PMID: 35978054 PMCID: PMC9440120 DOI: 10.1038/s12276-022-00829-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common degenerative musculoskeletal disorder and is recognized as a major contributor to discogenic lower back pain. However, the molecular mechanisms underlying IDD remain unclear, and therapeutic strategies for IDD are currently limited. Oxidative stress plays pivotal roles in the pathogenesis and progression of many age-related diseases in humans, including IDD. Nuclear factor E2-related factor 2 (Nrf2) is a master antioxidant transcription factor that protects cells against oxidative stress damage. Nrf2 is negatively modulated by Kelch-like ECH-associated protein 1 (Keap1) and exerts important effects on IDD progression. Accumulating evidence has revealed that Nrf2 can facilitate the transcription of downstream antioxidant genes in disc cells by binding to antioxidant response elements (AREs) in promoter regions, including heme oxygenase-1 (HO-1), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and NADPH quinone dehydrogenase 1 (NQO1). The Nrf2 antioxidant defense system regulates cell apoptosis, senescence, extracellular matrix (ECM) metabolism, the inflammatory response of the nucleus pulposus (NP), and calcification of the cartilaginous endplates (EP) in IDD. In this review, we aim to discuss the current knowledge on the roles of Nrf2 in IDD systematically. Insights into the activity of a protein that regulates gene expression and protects cells against oxidative stress could yield novel treatments for lower back pain. Intervertebral disc degeneration (IDD) is a common cause of lower back pain, but the molecular mechanisms underlying IDD are unclear, meaning treatment options are limited. Oxidative stress is implicated in IDD, and scientists have begun exploring the role of nuclear factor E2-related factor 2 (Nrf2), a master regulator of the body’s antioxidant responses, in regulating IDD progression. In a review of recent research, Weishi Li at Peking University Third Hospital, Beijing, China, and co-workers point out that boosting the activity of Nrf2-related signaling pathways alleviates oxidative stress in intervertebral disc cells. The researchers suggest that therapies based on non-coding RNAs may prove valuable in activating Nrf2 in IDD patients.
Collapse
|
30
|
Abstract
Tissue engineering and regenerative medicine (TERM) may be defined as a translational discipline focused on the development of novel techniques, devices, and materials to replace or repair injured or diseased tissue and organs. The main approaches typically use cells, scaffolds, and signaling molecules, either alone or in combination, to promote repair and regeneration. Although cells are required to create new functional tissue, the source of cells, either from an exogenous allogeneic or autologous source or through the recruitment of endogenous (autologous) cells, is technically challenging and risks the host rejection of new tissue. Regardless of the cell source, these approaches also require appropriate instruction for proliferation, differentiation, and in vivo spatial organization to create new functional tissue. Such instruction is supplied through the microenvironment where cells reside, environments which largely consist of the extracellular matrix (ECM). The specific components of the ECM, and broadly the extracellular space, responsible for promoting tissue regeneration and repair, are not fully understood, however extracellular vesicles (EVs) found in body fluids and solid phases of ECM have emerged as key mediators of tissue regeneration and repair. Additionally, these EVs might serve as potential cell-free tools in TERM to promote tissue repair and regeneration with minimal risk for host rejection and adverse sequelae. The past two decades have shown a substantial interest in understanding the therapeutic role of EVs and their applications in the context of TERM. Therefore, the purpose of this review is to highlight the fundamental characteristics of EVs, the current pre-clinical and clinical applications of EVs in TERM, and the future of EV-based strategies in TERM.
Collapse
|
31
|
Lee S, Ko JH, Kim SN. The Extracellular MicroRNAs on Inflammation: A Literature Review of Rodent Studies. Biomedicines 2022; 10:1601. [PMID: 35884901 PMCID: PMC9312877 DOI: 10.3390/biomedicines10071601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammation is an indispensable biological process stimulated by infection and injuries. Inflammatory mechanisms related to extracellular vesicles (EVs), which are small membrane structures carrying various molecules, were summarized in this review. Emerging evidence from animal studies has highlighted the role of EVs in modulating inflammatory responses, by transporting various molecules involved in host defense. In this review, we have discussed the role of EV miRNAs in inflammation. Rodent studies associated with extracellular miRNAs in inflammatory diseases, published from 2012 to 2022, were explored from PUBMED, EMBASE, and MEDLINE. A total of 95 studies were reviewed. In summary, EV-associated miRNAs play a key role in various diseases, including organ injury, immune dysfunction, neurological disease, metabolic syndrome, vesicular disease, arthritis, cancer, and other inflammatory diseases. Diverse EV-associated miRNAs regulate inflammasome activation and pro- and anti-inflammatory cytokine levels by targeting genes.
Collapse
Affiliation(s)
- Seri Lee
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea; (S.L.); (J.H.K.)
- Graduate School, Dongguk University, Seoul 04620, Korea
| | - Jade Heejae Ko
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea; (S.L.); (J.H.K.)
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea; (S.L.); (J.H.K.)
| |
Collapse
|
32
|
MECHANISM OF MIR-25-3P CARRIED BY EXTRACELLULAR VESICLES DERIVED FROM PLATELET-RICH PLASMA IN IL-1β-INDUCED NUCLEUS PULPOSUS CELL DEGENERATION VIA THE SOX4/CXCR7 AXIS. Shock 2022; 58:56-67. [PMID: 35984761 DOI: 10.1097/shk.0000000000001947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Objectives: Nucleus pulposus (NP) cell degeneration promotes the progression of intervertebral disc (IVD) degeneration. MicroRNAs (miRs) are associated with IVD degeneration. This study expounded the mechanism of microRNA (miR)-25-3p carried by extracellular vesicles (EVs) derived from platelet-rich plasma (PRP) in interleukin (IL)-1β-induced NP cell degeneration. Methods: Platelet-rich plasma from mouse blood was obtained, and EVs were isolated from PRP (EVs derived from PRP [PRP-EVs]) and identified. Nucleus pulposus cells were isolated from the mouse lumbar IVD and treated with IL-1β to induce NP cell degeneration. Extracellular vesicles derived from PRP were added into NP cell culture medium. Afterward, intracellular miR-25-3p, sex determining region Y-related high-mobility-group box 4 (SOX4), and CXC chemokine receptor 7 (CXCR7) levels were examined. Nucleus pulposus cell viability, apoptosis, and inflammation were detected. Extracellular vesicles derived from PRP were labeled by PKH67 to obverse the uptake of EVs by NP cells. The binding relations between SOX4 and miR-25-3p and CXCR7 were predicted and examined. Functional rescue experiments were performed to investigate the roles of miR-25-3p, SOX4, and CXCR7 in NP cell degeneration. Results: miR-25-3p was downregulated, whereas SOX4 and CXCR7 were upregulated in IL-1β-induced NP cells. Extracellular vesicles derived from PRP increased the cell viability, and decreased apoptosis and inflammation. miR-25-3p carried by PRP-EVs into NP cells alleviated NP cell degeneration. miR-25-3p inhibited SOX4 expression and limited CXCR7 transcription. Silencing miR-25-3p or overexpressing SOX4 or CXCR7 reversed the alleviating role of PRP-EVs in NP cell degeneration. Conclusion: miR-25-3p carried by PRP-EVs into NP cells elevated intracellular miR-25-3p expression, which suppressed SOX4 expression and further limited CXCR7 transcription, thus alleviating IL-1β-induced NP cell degeneration. Extracellular vesicles derived from PRP containing miR-25-3p may be a new method for IVD treatment.
Collapse
|
33
|
Exosomes: A promising therapeutic strategy for intervertebral disc degeneration. Exp Gerontol 2022; 163:111806. [DOI: 10.1016/j.exger.2022.111806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022]
|
34
|
Saumell-Esnaola M, Delgado D, García del Caño G, Beitia M, Sallés J, González-Burguera I, Sánchez P, López de Jesús M, Barrondo S, Sánchez M. Isolation of Platelet-Derived Exosomes from Human Platelet-Rich Plasma: Biochemical and Morphological Characterization. Int J Mol Sci 2022; 23:ijms23052861. [PMID: 35270001 PMCID: PMC8911307 DOI: 10.3390/ijms23052861] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Platelet-Rich Plasma (PRP) is enriched in molecular messengers with restorative effects on altered tissue environments. Upon activation, platelets release a plethora of growth factors and cytokines, either in free form or encapsulated in exosomes, which have been proven to promote tissue repair and regeneration. Translational research on the potential of exosomes as a safe nanosystem for therapeutic cargo delivery requires standardizing exosome isolation methods along with their molecular and morphological characterization. With this aim, we isolated and characterized the exosomes released by human PRP platelets. Western blot analysis revealed that CaCl2-activated platelets (PLT-Exos-Ca2+) released more exosomes than non-activated ones (PLT-Exos). Moreover, PLT-Exos-Ca2+ exhibited a molecular signature that meets the most up-to-date biochemical criteria for platelet-derived exosomes and possessed morphological features typical of exosomes as assessed by transmission electron microscopy. Array analysis of 105 analytes including growth factors and cytokines showed that PLT-Exos-Ca2+ exhibited lower levels of most analytes compared to PLT-Exos, but relatively higher levels of those consistently validated as components of the protein cargo of platelet exosomes. In summary, the present study provides new insights into the molecular composition of human platelet-derived exosomes and validates a method for isolating highly pure platelet exosomes as a basis for future preclinical studies in regenerative medicine and drug delivery.
Collapse
Affiliation(s)
- Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
| | - Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
| | - Gontzal García del Caño
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Maider Beitia
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Correspondence: (J.S.); (M.S.); Tel.: +34-945-013114 (J.S.); +34-945-252077 (M.S.)
| | - Imanol González-Burguera
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
| | - Maider López de Jesús
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
| | - Mikel Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain
- Correspondence: (J.S.); (M.S.); Tel.: +34-945-013114 (J.S.); +34-945-252077 (M.S.)
| |
Collapse
|
35
|
Cheng F, Yang H, Cheng Y, Liu Y, Hai Y, Zhang Y. The role of oxidative stress in intervertebral disc cellular senescence. Front Endocrinol (Lausanne) 2022; 13:1038171. [PMID: 36561567 PMCID: PMC9763277 DOI: 10.3389/fendo.2022.1038171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
With the aggravation of social aging and the increase in work intensity, the prevalence of spinal degenerative diseases caused by intervertebral disc degeneration(IDD)has increased yearly, which has driven a heavy economic burden on patients and society. It is well known that IDD is associated with cell damage and degradation of the extracellular matrix. In recent years, it has been found that IDD is induced by various mechanisms (e.g., genetic, mechanical, and exposure). Increasing evidence shows that oxidative stress is a vital activation mechanism of IDD. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) could regulate matrix metabolism, proinflammatory phenotype, apoptosis, autophagy, and aging of intervertebral disc cells. However, up to now, our understanding of a series of pathophysiological mechanisms of oxidative stress involved in the occurrence, development, and treatment of IDD is still limited. In this review, we discussed the oxidative stress through its mechanisms in accelerating IDD and some antioxidant treatment measures for IDD.
Collapse
Affiliation(s)
| | | | | | - Yuzeng Liu
- *Correspondence: Yuzeng Liu, ; Yong Hai, ; ; Yangpu Zhang,
| | - Yong Hai
- *Correspondence: Yuzeng Liu, ; Yong Hai, ; ; Yangpu Zhang,
| | - Yangpu Zhang
- *Correspondence: Yuzeng Liu, ; Yong Hai, ; ; Yangpu Zhang,
| |
Collapse
|