1
|
Tan H, Wang C, Li F, Peng Y, Sima J, Li Y, Deng L, Wu K, Xu Z, Zhang Z. Cross-kingdom regulation of gene expression in giant pandas via plant-derived miRNA. Front Vet Sci 2025; 12:1509698. [PMID: 40093621 PMCID: PMC11906662 DOI: 10.3389/fvets.2025.1509698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/07/2025] [Indexed: 03/19/2025] Open
Abstract
Giant pandas (Ailuropoda melanoleuca) belong to the order Carnivora, but they mainly feed on bamboo, and their unique dietary adaptability has always been the focus of research. Recent research indicates that plant-derived microRNAs (miRNAs) can be delivered to animal organisms via exosomes and exert cross-kingdom regulatory effects on gene expression. To explore the role of plant-derived miRNAs in the dietary adaptation of giant pandas, we collected peripheral blood samples from three groups of pandas: juvenile females, adult females, and adult males-and extracted exosomes from the blood for small RNA sequencing. Additionally, three types of bamboo (shoots, stems, and leaves) consumed by the pandas were sampled for miRNA sequencing. Through comparative analysis, we identified 57 bamboo-derived miRNAs in the extracellular exosomes of giant panda peripheral blood. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses of the target genes for these miRNAs revealed their involvement in various pathways, including taste and olfactory signal transduction, digestion and absorption, and hormonal signal transduction. Furthermore, we found that plant-derived miRNAs can modulate dopamine metabolism in giant pandas, thereby influencing their food preferences. This study shows that plant-derived miRNAs can enter the bloodstream of giant pandas and exert cross-kingdom regulatory effects, potentially playing a vital role in their dietary adaptation process.
Collapse
Affiliation(s)
- Helin Tan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Giant Panda, China West Normal University, Nanchong, China
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, China West Normal University, Nanchong, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Key Laboratory of SFGA on the Giant Panda, Chengdu, China
| | - Feng Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Giant Panda, China West Normal University, Nanchong, China
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, China West Normal University, Nanchong, China
| | - Yue Peng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Giant Panda, China West Normal University, Nanchong, China
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, China West Normal University, Nanchong, China
| | - Jiacheng Sima
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Giant Panda, China West Normal University, Nanchong, China
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, China West Normal University, Nanchong, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Sciences and Technology, Foshan University, Foshan, China
| | - Linhua Deng
- China Conservation and Research Center for the Giant Panda, Key Laboratory of SFGA on the Giant Panda, Chengdu, China
| | - Kai Wu
- China Conservation and Research Center for the Giant Panda, Key Laboratory of SFGA on the Giant Panda, Chengdu, China
| | - Zhongxian Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Giant Panda, China West Normal University, Nanchong, China
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, China West Normal University, Nanchong, China
| | - Zejun Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Giant Panda, China West Normal University, Nanchong, China
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, China West Normal University, Nanchong, China
| |
Collapse
|
2
|
Butz H, Patócs A, Igaz P. Circulating non-coding RNA biomarkers of endocrine tumours. Nat Rev Endocrinol 2024; 20:600-614. [PMID: 38886617 DOI: 10.1038/s41574-024-01005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Circulating non-coding RNA (ncRNA) molecules are being investigated as biomarkers of malignancy, prognosis and follow-up in several neoplasms, including endocrine tumours of the pituitary, parathyroid, pancreas and adrenal glands. Most of these tumours are classified as neuroendocrine neoplasms (comprised of neuroendocrine tumours and neuroendocrine carcinomas) and include tumours of variable aggressivity. We consider them together here in this Review owing to similarities in their clinical presentation, pathomechanism and genetic background. No preoperative biomarkers of malignancy are available for several forms of these endocrine tumours. Moreover, biomarkers are also needed for the follow-up of tumour progression (especially in hormonally inactive tumours), prognosis and treatment efficacy monitoring. Circulating blood-borne ncRNAs show promising utility as biomarkers. These ncRNAs, including microRNAs, long non-coding RNAs and circular RNAs, are involved in several aspects of gene expression regulation, and their stability and tissue-specific expression could make them ideal biomarkers. However, no circulating ncRNA biomarkers have yet been introduced into routine clinical practice, which is mostly owing to methodological and standardization problems. In this Review, following a brief synopsis of these endocrine tumours and the biology of ncRNAs, the major research findings, pathomechanisms and methodological questions are discussed along with an outlook for future studies.
Collapse
Affiliation(s)
- Henriett Butz
- HUN-REN-SU Hereditary Tumours Research Group, Budapest, Hungary
- Department of Molecular Genetics and the National Tumour Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- HUN-REN-SU Hereditary Tumours Research Group, Budapest, Hungary
- Department of Molecular Genetics and the National Tumour Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Peter Igaz
- Department of Endocrinology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
3
|
Trivedi TS, Shaikh AM, Mankad AU, Rawal RM, Patel SK. Genome-Wide Characterization of Fennel (Anethum foeniculum) MiRNome and Identification of its Potential Targets in Homo sapiens and Arabidopsis thaliana: An Inter and Intra-species Computational Scrutiny. Biochem Genet 2024; 62:2766-2795. [PMID: 38017284 DOI: 10.1007/s10528-023-10575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
MicroRNAs could be promising biomarkers for various diseases, and small RNA drugs have already been FDA approved for clinical use. This area of research is rapidly expanding and has significant potential for the future. Fennel (Anethum foeniculum) is a highly esteemed spice plant with economic and medicinal benefits, making it an invaluable asset in the pharmaceutical industry. To characterize the fennel miRNAs and their Arabidopsis thaliana and Homo sapience targets with functional enrichment analysis and human disease association. A homology-based computational approach characterized the MiRnome of the Anethum foeniculum genome and assessed its impact on Arabidopsis thaliana and Homo sapience transcriptomes. In addition, functional enrichment analysis was evaluated for both species' targets. Moreover, PPI network analysis, hub gene identification, and MD simulation analysis of the top hub node with fennel miRNA were incorporated. We have identified 100 miRNAs of fennel and their target genes, which include 2536 genes in Homo sapiens and 1314 genes in Arabidopsis thaliana. Functional enrichment analysis reveals 56 Arabidopsis thaliana targets of fennel miRNAs showed involvement in metabolic pathways. Highly enriched human KEGG pathways were associated with several diseases, especially cancer. The protein-protein interaction network of human targets determined the top ten nodes; from them, seven hub nodes, namely MAPK1, PIK3R1, STAT3, EGFR, KRAS, CDC42, and SMAD4, have shown their involvement in the pancreatic cancer pathway. Based on the Blast algorithm, 21 fennel miRNAs are homologs to 16 human miRNAs were predicted; from them, the CSPP1 target was a common target for afo-miR11117a-3p and has-miR-6880-5p homologs miRNAs. Our results are the first to report the 100 fennel miRNAs, and predictions for their endogenous and human target genes provide a basis for further understanding of Anethum foeniculum miRNAs and the biological processes and diseases with which they are associated.
Collapse
Affiliation(s)
- Tithi S Trivedi
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Aafrinbanu M Shaikh
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Archana U Mankad
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rakesh M Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
4
|
Weil PP, Reincke S, Hirsch CA, Giachero F, Aydin M, Scholz J, Jönsson F, Hagedorn C, Nguyen DN, Thymann T, Pembaur A, Orth V, Wünsche V, Jiang PP, Wirth S, Jenke ACW, Sangild PT, Kreppel F, Postberg J. Uncovering the gastrointestinal passage, intestinal epithelial cellular uptake and AGO2 loading of milk miRNAs in neonates using xenomiRs as tracers. Am J Clin Nutr 2023:S0002-9165(23)46299-5. [PMID: 36963568 DOI: 10.1016/j.ajcnut.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Human breast milk has a high microRNA (miRNA) content. It remains unknown whether and how milk miRNAs might affect intestinal gene regulation and homeostasis of the developing microbiome after initiation of enteral nutrition. However, this requires that relevant milk miRNA amounts survive gastrointestinal passage, are taken up by cells, and become available to the RNA interference (RNAi) machinery. It seems important to dissect the fate of these miRNAs after oral ingestion and gastrointestinal passage. OBJECTIVE Our goal was to analyze the potential transmissibility of milk miRNAs via the gastrointestinal system in neonate humans and a porcine model in vivo to contribute to the discussion whether milk miRNAs could influence gene regulation in neonates and thus might vertically transmit developmental relevant signals. DESIGN We performed cross-species profiling of miRNAs via deep-sequencing and utilized dietary xenobiotic taxon-specific milk miRNA (xenomiRs) as tracers in human and porcine neonates, followed by functional studies in primary human fetal intestinal epithelial cells (HIEC-6) using Ad5-mediated miRNA-gene transfer. RESULTS Mammals share many milk miRNAs yet exhibit taxon-specific miRNA fingerprints. We traced bovine-specific miRNAs from formula-nutrition in human preterm stool and 9 days after onset of enteral feeding in intestinal cells of preterm piglets. Thereafter, several xenomiRs accumulated in the intestinal cells. Moreover, few hours after introducing enteral feeding in preterm piglets with supplemented reporter miRNAs (cel-miR-39-5p/-3p), we observed their enrichment in blood serum and in AGO2-immunocomplexes from intestinal biopsies. CONCLUSIONS Milk-derived miRNAs survived gastrointestinal passage in human and porcine neonates. Bovine-specific miRNAs accumulated in intestinal cells of preterm piglets after enteral feeding with bovine colostrum/formula. In piglets, colostrum supplementation with cel-miR-39-5p/-3p resulted in increased blood levels of cel-miR-39-3p and argonaute RISC catalytic component 2 (AGO2) loading in intestinal cells. This suggests the possibility of vertical transmission of miRNA signaling from milk through the neonatal digestive tract.
Collapse
Affiliation(s)
- Patrick Philipp Weil
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Susanna Reincke
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Christian Alexander Hirsch
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Federica Giachero
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Malik Aydin
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany; HELIOS University Hospital Wuppertal, Children's Hospital, Centre for Clinical & Translational Research (CCTR), Witten/Herdecke University, Heusnerstr. 40, 42283 Wuppertal, Germany.
| | - Jonas Scholz
- Chair of Biochemistry and Molecular Medicine, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany.
| | - Franziska Jönsson
- Chair of Biochemistry and Molecular Medicine, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany.
| | - Claudia Hagedorn
- Chair of Biochemistry and Molecular Medicine, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany.
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anton Pembaur
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Valerie Orth
- HELIOS University Hospital Wuppertal, Department of Surgery II, Centre for Clinical & Translational Research (CCTR), Witten/Herdecke University, Heusnerstr. 40, 42283 Wuppertal, Germany.
| | - Victoria Wünsche
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| | - Ping-Ping Jiang
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark; School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Stefan Wirth
- HELIOS University Hospital Wuppertal, Children's Hospital, Centre for Clinical & Translational Research (CCTR), Witten/Herdecke University, Heusnerstr. 40, 42283 Wuppertal, Germany.
| | - Andreas C W Jenke
- Klinikum Kassel, Zentrum für Kinder- und Jugendmedizin, Neonatologie und allgemeine Pädiatrie, Mönchebergstr. 41-43, 34125 Kassel, Germany.
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany.
| | - Jan Postberg
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany.
| |
Collapse
|
5
|
Fang L, Wang HF, Chen YM, Bai RX, Du SY. Baicalin confers hepatoprotective effect against alcohol-associated liver disease by upregulating microRNA-205. Int Immunopharmacol 2022; 107:108553. [DOI: 10.1016/j.intimp.2022.108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/05/2022]
|
6
|
Exosome Carrier Effects; Resistance to Digestion in Phagolysosomes May Assist Transfers to Targeted Cells; II Transfers of miRNAs Are Better Analyzed via Systems Approach as They Do Not Fit Conventional Reductionist Stoichiometric Concepts. Int J Mol Sci 2022; 23:ijms23116192. [PMID: 35682875 PMCID: PMC9181154 DOI: 10.3390/ijms23116192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Carrier effects of extracellular vesicles (EV) like exosomes refer to properties of the vesicles that contribute to the transferred biologic effects of their contents to targeted cells. This can pertain to ingested small amounts of xenogeneic plant miRNAs and oral administration of immunosuppressive exosomes. The exosomes contribute carrier effects on transfers of miRNAs by contributing both to the delivery and the subsequent functional intracellular outcomes. This is in contrast to current quantitative canonical rules that dictate just the minimum copies of a miRNA for functional effects, and thus successful transfers, independent of the EV carrier effects. Thus, we argue here that transfers by non-canonical minute quantities of miRNAs must consider the EV carrier effects of functional low levels of exosome transferred miRNA that may not fit conventional reductionist stoichiometric concepts. Accordingly, we have examined traditional stoichiometry vs. systems biology that may be more appropriate for delivered exosome functional responses. Exosome carrier properties discussed include; their required surface activating interactions with targeted cells, potential alternate targets beyond mRNAs, like reaching a threshold, three dimensional aspects of the RNAs, added EV kinetic dynamic aspects making transfers four dimensional, and unique intracellular release from EV that resist intracellular digestion in phagolysosomes. Together these EV carrier considerations might allow systems analysis. This can then result in a more appropriate understanding of transferred exosome carrier-assisted functional transfers. A plea is made that the miRNA expert community, in collaboration with exosome experts, perform new experiments on molecular and quantitative miRNA functional effects in systems that include EVs, like variation in EV type and surface constituents, delivery, dose and time to hopefully create more appropriate and truly current canonical concepts of the consequent miRNA functional transfers by EVs like exosomes.
Collapse
|
7
|
Saiyed AN, Vasavada AR, Johar SRK. Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022; 8:24. [PMID: 35382490 PMCID: PMC8972743 DOI: 10.1186/s43094-022-00413-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 02/17/2023] Open
Abstract
Background Researchers now have a new avenue to investigate when it comes to miRNA-based therapeutics. miRNAs have the potential to be valuable biomarkers for disease detection. Variations in miRNA levels may be able to predict changes in normal physiological processes. At the epigenetic level, miRNA has been identified as a promising candidate for distinguishing and treating various diseases and defects. Main body In recent pharmacology, plants miRNA-based drugs have demonstrated a potential role in drug therapeutics. The purpose of this review paper is to discuss miRNA-based therapeutics, the role of miRNA in pharmacoepigenetics modulations, plant miRNA inter-kingdom regulation, and the therapeutic value and application of plant miRNA for cross-kingdom approaches. Target prediction and complementarity with host genes, as well as cross-kingdom gene interactions with plant miRNAs, are also revealed by bioinformatics research. We also show how plant miRNA can be transmitted from one species to another by crossing kingdom boundaries in this review. Despite several unidentified barriers to plant miRNA cross-transfer, plant miRNA-based gene regulation in trans-kingdom gene regulation may soon be valued as a possible approach in plant-based drug therapeutics. Conclusion This review summarised the biochemical synthesis of miRNAs, pharmacoepigenetics, drug therapeutics and miRNA transkingdom transfer.
Collapse
Affiliation(s)
- Atiyabanu N. Saiyed
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
- Ph.D. scholar of Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Abhay R. Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
| | - S. R. Kaid Johar
- Department of Zoology, BMTC, Human Genetics, USSC, Gujarat University, Ahmedabad, Gujarat India
| |
Collapse
|
8
|
Sánchez-Romo D, Hernández-Vásquez CI, Pereyra-Alférez B, García-García JH. Identification of potential target genes in Homo sapiens, by miRNA of Triticum aestivum: A cross kingdom computational approach. Noncoding RNA Res 2022; 7:89-97. [PMID: 35387280 PMCID: PMC8961073 DOI: 10.1016/j.ncrna.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Plant-derived miRNAs can be found in the human body after dietary intake, and they can affect post-transcriptional gene regulation in human. It is important to identify targets to determine the possible effects in human genes by using computational approach. In this study, 787 possible mRNAs human targets were predicted by 84 miRNAs of wheat. A total of 14 miRNAs were identified with individual binding to 33 mRNAs associated with schizophrenia, epilepsy, neurodevelopmental disorders, and various cancers, located in the 3′UTR of the mRNA. A functional enrichment was carried out, where the results showed associations to pathways such as dopaminergic synapse (hsa04728), and signaling pathways, significantly associated with the target genes. The prediction of target mRNAs in humans by wheat miRNAs, offer candidates that could facilitate the search and verification, which could be of relevance for future projects and therefor contribute in the therapeutic treatment of various human diseases.
Collapse
|
9
|
Myrzabekova M, Labeit S, Niyazova R, Akimniyazova A, Ivashchenko A. Identification of Bovine miRNAs with the Potential to Affect Human Gene Expression. Front Genet 2022; 12:705350. [PMID: 35087564 PMCID: PMC8787201 DOI: 10.3389/fgene.2021.705350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Milk and other products from large mammals have emerged during human evolution as an important source of nutrition. Recently, it has been recognized that exogenous miRNAs (mRNA inhibited RNA) contained in milk and other tissues of the mammalian body can enter the human body, which in turn have the ability to potentially regulate human metabolism by affecting gene expression. We studied for exogenous miRNAs from Bos taurus that are potentially contain miRNAs from milk and that could act postprandially as regulators of human gene expression. The interaction of 17,508 human genes with 1025 bta-miRNAs, including 245 raw milk miRNAs was studied. The milk bta-miR-151-5p, bta-miR-151-3p, bta-miRNA-320 each have 11 BSs (binding sites), and bta-miRNA-345-5p, bta-miRNA-614, bta-miRNA-1296b and bta-miRNA-149 has 12, 14, 15 and 26 BSs, respectively. The bta-miR-574-5p from cow’s milk had 209 human genes in mRNAs from one to 25 repeating BSs. We found 15 bta-miRNAs that have 100% complementarity to the mRNA of 13 human target genes. Another 12 miRNAs have BSs in the mRNA of 19 human genes with 98% complementarity. The bta-miR-11975, bta-miR-11976, and bta-miR-2885 BSs are located with the overlap of nucleotide sequences in the mRNA of human genes. Nucleotide sequences of BSs of these miRNAs in 5′UTR mRNA of human genes consisted of GCC repeats with a total length of 18 nucleotides (nt) in 18 genes, 21 nt in 11 genes, 24 nt in 14 genes, and 27–48 nt in nine genes. Nucleotide sequences of BSs of bta-miR-11975, bta-miR-11976, and bta-miR-2885 in CDS mRNA of human genes consisted of GCC repeats with a total length of 18 nt in 33 genes, 21 nt in 13 genes, 24 nt in nine genes, and 27–36 nt in 11 genes. These BSs encoded polyA or polyP peptides. In only one case, the polyR (SLC24A3 gene) was encoded. The possibility of regulating the expression of human genes by exogenous bovine miRNAs is discussed.
Collapse
Affiliation(s)
- Moldir Myrzabekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.,Myomedix GmbH, Neckargemuend, Germany
| | - Raigul Niyazova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Aigul Akimniyazova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anatoliy Ivashchenko
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
10
|
Wang Y, Tan J, Wang L, Pei G, Cheng H, Zhang Q, Wang S, He C, Fu C, Wei Q. MiR-125 Family in Cardiovascular and Cerebrovascular Diseases. Front Cell Dev Biol 2021; 9:799049. [PMID: 34926475 PMCID: PMC8674784 DOI: 10.3389/fcell.2021.799049] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular and cerebrovascular diseases are a serious threaten to the health of modern people. Understanding the mechanism of occurrence and development of cardiovascular and cerebrovascular diseases, as well as reasonable prevention and treatment of them, is a huge challenge that we are currently facing. The miR-125 family consists of hsa-miR-125a, hsa-miR-125b-1 and hsa-miR-125b-2. It is a kind of miRNA family that is highly conserved among different species. A large amount of literature shows that the lack of miR-125 can cause abnormal development of the cardiovascular system in the embryonic period. At the same time, the miR-125 family participates in the occurrence and development of a variety of cardiovascular and cerebrovascular diseases, including myocardial ischemia, atherosclerosis, ischemia-reperfusion injury, ischemic stroke, and heart failure directly or indirectly. In this article, we summarized the role of the miR-125 family in the development and maturation of cardiovascular system, the occurrence and development of cardiovascular and cerebrovascular diseases, and its important value in the current fiery stem cell therapy. In addition, we presented this in the form of table and diagrams. We also discussed the difficulties and challenges faced by the miR-125 family in clinical applications.
Collapse
Affiliation(s)
- Yang Wang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Jing Tan
- Department of Ultrasound Medicine, Binzhou People's Hospital, Binzhou, China
| | - Lu Wang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Gaiqin Pei
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Hongxin Cheng
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Qing Zhang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Shiqi Wang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Chenying Fu
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Quan Wei
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| |
Collapse
|
11
|
Chen X, Liu L, Chu Q, Sun S, Wu Y, Tong Z, Fang W, Timko MP, Fan L. Large-scale identification of extracellular plant miRNAs in mammals implicates their dietary intake. PLoS One 2021; 16:e0257878. [PMID: 34587184 PMCID: PMC8480717 DOI: 10.1371/journal.pone.0257878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Extracellular microRNAs (miRNAs) have been proposed to function in cross-kingdom gene regulation. Among these, plant-derived miRNAs of dietary origin have been reported to survive the harsh conditions of the human digestive system, enter the circulatory system, and regulate gene expression and metabolic function. However, definitive evidence supporting the presence of plant-derived miRNAs of dietary origin in mammals has been difficult to obtain due to limited sample sizes. We have developed a bioinformatics pipeline (ePmiRNA_finder) that provides strident miRNA classification and applied it to analyze 421 small RNA sequencing data sets from 10 types of human body fluids and tissues and comparative samples from carnivores and herbivores. A total of 35 miRNAs were identified that map to plants typically found in the human diet and these miRNAs were found in at least one human blood sample and their abundance was significantly different when compared to samples from human microbiome or cow. The plant-derived miRNA profiles were body fluid/tissue-specific and highly abundant in the brain and the breast milk samples, indicating selective absorption and/or the ability to be transported across tissue/organ barriers. Our data provide conclusive evidence for the presence of plant-derived miRNAs as a consequence of dietary intake and their cross-kingdom regulatory function within human circulating system.
Collapse
Affiliation(s)
- Xi Chen
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lu Liu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Qinjie Chu
- Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Shuo Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Hangzhou, China
| | - Yixuan Wu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhou Tong
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weijia Fang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Michael P. Timko
- Departments of Biology & Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Longjiang Fan
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Bioinformatics, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
12
|
Pham CV, Midge S, Barua H, Zhang Y, Ngoc-Gia Nguyen T, Barrero RA, Duan A, Yin W, Jiang G, Hou Y, Zhou S, Wang Y, Xie X, Tran PHL, Xiang D, Duan W. Bovine extracellular vesicles contaminate human extracellular vesicles produced in cell culture conditioned medium when 'exosome-depleted serum' is utilised. Arch Biochem Biophys 2021; 708:108963. [PMID: 34126088 DOI: 10.1016/j.abb.2021.108963] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/30/2022]
Abstract
Extracellular vesicles (EVs) are important intercellular communication messengers. Half of the published studies in the field are in vitro cell culture based in which bovine serum in various concentrations and forms is used to facilitate the production of extracellular vesicles. 'Exosome depleted serum' is the type of bovine serum most widely used in the production of human EVs. Herein, we demonstrate that, despite the initial caution raised in 2014 about the persistence of bovine EVs, 'exosome depleted serum' was still used in 46% of publications on human or rodent EVs between 2015 and 2019. Using nanoparticle tracking analysis combined with detergent lysis of vesicles as well as bovine CD9 ELISA, we show that there were approximately 5.33 x 107/mL of bovine EVs remaining in the 'exosome depleted serum'. Importantly, the 'exosome depleted serum' was relatively enriched in small EVs by approximately 2.7-fold relative to the large EVs compared to that in the original serum. Specifically, the percentage of small EVs in total vesicles had increased from the original 48% in the serum before ultracentrifugation to 92% in the 'exosome depleted serum'. Furthermore, the pervasive bovine EVs carried over by the 'exosome depleted serum', even when the lowest concentration (0.5%) was used in cell culture, resulted in a significant contamination of human EVs in cell culture conditioned medium. Our findings indicate that the use 'exosome depleted serum' in cell culture-based studies may introduce artefacts into research examining the function of human and rodent EVs, in particular those involving EV miRNA. Thus, we appeal to the researchers in the EV field to seriously reconsider the practice of using 'exosome depleted serum' in the production of human and other mammalian EVs in vitro.
Collapse
Affiliation(s)
- Cuong Viet Pham
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3216, Australia
| | - Snehal Midge
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3216, Australia
| | - Hridika Barua
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3216, Australia
| | - Yumei Zhang
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3216, Australia
| | - Tuong Ngoc-Gia Nguyen
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3216, Australia
| | - Roberto A Barrero
- eResearch, Division of Research and Innovation, Queensland University of Technology, 2 George Street, Brisbane City, QLD, 4000, Australia
| | - Andrew Duan
- School of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University 27 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Wang Yin
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3216, Australia
| | - Guoqin Jiang
- Department of General Surgery, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, PR China
| | - Yingchun Hou
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - Shufeng Zhou
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yiming Wang
- Shanghai OneTar Biomedicine, Shanghai, 201203, China
| | - Xiaoqing Xie
- Shanghai OneTar Biomedicine, Shanghai, 201203, China
| | - Phuong H L Tran
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3216, Australia.
| | - Dongxi Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, 200127, China; Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.
| | - Wei Duan
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3216, Australia; Shanghai OneTar-Deakin Joint Laboratory of Personalized Precision Medicine, Shanghai, 201203, China.
| |
Collapse
|
13
|
Perdomo HD, Hussain M, Parry R, Etebari K, Hedges LM, Zhang G, Schulz BL, Asgari S. Human blood microRNA hsa-miR-21-5p induces vitellogenin in the mosquito Aedes aegypti. Commun Biol 2021; 4:856. [PMID: 34244602 PMCID: PMC8270986 DOI: 10.1038/s42003-021-02385-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Mosquito vectors transmit various diseases through blood feeding, required for their egg development. Hence, blood feeding is a major physiological event in their life cycle, during which hundreds of genes are tightly regulated. Blood is a rich source of proteins for mosquitoes, but also contains many other molecules including microRNAs (miRNAs). Here, we found that human blood miRNAs are transported abundantly into the fat body tissue of Aedes aegypti, a key metabolic center in post-blood feeding reproductive events, where they target and regulate mosquito genes. Using an artificial diet spiked with the mimic of an abundant and stable human blood miRNA, hsa-miR-21-5p, and proteomics analysis, we found over 40 proteins showing differential expression in female Ae. aegypti mosquitoes after feeding. Of interest, we found that the miRNA positively regulates the vitellogenin gene, coding for a yolk protein produced in the mosquito fat body and then transported to the ovaries as a protein source for egg production. Inhibition of hsa-miR-21-5p followed by human blood feeding led to a statistically insignificant reduction in progeny production. The results provide another example of the involvement of small regulatory molecules in the interaction of taxonomically vastly different taxa.
Collapse
Affiliation(s)
- Hugo D. Perdomo
- grid.1003.20000 0000 9320 7537Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD Australia
| | - Mazhar Hussain
- grid.1003.20000 0000 9320 7537Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD Australia
| | - Rhys Parry
- grid.1003.20000 0000 9320 7537Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Kayvan Etebari
- grid.1003.20000 0000 9320 7537Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD Australia
| | - Lauren M. Hedges
- grid.1003.20000 0000 9320 7537Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD Australia
| | - Guangmei Zhang
- grid.1003.20000 0000 9320 7537Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD Australia
| | - Benjamin L. Schulz
- grid.1003.20000 0000 9320 7537School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Sassan Asgari
- grid.1003.20000 0000 9320 7537Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD Australia
| |
Collapse
|
14
|
The neglected nutrigenomics of milk: What is the role of inter-species transfer of small non-coding RNA? FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Othman N, Sasidharan S. Validation of target proteins of down-regulated miR-221-5p in HeLa cells treated with Polyalthia longifolia leaf extract using label-free quantitative proteomics approaches. 3 Biotech 2020; 10:399. [PMID: 32850286 DOI: 10.1007/s13205-020-02396-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
The current study was conducted to validate the target proteins of down-regulated miR-221-5p in HeLa cells treated with P. longifolia leaf extract. The validation was done by label-free quantitative proteomics approaches, Gene Ontology (GO) and protein-protein interaction analyses after the cells transfected with miRNA mimics or miRNA inhibitor. The LC-ESI-MS/MS identified a total of 1061, 668, 564 and 940 proteins from untransfected and untreated HeLa cells, untransfected P. longifolia leaf extract-treated HeLa cells, miR-221-5p mimic-transfected P. longifolia leaf extract-treated HeLa cells and anti-miR-221-5p-transfected P. longifolia leaf extract-treated HeLa cells, respectively. The proteomic, GO and protein-protein interaction analyses showed that P. longifolia treatment regulated various protein expressions in HeLa cells, namely tropomyosin, PRKC apoptosis WT1 regulator protein (PAWR), alpha-enolase and beta-enolase, which induced apoptotic cell death after the down-regulation of miR-221-5p. Conclusively, this study showed P. longifolia leaf extract's vital contribution in regulating various protein expressions in HeLa cervical cancer cells to induce apoptotic cell death after downregulation miR-221-5p.
Collapse
Affiliation(s)
- Nurulhasanah Othman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Gelugor, Pulau Pinang Malaysia
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Gelugor, Pulau Pinang Malaysia
| |
Collapse
|
16
|
Samad AFA, Kamaroddin MF, Sajad M. Cross-Kingdom Regulation by Plant microRNAs Provides Novel Insight into Gene Regulation. Adv Nutr 2020; 12:197-211. [PMID: 32862223 PMCID: PMC7850022 DOI: 10.1093/advances/nmaa095] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/08/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are well known as major players in mammalian and plant genetic systems that act by regulating gene expression at the post-transcriptional level. These tiny molecules can regulate target genes (mRNAs) through either cleavage or translational inhibition. Recently, the discovery of plant-derived miRNAs showing cross-kingdom abilities to regulate mammalian gene expression has prompted exciting discussions among researchers. After being acquired orally through the diet, plant miRNAs can survive in the digestive tract, enter the circulatory system, and regulate endogenous mRNAs. Here, we review current knowledge regarding the cross-kingdom mechanisms of plant miRNAs, related controversies, and potential applications of these miRNAs in dietary therapy, which will provide new insights for plant miRNA investigations related to health issues in humans.
Collapse
Affiliation(s)
| | - Mohd Farizal Kamaroddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Muhammad Sajad
- Department of Plant Breeding and Genetics, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Punjab, Pakistan
| |
Collapse
|
17
|
Spinler JK, Oezguen N, Runge JK, Luna RA, Karri V, Yang J, Hirschi KD. Dietary impact of a plant-derived microRNA on the gut microbiome. ACTA ACUST UNITED AC 2020; 2. [PMID: 33542959 PMCID: PMC7856875 DOI: 10.1186/s41544-020-00053-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Global estimations of 4 billion people living on plant-based diets signify tremendous diversity in plant consumption and their assorted miRNAs, which presents a challenging model to experimentally address how plant-based miRNAs impact the microbiome. Here we establish baseline gut microbiome composition for a mouse model deficient in the specific mammalian miR-146a shown to alter gut microbiomes. We then asses the effect on the gut microbiome when miR-146a-deficient mice are fed a transgenic plant-based diet expressing the murine-derived miR-146a. Mice deficient in miR-146a were maintained either on a baseline diet until 7 weeks of age (day 0) and then fed either vector or miR-146a-expressing plant-based diets for 21 days. The gut microbiomes of mice were examined by comparing the V4 region of 16S rRNA gene sequences of DNA isolated from fecal samples at days 0 (baseline diet) and 21 (vector or miR-146a expressing plant-based diets). Results: Beta-diversity analysis demonstrated that the transition from baseline chow to a plant-based diet resulted in significant longitudinal shifts in microbial community structure attributable to increased fiber intake. Bipartite network analysis suggests that miR-146a-deficient mice fed a plant diet rich in miR-146a have a microbiome population modestly different than mice fed an isogenic control plant diet deficient in miR-146a. Conclusion: A mouse diet composed of a transgenic plant expressing a mouse miR-146a may fine tune microbial communities but does not appear to have global effects on microbiome structure and composition.
Collapse
Affiliation(s)
- Jennifer K Spinler
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, 1102 Bates Ave, Houston, TX 77030, USA
| | - Numan Oezguen
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, 1102 Bates Ave, Houston, TX 77030, USA
| | - Jessica K Runge
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, 1102 Bates Ave, Houston, TX 77030, USA
| | - Ruth Ann Luna
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, 1102 Bates Ave, Houston, TX 77030, USA
| | | | - Jian Yang
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, 1100 Bates Ave, Houston, TX 77030, USA
| | - Kendal D Hirschi
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, 1100 Bates Ave, Houston, TX 77030, USA
| |
Collapse
|
18
|
Orally Administered Exosomes Suppress Mouse Delayed-Type Hypersensitivity by Delivering miRNA-150 to Antigen-Primed Macrophage APC Targeted by Exosome-Surface Anti-Peptide Antibody Light Chains. Int J Mol Sci 2020; 21:ijms21155540. [PMID: 32748889 PMCID: PMC7432818 DOI: 10.3390/ijms21155540] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/16/2022] Open
Abstract
We previously discovered suppressor T cell-derived, antigen (Ag)-specific exosomes inhibiting mouse hapten-induced contact sensitivity effector T cells by targeting antigen-presenting cells (APCs). These suppressive exosomes acted Ag-specifically due to a coating of antibody free light chains (FLC) from Ag-activated B1a cells. Current studies are aimed at determining if similar immune tolerance could be induced in cutaneous delayed-type hypersensitivity (DTH) to the protein Ag (ovalbumin, OVA). Intravenous administration of a high dose of OVA-coupled, syngeneic erythrocytes similarly induced CD3+CD8+ suppressor T cells producing suppressive, miRNA-150-carrying exosomes, also coated with B1a cell-derived, OVA-specific FLC. Simultaneously, OVA-immunized B1a cells produced an exosome subpopulation, originally coated with Ag-specific FLC, that could be rendered suppressive by in vitro association with miRNA-150. Importantly, miRNA-150-carrying exosomes from both suppressor T cells and B1a cells efficiently induced prolonged DTH suppression after single systemic administration into actively immunized mice, with the strongest effect observed after oral treatment. Current studies also showed that OVA-specific FLC on suppressive exosomes bind OVA peptides suggesting that exosome-coating FLC target APCs by binding to peptide-Ag-major histocompatibility complexes. This renders APCs capable of inhibiting DTH effector T cells. Thus, our studies describe a novel immune tolerance mechanism mediated by FLC-coated, Ag-specific, miRNA-150-carrying exosomes that act on the APC and are particularly effective after oral administration.
Collapse
|
19
|
Rakhmetullina A, Pyrkova A, Aisina D, Ivashchenko A. In silico prediction of human genes as potential targets for rice miRNAs. Comput Biol Chem 2020; 87:107305. [PMID: 32570176 DOI: 10.1016/j.compbiolchem.2020.107305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Exogenous microRNAs (miRNAs) enter the human body through food, and their effects on metabolic processes can be considerable. It is important to determine which miRNAs from plants affect the expression of human genes and the extent of their influence. METHOD The binding sites of 738Oryza sativa miRNAs (osa-miRNAs) that interact with 17 508 mRNAs of human genes were determined using the MirTarget program. RESULT The characteristics of the binding of 46 single osa-miRNAs to 86 mRNAs of human genes with a value of free energy (ΔG) interaction equal 94%-100% from maximum ΔG were established. The findings showed that osa-miR2102-5p, osa-miR5075-3p, osa-miR2097-5p, osa-miR2919 targeted the largest number of genes at 38, 36, 23, 19 sites, respectively. mRNAs of 86 human genes were identified as targets for 93 osa-miRNAs of all family osa-miRNAs with ΔG values equal 94%-98% from maximum ΔG. Each miRNA of the osa-miR156-5p, osa-miR164-5p, osa-miR168-5p, osa-miR395-3p, osa-miR396-3p, osa-miR396-5p, osa-miR444-3p, osa-miR529-3p, osa-miR1846-3p, osa-miR2907-3p families had binding sites in mRNAs of several human target genes. The binding sites of osa-miRNAs in mRNAs of the target genes for each family of osa-miRNAs were conserved when compared to flanking nucleotide sequences. CONCLUSION Target mRNA human genes of osa-miRNAs are also candidate genes of cancer, cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Aizhan Rakhmetullina
- Department of Biotechnology, SRI of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Al-Farabi 71, Almaty, 050040, Kazakhstan
| | - Anna Pyrkova
- Department of Biotechnology, SRI of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Al-Farabi 71, Almaty, 050040, Kazakhstan
| | - Dana Aisina
- Department of Biotechnology, SRI of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Al-Farabi 71, Almaty, 050040, Kazakhstan
| | - Anatoliy Ivashchenko
- Department of Biotechnology, SRI of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Al-Farabi 71, Almaty, 050040, Kazakhstan.
| |
Collapse
|
20
|
Gurwitz D. Genomics and the future of psychopharmacology: MicroRNAs offer novel therapeutics
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020. [PMID: 31636487 PMCID: PMC6787538 DOI: 10.31887/dcns.2019.21.2/dgurwitz] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs functioning as regulators of the
transcription of protein-coding genes in eukaryotes. During the last two decades,
studies on miRNAs indicate that they have potential as diagnostic and prognostic
biomarkers for a wide range of cancers. Research interest in miRNAs has moved to
embrace further medical disciplines, including neuropsychiatric disorders, comparing
miRNA expression and mRNA targets between patient and control blood samples and
postmortem brain tissues, as well as in animal models of neuropsychiatric disorders.
This manuscript reviews recent findings on miRNAs implicated in the pathology of mood
disorders, schizophrenia, and autism, as well as their diagnostic potential, and
their potential as tentative targets for future therapeutics. The plausible
contribution of X chromosome miRNAs to the larger prevalence of major depression
among women is also evaluated.
Collapse
Affiliation(s)
- David Gurwitz
- Author affiliations: Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel. Address for correspondence: David Gurwitz, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978 Israel.
| |
Collapse
|
21
|
Pirim D, Dogan B. In silico identification of putative roles of food-derived xeno-mirs on diet-associated cancer. Nutr Cancer 2019; 72:481-488. [DOI: 10.1080/01635581.2019.1670854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dilek Pirim
- Department of Molecular Biology and Genetics, Uludag University, Bursa, Turkey
| | - Berkcan Dogan
- Department of Biology and Genetics, Istanbul University Institute of Graduate Studies in Science, Istanbul, Turkey
| |
Collapse
|
22
|
Basso MF, Ferreira PCG, Kobayashi AK, Harmon FG, Nepomuceno AL, Molinari HBC, Grossi‐de‐Sa MF. MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1482-1500. [PMID: 30947398 PMCID: PMC6662102 DOI: 10.1111/pbi.13116] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/22/2019] [Accepted: 03/17/2019] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) modulate the abundance and spatial-temporal accumulation of target mRNAs and indirectly regulate several plant processes. Transcriptional regulation of the genes encoding miRNAs (MIR genes) can be activated by numerous transcription factors, which themselves are regulated by other miRNAs. Fine-tuning of MIR genes or miRNAs is a powerful biotechnological strategy to improve tolerance to abiotic or biotic stresses in crops of economic importance. Current approaches for miRNA fine-tuning are based on the down- or up-regulation of MIR gene transcription and the use of genetic engineering tools to manipulate the final concentration of these miRNAs in the cytoplasm. Transgenesis, cisgenesis, intragenesis, artificial MIR genes, endogenous and artificial target mimicry, MIR genes editing using Meganucleases, ZNF proteins, TALENs and CRISPR/Cas9 or CRISPR/Cpf1, CRISPR/dCas9 or dCpf1, CRISPR13a, topical delivery of miRNAs and epigenetic memory have been successfully explored to MIR gene or miRNA modulation and improve agronomic traits in several model or crop plants. However, advantages and drawbacks of each of these new biotechnological tools (NBTs) are still not well understood. In this review, we provide a brief overview of the biogenesis and role of miRNAs in response to abiotic or biotic stresses, we present critically the main NBTs used for the manipulation of MIR genes and miRNAs, we show current efforts and findings with the MIR genes and miRNAs modulation in plants, and we summarize the advantages and drawbacks of these NBTs and provide some alternatives to overcome. Finally, challenges and future perspectives to miRNA modulating in important crops are also discussed.
Collapse
Affiliation(s)
| | | | | | - Frank G. Harmon
- Plant Gene Expression CenterUSDA‐ARSAlbanyCAUSA
- Department of Plant and Microbial BiologyUC BerkeleyBerkeleyCAUSA
| | | | | | - Maria Fatima Grossi‐de‐Sa
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
- Post‐Graduation Program in Genomic Sciences and BiotechnologyCatholic University of BrasíliaBrasíliaDFBrazil
- Post‐Graduation Program in BiotechnologyPotiguar University (UNP)NatalRNBrazil
| |
Collapse
|
23
|
Sui M, Zheng Q, Wu H, Zhu L, Ling Y, Wang L, Fang F, Liu Y, Zhang Z, Chu M, Zhang Y. The expression and regulation of miR-1 in goat skeletal muscle and satellite cell during muscle growth and development. Anim Biotechnol 2019; 31:455-462. [PMID: 31179830 DOI: 10.1080/10495398.2019.1622555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNA-1 (miR-1) has been shown to play an important role in muscle growth and development, however, it was mainly discovered in model animals. To explore the function and mechanism of miR-1 in goat, we firstly explored the expression profile of miR-1 in goat tissues and cells. Furthermore, the target gene of miR-1 was predicted, and the relationship between miR-1 and one of its target genes, histone deacetylase 4 (HDAC4), was analyzed through double luciferase reporter assay, real-time PCR, and western blot. It was found that the miR-1 is most abundantly expressed in goat heart and skeletal muscle tissue. Meanwhile, the expression of miR-1 showed an increasing tendency from new-born goats to the 7-month-old goats, and then its expression decreases as the goats mature further. In addition, the expression levels of miR-1 decreased in goat skeletal muscle satellite cells with the algebraic increasing of cells. At last, the results showed that HDAC4 is a target gene of miR-1 in goat, and miR-1 can inhibit the post-transcriptional expression of HDAC4, but had no significant influence on the mRNA level of HDAC4. It was hypothesized that miR-1 promotes muscle development by inhibiting the post-transcriptional expression of HDAC4 in goat.
Collapse
Affiliation(s)
- Menghua Sui
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Hefei, Anhui, China
| | - Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Hefei, Anhui, China
| | - Hao Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Hefei, Anhui, China
| | - Lu Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Hefei, Anhui, China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Hefei, Anhui, China
| | - LiJuan Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Hefei, Anhui, China
| | - Fugui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Hefei, Anhui, China
| | - Ya Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Hefei, Anhui, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Hefei, Anhui, China
| | - Mingxing Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.,Local animal genetic resources conservation and biobreeding laboratory of Anhui province, Hefei, Anhui, China
| |
Collapse
|
24
|
Benmoussa A, Provost P. Milk MicroRNAs in Health and Disease. Compr Rev Food Sci Food Saf 2019; 18:703-722. [PMID: 33336926 DOI: 10.1111/1541-4337.12424] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNAs responsible for regulating 40% to 60% of gene expression at the posttranscriptional level. The discovery of circulating microRNAs in several biological fluids opened the path for their study as biomarkers and long-range cell-to-cell communication mediators. Their transfer between individuals in the case of blood transfusion, for example, and their high enrichment in milk have sparked the interest for microRNA transfer through diet, especially from mothers to infants during breastfeeding. The extension of such paradigm led to the study of milk microRNAs in the case of cow or goat milk consumption in adults. Here we provide a comprehensive critical review of the key findings surrounding milk microRNAs in human, cow, and goat milk among other species. We discuss the data on their biological properties, their use as disease biomarkers, their transfer between individuals or species, and their putative or verified functions in health and disease of infants and adult consumers. This work is based on all the literature available and integrates all the results, theories, debates, and validation studies available so far on milk microRNAs and related areas of investigations. We critically discuss the limitations and outline future aspects and avenues to explore in this rapidly growing field of research that could impact public health through infant milk formulations or new therapies. We hope that this comprehensive review of the literature will provide insight for all teams investigating milk RNAs' biological activities and help ensure the quality of future reports.
Collapse
Affiliation(s)
- Abderrahim Benmoussa
- CHUQ Research Center/CHUL, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.,Dept. of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Univ. Laval, Quebec, QC, G1V 0A6, Canada
| | - Patrick Provost
- CHUQ Research Center/CHUL, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.,Dept. of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Univ. Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
25
|
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med 2019; 17:3. [PMID: 30602375 PMCID: PMC6317263 DOI: 10.1186/s12967-018-1760-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022] Open
Abstract
Milk consumption is a hallmark of western diet. According to common believes, milk consumption has beneficial effects for human health. Pasteurization of cow's milk protects thermolabile vitamins and other organic compounds including bioactive and bioavailable exosomes and extracellular vesicles in the range of 40-120 nm, which are pivotal mediators of cell communication via systemic transfer of specific micro-ribonucleic acids, mRNAs and regulatory proteins such as transforming growth factor-β. There is compelling evidence that human and bovine milk exosomes play a crucial role for adequate metabolic and immunological programming of the newborn infant at the beginning of extrauterine life. Milk exosomes assist in executing an anabolic, growth-promoting and immunological program confined to the postnatal period in all mammals. However, epidemiological and translational evidence presented in this review indicates that continuous exposure of humans to exosomes of pasteurized milk may confer a substantial risk for the development of chronic diseases of civilization including obesity, type 2 diabetes mellitus, osteoporosis, common cancers (prostate, breast, liver, B-cells) as well as Parkinson's disease. Exosomes of pasteurized milk may represent new pathogens that should not reach the human food chain.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7A, 49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
26
|
Gurwitz D. Genomics and the future of psychopharmacology: MicroRNAs offer novel therapeutics
. DIALOGUES IN CLINICAL NEUROSCIENCE 2019; 21:131-148. [PMID: 31636487 PMCID: PMC6787538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs functioning as regulators of the transcription of protein-coding genes in eukaryotes. During the last two decades, studies on miRNAs indicate that they have potential as diagnostic and prognostic biomarkers for a wide range of cancers. Research interest in miRNAs has moved to embrace further medical disciplines, including neuropsychiatric disorders, comparing miRNA expression and mRNA targets between patient and control blood samples and postmortem brain tissues, as well as in animal models of neuropsychiatric disorders. This manuscript reviews recent findings on miRNAs implicated in the pathology of mood disorders, schizophrenia, and autism, as well as their diagnostic potential, and their potential as tentative targets for future therapeutics. The plausible contribution of X chromosome miRNAs to the larger prevalence of major depression among women is also evaluated.
.
Collapse
Affiliation(s)
- David Gurwitz
- Author affiliations: Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel. Address for correspondence: David Gurwitz, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978 Israel.
| |
Collapse
|
27
|
Cong L, Zhao Y, Pogue AI, Lukiw WJ. Role of microRNA (miRNA) and Viroids in Lethal Diseases of Plants and Animals. Potential Contribution to Human Neurodegenerative Disorders. BIOCHEMISTRY (MOSCOW) 2018; 83:1018-1029. [PMID: 30472940 DOI: 10.1134/s0006297918090031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Both plants and animals have adopted a common strategy of using ~18-25-nucleotide small non-coding RNAs (sncRNAs), known as microRNAs (miRNAs), to transmit DNA-based epigenetic information. miRNAs (i) shape the total transcriptional output of individual cells; (ii) regulate and fine-tune gene expression profiles of cell clusters, and (iii) modulate cell phenotype in response to environmental stimuli and stressors. These miRNAs, the smallest known carriers of gene-encoded post-transcriptional regulatory information, not only regulate cellular function in healthy cells but also act as important mediators in the development of plant and animal diseases. Plants possess their own specific miRNAs; at least 32 plant species have been found to carry infectious sncRNAs called viroids, whose mechanisms of generation and functions are strikingly similar to those of miRNAs. This review highlights recent remarkable and sometimes controversial findings in miRNA signaling in plants and animals. Special attention is given to the intriguing possibility that dietary miRNAs and/or sncRNAs can function as mobile epigenetic and/or evolutionary linkers between different species and contribute to both intra- and interkingdom signaling. Wherever possible, emphasis has been placed on the relevance of these miRNAs to the development of human neurodegenerative diseases, such as Alzheimer's disease. Based on the current available data, we suggest that such xeno-miRNAs may (i) contribute to the beneficial properties of medicinal plants, (ii) contribute to the negative properties of disease-causing or poisonous plants, and (iii) provide cross-species communication between kingdoms of living organisms involving multiple epigenetic and/or potentially pathogenic mechanisms associated with the onset and pathogenesis of various diseases.
Collapse
Affiliation(s)
- L Cong
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2272, USA.,Department of Neurology, Shengjing Hospital, China Medical University, Heping District, Shenyang, Liaoning Province, China
| | - Y Zhao
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2272, USA.,Department of Anatomy and Cell Biology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2272, USA
| | - A I Pogue
- Alchem Biotech Research, Toronto, ON M5S 1A8, Canada
| | - W J Lukiw
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2272, USA. .,Department Neurology, Louisiana State University School of Medicine, New Orleans, LA 70112-2272, USA.,Department Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA 70112-2272, USA
| |
Collapse
|
28
|
Li C, Wong AYP, Wang S, Jia Q, Chuang WP, Bendena WG, Tobe SS, Yang SH, Chung G, Chan TF, Lam HM, Bede JC, Hui JHL. miRNA-Mediated Interactions in and between Plants and Insects. Int J Mol Sci 2018; 19:E3239. [PMID: 30347694 PMCID: PMC6213987 DOI: 10.3390/ijms19103239] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/17/2023] Open
Abstract
Our understanding of microRNA (miRNA) regulation of gene expression and protein translation, as a critical area of cellular regulation, has blossomed in the last two decades. Recently, it has become apparent that in plant-insect interactions, both plants and insects use miRNAs to regulate their biological processes, as well as co-opting each others' miRNA systems. In this review article, we discuss the current paradigms of miRNA-mediated cellular regulation and provide examples of plant-insect interactions that utilize this regulation. Lastly, we discuss the potential biotechnological applications of utilizing miRNAs in agriculture.
Collapse
Affiliation(s)
- Chade Li
- State Key Laboratory of Agrobiotechnology, Centre of Soybean Research, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Annette Y P Wong
- State Key Laboratory of Agrobiotechnology, Centre of Soybean Research, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Shuang Wang
- Key Laboratory of Soil Environment and Plant Nutrition of Heilongjiang Province, Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Qi Jia
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan.
| | - William G Bendena
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea.
| | - Ting-Fung Chan
- State Key Laboratory of Agrobiotechnology, Centre of Soybean Research, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hon-Ming Lam
- State Key Laboratory of Agrobiotechnology, Centre of Soybean Research, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jacqueline C Bede
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, Montreal, QC H9X 3V9, Canada.
| | - Jerome H L Hui
- State Key Laboratory of Agrobiotechnology, Centre of Soybean Research, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
29
|
Li Z, Xu R, Li N. MicroRNAs from plants to animals, do they define a new messenger for communication? Nutr Metab (Lond) 2018; 15:68. [PMID: 30302122 PMCID: PMC6167836 DOI: 10.1186/s12986-018-0305-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs), a class of single-stranded non-coding RNA of about 22 nucleotides, are potent regulators of gene expression existing in both plants and animals. Recent studies showed that plant miRNAs could enter mammalian bloodstream via gastrointestinal tract, through which access a variety of tissues and cells of recipients to exert therapeutic effects. This intriguing phenomenon indicates that miRNAs of diet/plant origin may act as a new class of bioactive ingredients communicating with mammalian systems. In this review, in order to pinpoint the reason underlying discrepancies of miRNAs transmission from diet/plant to animals, the pathways that generate miRNAs and machineries involved in the functions of miRNAs in both kingdoms were outlined and compared. Then, the current controversies concerning cross-kingdom regulations and the potential mechanisms responsible for absorption and transfer of diet/plant-derived miRNAs were interpreted. Furthermore, the hormone-like action of miRNAs and the intricate interplay between miRNAs and hormones were implicated. Finally, how these findings may impact nutrition and medicine were briefly discussed.
Collapse
Affiliation(s)
- Zhiqing Li
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, 100005 People's Republic of China
| | - Ruodan Xu
- 2Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700 People's Republic of China.,3Department of Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Ning Li
- 2Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700 People's Republic of China
| |
Collapse
|
30
|
Plant MicroRNAs in Cross-Kingdom Regulation of Gene Expression. Int J Mol Sci 2018; 19:ijms19072007. [PMID: 29996470 PMCID: PMC6073133 DOI: 10.3390/ijms19072007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of noncoding small RNAs, which play a crucial role in post-transcriptional gene regulation. Recently, various reports revealed that miRNAs could be transmitted between species to mediate cross-kingdom regulation by integrating into a specific target gene-mediated regulatory pathway to exert relevant biological functions. Some scholars and researchers have observed this as an attractive hypothesis that may provide a foundation for novel approaches in the diagnosis, prognosis, and treatment of disease. Meanwhile, others deem the mentioned results were obtained from a “false positive effect” of performed experiments. Here, we focus on several current studies concerning plant miRNA-mediated cross-kingdom regulation (from both fronts) and discuss the existing issues that need further consideration. We also discuss possible miRNA horizontal transfer mechanisms from one species to another and analyze the relationship between miRNA-mediated cross-kingdom regulation and coevolution during a long-term specific host–pathogen interaction.
Collapse
|
31
|
Zhao Q, Liu Y, Zhang N, Hu M, Zhang H, Joshi T, Xu D. Evidence for plant-derived xenomiRs based on a large-scale analysis of public small RNA sequencing data from human samples. PLoS One 2018; 13:e0187519. [PMID: 29949574 PMCID: PMC6021041 DOI: 10.1371/journal.pone.0187519] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
In recent years, an increasing number of studies have reported the presence of plant miRNAs in human samples, which resulted in a hypothesis asserting the existence of plant-derived exogenous microRNA (xenomiR). However, this hypothesis is not widely accepted in the scientific community due to possible sample contamination and the small sample size with lack of rigorous statistical analysis. This study provides a systematic statistical test that can validate (or invalidate) the plant-derived xenomiR hypothesis by analyzing 388 small RNA sequencing data from human samples in 11 types of body fluids/tissues. A total of 166 types of plant miRNAs were found in at least one human sample, of which 14 plant miRNAs represented more than 80% of the total plant miRNAs abundance in human samples. Plant miRNA profiles were characterized to be tissue-specific in different human samples. Meanwhile, the plant miRNAs identified from microbiome have an insignificant abundance compared to those from humans, while plant miRNA profiles in human samples were significantly different from those in plants, suggesting that sample contamination is an unlikely reason for all the plant miRNAs detected in human samples. This study also provides a set of testable synthetic miRNAs with isotopes that can be detected in situ after being fed to animals.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin, China
- Department of Electrical Engineering and Computer Science, and Christopher S Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, Liaoning, China
| | - Yuanning Liu
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Ning Zhang
- MU Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Menghan Hu
- Department of Biostatistics, Brown University, Providence, Rhode Island, United States of America
| | - Hao Zhang
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, and Christopher S Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- MU Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Dong Xu
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin, China
- Department of Electrical Engineering and Computer Science, and Christopher S Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- MU Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
32
|
Zhao Y, Cong L, Lukiw WJ. Plant and Animal microRNAs (miRNAs) and Their Potential for Inter-kingdom Communication. Cell Mol Neurobiol 2018; 38:133-140. [PMID: 28879580 PMCID: PMC11482019 DOI: 10.1007/s10571-017-0547-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022]
Abstract
microRNAs (miRNAs) comprise a class of ~18-25 nucleotide (nt) single-stranded non-coding RNAs (sncRNAs) that are the smallest known carriers of gene-encoded, post-transcriptional regulatory information in both plants and animals. There are many fundamental similarities between plant and animal miRNAs-the miRNAs of both kingdoms play essential roles in development, aging and disease, and the shaping of the transcriptome of many cell types. Both plant and animal miRNAs appear to predominantly exert their genetic and transcriptomic influences by regulating gene expression at the level of messenger RNA (mRNA) stability and/or translational inhibition. Certain miRNA species, such as miRNA-155, miRNA-168, and members of the miRNA-854 family may be expressed in both plants and animals, suggesting a common origin and functional selection of specific miRNAs over vast periods of evolution (for example, Arabidopsis thaliana-Homo sapiens divergence ~1.5 billion years). Although there is emerging evidence for cross-kingdom miRNA communication-that plant-enriched miRNAs may enter the diet and play physiological and/or pathophysiological roles in human health and disease-some research reports repudiate this possibility. This research paper highlights some recent, controversial, and remarkable findings in plant- and animal-based miRNA signaling research with emphasis on the intriguing possibility that dietary miRNAs and/or sncRNAs may have potential to contribute to both intra- and inter-kingdom signaling, and in doing so modulate molecular-genetic mechanisms associated with human health and disease.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112-2272, USA
- Department of Anatomy and Cell Biology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112-2272, USA
| | - Lin Cong
- LSU Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112-2272, USA
- Department of Neurology, Shengjing Hospital, China Medical University, 36 No. 3 Street, Heping District, Shenyang, Liaoning, China
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112-2272, USA.
- Department of Neurology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112-2272, USA.
- Department of Ophthalmology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112-2272, USA.
| |
Collapse
|
33
|
Lukasik A, Brzozowska I, Zielenkiewicz U, Zielenkiewicz P. Detection of Plant miRNAs Abundance in Human Breast Milk. Int J Mol Sci 2017; 19:ijms19010037. [PMID: 29295476 PMCID: PMC5795987 DOI: 10.3390/ijms19010037] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 12/16/2022] Open
Abstract
Breast milk is a natural food and important component of infant nutrition. Apart from the alimentary substances, breast milk contains many important bioactive compounds, including endogenous microRNA molecules (miRNAs). These regulatory molecules were identified in various mammalian biological fluids and were shown to be mostly packed in exosomes. Recently, it was revealed that plant food-derived miRNAs are stably present in human blood and regulate the expression of specific human genes. Since then, the scientific community has focused its efforts on contradicting or confirming this discovery. With the same intention, qRT-PCR experiments were performed to evaluate the presence of five plant food-derived miRNAs (miR166a, miR156a, miR157a, miR172a and miR168a) in breast milk (whole milk and exosomes) from healthy volunteers. In whole milk samples, all examined miRNAs were identified, while only two of these miRNAs were confirmed to be present in exosomes. The plant miRNA concentration in the samples ranged from 4 to 700 fM. Complementary bioinformatics analysis suggests that the evaluated plant miRNAs may potentially influence several crucial biological pathways in the infant organism.
Collapse
Affiliation(s)
- Anna Lukasik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Iwona Brzozowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
- Department of Plant Molecular Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, 02-096 Warsaw, Poland.
| |
Collapse
|
34
|
Melnik BC. Milk disrupts p53 and DNMT1, the guardians of the genome: implications for acne vulgaris and prostate cancer. Nutr Metab (Lond) 2017; 14:55. [PMID: 28814964 PMCID: PMC5556685 DOI: 10.1186/s12986-017-0212-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
There is accumulating evidence that milk shapes the postnatal metabolic environment of the newborn infant. Based on translational research, this perspective article provides a novel mechanistic link between milk intake and milk miRNA-regulated gene expression of the transcription factor p53 and DNA methyltransferase 1 (DNMT1), two guardians of the human genome, that control transcriptional activity, cell survival, and apoptosis. Major miRNAs of milk, especially miRNA-125b, directly target TP53 and complex p53-dependent gene regulatory networks. TP53 regulates the expression of key genes involved in cell homeostasis such as FOXO1, PTEN, SESN1, SESN2, AR, IGF1R, BAK1, BIRC5, and TNFSF10. Nuclear interaction of p53 with DNMT1 controls gene silencing. The most abundant miRNA of milk and milk fat, miRNA-148a, directly targets DNMT1. Reduced DNMT1 expression further attenuates the activity of histone deacetylase 1 (HDAC1) involved in the regulation of chromatin structure and access to transcription. The presented milk-mediated miRNA-p53-DNMT1 pathway exemplified at the promoter regulation of survivin (BIRC5) provides a novel explanation for the epidemiological association between milk consumption and acne vulgaris and prostate cancer. Notably, p53- and DNMT1-targeting miRNAs of bovine and human milk survive pasteurization and share identical seed sequences, which theoretically allows the interaction of bovine miRNAs with the human genome. Persistent intake of milk-derived miRNAs that attenuate p53- and DNMT1 signaling of the human milk consumer may thus present an overlooked risk factor promoting acne vulgaris, prostate cancer, and other p53/DNMT1-related Western diseases. Therefore, bioactive miRNAs of commercial milk should be eliminated from the human food chain.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany
| |
Collapse
|
35
|
Abstract
Our perception of milk has changed from a "simple food" to a highly sophisticated maternal-neonatal nutrient and communication system orchestrating early programming of the infant. Milk miRNAs delivered by exosomes and milk fat globules derived from mammary gland epithelial cells play a key role in this process. Exosomes resist the harsh intestinal environment, are taken up by intestinal cells via endocytosis, and reach the systemic circulation of the milk recipient. The most abundant miRNA found in exosomes and milk fat globules of human and cow's milk, miRNA-148a, attenuates the expression of DNA methyltransferase 1, which is critically involved in epigenetic regulation. Another important miRNA of milk, miRNA-125b, targets p53, the guardian of the genome, and its diverse transcriptional network. The deficiency of exosomal miRNAs in infant formula and the persistent uptake of milk miRNAs after the nursing period via consumption of cow's milk are two epigenetic aberrations that may induce adverse long-term effects on human health.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine, and Health Theory, University of Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
36
|
Asgari S. RNA as a means of inter-species communication and manipulation: Progresses and shortfalls. RNA Biol 2017; 14:389-390. [PMID: 28296620 PMCID: PMC5411119 DOI: 10.1080/15476286.2017.1306172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/09/2017] [Indexed: 10/20/2022] Open
Affiliation(s)
- Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
37
|
Melnik BC, Schmitz G. Milk's Role as an Epigenetic Regulator in Health and Disease. Diseases 2017; 5:diseases5010012. [PMID: 28933365 PMCID: PMC5456335 DOI: 10.3390/diseases5010012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
It is the intention of this review to characterize milk's role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic "doping system" of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow's milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow's milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, Faculty of Human Sciences, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
38
|
Igaz P. Update on microRNA as biomarkers of adrenocortical cancer: perspective on circulating microRNA. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2017. [DOI: 10.2217/ije-2017-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Peter Igaz
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, H-1088 Budapest, Szentkirályi str. 46., Hungary
| |
Collapse
|