1
|
Chen L, Xu H, Liu R, Yao Z, Xie Q, Zhang X. Circular RNA Vav3 mediated ALV-J inhibition of autophagy by modulating the gga-miR-375/CIP2A axis and activating AKT. Poult Sci 2025; 104:104923. [PMID: 39987600 PMCID: PMC11904538 DOI: 10.1016/j.psj.2025.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/08/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an immunosuppressive neoplastic virus, the growth retardation and growth performance of chickens after infection. Circular RNAs (circRNAs) play a crucial role in various types of cancer. In a previous study, we showed that circ-Vav3 was significantly elevated in the tumor livers of avian leukosis-infected chickens. Autophagy is an essential cellular process, and circRNAs have been confirmed to be key players in autophagy regulation. In this study, we demonstrated that overexpression of circ-Vav3 inhibited autophagy. Specifically, circ-Vav3 functions as a sponge for gga-miR-375, resulting in increased expression of CIP2A, which is a target gene of gga-miR-375. CIP2A, in turn, hinders the fusion of autophagosomes with lysosomes, leading to incomplete autophagic flux, consequently, the inhibition of autophagy. Further study confirmed that overexpression of gga-miR-375 inhibits CIP2A expression and promotes autophagy by downregulating p-AKT. Additionally, we treated cells with rapamycin to induce autophagy and then cotransfected them with circ-Vav3 and gga-miR-375. The results demonstrated that cotransfection of circ-Vav3 and gga-miR-375 inhibited cellular autophagy. Moreover, cells cotransfected with circ-Vav3 and gga-miR-375 exhibited further autophagy inhibition after ALV-J infection, suggesting that circ-Vav3 is involved in inhibiting autophagy caused by ALV-J infection through the regulation of gga-miR-375/CIP2A/AKT. In conclusion, our results demonstrated that circ-Vav3 inhibited autophagy through the gga-miR-375/CIP2A/AKT pathway and mediated the suppression of ALV-J-induced autophagy.
Collapse
Affiliation(s)
- Liyi Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China
| | - Huijuan Xu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China
| | - Ruiheng Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China
| | - Ziqi Yao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China.
| |
Collapse
|
2
|
Xu Y, Qiu S, Shen Z, Chen J. circTUBD1-hnRNPK Regulates the Proliferation and Migration of LSCC by Targeting CCAR1. Cancer Med 2025; 14:e70834. [PMID: 40130381 PMCID: PMC11933862 DOI: 10.1002/cam4.70834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is one of the most prevalent malignancies of the head and neck region. Circular RNAs (circRNAs) have been found to exhibit abnormal expression patterns in various tumors and play pivotal roles in tumorigenesis and tumor progression. METHODS Functional assays assessed proliferation, migration, and invasion. Mechanistic studies were performed to explore the interaction between circTUBD1 and heterogeneous nuclear ribonucleoprotein K (hnRNPK), as well as its regulation of Cell Cycle and Apoptosis Regulator 1 (CCAR1). In vivo experiments confirmed circTUBD1's role in tumor growth and metastasis. RESULTS We discovered that circTUBD1 is significantly upregulated in LSCC and promotes the proliferation, invasion, and migration of LSCC cells. circTUBD1 forms a circRNA-protein complex with hnRNPK and facilitates LSCC progression by regulating CCAR1. Furthermore, in vivo experiments in mice demonstrated that silencing circTUBD1 inhibits the proliferation and metastasis of LSCC. CONCLUSIONS This study provides evidence that circTUBD1 is a potential tumor marker for LSCC and underscores the therapeutic potential of targeting circTUBD1 in this cancer type.
Collapse
Affiliation(s)
- Yufeng Xu
- Department of Otorhinolaryngology‐Head and Neck SurgeryThe Affiliated LiHuiLi Hospital of Ningbo UniversityNingboChina
| | - Shijie Qiu
- Department of Otorhinolaryngology‐Head and Neck SurgeryThe Affiliated LiHuiLi Hospital of Ningbo UniversityNingboChina
| | - Zhisen Shen
- Department of Otorhinolaryngology‐Head and Neck SurgeryThe Affiliated LiHuiLi Hospital of Ningbo UniversityNingboChina
| | - Jingjing Chen
- Department of Otorhinolaryngology‐Head and Neck SurgeryThe Affiliated LiHuiLi Hospital of Ningbo UniversityNingboChina
| |
Collapse
|
3
|
You G, Long H, Shen X, Yin H, Zhang S. Emerging roles of circular RNAs on the regulation of production traits in chicken. Poult Sci 2025; 104:104612. [PMID: 39647355 PMCID: PMC11667694 DOI: 10.1016/j.psj.2024.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024] Open
Abstract
Chickens are vital agricultural animals that supply a significant portion of the protein consumed by humans. In society today, enhancing the productive performance of chickens in a safe and efficient manner has become a central focus of research. This performance is determined by various production traits that are primarily influenced by multiple factors, including epigenetics-a critical aspect of gene regulation. Circular RNAs (circRNAs), a unique class of non-coding RNAs, have emerged as key epigenetic regulators. Recent studies have demonstrated that circRNAs are extensively engaged in numerous production traits, which include skeletal muscle formation, fat deposition, ovarian follicle development, liver function, bone development, immunity, and resistance to environmental stress. These processes play crucial roles in determining the overall productivity of chickens. Given the significance of circRNAs in these various traits, this article provides a comprehensive review of the functional circRNAs associated with different traits in chickens, serving as a valuable theoretical reference for future research. Further investigation into the role of circRNAs may reveal novel insights into the molecular mechanisms underlying key economic traits in chickens and pave the way for innovative strategies in molecular breeding aimed at enhancing chicken productive performance.
Collapse
Affiliation(s)
- Guishuang You
- Laboratory Animal Center, Zunyi Medical University, Zunyi, 563000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Long
- Laboratory Animal Center, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaoxu Shen
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, 563000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shibin Zhang
- Laboratory Animal Center, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
4
|
Yuan J, Li Q, Sun Y, Wang Y, Li Y, You Z, Ni A, Zong Y, Ma H, Chen J. Multi-tissue transcriptome profiling linked the association between tissue-specific circRNAs and the heterosis for feed intake and efficiency in chicken. Poult Sci 2024; 103:103783. [PMID: 38713987 PMCID: PMC11091503 DOI: 10.1016/j.psj.2024.103783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024] Open
Abstract
Heterosis has been widely utilized in chickens. The nonadditive inheritance of genes contributes to this biological phenomenon. However, the role of circRNAs played in the heterosis is poorly determined. In this study, we observed divergent heterosis for residual feed intake (RFI) between 2 crossbreds derived from a reciprocal cross between White Leghorns and Beijing You chickens. Then, circRNA landscape for 120 samples covering the hypothalamus, liver, duodenum mucosa and ovary were profiled to elucidate the regulatory mechanisms of heterosis. We detected that a small proportion of circRNAs (7.83-20.35%) were additively and non-additively expressed, in which non-additivity was a major inheritance of circRNAs in the crossbreds. Tissue-specific expression of circRNAs was prevalent across 4 tissues. Weighted gene co-expression network analysis revealed circRNA-mRNA co-expression modules associated with feed intake and RFI in the hypothalamus and liver, and the co-expressed genes were enriched in oxidative phosphorylation pathway. We further identified 8 nonadditive circRNAs highly correlated with 16 nonadditive genes regulating negative heterosis for RFI in the 2 tissues. Circ-ITSN2 was validated in the liver tissue for its significantly positive correlation with PGPEP1L. Moreover, the bioinformatic analysis indicated that candidate circRNAs might be functioned by binding the microRNAs and interacting with the RNA binding proteins. The integration of multi-tissue transcriptome firstly linked the association between tissue-specific circRNAs and the heterosis for feed intake and efficiency in chicken, which provide novel insights into the molecular mechanism underlying heterosis for feed efficiency. The validated circRNAs can act as potential biomarkers for predicting RFI and its heterosis.
Collapse
Affiliation(s)
- Jingwei Yuan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qin Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Sun
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuanmei Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunlei Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhangjing You
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Aixin Ni
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhe Zong
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Wang S, Li X, Liu G, Qiu Z, Wang J, Yang D, Qiao Z, Ma Z, Liu Z, Yang X. Advances in the understanding of circRNAs that influence viral replication in host cells. Med Microbiol Immunol 2024; 213:1. [PMID: 38329596 DOI: 10.1007/s00430-023-00784-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/25/2023] [Indexed: 02/09/2024]
Abstract
Circular RNAs (circRNAs) are non-coding RNAs discovered in recent years, which are produced by back-splicing involving the 3' and 5' ends of RNA molecules. There is increasing evidence that circRNAs have important roles in cancer, neurological diseases, cardiovascular and cerebrovascular diseases, and other diseases. In addition, host circRNAs and virus-encoded circRNAs participate in the body's immune response, with antiviral roles. This review summarizes the mechanisms by which host and viral circRNAs interact during the host immune response. Comprehensive investigations have revealed that host circRNAs function as miRNA sponges in a particular manner, primarily by inhibiting viral replication. Viral circRNAs have more diverse functions, which generally involve promoting viral replication. In addition, in contrast to circRNAs from RNA viruses, circRNAs from DNA viruses can influence host cell migration, proliferation, and apoptosis, along with their effects on viral replication. In summary, circRNAs have potential as diagnostic and therapeutic targets, offering a foundation for the diagnosis and treatment of viral diseases.
Collapse
Affiliation(s)
- Siya Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiaoyun Li
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Geng Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhenyu Qiu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Jiamin Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Di Yang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhongren Ma
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhenbin Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China.
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, 430207, China.
- China National Biotech Group Company Limited, Beijing, 100029, China.
| |
Collapse
|
6
|
Chen S, Yan Y, Gao L, Gao S, Feng K, Li H, Zhang X, Chen W, Chen F, Xie Q. Proteomic profiling of purified avian leukosis virus subgroup J particles. Vet Microbiol 2023; 284:109821. [PMID: 37536160 DOI: 10.1016/j.vetmic.2023.109821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 08/05/2023]
Abstract
While the presence of host cell proteins in virions and their role in viral life cycles have been demonstrated in various viruses, such characteristics have remained largely unknown in avian leukosis virus (ALV). To investigate whether this is the case in ALV, we purified high-integrity and high-purity virions from the avian leukosis virus subgroup J (ALV-J) and subjected them to proteome analysis using nano LC-MS/MS. This analysis identified 53 cellular proteins that are incorporated into mature ALV-J virions, and we verified the reliability of the packaged cellular proteins through subtilisin digestion and immunoblot analysis. Functional annotation revealed the potential functions of these proteins in the viral life cycle and tumorigenesis. Overall, our findings have important implications for understanding the interaction between ALV-J and its host, and provide new insights into the cellular requirements that define ALV-J infection.
Collapse
Affiliation(s)
- Sheng Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, PR China
| | - Yiming Yan
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 510642, PR China
| | - Liguo Gao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Shuang Gao
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 510642, PR China
| | - Keyu Feng
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Hongxin Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Weiguo Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Feng Chen
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, PR China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
7
|
Fandiño S, Gomez-Lucia E, Benítez L, Doménech A. Avian Leukosis: Will We Be Able to Get Rid of It? Animals (Basel) 2023; 13:2358. [PMID: 37508135 PMCID: PMC10376345 DOI: 10.3390/ani13142358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Avian leukosis viruses (ALVs) have been virtually eradicated from commercial poultry. However, some niches remain as pockets from which this group of viruses may reemerge and induce economic losses. Such is the case of fancy, hobby, backyard chickens and indigenous or native breeds, which are not as strictly inspected as commercial poultry and which have been found to harbor ALVs. In addition, the genome of both poultry and of several gamebird species contain endogenous retroviral sequences. Circumstances that support keeping up surveillance include the detection of several ALV natural recombinants between exogenous and endogenous ALV-related sequences which, combined with the well-known ability of retroviruses to mutate, facilitate the emergence of escape mutants. The subgroup most prevalent nowadays, ALV-J, has emerged as a multi-recombinant which uses a different receptor from the previously known subgroups, greatly increasing its cell tropism and pathogenicity and making it more transmissible. In this review we describe the ALVs, their different subgroups and which receptor they use to infect the cell, their routes of transmission and their presence in different bird collectivities, and the immune response against them. We analyze the different systems to control them, from vaccination to the progress made editing the bird genome to generate mutated ALV receptors or selecting certain haplotypes.
Collapse
Affiliation(s)
- Sergio Fandiño
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), C. de José Antonio Novais 12, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| | - Esperanza Gomez-Lucia
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), C. de José Antonio Novais 12, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Doménech
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
Yang T, Qiu L, Chen S, Wang Z, Jiang Y, Bai H, Bi Y, Chen G, Chang G. Circ_PIAS1 Promotes the Apoptosis of ALV-J Infected DF1 Cells by Up-Regulating miR-183. Genes (Basel) 2023; 14:1260. [PMID: 37372440 DOI: 10.3390/genes14061260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: circRNAs are closed circular molecules with covalent bonds generated by reverse shearing, which have high stability and have different manifestations in different tissues, cells, or physiological conditions and play important roles in various disease processes and physiological processes. In addition, circ_PIAS1 has been screened out and verified, and the bioinformatics analyzed in previous studies. In this study, we investigated the function of circ_PIAS1 and studied its role in ALV-J infection to provide a basis for the role of circRNA in ALV-J infection. (2) Methods: the effect of circ_PIAS1 on apoptosis during ALV-J infection was studied by flow cytometry and detection of apoptotic gene expression, and miR-183 was screened by a biotin-labeled RNA pull-down technique. After overexpression and inhibition of miR-183, the effect of miR-183 on apoptosis in the process of ALV-J infection was studied by flow cytometry and detection of apoptotic gene expression. (3) Results: after overexpression of circ_PIAS1, flow cytometry and apoptotic gene expression showed that circ_PIAS1 promoted apoptosis. The results of RNA pull-down showed that 173 miRNAs could bind to circ_PIAS1, and circ_PIAS1 up-regulated the expression of miR-183. On the other hand, the same results were obtained whether miR-183 was overexpressed or inhibited that miR-183 affected ALV-J infection by promoting cell apoptosis. (4) Conclusions: circ_PIAS1 up-regulated the expression of miR-183 and influenced ALV-J infection by promoting cell apoptosis.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Lingling Qiu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shihao Chen
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yulin Bi
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Min J, Liu W, Li J. Emerging Role of Interferon-Induced Noncoding RNA in Innate Antiviral Immunity. Viruses 2022; 14:2607. [PMID: 36560611 PMCID: PMC9780829 DOI: 10.3390/v14122607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Thousands of unique noncoding RNAs (ncRNAs) exist within the genomes of higher eukaryotes. Upon virus infection, the host generates interferons (IFNs), which initiate the expression of hundreds of interferon-stimulated genes (ISGs) through IFN receptors on the cell surface, establishing a barrier as the host's antiviral innate immunity. With the development of novel RNA-sequencing technology, many IFN-induced ncRNAs have been identified, and increasing attention has been given to their functions as regulators involved in the antiviral innate immune response. IFN-induced ncRNAs regulate the expression of viral proteins, IFNs, and ISGs, as well as host genes that are critical for viral replication, cytokine and chemokine production, and signaling pathway activation. This review summarizes the complex regulatory role of IFN-induced ncRNAs in antiviral innate immunity from the above aspects, aiming to improve understanding of ncRNAs and provide reference for the basic research of antiviral innate immunity.
Collapse
Affiliation(s)
- Jie Min
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Yang X, Jiang Z, Li Y, Zhang Y, Han Y, Gao L. Non-coding RNAs regulating epithelial-mesenchymal transition: Research progress in liver disease. Biomed Pharmacother 2022; 150:112972. [PMID: 35447551 DOI: 10.1016/j.biopha.2022.112972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic liver injury could gradually progress to liver fibrosis, cirrhosis, and even hepatic carcinoma without effective treatment. The massive production and activation of abnormal cell differentiation is vital to the procession of liver diseases. Epithelial-mesenchymal transformation (EMT) is a biological process in which differentiated epithelial cells lose their epithelial characteristics and acquire mesenchymal cell migration capacity. Emerging evidence suggests that EMT not only occurs in the process of hepatocellular carcinogenesis, but also appears in liver cells transforming to myofibroblasts, a core event of liver disease. Non-coding RNA (ncRNA) such as microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) are important regulatory factors in EMT, which can regulate target gene expression by binding with RNA single-stranded. Various studies had shown that ncRNA regulation of EMT plays a key role in liver disease development, and many effective ncRNAs have been identified as promising biomarkers for the diagnosis and treatment of liver disease. In this review, we focus on the relationship between the different ncRNAs and EMT as well as the specific molecular mechanism in the liver diseases to enrich the pathological progress of liver diseases and provide reference for the treatment of liver diseases.
Collapse
Affiliation(s)
- Xiang Yang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Zhitao Jiang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yang Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingchun Zhang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yi Han
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Liyuan Gao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| |
Collapse
|
11
|
Tang S, Li J, Chang YF, Lin W. Avian Leucosis Virus-Host Interaction: The Involvement of Host Factors in Viral Replication. Front Immunol 2022; 13:907287. [PMID: 35693802 PMCID: PMC9178239 DOI: 10.3389/fimmu.2022.907287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Avian leukosis virus (ALV) causes various diseases associated with tumor formation and decreased fertility. Moreover, ALV induces severe immunosuppression, increasing susceptibility to other microbial infections and the risk of failure in subsequent vaccination against other diseases. There is growing evidence showing the interaction between ALV and the host. In this review, we will survey the present knowledge of the involvement of host factors in the important molecular events during ALV infection and discuss the futuristic perspectives from this angle.
Collapse
Affiliation(s)
- Shuang Tang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jie Li
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Wencheng Lin
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Guo Y, Yu X, Su N, Shi N, Zhang S, Zhang L, Yang L, Zhao L, Guan Z, Zhang M, Duan M. Identification and characterization of circular RNAs in the A549 cells following Influenza A virus infection. Vet Microbiol 2022; 267:109390. [DOI: 10.1016/j.vetmic.2022.109390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 01/01/2023]
|
13
|
Interaction between avian leukosis virus subgroup J surface protein and doublecortin-like kinase 1 accelerates cell proliferation and epithelial-mesenchymal transition. J Virol 2022; 96:e0165721. [PMID: 35080427 DOI: 10.1128/jvi.01657-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) induces myelocytomas, which can metastasize to multiple organs in diseased chicken. Although metastasis is the primary cause of death in such cases, the mechanism for it remains unclear. Here, we found that interaction between ALV-J surface protein (SU) and doublecortin-like kinase 1 (DCLK1) promotes epithelial-mesenchymal transition (EMT) and cell proliferation. We found that ALV-J can activate EMT in infected cells. Subsequently, proteomics analysis revealed that DCLK1, a well-established putative tumor stem cell marker, which is highly expressed in ALV-J-infected DF-1 cells and chickens, might be a potential factor mediating EMT. Furthermore, using immunofluorescence and immunoprecipitation, we verified that SU interacts with DCLK1. Functional studies suggested that overexpression of DCLK1 increased viral replication, and promoted cell proliferation by accelerating the progression of cells from the G0/G1 phase to the S phase of cell cycle, whereas RNA-interference of DCLK1 reduced viral replication and arrested cell proliferation by retarding cell cycle progression from the late G1 phase into the S phase in ALV-J-infected cells. Moreover, we demonstrate that the increased accumulation of DCLK1 promotes EMT by increasing the expression of N-cadherin, vimentin, MMP2, transcription factor Snail1, and decreasing the expression of epithelial marker E-cadherin. These results suggest that ALV-J SU interacts with DCLK1, and accelerates cell proliferation, leading to increased viral replication, and ultimately activating EMT, which paves the way for tumor metastasis. IMPORTANCE Tumor metastasis is a major challenge in cancer research, because of its systemic nature and the resistance of disseminated tumor cells to existing therapeutic agents. It is estimated that >90% of mortality from cancer is attributable to metastases. We found that ALV-J can activate EMT, which plays a critical role in cancer metastasis. Subsequently, we identified a tumor stem cell marker, DCLK1, in ALV-J infected cells, which interacts with surface protein (SU) of ALV-J to promote virus replication, activate EMT, and accelerate cell proliferation enabling ALV-J to obtain metastatic ability. Understanding the process of participation of ALV-J in EMT and the route of metastasis will help elucidate the mechanism of virus-induced tumor metastasis, and help identify promising molecular targets and key obstacles for ALV-J control and clinical technology development.
Collapse
|
14
|
Yang Q, Li Y, Wang Y, Qiao X, Liu T, Wang H, Shen H. The circRNA circSIAE Inhibits Replication of Coxsackie Virus B3 by Targeting miR-331-3p and Thousand and One Amino-Acid Kinase 2. Front Cell Infect Microbiol 2022; 11:779919. [PMID: 35141166 PMCID: PMC8820919 DOI: 10.3389/fcimb.2021.779919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/21/2021] [Indexed: 01/15/2023] Open
Abstract
Coxsackie virus B3 (CVB3), an enterovirus, is the main pathogen causing viral myocarditis, pericarditis, hepatitis and other inflammation-related diseases. Non-coding RNAs with a closed loop molecular structure, called circular RNAs (circRNAs), have been shown to be involved in multiple virus-related processes, but roles and mechanisms in CVB3 infection have not been systematically studied. In this study, when HeLa cells were infected with CVB3, the expression of hsa_circ_0000367 (circSIAE) was significantly decreased as demonstrated by real-time quantitative PCR assays. We found that circSIAE downregulated the expression of miR-331-3p through direct binding and inhibited the replication of CVB3 in HeLa and 293T cells. The analysis of signals downstream of miR-331-3p suggested that miR-331-3p promotes CVB3 replication, viral plaque formation and fluorescent virus cell production through interactions with the gene coding for thousand and one amino-acid kinase 2 (TAOK2). In conclusion, this study found that circSIAE can target TAOK2 through sponge adsorption of miR-331-3p to inhibit the replication and proliferation of CVB3 virus, providing an early molecular target for the diagnosis of CVB3 infection.
Collapse
Affiliation(s)
- Qingru Yang
- Medical College, Jiangsu University, Zhenjiang, China
- Clinical Laboratory, Jiangyin Municipal Center for Disease Control and Prevention, Jiangyin, China
| | - Yuhan Li
- Medical College, Jiangsu University, Zhenjiang, China
| | - Yan Wang
- Medical College, Jiangsu University, Zhenjiang, China
| | - Xiaorong Qiao
- Medical College, Jiangsu University, Zhenjiang, China
| | - Tingjun Liu
- Medical College, Jiangsu University, Zhenjiang, China
| | - Hua Wang
- Medical College, Jiangsu University, Zhenjiang, China
- *Correspondence: Hua Wang, ; Hongxing Shen,
| | - Hongxing Shen
- Medical College, Jiangsu University, Zhenjiang, China
- *Correspondence: Hua Wang, ; Hongxing Shen,
| |
Collapse
|
15
|
Zhang X, Chen T, Chen S, Nie Y, Xie Z, Feng K, Zhang H, Xie Q. The Efficacy of a Live Attenuated TW I-Type Infectious Bronchitis Virus Vaccine Candidate. Virol Sin 2021; 36:1431-1442. [PMID: 34251605 PMCID: PMC8273854 DOI: 10.1007/s12250-021-00419-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Infectious bronchitis (IB) is a highly contagious avian disease caused by infection with infectious bronchitis virus (IBV), which seriously affects the development of the global poultry industry. The distribution of TW I-type IBV in China has increased in recent years, becoming a widespread genotype. We previously isolated a TW I-type IBV strain termed CK/CH/GD/GZ14 in 2014, but its pathogenicity and possibility for vaccine development were not explored. Therefore, this research aimed to develop a live-attenuated virus vaccine based on the CK/CH/GD/GZ14 strain. The wild type IBV CK/CH/GD/GZ14 strain was serially passaged in SPF embryos for 145 generations. The morbidity and mortality rate of wild-type strain in 14 day-old chickens is 100% and 80% respectively, while the morbidity rate in the attenuated strain was 20% in the 95th and 105th generations and there was no death. Histopathological observations showed that the pathogenicity of the 95th and 105th generations in chickens was significantly weakened. Further challenge experiments confirmed that the attenuated CK/CH/GD/GZ14 strain in the 95th and 105th generations could resist CK/CH/GD/GZ14 (5th generation) infection and the protection rate was 80%. Tracheal cilia stagnation, virus shedding, and viral load experiments confirmed that the 95th and 105th generations provide good immune protection in chickens, and the immunogenicity of the 105th generation is better than that of the 95th generation. These data suggest that the attenuated CK/CH/GD/GZ14 strain in the 105th generation may be applied as a vaccine candidate against TW I-type IBV.
Collapse
Affiliation(s)
- Xinheng Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China
| | - Tong Chen
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China
| | - Sheng Chen
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Yu Nie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Zi Xie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Keyu Feng
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Huanmin Zhang
- United States Department of Agriculture, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA
| | - Qingmei Xie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China. .,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Zhao W, Su J, Wang N, Zhao N, Su S. Expression Profiling and Bioinformatics Analysis of CircRNA in Mice Brain Infected with Rabies Virus. Int J Mol Sci 2021; 22:ijms22126537. [PMID: 34207166 PMCID: PMC8234020 DOI: 10.3390/ijms22126537] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
Rabies virus (RABV) induces acute, fatal encephalitis in mammals including humans. The circRNAs are important in virus infection process, but whether circRNAs regulated RABV infection remains largely unknown. Here, mice brain with or without the RABV CVS-11 strain were subjected to RNA sequencing and a total of 30,985 circRNAs were obtained. Among these, 9021 candidates were shared in both groups, and 14,610 and 7354 circRNAs were expressed specifically to the control and experimental groups, indicating that certain circRNAs were specifically inhibited or induced on RABV infection. The circRNAs mainly derived from coding exons. In total, 636 circRNAs were differentially expressed in RABV infection, of which 426 significantly upregulated and 210 significantly downregulated (p < 0.05 and fold change ≥2). The expression of randomly selected 6 upregulated and 6 downregulated circRNAs was tested by RT-qPCR, and the expression trend of the 11 out of 12 circRNAs was consistent in RT- qPCR and RNA-seq analysis. Rnase R-resistant assay and Sanger sequencing were conducted to verify the circularity of circRNAs. GO analysis demonstrated that source genes of all differentially regulated circRNAs were mainly related to cell plasticity and synapse function. Both KEGG and GSEA analysis revealed that these source genes were engaged in the cGMP–PKG and MAPK signaling pathway, and HTLV-I infection. Also, pathways related to glucose metabolism and synaptic functions were enriched in KEGG analysis. The circRNA–miRNA–mRNA network was built with 25 of 636 differentially expressed circRNAs, 264 mRNAs involved in RABV infection, and 29 miRNAs. Several miRNAs and many mRNAs in the network were reported to be related to viral infection and the immune response, suggesting that circRNAs could regulate RABV infection via interacting with miRNAs and mRNAs. Taken together, this study first characterized the transcriptomic pattern of circRNAs, and signaling pathways and function that circRNAs are involved in, which may indicate directions for further research to understand mechanisms of RABV pathogenesis.
Collapse
|
17
|
Ni H, Qin H, Sun C, Liu Y, Ruan G, Guo Q, Xi T, Xing Y, Zheng L. MiR-375 reduces the stemness of gastric cancer cells through triggering ferroptosis. Stem Cell Res Ther 2021; 12:325. [PMID: 34090492 PMCID: PMC8180146 DOI: 10.1186/s13287-021-02394-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gastric cancer stem cells (CSCs) are the main causes of metastasis and drug resistance. We previously indicated that miR-375 can inhibit Helicobacter pylori-induced gastric carcinogenesis; here, we aim to explore the effects and mechanisms of miR-375 on gastric cancer (GC) cell stemness. METHODS Lentivirus infection was used to construct GC cells with ectopic expression of miR-375. In vitro and in vivo experiments, including analysis of tumor spheroid formation, CD44+ sub-population with stemness, stemness marker expression, and tumor-initiating ability, were performed to evaluate the effects of miR-375 on the stemness of GC cells. Furthermore, microarray and bioinformatics analysis were performed to search the potential targets of miR-375 in GC cells. Luciferase reporter, RNA immunoprecipitation, and RNA-FISH assays were carried out to verify the targeting of miR-375. Subsequently, combined with tissue microarray analysis, erastin-resistant GC cells, transmission electron microscopy, a series of agonists and oxidative stress markers, the underlying mechanisms contributing to miR-375-mediated effects were explored. RESULTS MiR-375 reduced the stemness of GC cells in vitro and in vivo. Mechanistically, SLC7A11 was identified as a direct target of miR-375 and miR-375 attenuated the stemness of GC cells mainly through triggering SLC7A11-dependent ferroptosis. CONCLUSION MiR-375 can trigger the ferroptosis through targeting SLC7A11, which is essential for miR-375-mediated inhibition on GC cell stemness. These results suggest that the miR-375/SLC7A11 regulatory axis could serve as a potential target to provoke the ferroptosis and thus attenuate the stemness of GC cells.
Collapse
Affiliation(s)
- Haiwei Ni
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Hai Qin
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Cheng Sun
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Yichen Liu
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Guojing Ruan
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Qianqian Guo
- Department of Pharmacy, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Yingying Xing
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
18
|
Yan Y, Zhang H, Gao S, Zhang H, Zhang X, Chen W, Lin W, Xie Q. Differential DNA Methylation and Gene Expression Between ALV-J-Positive and ALV-J-Negative Chickens. Front Vet Sci 2021; 8:659840. [PMID: 34136553 PMCID: PMC8203102 DOI: 10.3389/fvets.2021.659840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/28/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Avian leukosis virus subgroup J (ALV-J) is an oncogenic virus that causes serious economic losses in the poultry industry; unfortunately, there is no effective vaccine against ALV-J. DNA methylation plays a crucial role in several biological processes, and an increasing number of diseases have been proven to be related to alterations in DNA methylation. In this study, we screened ALV-J-positive and -negative chickens. Subsequently, we generated and provided the genome-wide gene expression and DNA methylation profiles by MeDIP-seq and RNA-seq of ALV-J-positive and -negative chicken samples; 8,304 differentially methylated regions (DMRs) were identified by MeDIP-seq analysis (p ≤ 0.005) and 515 differentially expressed genes were identified by RNA-seq analysis (p ≤ 0.05). As a result of an integration analysis, we screened six candidate genes to identify ALV-J-negative chickens that possessed differential methylation in the promoter region. Furthermore, TGFB2 played an important role in tumorigenesis and cancer progression, which suggested TGFB2 may be an indicator for identifying ALV-J infections.
Collapse
Affiliation(s)
- Yiming Yan
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Huihua Zhang
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Shuang Gao
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Huanmin Zhang
- United States Department of Agriculture (USDA), Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, United States
| | - Xinheng Zhang
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Weiguo Chen
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Wencheng Lin
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Qingmei Xie
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| |
Collapse
|
19
|
Comprehensive profiling analysis of the N6-methyladenosine-modified circular RNA transcriptome in cultured cells infected with Marek's disease virus. Sci Rep 2021; 11:11084. [PMID: 34040106 PMCID: PMC8155085 DOI: 10.1038/s41598-021-90548-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023] Open
Abstract
Marek's disease virus (MDV) induces severe immunosuppression and lymphomagenesis in the chicken, its natural host, and results in a condition that investigated the pathogenesis of MDV and have begun to focus on the expression profiling of circular RNAs (circRNAs). However, little is known about how the expression of circRNAs is referred to as Marek's disease. Previous reports have is regulated during MDV replication. Here, we carried out a comprehensive profiling analysis of N6-methyladenosine (m6A) modification on the circRNA transcriptome in infected and uninfected chicken embryonic fibroblast (CEF) cells. Methylated RNA immunoprecipitation sequencing (MeRIP-Seq) revealed that m6A modification was highly conserved in circRNAs. Comparing to the uninfected group, the number of peaks and conserved motifs were not significantly different in cells that were infected with MDV, although reduced abundance of circRNA m6A modifications. However, gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses revealed that the insulin signaling pathway was associated with the regulation of m6A modified circRNAs in MDV infection. This is the first report to describe alterations in the transcriptome-wide profiling of m6A modified circRNAs in MDV-infected CEF cells.
Collapse
|
20
|
Merino GA, Raad J, Bugnon LA, Yones C, Kamenetzky L, Claus J, Ariel F, Milone DH, Stegmayer G. Novel SARS-CoV-2 encoded small RNAs in the passage to humans. Bioinformatics 2021; 36:5571-5581. [PMID: 33244583 PMCID: PMC7717134 DOI: 10.1093/bioinformatics/btaa1002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/15/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Motivation The Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) has recently emerged as the responsible for the pandemic outbreak of the coronavirus disease (COVID-19). This virus is closely related to coronaviruses infecting bats and Malayan pangolins, species suspected to be an intermediate host in the passage to humans. Several genomic mutations affecting viral proteins have been identified, contributing to the understanding of the recent animal-to-human transmission. However, the capacity of SARS-CoV-2 to encode functional putative microRNAs (miRNAs) remains largely unexplored. Results We have used deep learning to discover 12 candidate stem-loop structures hidden in the viral protein-coding genome. Among the precursors, the expression of eight mature miRNAs-like sequences was confirmed in small RNA-seq data from SARS-CoV-2 infected human cells. Predicted miRNAs are likely to target a subset of human genes of which 109 are transcriptionally deregulated upon infection. Remarkably, 28 of those genes potentially targeted by SARS-CoV-2 miRNAs are down-regulated in infected human cells. Interestingly, most of them have been related to respiratory diseases and viral infection, including several afflictions previously associated with SARS-CoV-1 and SARS-CoV-2. The comparison of SARS-CoV-2 pre-miRNA sequences with those from bat and pangolin coronaviruses suggests that single nucleotide mutations could have helped its progenitors jumping inter-species boundaries, allowing the gain of novel mature miRNAs targeting human mRNAs. Our results suggest that the recent acquisition of novel miRNAs-like sequences in the SARS-CoV-2 genome may have contributed to modulate the transcriptional reprogramming of the new host upon infection.
Collapse
Affiliation(s)
- Gabriela A Merino
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe 3000, Argentina.,Bioengineering and Bioinformatics Research and Development Institute (IBB), FI-UNER, CONICET, Entre Ríos 3100, Argentina.,European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridgeshire CB101SD, UK
| | - Jonathan Raad
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Leandro A Bugnon
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Cristian Yones
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Laura Kamenetzky
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, UBA-CONICET, Ciudad Autónoma de Buenos Aires 1121, Argentina.,Laboratorio de Genómica y Bioinformática de Patógenos, iB3, Instituto de Biociencias, Biotecnología y Biología traslacional, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Juan Claus
- Laboratorio de Virología, FBCB, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral (IAL), CONICET, FBCB, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Diego H Milone
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| | - Georgina Stegmayer
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe 3000, Argentina
| |
Collapse
|
21
|
Liu Y, Wang Q, Wen J, Wu Y, Man C. MiR-375: A novel multifunctional regulator. Life Sci 2021; 275:119323. [PMID: 33744323 DOI: 10.1016/j.lfs.2021.119323] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 01/23/2023]
Abstract
MiR-375, a primitively described beta cell-specific miRNA, is confirmed to function as multi-functional regulator in diverse typical cellular pathways according to the follow-up researches. Based on the existing studies, miR-375 can regulate many functional genes and ectopic expressions of miR-375 are usually associated with pathological changes, and its expression regulation mechanism is mainly related to promoter methylation or circRNA. In this review, the regulatory functions of miR-375 in immunity, such as its relevance with macrophages, T helper cells and autoimmune diseases were briefly discussed. Also, the functions of miR-375 involved in inflammation, development and virus replication were reviewed. Finally, the mechanisms and application prospects of miR-375 in cancers were analyzed. Studies show that the application of miR-375 as therapeutic target and biomarker has a broad developing space in future. We hope this paper can provide reference for its further study.
Collapse
Affiliation(s)
- Yang Liu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Qiuyuan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Jie Wen
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yiru Wu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
22
|
Shi N, Zhang S, Guo Y, Yu X, Zhao W, Zhang M, Guan Z, Duan M. CircRNA_0050463 promotes influenza A virus replication by sponging miR-33b-5p to regulate EEF1A1. Vet Microbiol 2021; 254:108995. [PMID: 33517193 DOI: 10.1016/j.vetmic.2021.108995] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/16/2021] [Indexed: 12/19/2022]
Abstract
Circular RNAs (circRNAs), a new class of widely expressed endogenous regulatory RNAs, are characterized by a covalently closed loop structure without a 5' cap or 3' tail. Increasing numbers of studies have shown that circRNAs play important roles in diverse physiological and pathological processes, including the dynamic interactions between viruses and hosts. However, their multifaceted roles in cellular responses to influenza A virus (IAV) infection remain largely unknown. Here, we analyzed the expression of circ_0050463, which is predominantly localized in cytoplasm, in response to IAV infection. Knockdown of circ_0050463 with siRNA in A549 cells inhibited IAV replication. In addition, the activation of nuclear factor κB (NF-κB) was involved in IAV-induced circ_0050463 expression, as revealed by assay using a NF-Kb inhibitor (Bay 11-7082). By performing biotin-labeled RNA pull-down and luciferase reporter assay, we demonstrated that circ_0050463 functioned as an endogenous microRNA-33b-5p sponge to sequester and inhibit miR-33b-5p activity, resulting in increased eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) expression with subsequent facilitation of IAV replication. Taken together, the results of our study indicate that the circ_0050463 promotes IAV replication via miR-33b-5p/EEF1A1 axis, thus providing evidence for the host circRNAs utilized by viruses to support their replication.
Collapse
Affiliation(s)
- Ning Shi
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China
| | - Shu Zhang
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yidi Guo
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiuhua Yu
- Pediatric Department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Weizheng Zhao
- Clinical Medical College, Jilin University, Changchun, Jilin, China
| | - Maolin Zhang
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenhong Guan
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ming Duan
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
23
|
Huang R, Bai C, Liu X, Zhou Y, Hu S, Li D, Xiang J, Chen J, Zhou P. The p53/RMRP/miR122 signaling loop promotes epithelial-mesenchymal transition during the development of silica-induced lung fibrosis by activating the notch pathway. CHEMOSPHERE 2021; 263:128133. [PMID: 33297121 DOI: 10.1016/j.chemosphere.2020.128133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 07/13/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Understanding the roles of long noncoding RNAs (lncRNAs) in EMT would help with establishing novel avenues for further uncovering the mechanisms of lung fibrosis and identifying preventative and therapeutic targets. This study aimed to identify silica-induced specific lncRNAs and investigate the feedback loop regulation among their upstream and downstream genes. METHODS AND MATERIALS A microarray assay, quantitative real-time polymerase chain reaction and Western blot analysis dual-luciferase reporter gene activity and chromatin immunoprecipitation assays were used. Moreover, a silica-induced lung fibrosis mouse model was used to verify the roles of the lncRNAs. RESULTS Following silica exposure, both RNA component of mitochondrial RNA processing endoribonuclease (RMRP) and p53 were significantly upregulated during the EMT. The upregulation of p53 upon silica exposure activated RMRP expression, which promoted the EMT. When RMRP is overexpressed, additional RMRP acts as a sponge to bind to miR122, thus decreasing miR122 levels. Using microarrays, miR122 was identified as a potential upstream regulator of p53. This relationship was also verified using the dual-luciferase reporter gene. Hence, decreased miR122 levels result in an increase in p53 activity. More importantly, RMRP promotes the transcription of Notch 1, which, in turn, results in Notch pathway activation. We show that the p53/RMRP/miR122 pathway creates a positive feedback loop that promotes EMT progress by activating the Notch signaling pathway. CONCLUSION Our data indicated that p53/RMRP/miR122 feedback loop might contribute to the EMT development by activating Notch pathway, which provides new sight into understanding of the complex network regulating silica-induced lung fibrosis.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850, China.
| | - Xiaodan Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850, China.
| | - Yao Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Sai Hu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Decheng Li
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Jing Xiang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Jihua Chen
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 410078, Changsha, 63455553, China.
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850, China; Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
24
|
Zhou M, Xiao MS, Li Z, Huang C. New progresses of circular RNA biology: from nuclear export to degradation. RNA Biol 2020; 18:1365-1373. [PMID: 33241761 DOI: 10.1080/15476286.2020.1853977] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Circular RNA, typically generated from backsplicing reaction, is a class of single-stranded and covalently linked RNA. Although most circular RNAs are lowly expressed, some of them are able to accumulate to high levels and even exceed their cognate mRNAs due to their longer half-lives. Once produced in the nucleus, the majority of circular RNAs are exported to the cytoplasm for their proper functions or degradation. In this review, we will summarize the biogenesis and classification of circular RNAs and highlight the recent advances in our understanding of circular RNA nuclear export and degradation.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Chongqing University, Chongqing, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Mei-Sheng Xiao
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| |
Collapse
|
25
|
Zhang X, Zhao Q, Wu C, Xie Z, Ci X, Li H, Lin W, Zhang H, Xie Q. Nitrate Is Crucial for the Proliferation of Gut Escherichia coli Caused by H9N2 AIV Infection and Effective Regulation by Chinese Herbal Medicine Ageratum-Liquid. Front Microbiol 2020; 11:555739. [PMID: 33193136 PMCID: PMC7662154 DOI: 10.3389/fmicb.2020.555739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
H9N2 avian influenza virus (AIV) infection in chickens is often accompanied by secondary bacterial infection, but the mechanism is unclear. The aim of the present study was to reveal that mechanism and explore non-antibiotic treatment. 16s rRNA sequencing and metabonomics were performed in the intestinal contents of chickens infected with H9N2 AIV or H9N2 AIV and fed with ageratum-liquid (AL) to reveal the metabolite that promote intestinal Escherichia coli (E. coli) proliferation caused by H9N2 AIV, as well as to determine the regulatory effect of AL. It was found that H9N2 AIV infection led E. coli to become the dominant gut microbe and promoted E. coli translocation from the intestinal tract to the visceral tissue through the damaged intestinal barrier. H9N2 AIV infection induces inflammation in the intestinal mucosa and promotes the secretion and release of nitrate from the host intestinal epithelium. In addition, nitrate promoted E. coli proliferation in the inflamed intestinal tract following H9N2 AIV infection. Furthermore, Chinese herbal medicine AL can restore intestinal homeostasis, inhibit the production of nitrate in the intestinal epithelium and effectively prevent the proliferation and translocation of E. coli in the intestines. This is the first report on the mechanism of E. coli secondary infection induced by H9N2 AIV, where herbal medicine AL was shown to have a good preventive effect on the secondary infection.
Collapse
Affiliation(s)
- Xinheng Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Qiqi Zhao
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Che Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Zi Xie
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Xiaotong Ci
- College of Animal Science, South China Agricultural University, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Hongxin Li
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Huanmin Zhang
- USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, United States
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| |
Collapse
|
26
|
The role of circular RNAs in viral infection and related diseases. Virus Res 2020; 291:198205. [PMID: 33132144 PMCID: PMC7581343 DOI: 10.1016/j.virusres.2020.198205] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
CircRNAs are formed by pre-mRNA through “back-splicing”. CircRNAs regulate host immune response and virus replication. CircRNAs have potential as diagnostic markers or treatment targets for viral infection.
Circular RNAs (circRNAs) are a class of non-coding RNAs with a special covalently closed circular structure, which is formed by precursor mRNA (pre-mRNA) through “back-splicing”. CircRNAs are more stable than linear RNAs because they are resistant to exoribonucleases. Viral infections often cause abnormal expression of circRNAs, which could serve as novel biomarkers for the diagnosis of viral infections by detecting specific circRNAs in cells, body fluids, or tissues. CircRNAs also play a critical role in regulating host immune response and virus replication. Here, we reviewed the production and function of circRNAs, mainly focusing on their regulation on virus infection, to provide novel insights into the potential role of circRNAs as diagnostic marker or treatment targets for viral infection.
Collapse
|
27
|
circ_2858 Helps Blood-Brain Barrier Disruption by Increasing VEGFA via Sponging miR-93-5p during Escherichia coli Meningitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:708-721. [PMID: 33230468 PMCID: PMC7593508 DOI: 10.1016/j.omtn.2020.09.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
Meningitic Escherichia coli invasion of the host brain can lead to increased blood-brain barrier (BBB) permeability. Circular RNAs (circRNAs) are non-coding RNAs, highly abundant in the brain, that are widely involved in the pathological processes of central nervous system (CNS) disorders; however, whether circRNAs participate in the regulation of BBB permeability during E. coli meningitis remains unknown. Here, we identified a novel circRNA, circ_2858, that was significantly upregulated in human brain microvascular endothelial cells (hBMECs) upon meningitic E. coli infection. We also found that circ_2858 regulated BBB permeability in hBMECs by competitively binding miR-93-5p, thereby inducing the upregulation of vascular endothelial growth factor A and finally resulting in downregulation as well as altered distribution of tight junction proteins such as ZO-1, Occludin, and Claudin-5. These findings provide novel insights into the influence of circ_2858 on BBB permeability during the pathogenic process of E. coli meningitis, suggesting potential nucleic acid targets for future prevention and therapy of CNS infection induced by meningitic E. coli.
Collapse
|
28
|
Li Q, Wang W, Zhang M, Sun W, Shi W, Li F. Circular RNA circ-0016068 Promotes the Growth, Migration, and Invasion of Prostate Cancer Cells by Regulating the miR-330-3p/BMI-1 Axis as a Competing Endogenous RNA. Front Cell Dev Biol 2020; 8:827. [PMID: 32984325 PMCID: PMC7479067 DOI: 10.3389/fcell.2020.00827] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a common neoplasm worldwide, and the sixth most common cause of cancer-related mortality. Biomarkers for earlier diagnosis and improved treatment alternatives are critical. Circular RNAs (circRNAs) can promote the growth and progression of various cancers; however, prostate cancer-specific circRNAs have not been found. We identified circ-0016068, a circRNA that was expressed more strongly in prostate cancer tumors vs. normal paired tissue, and confirmed its relatively high expression in prostate cancer tissues and cell lines. We also discerned that circ-0016068 promotes the epithelial-to-mesenchymal transition (EMT) and the growth, migration, and invasion of prostate cancer cells in vitro; and promotes the growth and metastasis of tumors in a mouse model of prostate cancer. Moreover, we found that circ-0016068 competes with the B-lymphoma Moloney murine leukemia virus insertion region-1 (BMI-1) for binding to miR-330-3p. In so doing, circ-0016068 sequesters miR-330-3p and frees BMI-1 to enhance the proliferation, migration, and invasion of prostate cancer cells, and the metastasis of xenograft tumors. These results suggest that circ-0016068 may be a promising diagnostic biomarker for early stage prostate cancer and a potential target for novel cancer therapeutics.
Collapse
Affiliation(s)
- Qingyuan Li
- Department of Urology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wei Wang
- Department of Urology, Zibo Maternal and Child Health Hospital, Zibo, China
| | - Min Zhang
- Department of Urology, Jinan City People's Hospital, Jinan, China
| | - Wenguo Sun
- Department of Urology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wei Shi
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Feng Li
- School of Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
29
|
Epigenetic Regulation by Non-Coding RNAs in the Avian Immune System. Life (Basel) 2020; 10:life10080148. [PMID: 32806547 PMCID: PMC7459779 DOI: 10.3390/life10080148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
The identified non-coding RNAs (ncRNAs) include circular RNAs, long non-coding RNAs, microRNAs, ribosomal RNAs, small interfering RNAs, small nuclear RNAs, piwi-interacting RNAs, and transfer RNAs, etc. Among them, long non-coding RNAs, circular RNAs, and microRNAs are regulatory RNAs that have different functional mechanisms and were extensively participated in various biological processes. Numerous research studies have found that circular RNAs, long non-coding RNAs, and microRNAs played their important roles in avian immune system during the infection of parasites, virus, or bacterium. Here, we specifically review and expand this knowledge with current advances of circular RNAs, long non-coding RNAs, and microRNAs in the regulation of different avian diseases and discuss their functional mechanisms in response to avian diseases.
Collapse
|
30
|
Li Y, Ashraf U, Chen Z, Zhou D, Imran M, Ye J, Chen H, Cao S. Genome-wide profiling of host-encoded circular RNAs highlights their potential role during the Japanese encephalitis virus-induced neuroinflammatory response. BMC Genomics 2020; 21:409. [PMID: 32552669 PMCID: PMC7301528 DOI: 10.1186/s12864-020-06822-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) is one of the common causes of acute encephalitis in humans. Japanese encephalitis is characterized by the uncontrolled release of inflammatory cytokines, which ultimately results in neuronal cell damage. In recent years, with the advancement of high-throughput sequencing technology, studies have shown that circRNAs, by competing with endogenous miRNAs, play a vital role in the pathology of CNS diseases. However, it is unknown whether circRNAs participate in JEV-induced neuroinflammation. RESULTS By employing Illumina RNA-sequencing, we identified 180 circRNAs and 58 miRNAs that showed significant differential expression in JEV-infected mice brain tissues. The functional enrichment analyses revealed that these differentially regulated circRNAs were predominantly related to neurotransmission, histone modifications, transcription misregulation, and inflammation-associated calcium signaling pathway. Our established competing endogenous RNA (ceRNA) interaction network suggested the correlation of several circRNAs, miRNAs, and mRNAs in regulating the inflammatory response during JEV infection. Among the predicted interactions, the correlation between circ_0000220, miR-326-3p, and BCL3/MK2/TRIM25 mRNAs was experimentally validated by knockdown or overexpression of the non-coding RNA entities in cultured mouse microglia. The knockdown of circ_0000220 or overexpression of miR-326-3p caused a lower production of JEV-induced inflammatory cytokines. CONCLUSIONS Conclusively, our study provides new insights into the host response to JEV infection and proposes the circRNA-targeting therapeutic interventions to rein in Japanese encephalitis.
Collapse
Affiliation(s)
- Yunchuan Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zheng Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dengyuan Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Muhammad Imran
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
31
|
Zhang X, Liao Z, Wu Y, Yan Y, Chen S, Lin S, Chen F, Xie Q. gga-microRNA-375 negatively regulates the cell cycle and proliferation by targeting Yes-associated protein 1 in DF-1 cells. Exp Ther Med 2020; 20:530-542. [PMID: 32537011 PMCID: PMC7281959 DOI: 10.3892/etm.2020.8711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) serve a key role in regulating the cell cycle and inducing tumorigenesis. Subgroup J of the avian leukosis virus (ALV-J) belongs to the family Retroviridae, subfamily Orthoretrovirinae and genus Alpharetrovirus that causes tumors in susceptible chickens. gga-miR-375 is downregulated and Yes-associated protein 1 (YAP1) is upregulated in ALV-J-induced tumors in the livers of chickens, and it has been further identified that YAP1 is the direct target gene of gga-miR-375. In the present study, it was found that ALV-J infection promoted the cell cycle and proliferation in DF-1 cells. As the cell cycle and cell proliferation are closely associated with tumorigenesis, further experiments were performed to determine whether gga-miR-375 and YAP1 were involved in these cellular processes. It was demonstrated that gga-miR-375 significantly inhibited the cell cycle by inhibiting G1 to S/G2 stage transition and decreasing cell proliferation, while YAP1 significantly promoted the cell cycle and proliferation. Furthermore, these cellular processes in DF-1 cells were affected by gga-miR-375 through the targeting of YAP1. Collectively, the present results suggested that gga-miR-375, downregulated by ALV-J infection, negatively regulated the cell cycle and proliferation via the targeting of YAP1.
Collapse
Affiliation(s)
- Xinheng Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Guangdong Provincial Animal Virus VectorVaccine Engineering Technology Research Center, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Zhihong Liao
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Yu Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Yiming Yan
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Sheng Chen
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Shaoli Lin
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Feng Chen
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Guangdong Provincial Animal Virus VectorVaccine Engineering Technology Research Center, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| | - Qingmei Xie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Guangdong Provincial Animal Virus VectorVaccine Engineering Technology Research Center, Guangzhou, Guangdong 510642, P.R. China.,Department of Science and Technology of Guangdong Province, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|
32
|
Diling C, Longkai Q, Yinrui G, Yadi L, Xiaocui T, Xiangxiang Z, Miao Z, Ran L, Ou S, Dongdong W, Yizhen X, Xujiang Y, Yang BB, Qingping W. CircNF1-419 improves the gut microbiome structure and function in AD-like mice. Aging (Albany NY) 2020; 12:260-287. [PMID: 31905172 PMCID: PMC6977659 DOI: 10.18632/aging.102614] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023]
Abstract
Our pre-experiments found that the brain circRNA sequence profiles and gut microbiota in AD-like mice were changed, as circNF1-419 could enhance autophagy to ameliorate senile dementia in AD-like mice, so we conclude that there might some connections between circRNA and gut microbiome. Therefore, we use the over-expressed circNF1-419 adeno-associated virus (AAV) animal system with the aim of identifying possible connections. Our results showed that over-expression of circNF1-419 in brain not only influenced the cholinergic system of brain, but also changed the gut microbiota composition as the Candidatus Arthromitus, Lachnospiraceae FCS020 group, Lachnospiraceae UCG-006, and [Eubacterium] xylanophilum group, and the intestinal homeostasis and physiology, and even the gut microbiota trajectory in new born mice. These findings demonstrate a link between circRNA and gut microbiome, enlarge the 'microbiome- transcriptome' linkage library and provide more information on gut-brain axis.
Collapse
Affiliation(s)
- Chen Diling
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qi Longkai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Guo Yinrui
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liu Yadi
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tang Xiaocui
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhu Xiangxiang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Academy of Life Sciences, Jinan University, Guangdong Province, Guangzhou 510000, China
| | - Zeng Miao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Li Ran
- Department of Physiology, Shantou University Medical College, Shantou 515063, China
| | - Shuai Ou
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Wang Dongdong
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xie Yizhen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuan Xujiang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Burton B. Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Wu Qingping
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
33
|
Li W, Yang X, Shi C, Zhou Z. Hsa_circ_002178 Promotes the Growth and Migration of Breast Cancer Cells and Maintains Cancer Stem-like Cell Properties Through Regulating miR-1258/KDM7A Axis. Cell Transplant 2020; 29:963689720960174. [PMID: 32951449 PMCID: PMC7784609 DOI: 10.1177/0963689720960174] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BrCa) is the most common malignancy in women. Accumulating evidence demonstrated that abnormal circRNA expression is associated with the occurrence and progression of tumors. We analyzed the GSE101123 data and found that the expression of hsa_circ_002178 (circ_002178) was significantly increased in BrCa tissues. However, the role and possible underlying mechanisms of circ_002178 in BrCa still remain unrevealed. In this investigation, the expression levels of circ_002178 in cancer tissues or BrCa cells were significantly upregulated compared with those in paracancer tissues or normal cells. High expression of circ_002178 was correlated with the low survival rate, clinical tumor size, lymph node metastasis, and tumor, nodes, and metastases grade. After microsphere culture, the expression of circ_002178 in SUM149PT and MDA-MB-231 cells was significantly increased. Further investigation exhibited that overexpression of circ_002178 contributed to the formation of microspheres, the elevated protein levels of stemness marker, and the increased activity of ALDH1 in SUM149PT cells. Besides, the overexpression of circ_002178 also significantly promoted the growth, invasion, and migration of BrCa cells. Correspondingly, the knockdown of circ_002178 showed the opposite result in MDA-MB-231 cells. Hsa_circ_002178 was further proved to downregulate the level of miR-1258 and reduce the inhibitory effect of miR-1258 on KDM7A, thus regulating the stem-like characteristics of BrCa cells and promoting the growth and migration of BrCa cells. Taken together, targeting the circ_002178/miR-1258/KDM7A axis may be a prospective strategy for the diagnosis and therapies of BrCa in the future.
Collapse
Affiliation(s)
- Wangyong Li
- Department of General Surgery, The First People’s Hospital of Wenling, Taizhou City, Zhejiang Province, P. R. China
| | - Xiaoyan Yang
- Department of Rehabilitation, The First People’s Hospital of Wenling, Taizhou City, Zhejiang Province, P. R. China
| | - Chengfei Shi
- Department of General Surgery, The First People’s Hospital of Wenling, Taizhou City, Zhejiang Province, P. R. China
| | - Zhengbo Zhou
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, Shandong Province, P. R. China
| |
Collapse
|
34
|
Liu Z, Yu Y, Huang Z, Kong Y, Hu X, Xiao W, Quan J, Fan X. CircRNA-5692 inhibits the progression of hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP expression. Cell Death Dis 2019; 10:900. [PMID: 31776329 PMCID: PMC6881381 DOI: 10.1038/s41419-019-2089-9] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/20/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
Circular RNAs (circRNAs), one kind of noncoding RNAs, can interact with miRNA and transcription factors to regulate gene expression. However, little is known on which circRNA is crucial for the pathogenesis of hepatocellular carcinoma (HCC). CircRNA expression profile was analyzed by a microarray. Regulatory gene targets were predicted by bioinformatics analysis and validated by luciferase assay. Their expression was determined by qRT-PCR and Western blotting. DNA methylation was determined by methylation-specific PCR. Gene knockdown and overexpression were mediated by lentivirus-mediated shRNA and transfection with plasmids for cDNA expression, respectively. MTT assay, wound-healing assay, transwell invasion assay, and flow cytometry were used to determine malignant behaviors of HCC cells. HCC xenograft mouse model was used to determine the in vivo effects of circRNA-5692. CircRNA-5692 expression was downregulated in HCC tissues, and circRNA-5692 overexpression attenuated the malignant behaviors of HCC cells. Bioinformatics predicted that circRNA-5692 interacted with miR-328-5p, which targeted the DAB2IP mRNA. Actually, miR-328-5p promoted the malignant behaviors of HCC cells, while DAB2IP had opposite effects. Moreover, circRNA-5692 overexpression inhibited the growth of xenograft HCC tumors in vivo by decreasing miR-328-5p expression to enhance DAB2IP expression. In conclusion, the circRNA-5692–miR-328-5p–DAB2IP regulatory pathway inhibits the progression of HCC. Our findings may provide potential new targets for the diagnosis and therapy of HCC.
Collapse
Affiliation(s)
- Zhenguo Liu
- Department of Infectious Disease, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Infectious Disease, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yaqun Yu
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical College, Guilin, 541002, China
| | - Zebing Huang
- Department of Infectious Disease, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yi Kong
- The Department of Hepatopancreatobiliary Medicine, Hunan Cancer Hospital, Changsha, 410013, China
| | - Xingwang Hu
- Department of Infectious Disease, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei Xiao
- Department of Infectious Disease, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jun Quan
- Department of Infectious Disease, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Xuegong Fan
- Department of Infectious Disease, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
35
|
Luo J, Liu H, Luan S, Li Z. Guidance of circular RNAs to proteins' behavior as binding partners. Cell Mol Life Sci 2019; 76:4233-4243. [PMID: 31270581 PMCID: PMC11105724 DOI: 10.1007/s00018-019-03216-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/08/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
Circular RNAs (circRNAs) are single-stranded and covalently closed back-splicing products of pre-mRNAs. They can be derived from exons, introns, or exons with intron retained between exons of transcripts, as well as antisense transcripts. CircRNAs have been reported to function as microRNA sponges, regulate gene transcription mediated by RNA polymerase II, and modulate the splicing or stability of mRNA. However, emerging studies demonstrate that they affect the behavior of proteins via direct interactions with them. Here, we summarize that by binding directly with proteins; circRNAs can facilitate their nuclear or cytoplasmic localizations, regulate their functions or stability, promote or inhibit the interactions between them, or influence the interactions between them and DNA. Furthermore, these circRNA-binding proteins contain transcription factors, RNA processing proteins, proteases, and some other RNA-binding proteins. As a consequence, circRNAs are involved in the regulation of multiple physiological or pathological processes, including tumorigenesis, atherosclerosis, wound repair, cardiac senescence, myocardial ischemia/reperfusion injury, and so forth. Nonetheless, it is worthwhile to further explore more types of proteins that interact with circRNAs, which would be helpful in revealing other unknown biological functions of circRNAs that guide the variation in behavior of cellular proteins.
Collapse
Affiliation(s)
- Junyun Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Hui Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Siyu Luan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Zhaoyong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, Hunan, China.
| |
Collapse
|
36
|
Chen J, Liu G, Wu Y, Ma J, Wu H, Xie Z, Chen S, Yang Y, Wang S, Shen P, Fang Y, Fan S, Shen S, Fang X. CircMYO10 promotes osteosarcoma progression by regulating miR-370-3p/RUVBL1 axis to enhance the transcriptional activity of β-catenin/LEF1 complex via effects on chromatin remodeling. Mol Cancer 2019; 18:150. [PMID: 31665067 PMCID: PMC6819556 DOI: 10.1186/s12943-019-1076-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background CircMYO10 is a circular RNA generated by back-splicing of gene MYO10 and is upregulated in osteosarcoma cell lines, but its functional role in osteosarcoma is still unknown. This study aimed to clarify the mechanism of circMYO10 in osteosarcoma. Methods CircMYO10 expression in 10 paired osteosarcoma and chondroma tissues was assessed by quantitative reverse transcription polymerase chain reaction (PCR). The function of circMYO10/miR-370-3p/RUVBL1 axis was assessed regarding two key characteristics: proliferation and endothelial–mesenchymal transition (EMT). Bioinformatics analysis, western blotting, real-time PCR, fluorescence in situ hybridization, immunoprecipitation, RNA pull-down assays, luciferase reporter assays, chromatin immunoprecipitation, and rescue experiments were used to evaluate the mechanism. Stably transfected MG63 cells were injected via tail vein or subcutaneously into nude mice to assess the role of circMYO10 in vivo. Results CircMYO10 was significantly upregulated, while miR-370-3p was downregulated, in osteosarcoma cell lines and human osteosarcoma samples. Silencing circMYO10 inhibited cell proliferation and EMT in vivo and in vitro. Mechanistic investigations revealed that miR-370-3p targets RUVBL1 directly, and inhibits the interaction between RUVBL1 and β-catenin/LEF1 complex while circMYO10 showed a contrary effect via the inhibition of miR-370-3p. RUVBL1 was found to be complexed with chromatin remodeling and histone-modifying factor TIP60, and lymphoid enhancer factor-1 (LEF1) to promote histone H4K16 acetylation (H4K16Ac) in the vicinity of the promoter region of gene C-myc. Chromatin immunoprecipitation methods showed that miR-370-3p sponge promotes H4K16Ac in the indicated region, which is partially abrogated by RUVBL1 small hairpin RNA (shRNA) while circMYO10 showed a contrary result via the inhibition of miR-370-3p. Either miR-370-3p sponge or ShRUVBL1 attenuated circMYO10-induced phenotypes in osteosarcoma cell lines. MiR-370-3p inhibition abrogated the inhibition of proliferation, EMT of osteosarcoma cells in vitro and in vivo seen upon circMYO10 suppression via Wnt/β-catenin signaling. Conclusions CircMYO10 promotes osteosarcoma progression by regulating miR-370-3p/RUVBL1 axis to promote chromatin remodeling and thus enhances the transcriptional activity of β-catenin/LEF1 complex, which indicates that circMYO10 may be a potential therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Junxin Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Gang Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Jianjun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Hongfei Wu
- Department of Spinal Surgery, Orthopaedic Medical Center, Hospital of Zhejiang Armed Police Corps, Jiaxing, Zhejiang Province, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Shuai Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Yute Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Shengyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Panyang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Yifan Fang
- Hangzhou Foreign Language School, Hangzhou, Zhejiang Province, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| |
Collapse
|
37
|
Harper KL, Mcdonnell E, Whitehouse A. CircRNAs: From anonymity to novel regulators of gene expression in cancer (Review). Int J Oncol 2019; 55:1183-1193. [PMID: 31661122 DOI: 10.3892/ijo.2019.4904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/31/2019] [Indexed: 12/27/2022] Open
Abstract
Circular RNAs (circRNAs) are a group of non‑coding RNAs, formed mostly through a unique backsplicing mechanism. Originally proposed to be a by‑product from errors in splicing, recent studies have shown they exhibit a range of roles in regulating gene expression, including sponging of microRNAs (miRNAs), interactions with RNA‑binding proteins and regulation of transcription. Though research is still in its infancy, evidence suggests circRNA levels are tightly regulated in the cell, reinforced by dysregulated circRNAs levels being implicated in a range of diseases, including cancer and viral infection. There is growing interest in circRNAs playing specific roles in cancers, either oncogenic or as tumour suppressors, with particular focus on their potential as novel biomarkers. This review will provide an overview of circRNA biogenesis and regulation, and their potential roles in the cell, with a focus on their dysregulation in cancer.
Collapse
Affiliation(s)
- Katherine L Harper
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Euan Mcdonnell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|