1
|
Choi H, Garavito-Duarte Y, Gormley AR, Kim SW. Aflatoxin B1: Challenges and Strategies for the Intestinal Microbiota and Intestinal Health of Monogastric Animals. Toxins (Basel) 2025; 17:43. [PMID: 39852996 PMCID: PMC11768593 DOI: 10.3390/toxins17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
The objective of this review is to investigate the impacts of aflatoxins, particularly aflatoxin B1 (AFB1), on intestinal microbiota, intestinal health, and growth performance in monogastric animals, primarily chickens and pigs, as well as dietary interventions to mitigate these effects. Aflatoxin B1 contamination in feeds disrupts intestinal microbiota, induces immune responses and oxidative damage, increases antioxidant activity, and impairs jejunal cell viability, barrier function, and morphology in the small intestine. These changes compromise nutrient digestion and reduce growth performance in animals. The negative impact of AFB1 on the % change in average daily gain (ΔADG) of chickens and pigs was estimated based on meta-analysis: ΔADG (%)chicken = -0.13 × AFB1 intake per body weight (ng/g·d) and ΔADG (%)pig = -0.74 × AFB1 intake per body weight (µg/kg·d), indicating that increasing AFB1 contamination linearly reduces the growth of animals. To mitigate the harmful impacts of AFB1, various dietary strategies have been effective. Mycotoxin-detoxifying agents include mycotoxin-adsorbing agents, such as clay and yeast cell wall compounds, binding to AFB1 and mycotoxin-biotransforming agents, such as specific strains of Bacillus subtilis and mycotoxin-degrading enzyme, degrading AFB1 into non-toxic metabolites such as aflatoxin D1. Multiple mycotoxin-detoxifying agents are often combined and used together to improve the intestinal health and growth of chickens and pigs fed AFB1-contaminated feeds. In summary, AFB1 negatively impacts intestinal microbiota, induces immune responses and oxidative stress, disrupts intestinal morphology, and impairs nutrient digestion in the small intestine, leading to reduced growth performance. Supplementing multi-component mycotoxin-detoxifying agents in feeds could effectively adsorb and degrade AFB1 co-contaminated with other mycotoxins prior to its absorption in the small intestine, preventing its negative impacts on the intestinal health and growth performance of chickens and pigs.
Collapse
Affiliation(s)
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (H.C.); (Y.G.-D.); (A.R.G.)
| |
Collapse
|
2
|
Barton WY, Buntin GD, Toews MD. Bt Trait Efficacy Against Corn Earworm, Helicoverpa zea, (Lepidoptera: Noctuidae) for Preserving Grain Yield and Reducing Mycotoxin Contamination of Field Corn. INSECTS 2024; 15:914. [PMID: 39769516 PMCID: PMC11677160 DOI: 10.3390/insects15120914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
The corn earworm, Helicoverpa zea (Boddie), causes persistent ear damage to corn grown in the southeastern United States region. Increased levels of ear damage have been associated with mycotoxin contamination in addition to yield loss. Corn hybrids expressing proteins from the Bacillus thuringiensis (Bt) may provide corn earworm control. A selection of hybrids expressing various Bt traits were evaluated in field experiments across Georgia over two years to assess their efficacy for corn earworm control, grain yield and quality protection, and grain mycotoxin mitigation. Ear damage was significantly reduced only by Bt hybrids expressing the Vip3Aa20 protein. The remaining Bt hybrids expressing Cry proteins provided only marginal control. Ear damage had a variable effect on grain yield and was not correlated with grain aflatoxin contamination. In contrast, grain fumonisin contamination was positively associated with earworm damage. These results indicate Bt hybrids that effectively reduce corn earworm damage may also assist in reducing fumonisin contamination and possibly yield loss.
Collapse
Affiliation(s)
| | - George David Buntin
- Department of Entomology, University of Georgia-Griffin Campus, Griffin, GA 30223, USA
| | - Micheal D. Toews
- Department of Entomology, University of Georgia-Tifton Campus, Tifton, GA 31793, USA;
| |
Collapse
|
3
|
Scott CK, Wu F. Unintended food safety impacts of agricultural circular economies, with case studies in arsenic and mycotoxins. NPJ Sci Food 2024; 8:52. [PMID: 39138240 PMCID: PMC11322374 DOI: 10.1038/s41538-024-00293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
For millennia, food systems worldwide have employed practices befitting a circular economy: recycling of agricultural and food waste or byproducts, environmentally sustainable production methods, and food preservation to reduce waste. Many modern-day agricultural practices may also contribute to a circular economy through the reuse of waste products and/or reducing agricultural inputs. There are, however, food safety impacts. This paper describes two sustainable agricultural practices that have unintended positive and negative impacts on food safety: alternative rice cultivation practices and no-till agriculture. We highlight how alternative rice cultivation practices have intended benefits of water conservation and economic savings, yet also unintended effects on food safety by reducing foodborne arsenic levels while increasing cadmium levels. No-till agriculture reduces soil erosion and repurposes crop residues, but can lead to increased foodborne mycotoxin levels. Trade-offs, future research, and policy recommendations are discussed as we explore the duality of sustainable agricultural practices and food safety.
Collapse
Affiliation(s)
- Christian Kelly Scott
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Felicia Wu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA.
- Department of Agricultural, Food, and Resource Economics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Jin Z, Wang YC. Mitigating fungal contamination of cereals: The efficacy of microplasma-based far-UVC lamps against Aspergillus flavus and Fusarium graminearum. Food Res Int 2024; 190:114550. [PMID: 38945594 DOI: 10.1016/j.foodres.2024.114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/19/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
Fungal contaminations of cereal grains are a profound food-safety and food-security concern worldwide, threatening consumers' and animals' health and causing enormous economic burdens. Because far-ultraviolet C (far-UVC) light at 222 nm has recently been shown to be human-safe, we investigated its efficacy as an alternative to thermal, chemical, and conventional 254 nm UVC anti-fungal treatments. Our microplasma-based far-UVC lamp system achieved a 5.21-log reduction in the conidia of Aspergillus flavus suspended in buffer with a dose of 1032.0 mJ/cm2, and a 5.11-log reduction of Fusarium graminearum conidia in suspension with a dose of 619.2 mJ/cm2. We further observed that far-UVC treatments could induce fungal-cell apoptosis, alter mitochondrial membrane potential, lead to the accumulation of intracellular reactive oxygen species, cause lipid peroxidation, and result in cell-membrane damage. The lamp system also exhibited a potent ability to inhibit the mycelial growth of both A. flavus and F. graminearum. On potato dextrose agar plates, such growth was completely inhibited after doses of 576.0 mJ/cm2 and 460.8 mJ/cm2, respectively. To test our approach's efficacy at decontaminating actual cereal grains, we designed a cubical 3D treatment chamber fitted with six lamps. At a dose of 780.0 mJ/cm2 on each side, the chamber achieved a 1.88-log reduction of A. flavus on dried yellow corn kernels and a 1.11-log reduction of F. graminearum on wheat grains, without significant moisture loss to either cereal type (p > 0.05). The treatment did not cause significant changes in the propensity of wheat grains to germinate in the week following treatment (p > 0.05). However, it increased the germination propensity of corn kernels by more than 71% in the same timeframe (p < 0.05). Collectively, our results demonstrate that 222 nm far-UVC radiation can effectively inactivate fungal growth in liquid, on solid surfaces, and on cereal grains. If scalable, its emergence as a safe, cost-effective alternative tool for reducing fungi-related post-harvest cereal losses could have important positive implications for the fight against world hunger and food insecurity.
Collapse
Affiliation(s)
- Zhenhui Jin
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Yi-Cheng Wang
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Center for Digital Agriculture, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
5
|
Glesener H, Abdollahzadeh D, Muse C, Krajmalnik-Brown R, Weaver MA, Voth-Gaeddert LE. X-ray Irradiation Reduces Live Aspergillus flavus Viability but Not Aflatoxin B1 in Naturally Contaminated Maize. Toxins (Basel) 2024; 16:329. [PMID: 39195739 PMCID: PMC11359306 DOI: 10.3390/toxins16080329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 08/29/2024] Open
Abstract
Food crops around the world are commonly contaminated with Aspergillus flavus, which can produce the carcinogenic mycotoxin aflatoxin B1 (AFB1). The objective of this study is to test an X-ray irradiation sterilization method for studying AFB1 in contaminated maize samples in the laboratory. Maize that had been naturally contaminated with 300 ppb AFB1 by the growth of aflatoxigenic A. flavus was ground and then irradiated at 0.0, 1.0, 1.5, 2.0, 2.5, and 3.0 kGy. A. flavus was quantified by dilution plating on potato dextrose agar (PDA) and modified Rose Bengal media (MDRB) for viability and qPCR for gene presence. AFB1 was quantified by HPLC and ELISA. A. flavus viability, but not gene copies, significantly decreased with increasing doses of radiation (PDA: p < 0.001; MDRB: p < 0.001; qPCR: p = 0.026). AFB1 concentration did not significantly change with increasing doses of radiation (HPLC: p = 0.153; ELISA: p = 0.567). Our results imply that X-ray irradiation is an effective means of reducing viable A. flavus without affecting AFB1 concentrations. Reducing the hazard of fungal spores and halting AFB1 production at the targeted dose are important steps to safely and reproducibly move forward research on the global mycotoxin challenge.
Collapse
Affiliation(s)
- Hannah Glesener
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA; (H.G.); (D.A.); (C.M.); (R.K.-B.)
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Darya Abdollahzadeh
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA; (H.G.); (D.A.); (C.M.); (R.K.-B.)
| | - Christopher Muse
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA; (H.G.); (D.A.); (C.M.); (R.K.-B.)
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA; (H.G.); (D.A.); (C.M.); (R.K.-B.)
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Mark A. Weaver
- USDA-ARS National Biological Control Laboratory, Stoneville, MS 38776, USA;
| | - Lee E. Voth-Gaeddert
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA; (H.G.); (D.A.); (C.M.); (R.K.-B.)
- Center for Indigenous Health Research, Wuqu’ Kawoq|Maya Health Alliance, Chimaltenango 04006, Guatemala
| |
Collapse
|
6
|
Zhang X, Wen M, Li G, Wang S. Chitin Deacetylase Homologous Gene cda Contributes to Development and Aflatoxin Synthesis in Aspergillus flavus. Toxins (Basel) 2024; 16:217. [PMID: 38787069 PMCID: PMC11125919 DOI: 10.3390/toxins16050217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The fungal cell wall serves as the primary interface between fungi and their external environment, providing protection and facilitating interactions with the surroundings. Chitin is a vital structural element in fungal cell wall. Chitin deacetylase (CDA) can transform chitin into chitosan through deacetylation, providing various biological functions across fungal species. Although this modification is widespread in fungi, the biological functions of CDA enzymes in Aspergillus flavus remain largely unexplored. In this study, we aimed to investigate the biofunctions of the CDA family in A. flavus. The A. flavus genome contains six annotated putative chitin deacetylases. We constructed knockout strains targeting each member of the CDA family, including Δcda1, Δcda2, Δcda3, Δcda4, Δcda5, and Δcda6. Functional analyses revealed that the deletion of CDA family members neither significantly affects the chitin content nor exhibits the expected chitin deacetylation function in A. flavus. However, the Δcda6 strain displayed distinct phenotypic characteristics compared to the wild-type (WT), including an increased conidia count, decreased mycelium production, heightened aflatoxin production, and impaired seed colonization. Subcellular localization experiments indicated the cellular localization of CDA6 protein within the cell wall of A. flavus filaments. Moreover, our findings highlight the significance of the CBD1 and CBD2 structural domains in mediating the functional role of the CDA6 protein. Overall, we analyzed the gene functions of CDA family in A. flavus, which contribute to a deeper understanding of the mechanisms underlying aflatoxin contamination and lay the groundwork for potential biocontrol strategies targeting A. flavus.
Collapse
Affiliation(s)
| | | | | | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic, Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.W.); (G.L.)
| |
Collapse
|
7
|
Garcia-Lopez MT, Meca E, Jaime R, Puckett RD, Michailides TJ, Moral J. Sporulation and Dispersal of the Biological Control Agent Aspergillus flavus AF36 Under Field Conditions. PHYTOPATHOLOGY 2024; 114:1118-1125. [PMID: 37581424 DOI: 10.1094/phyto-06-23-0200-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Aflatoxins are carcinogens produced by the fungi Aspergillus flavus and A. parasiticus that contaminate pistachio crops. International markets reject pistachio when aflatoxins exceed permitted maximum levels. Releasing the atoxigenic strain AF36 of A. flavus is the leading aflatoxin pre-harvest control method. The product AF36 Prevail, sorghum grains coated with AF36 propagules, has been used in California since 2017. However, a high percentage of grains of the Prevail fail to sporulate in orchards. Here, the effect of soil moisture on the percentage of AF36 product grains sporulating (SG) and the quantity of spores per grain using a sporulation index (SI) was determined. Under controlled conditions, SG was higher than 85% when soil moisture was 13% or more, and SI increased with increasing soil moisture from 8.4 to 21%. The highest AF36 sporulation occurred near the micro-sprinklers when the grains were not impacted by the irrigation water drops. Arthropod predation was responsible for lost product grains, which was more pronounced in non-tilled soil than in tilled soil. Dispersal of the AF36 spores decreased markedly with the height and distance from the inoculum source, following a pattern of diffusion equations. However, AF36 spores easily reached canopies of pistachios located 10 m from the inoculum source. Our results indicate that AF36 Prevail should be applied close to the irrigation line in the moist soil area but avoiding the areas where excess irrigation causes water accumulation. The biocontrol of aflatoxins in California's pistachio production areas was optimized by improving the field realization of the biological control agent.
Collapse
Affiliation(s)
- M Teresa Garcia-Lopez
- Department of Agronomy, Maria de Maeztu Unit of Excellence, University of Cordoba. Edif. C4, Campus de Rabanales 14071, Cordoba, Spain
- Department of Plant Pathology, University of California-Davis, Kearney Agricultural Research and Extension Center, Parlier 93648, CA, U.S.A
| | - Esteban Meca
- Department of Applied Physics, University of Cordoba. Edif. C2, Campus de Rabanales 14071, Cordoba, Spain
| | - Ramon Jaime
- Department of Plant Pathology, University of California-Davis, Kearney Agricultural Research and Extension Center, Parlier 93648, CA, U.S.A
| | - Ryan D Puckett
- Department of Plant Pathology, University of California-Davis, Kearney Agricultural Research and Extension Center, Parlier 93648, CA, U.S.A
| | - Themis J Michailides
- Department of Plant Pathology, University of California-Davis, Kearney Agricultural Research and Extension Center, Parlier 93648, CA, U.S.A
| | - Juan Moral
- Department of Agronomy, Maria de Maeztu Unit of Excellence, University of Cordoba. Edif. C4, Campus de Rabanales 14071, Cordoba, Spain
| |
Collapse
|
8
|
Sakuda S, Sunaoka M, Terada M, Sakoda A, Ishijima N, Hakoshima N, Uchida K, Enomoto H, Furukawa T. Inhibition of Aflatoxin Production in Aspergillus flavus by a Klebsiella sp. and Its Metabolite Cyclo(l-Ala-Gly). Toxins (Basel) 2024; 16:141. [PMID: 38535807 PMCID: PMC10973989 DOI: 10.3390/toxins16030141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/25/2025] Open
Abstract
During an experiment where we were cultivating aflatoxigenic Aspergillus flavus on peanuts, we accidentally discovered that a bacterium adhering to the peanut strongly inhibited aflatoxin (AF) production by A. flavus. The bacterium, isolated and identified as Klebsiella aerogenes, was found to produce an AF production inhibitor. Cyclo(l-Ala-Gly), isolated from the bacterial culture supernatant, was the main active component. The aflatoxin production-inhibitory activity of cyclo(l-Ala-Gly) has not been reported. Cyclo(l-Ala-Gly) inhibited AF production in A. flavus without affecting its fungal growth in a liquid medium with stronger potency than cyclo(l-Ala-l-Pro). Cyclo(l-Ala-Gly) has the strongest AF production-inhibitory activity among known AF production-inhibitory diketopiperazines. Related compounds in which the methyl moiety in cyclo(l-Ala-Gly) is replaced by ethyl, propyl, or isopropyl have shown much stronger activity than cyclo(l-Ala-Gly). Cyclo(l-Ala-Gly) did not inhibit recombinant glutathione-S-transferase (GST) in A. flavus, unlike (l-Ala-l-Pro), which showed that the inhibition of GST was not responsible for the AF production-inhibition of cyclo(l-Ala-Gly). When A. flavus was cultured on peanuts dipped for a short period of time in a dilution series bacterial culture broth, AF production in the peanuts was strongly inhibited, even at a 1 × 104-fold dilution. This strong inhibitory activity suggests that the bacterium is a candidate for an effective biocontrol agent for AF control.
Collapse
Affiliation(s)
- Shohei Sakuda
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan (N.H.); (K.U.); (H.E.)
| | - Masaki Sunaoka
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan (N.H.); (K.U.); (H.E.)
| | - Maho Terada
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan (N.H.); (K.U.); (H.E.)
| | - Ayaka Sakoda
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan (N.H.); (K.U.); (H.E.)
| | - Natsumi Ishijima
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan (N.H.); (K.U.); (H.E.)
| | - Noriko Hakoshima
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan (N.H.); (K.U.); (H.E.)
| | - Kenichi Uchida
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan (N.H.); (K.U.); (H.E.)
| | - Hirofumi Enomoto
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan (N.H.); (K.U.); (H.E.)
| | - Tomohiro Furukawa
- Institute of Food Research, National Agriculture and Food Research Organization, 2-1-12 Kannon-dai, Tsukuba-shi 305-8642, Japan;
| |
Collapse
|
9
|
Son YE, Park HS. SscA is required for fungal development, aflatoxin production, and pathogenicity in Aspergillus flavus. Int J Food Microbiol 2024; 413:110607. [PMID: 38308877 DOI: 10.1016/j.ijfoodmicro.2024.110607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Fungal spores are specialized dormant cells that act as primary reproductive biological particles and exhibit strong viability under extremely harsh conditions. They contaminate a variety of crops and foods, causing severe health hazards to humans and animals. Previous studies demonstrated that a spore-specific transcription factor SscA plays pivotal roles in the conidiogenesis of the model organism Aspergillus nidulans. In this study, we investigated the biological and genetic functions of SscA in the aflatoxin-producing fungus A. flavus. Deletion of sscA showed reduced conidia formation, lost long-term viability, and exhibited more sensitivity to thermal, oxidative, and radiative stresses. The sscA-deficient strain showed increased aflatoxin B1 production in conidia as well as mycelia. Importantly, the absence of sscA affected fungal pathogenicity on crops. Further transcriptomic and phenotypic studies suggested that SscA coordinates conidial wall structures. Overall, SscA is important for conidial formation, maturation and dormancy, mycotoxin production, and pathogenicity in A. flavus.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
10
|
Branstad-Spates EH, Castano-Duque L, Mosher GA, Hurburgh CR, Owens P, Winzeler E, Rajasekaran K, Bowers EL. Gradient boosting machine learning model to predict aflatoxins in Iowa corn. Front Microbiol 2023; 14:1248772. [PMID: 37720139 PMCID: PMC10502509 DOI: 10.3389/fmicb.2023.1248772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Aflatoxin (AFL), a secondary metabolite produced from filamentous fungi, contaminates corn, posing significant health and safety hazards for humans and livestock through toxigenic and carcinogenic effects. Corn is widely used as an essential commodity for food, feed, fuel, and export markets; therefore, AFL mitigation is necessary to ensure food and feed safety within the United States (US) and elsewhere in the world. In this case study, an Iowa-centric model was developed to predict AFL contamination using historical corn contamination, meteorological, satellite, and soil property data in the largest corn-producing state in the US. Methods We evaluated the performance of AFL prediction with gradient boosting machine (GBM) learning and feature engineering in Iowa corn for two AFL risk thresholds for high contamination events: 20-ppb and 5-ppb. A 90%-10% training-to-testing ratio was utilized in 2010, 2011, 2012, and 2021 (n = 630), with independent validation using the year 2020 (n = 376). Results The GBM model had an overall accuracy of 96.77% for AFL with a balanced accuracy of 50.00% for a 20-ppb risk threshold, whereas GBM had an overall accuracy of 90.32% with a balanced accuracy of 64.88% for a 5-ppb threshold. The GBM model had a low power to detect high AFL contamination events, resulting in a low sensitivity rate. Analyses for AFL showed satellite-acquired vegetative index during August significantly improved the prediction of corn contamination at the end of the growing season for both risk thresholds. Prediction of high AFL contamination levels was linked to aflatoxin risk indices (ARI) in May. However, ARI in July was an influential factor for the 5-ppb threshold but not for the 20-ppb threshold. Similarly, latitude was an influential factor for the 20-ppb threshold but not the 5-ppb threshold. Furthermore, soil-saturated hydraulic conductivity (Ksat) influenced both risk thresholds. Discussion Developing these AFL prediction models is practical and implementable in commodity grain handling environments to achieve the goal of preventative rather than reactive mitigations. Finding predictors that influence AFL risk annually is an important cost-effective risk tool and, therefore, is a high priority to ensure hazard management and optimal grain utilization to maximize the utility of the nation's corn crop.
Collapse
Affiliation(s)
- Emily H. Branstad-Spates
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Lina Castano-Duque
- USDA, Agriculture Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Gretchen A. Mosher
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Charles R. Hurburgh
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Phillip Owens
- USDA, Agriculture Research Service, Dale Bumpers Small Farms Research Center, Booneville, AR, United States
| | - Edwin Winzeler
- USDA, Agriculture Research Service, Dale Bumpers Small Farms Research Center, Booneville, AR, United States
| | - Kanniah Rajasekaran
- USDA, Agriculture Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Erin L. Bowers
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| |
Collapse
|
11
|
Xiao S, Wu Y, Gao S, Zhou M, Liu Z, Xiong Q, Jiang L, Yuan G, Li L, Yang L. Deciphering the Hazardous Effects of AFB1 and T-2 Toxins: Unveiling Toxicity and Oxidative Stress Mechanisms in PK15 Cells and Mouse Kidneys. Toxins (Basel) 2023; 15:503. [PMID: 37624260 PMCID: PMC10467080 DOI: 10.3390/toxins15080503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
In China, animal feeds are frequently contaminated with a range of mycotoxins, with Aflatoxin B1 (AFB1) and T-2 toxin (T-2) being two highly toxic mycotoxins. This study investigates the combined nephrotoxicity of AFB1 and T-2 on PK15 cells and murine renal tissues and their related oxidative stress mechanisms. PK15 cells were treated with the respective toxin concentrations for 24 h, and oxidative stress-related indicators were assessed. The results showed that the combination of AFB1 and T-2 led to more severe cellular damage and oxidative stress compared to exposure to the individual toxins (p < 0.05). In the in vivo study, pathological examination revealed that the kidney tissue of mice exposed to the combined toxins showed signs of glomerular atrophy. The contents of oxidative stress-related indicators were significantly increased in the kidney tissue (p < 0.05). These findings suggest that the combined toxins cause significant oxidative damage to mouse kidneys. The study highlights the importance of considering the combined effects of mycotoxins in animal feed, particularly AFB1 and T-2, which can lead to severe nephrotoxicity and oxidative stress in PK15 cells and mouse kidneys. The findings have important implications for animal feed safety and regulatory policy.
Collapse
Affiliation(s)
- Shuai Xiao
- College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (S.X.); (Y.W.); (S.G.); (M.Z.); (Q.X.); (L.J.); (G.Y.); (L.L.)
| | - Yingxin Wu
- College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (S.X.); (Y.W.); (S.G.); (M.Z.); (Q.X.); (L.J.); (G.Y.); (L.L.)
| | - Suisui Gao
- College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (S.X.); (Y.W.); (S.G.); (M.Z.); (Q.X.); (L.J.); (G.Y.); (L.L.)
| | - Mingxia Zhou
- College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (S.X.); (Y.W.); (S.G.); (M.Z.); (Q.X.); (L.J.); (G.Y.); (L.L.)
| | - Zhiwei Liu
- Wuhan Animal Disease Control Center, No. 170, Erqi Road, Jiang’an District, Wuhan 430014, China;
| | - Qianbo Xiong
- College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (S.X.); (Y.W.); (S.G.); (M.Z.); (Q.X.); (L.J.); (G.Y.); (L.L.)
| | - Lihuang Jiang
- College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (S.X.); (Y.W.); (S.G.); (M.Z.); (Q.X.); (L.J.); (G.Y.); (L.L.)
| | - Guoxiang Yuan
- College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (S.X.); (Y.W.); (S.G.); (M.Z.); (Q.X.); (L.J.); (G.Y.); (L.L.)
| | - Linfeng Li
- College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (S.X.); (Y.W.); (S.G.); (M.Z.); (Q.X.); (L.J.); (G.Y.); (L.L.)
| | - Lingchen Yang
- College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (S.X.); (Y.W.); (S.G.); (M.Z.); (Q.X.); (L.J.); (G.Y.); (L.L.)
| |
Collapse
|
12
|
Wang X, Wang D, Zhang S, Zhu M, Yang Q, Dong J, Zhang Q, Feng P. Research Progress Related to Aflatoxin Contamination and Prevention and Control of Soils. Toxins (Basel) 2023; 15:475. [PMID: 37624232 PMCID: PMC10467090 DOI: 10.3390/toxins15080475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Aflatoxins are potent carcinogenic compounds, mainly produced by fungi species of the genus Aspergillus in the soil. Because of their stability, they are difficult to remove completely, even under extreme conditions. Aflatoxin contamination is one of the main causes of safety in peanuts, maize, wheat and other agricultural products. Aflatoxin contamination originates from the soil. Through the investigation of soil properties and soil microbial distribution, the sources of aflatoxin are identified, aflatoxin contamination is classified and analysed, and post-harvest crop detoxification and corresponding contamination prevention measures are identified. This includes the team's recent development of the biofungicide ARC-BBBE (Aflatoxin Rhizobia Couple-B. amyloliquefaciens, B. laterosporu, B. mucilaginosus, E. ludwiggi) for field application and nanomaterials for post-production detoxification of cereals and oilseed crops, providing an effective and feasible approach for the prevention and control of aflatoxin contamination. Finally, it is hoped that effective preventive and control measures can be applied to a large number of cereal and oilseed crops.
Collapse
Affiliation(s)
- Xue Wang
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, China; (X.W.); (M.Z.); (Q.Y.); (J.D.); (P.F.)
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Hubei Hongshan Laboratory, Wuhan 430061, China
| | - Dun Wang
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, China; (X.W.); (M.Z.); (Q.Y.); (J.D.); (P.F.)
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Hubei Hongshan Laboratory, Wuhan 430061, China
| | - Shujuan Zhang
- Zhejiang Mariculture Research Institution, Wenzhou 325000, China;
| | - Mengjie Zhu
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, China; (X.W.); (M.Z.); (Q.Y.); (J.D.); (P.F.)
| | - Qing Yang
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, China; (X.W.); (M.Z.); (Q.Y.); (J.D.); (P.F.)
| | - Jing Dong
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, China; (X.W.); (M.Z.); (Q.Y.); (J.D.); (P.F.)
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Hubei Hongshan Laboratory, Wuhan 430061, China
| | - Peng Feng
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, China; (X.W.); (M.Z.); (Q.Y.); (J.D.); (P.F.)
| |
Collapse
|
13
|
Chang J, Luo H, Li L, Zhang J, Harvey J, Zhao Y, Zhang G, Liu Y. Mycotoxin risk management in maize gluten meal. Crit Rev Food Sci Nutr 2023; 64:7687-7706. [PMID: 36995226 DOI: 10.1080/10408398.2023.2190412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Maize gluten meal (MGM) is a by-product of maize starch and ethanol, produced by the wet milling process. Its high protein content makes it a preferred ingredient in feed. Given the high prevalence of mycotoxins in maize globally, they pose a significant challenge to use of MGM for feed: wet milling could concentrate certain mycotoxins in gluten components, and mycotoxin consumption affects animal health and can contaminate animal-source foods. To help confront this issue, this paper summarizes mycotoxin occurrence in maize, distribution during MGM production and mycotoxin risk management strategies for MGM through a comprehensive literature review. Available data emphasize the importance of mycotoxin control in MGM and the necessity of a systematic control approach, which includes: good agriculture practices (GAP) in the context of climate change, degradation of mycotoxin during MGM processing with SO2 and lactic acid bacteria (LAB) and the prospect of removing or detoxifying mycotoxins using emerging technologies. In the absence of mycotoxin contamination, MGM represents a safe and economically critical component of global animal feed. With a holistic risk assessment-based, seed-to-MGM-feed systematic approach to reducing and decontaminating mycotoxins in maize, costs and negative health impacts associated with MGM use in feed can be effectively reduced.
Collapse
Affiliation(s)
- Jinghua Chang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Hao Luo
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Lin Li
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Junnan Zhang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Jagger Harvey
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Yueju Zhao
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Guangtao Zhang
- Mars Global Food Safety Center, Mars Inc, Beijing, China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
14
|
Molnár K, Rácz C, Dövényi-Nagy T, Bakó K, Pusztahelyi T, Kovács S, Adácsi C, Pócsi I, Dobos A. The Effect of Environmental Factors on Mould Counts and AFB1 Toxin Production by Aspergillus flavus in Maize. Toxins (Basel) 2023; 15:227. [PMID: 36977118 PMCID: PMC10055717 DOI: 10.3390/toxins15030227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
The toxins produced by Aspergillus flavus can significantly inhibit the use of maize. As a result of climate change, toxin production is a problem not only in tropical and subtropical areas but in an increasing number of European countries, including Hungary. The effect of meteorological factors and irrigation on mould colonization and aflatoxin B1 (AFB1) mycotoxin production by A. flavus were investigated in natural conditions, as well as the inoculation with a toxigenic isolate in a complex field experiment for three years. As a result of irrigation, the occurrence of fungi increased, and toxin production decreased. The mould count of fungi and toxin accumulation showed differences during the examined growing seasons. The highest AFB1 content was found in 2021. The main environmental factors in predicting mould count were temperature (Tavg, Tmax ≥ 30 °C, Tmax ≥ 32 °C, Tmax ≥ 35 °C) and atmospheric drought (RHmin ≤ 40%). Toxin production was determined by extremely high daily maximum temperatures (Tmax ≥ 35 °C). At natural contamination, the effect of Tmax ≥ 35 °C on AFB1 was maximal (r = 0.560-0.569) in the R4 stage. In the case of artificial inoculation, correlations with environmental factors were stronger (r = 0.665-0.834) during the R2-R6 stages.
Collapse
Affiliation(s)
- Krisztina Molnár
- Centre for Precision Farming R&D Services, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - Csaba Rácz
- Centre for Precision Farming R&D Services, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - Tamás Dövényi-Nagy
- Centre for Precision Farming R&D Services, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - Károly Bakó
- Centre for Precision Farming R&D Services, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - Szilvia Kovács
- Central Laboratory of Agricultural and Food Products, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - Cintia Adácsi
- Central Laboratory of Agricultural and Food Products, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H4032 Debrecen, Hungary
| | - Attila Dobos
- Centre for Precision Farming R&D Services, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| |
Collapse
|
15
|
Aflatoxins: Source, Detection, Clinical Features and Prevention. Processes (Basel) 2023. [DOI: 10.3390/pr11010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The most potent mycotoxin, aflatoxins are the secondary metabolite produced by fungi, especially Aspergillus, and have been found to be ubiquitous, contaminating cereals, crops, and even milk and causing major health and economic issues in some countries due to poor storage, substandard management, and lack of awareness. Different aspects of the toxin are reviewed here, including its structural biochemistry, occurrence, factors conducive to its contamination and intoxication and related clinical features, as well as suggested preventive and control strategies and detection methods.
Collapse
|
16
|
Ráduly Z, Szabó A, Mézes M, Balatoni I, Price RG, Dockrell ME, Pócsi I, Csernoch L. New perspectives in application of kidney biomarkers in mycotoxin induced nephrotoxicity, with a particular focus on domestic pigs. Front Microbiol 2023; 14:1085818. [PMID: 37125184 PMCID: PMC10140568 DOI: 10.3389/fmicb.2023.1085818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
The gradual spread of Aspergilli worldwide is adding to the global shortage of food and is affecting its safe consumption. Aspergillus-derived mycotoxins, including aflatoxins and ochratoxin A, and fumonisins (members of the fusariotoxin group) can cause pathological damage to vital organs, including the kidney or liver. Although the kidney functions as the major excretory system in mammals, monitoring and screening for mycotoxin induced nephrotoxicity is only now a developmental area in the field of livestock feed toxicology. Currently the assessment of individual exposure to mycotoxins in man and animals is usually based on the analysis of toxin and/or metabolite contamination in the blood or urine. However, this requires selective and sensitive analytical methods (e.g., HPLC-MS/MS), which are time consuming and expensive. The toxicokinetic of mycotoxin metabolites is becoming better understood. Several kidney biomarkers are used successfully in drug development, however cost-efficient, and reliable kidney biomarkers are urgently needed for monitoring farm animals for early signs of kidney disease. β2-microglobulin (β2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are the dominant biomarkers employed routinely in environmental toxicology research, while kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) are also emerging as effective markers to identify mycotoxin induced nephropathy. Pigs are exposed to mycotoxins due to their cereal-based diet and are particularly susceptible to Aspergillus mycotoxins. In addition to commonly used diagnostic markers for nephrotoxicity including plasma creatinine, NAG, KIM-1 and NGAL can be used in pigs. In this review, the currently available techniques are summarized, which are used for screening mycotoxin induced nephrotoxicity in farm animals. Possible approaches are considered, which could be used to detect mycotoxin induced nephropathy.
Collapse
Affiliation(s)
- Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Zsolt Ráduly,
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár, Hungary
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
| | - Miklós Mézes
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
- Department of Food Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | | | - Robert G. Price
- Department of Nutrition, Franklin-Wilkins Building, King’s College London, London, United Kingdom
| | - Mark E. Dockrell
- SWT Institute of Renal Research, London, United Kingdom
- Department of Molecular and Clinical Sciences, St. George’s University, London, United Kingdom
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
17
|
Vlajkov V, Pajčin I, Loc M, Budakov D, Dodić J, Grahovac M, Grahovac J. The Effect of Cultivation Conditions on Antifungal and Maize Seed Germination Activity of Bacillus-Based Biocontrol Agent. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120797. [PMID: 36551004 PMCID: PMC9774550 DOI: 10.3390/bioengineering9120797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
Aflatoxin contamination is a global risk and a concerning problem threatening food safety. The biotechnological answer lies in the production of biocontrol agents that are effective against aflatoxins producers. In addition to their biocontrol effect, microbial-based products are recognized as efficient biosolutions for plant nutrition and growth promotion. The present study addresses the characterization of the representative of Phaseolus vulgaris rhizosphere microbiome, Bacillus sp. BioSol021, regarding plant growth promotion traits, including the activity of protease, cellulase, xylanase, and pectinase with the enzymatic activity index values 1.06, 2.04, 2.41, and 3.51, respectively. The potential for the wider commercialization of this kind of product is determined by the possibility of developing a scalable bioprocess solution suitable for technology transfer to an industrial scale. Therefore, the study addresses one of the most challenging steps in bioprocess development, including the production scale-up from the Erlenmeyer flask to the laboratory bioreactor. The results indicated the influence of the key bioprocess parameters on the dual mechanism of action of biocontrol effects against the aflatoxigenic Aspergillus flavus, as well on maize seed germination activity, pointing out the positive impact of high aeration intensity and agitation rate, resulting in inhibition zone diameters of 60 mm, a root length 96 mm, and a shoot length 27 mm.
Collapse
Affiliation(s)
- Vanja Vlajkov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
- Correspondence: (V.V.); (J.G.)
| | - Ivana Pajčin
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Marta Loc
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Dragana Budakov
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Jelena Dodić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Jovana Grahovac
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
- Correspondence: (V.V.); (J.G.)
| |
Collapse
|
18
|
Comprehensive Review of Aflatoxin Contamination, Impact on Health and Food Security, and Management Strategies in Pakistan. Toxins (Basel) 2022; 14:toxins14120845. [PMID: 36548742 PMCID: PMC9781569 DOI: 10.3390/toxins14120845] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Aflatoxins (AFs) are the most important toxic, mutagenic, and carcinogenic fungal toxins that routinely contaminate food and feed. While more than 20 AFs have been identified to date, aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1), G2 (AFG2), and M1 (AFM1) are the most common. Over 25 species of Aspergillus have been shown to produce AFs, with Aspergillus flavus, Aspergillus parasiticus, and Aspergillus nomius being the most important and well-known AF-producing fungi. These ubiquitous molds can propagate on agricultural commodities to produce AFs in fields and during harvesting, processing, transportation, and storage. Countries with warmer climates and that produce foods susceptible to AF contamination shoulder a substantial portion of the global AF burden. Pakistan's warm climate promotes the growth of toxigenic fungi, resulting in frequent AF contamination of human foods and animal feeds. The potential for contamination in Pakistan is exacerbated by improper storage conditions and a lack of regulatory limits and enforcement mechanisms. High levels of AFs in common commodities produced in Pakistan are a major food safety problem, posing serious health risks to the population. Furthermore, aflatoxin contamination contributes to economic losses by limiting exports of these commodities. In this review, recent information regarding the fungal producers of AFs, prevalence of AF contamination of foods and feed, current regulations, and AF prevention and removal strategies are summarized, with a major focus on Pakistan.
Collapse
|
19
|
Feng J, Dou J, Wu W. Development of biochar-impregnated alginate beads for the delivery of biocontrol agents for peanut aflatoxin. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1487-1500. [PMID: 35679201 DOI: 10.1080/19440049.2022.2085888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The competitive inhibition of aflatoxigenic fungi by non-aflatoxigenic Aspergillus flavus has proved to be an effective method to prevent and control peanut aflatoxin contamination, and most of the currently used inoculum carriers are grains. In this study, the reliability and efficiency of replacing grain kernels with novel chitosan-coated alginate-poly(N-isopropylacrylamide) (PNIPAAm) beads impregnated with biochar (CSACB) were evaluated. Characterisation of the beads was performed by SEM, thermogravimetry analysis (TGA), and swelling properties analyses. The optimised CSACB beads had good physical stability, shelf life, and entrapment efficiency. In addition, the water-holding capacity and porous structure were excellent, as the biochar provided a beneficial microenvironment for the attachment and microbial growth of the biocontrol fungus. The effect of reducing aflatoxin in peanuts was verified experimentally. Collectively, the novel CSACB beads are suitable carriers of non-aflatoxigenic A. flavus for the biocontrol of peanut aflatoxin.
Collapse
Affiliation(s)
- Jiachang Feng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jianpeng Dou
- Department of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Wenfu Wu
- Department of Biological and Agricultural Engineering, Jilin University, Changchun, China
| |
Collapse
|
20
|
Zhang S, Wang X, Wang D, Chu Q, Zhang Q, Yue X, Zhu M, Dong J, Li L, Jiang X, Yang Q, Zhang Q. Discovery of the Relationship between Distribution and Aflatoxin Production Capacity of Aspergillusspecies and Soil Types in Peanut Planting Areas. Toxins (Basel) 2022; 14:toxins14070425. [PMID: 35878163 PMCID: PMC9322012 DOI: 10.3390/toxins14070425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
In order to study the relationship between the distribution and aflatoxin production capacity of Aspergillus species and soil types, 35 soil samples were collected from the main peanut planting areas in Xiangyang, which has 19.7 thousand square kilometers and is located in a special area with different soil types. The soil types of peanut planting areas in Xiangyang are mainly sandy loam and clay loam, and most of the soil is acidic, providing unique nature conditions for this study. The results showed that the Aspergillus sp. population in clay loam (9050 cfu/g) was significantly larger than that in sandy loam (3080 cfu/g). The percentage of atoxigenic Aspergillus strains isolated from sandy loam samples was higher than that from clay loam samples, reaching 58.5%. Meanwhile the proportion of high toxin-producing strains from clay loam (39.7%) was much higher than that from sandy loam (7.3%). Under suitable culture conditions, the average aflatoxin production capacity of Aspergillus isolates from clay loam samples (236.97 μg/L) was higher than that of strains from sandy loam samples (80.01 μg/L). The results inferred that under the same regional climate conditions, the density and aflatoxin production capacity of Aspergillus sp. in clay loam soil were significantly higher than that in sandy loam soil. Therefore, peanuts from these planting areas are at a relatively higher risk of contamination by Aspergillus sp. and aflatoxins.
Collapse
Affiliation(s)
- Shujuan Zhang
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, China; (S.Z.); (X.W.); (Q.C.); (Q.Z.); (M.Z.); (J.D.); (L.L.); (X.J.); (Q.Y.)
- Key Laboratory of Detection for Biotoxins and Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Zhejiang Mariculture Research Institution, Wenzhou 325000, China
| | - Xue Wang
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, China; (S.Z.); (X.W.); (Q.C.); (Q.Z.); (M.Z.); (J.D.); (L.L.); (X.J.); (Q.Y.)
| | - Dun Wang
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, China; (S.Z.); (X.W.); (Q.C.); (Q.Z.); (M.Z.); (J.D.); (L.L.); (X.J.); (Q.Y.)
- Key Laboratory of Detection for Biotoxins and Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Hubei Hongshan Laboratory, Wuhan 430061, China
- Correspondence: (D.W.); (Q.Z.)
| | - Qianmei Chu
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, China; (S.Z.); (X.W.); (Q.C.); (Q.Z.); (M.Z.); (J.D.); (L.L.); (X.J.); (Q.Y.)
| | - Qian Zhang
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, China; (S.Z.); (X.W.); (Q.C.); (Q.Z.); (M.Z.); (J.D.); (L.L.); (X.J.); (Q.Y.)
| | - Xiaofeng Yue
- Key Laboratory of Detection for Biotoxins and Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Hubei Hongshan Laboratory, Wuhan 430061, China
| | - Mengjie Zhu
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, China; (S.Z.); (X.W.); (Q.C.); (Q.Z.); (M.Z.); (J.D.); (L.L.); (X.J.); (Q.Y.)
| | - Jing Dong
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, China; (S.Z.); (X.W.); (Q.C.); (Q.Z.); (M.Z.); (J.D.); (L.L.); (X.J.); (Q.Y.)
| | - Li Li
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, China; (S.Z.); (X.W.); (Q.C.); (Q.Z.); (M.Z.); (J.D.); (L.L.); (X.J.); (Q.Y.)
| | - Xiangguo Jiang
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, China; (S.Z.); (X.W.); (Q.C.); (Q.Z.); (M.Z.); (J.D.); (L.L.); (X.J.); (Q.Y.)
| | - Qing Yang
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, China; (S.Z.); (X.W.); (Q.C.); (Q.Z.); (M.Z.); (J.D.); (L.L.); (X.J.); (Q.Y.)
| | - Qi Zhang
- Key Laboratory of Detection for Biotoxins and Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Hubei Hongshan Laboratory, Wuhan 430061, China
- Correspondence: (D.W.); (Q.Z.)
| |
Collapse
|
21
|
|
22
|
Inhibition of Aspergillus flavus Growth and Aflatoxin Production in Zea mays L. Using Endophytic Aspergillus fumigatus. J Fungi (Basel) 2022; 8:jof8050482. [PMID: 35628738 PMCID: PMC9146429 DOI: 10.3390/jof8050482] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Aspergillus flavus infection of vegetative tissues can affect the development and integrity of the plant and poses dangerous risks on human and animal health. Thus, safe and easily applied approaches are employed to inhibit A. flavus growth. To this end, the fungal endophyte, i.e., Aspergillus fumigatus, was used as a safe biocontrol agent to reduce the growth of A. flavus and its infection in maize seedlings. Interestingly, the safe endophytic A. fumigatus exhibited antifungal activity (e.g., 77% of growth inhibition) against A. flavus. It also reduced the creation of aflatoxins, particularly aflatoxin B1 (AFB1, 90.9%). At plant level, maize seedling growth, leaves and root anatomy and the changes in redox status were estimated. Infected seeds treated with A. fumigatus significantly improved the germination rate by 88.53%. The ultrastructure of the infected leaves showed severe disturbances in the internal structures, such as lack of differentiation in cells, cracking, and lysis in the cell wall and destruction in the nucleus semi-lysis of chloroplasts. Ultrastructure observations indicated that A. fumigatus treatment increased maize (leaf and root) cell wall thickness that consequentially reduced the invasion of the pathogenic A. flavus. It was also interesting that the infected seedlings recovered after being treated with A. fumigatus, as it was observed in growth characteristics and photosynthetic pigments. Moreover, infected maize plants showed increased oxidative stress (lipid peroxidation and H2O2), which was significantly mitigated by A. fumigatus treatment. This mitigation was at least partially explained by inducing the antioxidant defense system, i.e., increased phenols and proline levels (23.3 and 31.17%, respectively) and POD, PPO, SOD and CAT enzymes activity (29.50, 57.58, 32.14 and 29.52%, respectively). Overall, our study suggests that endophytic A. fumigatus treatment could be commercially used for the safe control of aflatoxins production and for inducing biotic stress tolerance of A. flavus-infected maize plants.
Collapse
|
23
|
Accinelli C, Abbas HK, Bruno V, Khambhati VH, Little NS, Bellaloui N, Shier WT. Field studies on the deterioration of microplastic films from ultra-thin compostable bags in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114407. [PMID: 34974218 DOI: 10.1016/j.jenvman.2021.114407] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
In recent years, some countries have replaced single-use plastic bags with bags manufactured from compostable plastic film that can be used for collecting food wastes and composted together with the waste. Because industrial compost contains undeteriorated fragments of these bags, application to field soil is a potential source of small-sized residues from these bags. This study was undertaken to examine deterioration of these compostable film microplastics (CFMPs) in field soil at three different localities in Italy. Deterioration of CFMPs did not exceed 5.7% surface area reduction during the 12-month experimental period in two sites located in Northern Italy. More deterioration was observed in the Southern site, with 7.2% surface area reduction. Deterioration was significantly increased when fields were amended with industrial compost (up to 9.6%), but not with home compost. Up to 92.9% of the recovered CFMPs were associated with the soil fungus Aspergillus flavus, with 20.1%-71.2% aflatoxin-producing isolates. Application of industrial compost resulted in a significant increase in the percentage of CFMPs associated with A. flavus. This observation provides an argument for government regulation of accumulation of CFMPs and elevation of hazardous fungi levels in agricultural soils that receive industrial compost.
Collapse
Affiliation(s)
- Cesare Accinelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, 40127, Italy.
| | - Hamed K Abbas
- USDA, Agricultural Research Service, Biological Control of Pests Research Unit, Stoneville, MS, 38776, USA
| | - Veronica Bruno
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, 40127, Italy
| | - Vivek H Khambhati
- USDA, Agricultural Research Service, Biological Control of Pests Research Unit, Stoneville, MS, 38776, USA
| | - Nathan S Little
- USDA-ARS, Southern Insect Management Research Unit, Stoneville, MS, 38776, USA
| | - Nacer Bellaloui
- Crop Genetics Research Unit, USDA, Agricultural Research Service, Stoneville, MS, 38776, USA
| | - W Thomas Shier
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
24
|
Development of sexual structures influences metabolomic and transcriptomic profiles in Aspergillus flavus. Fungal Biol 2022; 126:187-200. [DOI: 10.1016/j.funbio.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/02/2023]
|
25
|
Gasperini AM, Medina A, Magan N. Comparison of growth and aflatoxin B 1 production profiles of Aspergillus flavus strains on conventional and isogenic GM-maize-based nutritional matrices. Fungal Biol 2021; 126:82-90. [PMID: 34930561 DOI: 10.1016/j.funbio.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/04/2022]
Abstract
Maize grown in both North and South America are now predominantly genetically modified (GM) cultivars with some resistance to herbicide, pesticide, or both. There is little information on the relative colonisation and aflatoxin B1 (AFB1) production with maize meal-based nutritional matrices based on kernels of non-GM maize and isogenic GM-ones by strains of Aspergillus flavus. The objectives were to examine the effect of interacting conditions of temperature (25-35 °C) and water availability (0.99-0.90 water activity, aw) on (a) mycelial growth, (b) AFB1 production and (c) develop contour maps of optimum and marginal conditions of these parameters for four strains of A. flavus on three different non-GM and isogenic GM-maize based nutritional media. The growth of the four strains of A. flavus (three aflatoxigenic; one non-aflatoxigenic) was relatively similar in relation to the temperature × aw conditions examined on both non-GM and GM-based matrices. Optimum growth overall was at 30-35 °C and 0.99 aw for all four strains. Under water stress (0.90 aw) growth was optimum at 35 °C. Statistically: non-GM, GM cultivars, temperature and aw all significantly affected growth rates. For AFB1 production, all single and interacting factors were statistically significant except for non-GM × GM cultivar. In conclusion, colonisation of GM- and non-GM nutritional sources was similar for the different A. flavus strains examined. The contour maps will be very useful for understanding the ecological niches for both toxigenic and non-toxigenic strains in the context of the competitive exclusion of those producing aflatoxins.
Collapse
Affiliation(s)
- Alessandra M Gasperini
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds, MK43 AL5, UK
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds, MK43 AL5, UK
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds, MK43 AL5, UK.
| |
Collapse
|
26
|
Xu F, Baker R, Whitaker T, Luo H, Zhao Y, Stevenson A, Boesch C, Zhang G. Review of good agricultural practices for smallholder maize farmers to minimise aflatoxin contamination. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2021.2685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Maize is consumed world-wide as staple food, livestock feed, and industrial raw material. However, it is susceptible to fungal attack and at risk of aflatoxin contamination under certain conditions. Such contamination is a serious threat to human and animal health. Ensuring that the maize used by food industry meets standards for aflatoxin levels requires significant investment across the supply chain. Good Agricultural Practices (GAP) form a critical part of a broader, integrated strategy for reduction of aflatoxin contamination. We reviewed and summarised the GAP of maize that would be effective and practicable for aflatoxin control within high-risk regions for smallholder farmers. The suggested practicable GAP for smallholder farmers were: use of drought-tolerant varieties; timely harvesting before physiological maturity; sorting to remove damaged ears and those having poor husk covering; drying properly to 13% moisture content; storage in suitable conditions to keep the crop clean and under condition with minimally proper aeration, or ideally under hermetic conditions. This information is intended to provide guidance for maize growers that will help reduce aflatoxin in high-risk regions, with a specific focus on smallholder farmers. Following the proposed guidelines would contribute to the reduction of aflatoxin contamination during pre-harvest, harvest, and post-harvest stages of the maize value chain.
Collapse
Affiliation(s)
- F. Xu
- Mars Global Food Safety Center, 2 Yanqi North Road, Yanqi Economic Development Zone, Huairou, 101407 Beijing, China P.R
| | - R.C. Baker
- Mars Global Food Safety Center, 2 Yanqi North Road, Yanqi Economic Development Zone, Huairou, 101407 Beijing, China P.R
| | - T.B. Whitaker
- North Carolina State University, P.O. Box 7625, Raleigh, NC 27695-7625, USA
| | - H. Luo
- Mars Global Food Safety Center, 2 Yanqi North Road, Yanqi Economic Development Zone, Huairou, 101407 Beijing, China P.R
| | - Y. Zhao
- Mars Global Food Safety Center, 2 Yanqi North Road, Yanqi Economic Development Zone, Huairou, 101407 Beijing, China P.R
| | - A. Stevenson
- Mars Global Food Safety Center, 2 Yanqi North Road, Yanqi Economic Development Zone, Huairou, 101407 Beijing, China P.R
| | - C.J. Boesch
- Food Systems and Food Safety Division, Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - G. Zhang
- Mars Global Food Safety Center, 2 Yanqi North Road, Yanqi Economic Development Zone, Huairou, 101407 Beijing, China P.R
| |
Collapse
|
27
|
Ponce-García N, Palacios-Rojas N, Serna-Saldivar SO, García-Lara S. Aflatoxin contamination in maize: occurrence and health implications in Latin America. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
According to the United Nations Food and Agriculture Organisation, mycotoxicoses constitute the second most pressing food safety problem worldwide, with most cases occurring in developing countries. Maize (Zea mays L.), the main staple for many Latin Americans, is one of the best suitable substrates for mycotoxigenic Aspergillus fungi. Aflatoxins (AFs) produced primarily by Aspergillus flavus, are of significant concern, especially in developing countries. While AFs production occurs mainly in warmer, tropical, and subtropical environments, recent evidence suggests that global climate change favours their presence in regions with little or no awareness of this issue. AFs interfere with metabolic processes, causing cancer and other health disorders resulting in health hazards and even death. The setting of national acceptable regulatory levels of AFs is necessary for Latin American countries. Unfortunately, no estimates of the economic impact of AFs in this region are currently available nor the cost of regulatory programs designed to reduce health risks to animals and humans. This review explores relevant data about incidence of AFs in maize produced in the region and the adverse effects of the consumption of contaminated foods and the associated health consequences for Latin American consumers. Regulations aimed to mitigate AFs exposure to consumers are also reviewed and identified gaps for researchers and actors of the maize value chain are also proposed.
Collapse
Affiliation(s)
- N. Ponce-García
- Faculty of Agricultural Sciences, Autonomous University of Mexico State, UAEMéx, Campus Universitario ‘El Cerrillo’, El Cerrillo Piedras Blancas, P.O. Box 50200, Toluca, Estado de Mexico, Mexico
| | - N. Palacios-Rojas
- International Maize and Wheat Improvement Center (CIMMYT), Carretera Mexico-Veracruz Km. 45, P.O. Box 56237, El Batán, Texcoco, Mexico
| | - S. O. Serna-Saldivar
- Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo León, Mexico
| | - S. García-Lara
- Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, Nuevo León, Mexico
| |
Collapse
|
28
|
Matumba L, Namaumbo S, Ngoma T, Meleke N, De Boevre M, Logrieco AF, De Saeger S. Five keys to prevention and control of mycotoxins in grains: A proposal. GLOBAL FOOD SECURITY 2021. [DOI: 10.1016/j.gfs.2021.100562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Hu D, Xiao S, Guo Q, Yue R, Geng D, Ji D. Luminescence method for detection of aflatoxin B1 using ATP-releasing nucleotides. RSC Adv 2021; 11:24027-24031. [PMID: 35479041 PMCID: PMC9036674 DOI: 10.1039/d1ra03870b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 02/03/2023] Open
Abstract
Determination of aflatoxin B1 (AFB1) is still a big issue in food safety. In this paper, we developed a luminescence AFB1 detection method combined with ATP-releasing nucleotides (ARNs) and AFB1 aptamer. Firstly, using a new coupling method, we synthesized two ARNs (dTP4A and dGP4A) in a yield of 67% and 58%, respectively. The newly prepared ARNs show a much lower background. Then, we developed a new isothermal polymerase amplification method. In this method, two DNA hairpins were used to substitute the circle DNA template in rolling circle amplification. Using this amplification method and combined with AFB1 aptamer, a new AFB1 detection method is developed. A detection limit as low as 0.3 pM is achieved. This method is simple and efficient, and will have a great potential to be used for food safety and public health. Schematic illustration of a luminescence short DNA sequence detection method using ATP-releasing nucleotides. Combined with AFB1 aptamer, this method is used to detect AFB1.![]()
Collapse
Affiliation(s)
- Dongyue Hu
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 PR China
| | - Shusen Xiao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 PR China
| | - Qiaqia Guo
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 PR China
| | - Rongrong Yue
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 PR China
| | - Demin Geng
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 PR China
| | - Debin Ji
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 PR China
| |
Collapse
|
30
|
Einloft TC, Bolzan de Oliveira P, Radünz LL, Dionello RG. Biocontrol capabilities of three Bacillus isolates towards aflatoxin B1 producer A. flavus in vitro and on maize grains. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Meyer M, Diehl D, Schaumann GE, Muñoz K. Agricultural mulching and fungicides-impacts on fungal biomass, mycotoxin occurrence, and soil organic matter decomposition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36535-36550. [PMID: 33704638 PMCID: PMC8277611 DOI: 10.1007/s11356-021-13280-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Plastic and straw coverage (PC and SC) are often combined with fungicide application but their influence on fungicide entry into soil and the resulting consequences for soil quality are still unknown. The objective of this study was to investigate the impact of PC and SC, combined with fungicide application, on soil residual concentrations of fungicides (fenhexamid, cyprodinil, and fludioxonil), soil fungal biomass, mycotoxin occurrence, and soil organic matter (SOM) decomposition, depending on soil depth (0-10, 10-30, 30-60 cm) and time (1 month prior to fungicide application and respectively 1 week, 5 weeks, and 4 months afterwards). Soil analyses comprised fungicides, fusarium mycotoxins (deoxynivalenol, 15-acetyldeoxynivalenol, nivalenol, and zearalenone), ergosterol, soil microbial carbon and nitrogen, soil organic carbon, dissolved organic carbon, and pH. Fludioxonil and cyprodinil concentrations were higher under SC than under PC 1 week and 5 weeks after fungicide application (up to three times in the topsoil) but no differences were observed anymore after 4 months. Fenhexamid was not detected, presumably because of its fast dissipation in soil. The higher fludioxonil and cyprodinil concentrations under SC strongly reduced the fungal biomass and shifted microbial community towards larger bacterial fraction in the topsoil and enhanced the abundance and concentration of deoxynivalenol and 15-acetyldeoxynivalenol 5 weeks after fungicide application. Independent from the different fungicide concentrations, the decomposition of SOM was temporarily reduced after fungicide application under both coverage types. However, although PC and SC caused different concentrations of fungicide residues in soil, their impact on the investigated soil parameters was minor and transient (< 4 months) and hence not critical for soil quality.
Collapse
Affiliation(s)
- Maximilian Meyer
- iES Landau, Institute for Environmental Sciences Landau, Group of Environmental and Soil Chemistry, University Koblenz-Landau, Landau, Germany
| | - Dörte Diehl
- iES Landau, Institute for Environmental Sciences Landau, Group of Environmental and Soil Chemistry, University Koblenz-Landau, Landau, Germany
| | - Gabriele Ellen Schaumann
- iES Landau, Institute for Environmental Sciences Landau, Group of Environmental and Soil Chemistry, University Koblenz-Landau, Landau, Germany.
| | - Katherine Muñoz
- iES Landau, Institute for Environmental Sciences Landau, Group of Environmental and Soil Chemistry, University Koblenz-Landau, Landau, Germany
| |
Collapse
|
32
|
Garcia-Lopez MT, Luo Y, Ortega-Beltran A, Jaime R, Moral J, Michailides TJ. Quantification of the Aflatoxin Biocontrol Strain Aspergillus flavus AF36 in Soil and in Nuts and Leaves of Pistachio by Real-Time PCR. PLANT DISEASE 2021; 105:1657-1665. [PMID: 33084543 DOI: 10.1094/pdis-05-20-1097-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The species Aspergillus flavus and A. parasiticus are commonly found in the soils of nut-growing areas in California. Several isolates can produce aflatoxins that occasionally contaminate nut kernels, conditioning their sale. Strain AF36 of A. flavus, which does not produce aflatoxins, is registered as a biocontrol agent for use in almond, pistachio, and fig crops in California. After application in orchards, AF36 displaces aflatoxin-producing Aspergillus spp. and thus reduces aflatoxin contamination. Vegetative compatibility assays (VCAs) have traditionally been used to track AF36 in soils and crops where it has been applied. However, VCAs are labor intensive and time consuming. Here, we developed a quantitative real-time PCR (qPCR) protocol to quantify proportions of AF36 accurately and efficiently in different substrates. Specific primers to target AF36 and toxigenic strains of A. flavus and A. parasiticus were designed based on the sequence of aflC, a gene essential for aflatoxin biosynthesis. Standard curves were generated to calculate proportions of AF36 based on threshold cycle values. Verification assays using pure DNA and conidial suspension mixtures demonstrated a significant relationship by regression analysis between known and qPCR-measured AF36 proportions in DNA (R2 = 0.974; P < 0.001) and conidia mixtures (R2 = 0.950; P < 0.001). Tests conducted by qPCR in pistachio leaves, nuts, and soil samples demonstrated the usefulness of the qPCR method to precisely quantify proportions of AF36 in diverse substrates, ensuring important time and cost savings. The outputs of this study will serve to design better aflatoxin management strategies for pistachio and other crops.
Collapse
Affiliation(s)
- M Teresa Garcia-Lopez
- Department of Agronomy (Maria de Maeztu Excellence Unit), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
- Department of Plant Pathology, University of California-Davis Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | - Yong Luo
- Department of Plant Pathology, University of California-Davis Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | | | - Ramon Jaime
- Department of Plant Pathology, University of California-Davis Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | - Juan Moral
- Department of Agronomy (Maria de Maeztu Excellence Unit), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Themis J Michailides
- Department of Plant Pathology, University of California-Davis Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| |
Collapse
|
33
|
Galván AI, Rodríguez A, Martín A, Serradilla MJ, Martínez-Dorado A, Córdoba MDG. Effect of Temperature during Drying and Storage of Dried Figs on Growth, Gene Expression and Aflatoxin Production. Toxins (Basel) 2021; 13:toxins13020134. [PMID: 33670398 PMCID: PMC7918548 DOI: 10.3390/toxins13020134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 11/28/2022] Open
Abstract
Dried fig is susceptible to infection by Aspergillus flavus, the major producer of the carcinogenic mycotoxins. This fruit may be contaminated by the fungus throughout the entire chain production, especially during natural sun-drying, post-harvest, industrial processing, storage, and fruit retailing. Correct management of such critical stages is necessary to prevent mould growth and mycotoxin accumulation, with temperature being one of the main factors associated with these problems. The effect of different temperatures (5, 16, 25, 30, and 37 °C) related to dried-fig processing on growth, one of the regulatory genes of aflatoxin pathway (aflR) and mycotoxin production by A. flavus, was assessed. Firstly, growth and aflatoxin production of 11 A. flavus strains were checked before selecting two strains (M30 and M144) for in-depth studies. Findings showed that there were enormous differences in aflatoxin amounts and related-gene expression between the two selected strains. Based on the results, mild temperatures, and changes in temperature during drying and storage of dried figs should be avoided. Drying should be conducted at temperatures >30 °C and close to 37 °C, while industry processing, storage, and retailing of dried figs are advisable to perform at refrigeration temperatures (<10 °C) to avoid mycotoxin production.
Collapse
Affiliation(s)
- Ana Isabel Galván
- Junta de Extremadura, Finca La Orden-Valdesequera Research Centre (CICYTEX), Horticulture, 06187 Guadajira, Spain;
| | - Alicia Rodríguez
- Food Quality and Microbiology, School of Agricultural Engineering, University of Extremadura, Avda. de Adolfo Suárez, s/n, 06007 Badajoz, Spain; (A.M.); (A.M.-D.); (M.d.G.C.)
- University Institute for the Research in Agrifood Resources (INURA), University of Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
- Correspondence: ; Tel.: +34-924-289-300 (ext. 86283)
| | - Alberto Martín
- Food Quality and Microbiology, School of Agricultural Engineering, University of Extremadura, Avda. de Adolfo Suárez, s/n, 06007 Badajoz, Spain; (A.M.); (A.M.-D.); (M.d.G.C.)
- University Institute for the Research in Agrifood Resources (INURA), University of Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - Manuel Joaquín Serradilla
- Junta de Extremadura, Agri-Food Technological Institute of Extremadura (INTAEX-CICYTEX), Department of Postharvest Science Avda, 06007 Badajoz, Spain;
| | - Ana Martínez-Dorado
- Food Quality and Microbiology, School of Agricultural Engineering, University of Extremadura, Avda. de Adolfo Suárez, s/n, 06007 Badajoz, Spain; (A.M.); (A.M.-D.); (M.d.G.C.)
- University Institute for the Research in Agrifood Resources (INURA), University of Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - María de Guía Córdoba
- Food Quality and Microbiology, School of Agricultural Engineering, University of Extremadura, Avda. de Adolfo Suárez, s/n, 06007 Badajoz, Spain; (A.M.); (A.M.-D.); (M.d.G.C.)
- University Institute for the Research in Agrifood Resources (INURA), University of Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| |
Collapse
|
34
|
Bisceglie F, Degola F, Rogolino D, Giannelli G, Orsoni N, Spadola G, Pioli M, Restivo FM, Carcelli M, Pelosi G. Sisters in structure but different in character, some benzaldehyde and cinnamaldehyde derivatives differentially tune Aspergillus flavus secondary metabolism. Sci Rep 2020; 10:17686. [PMID: 33077881 PMCID: PMC7572373 DOI: 10.1038/s41598-020-74574-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
Great are the expectations for a new generation of antimicrobials, and strenuous are the research efforts towards the exploration of diverse molecular scaffolds-possibly of natural origin - aimed at the synthesis of new compounds against the spread of hazardous fungi. Also high but winding are the paths leading to the definition of biological targets specifically fitting the drug's structural characteristics. The present study is addressed to inspect differential biological behaviours of cinnamaldehyde and benzaldehyde thiosemicarbazone scaffolds, exploiting the secondary metabolism of the mycotoxigenic phytopathogen Aspergillus flavus. Interestingly, owing to modifications on the parent chemical scaffold, some thiosemicarbazones displayed an increased specificity against one or more developmental processes (conidia germination, aflatoxin biosynthesis, sclerotia production) of A. flavus biology. Through the comparative analysis of results, the ligand-based screening strategy here described has allowed us to delineate which modifications are more promising for distinct purposes: from the control of mycotoxins contamination in food and feed commodities, to the environmental management of microbial pathogens, to the investigation of specific structure-activity features for new generation drug discovery.
Collapse
Affiliation(s)
- Franco Bisceglie
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Francesca Degola
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Dominga Rogolino
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Gianluigi Giannelli
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Nicolò Orsoni
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Giorgio Spadola
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Marianna Pioli
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Francesco M. Restivo
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Mauro Carcelli
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Giorgio Pelosi
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
35
|
Morphological and Molecular Characterization of Toxigenic Aspergillus flavus from Groundnut Kernels in Kenya. Int J Microbiol 2020; 2020:8854718. [PMID: 32963542 PMCID: PMC7492892 DOI: 10.1155/2020/8854718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/26/2020] [Accepted: 08/27/2020] [Indexed: 11/18/2022] Open
Abstract
Pathogenesis of Aspergillus flavus on important agricultural products is a key concern on human health due to the synthesis and secretion of the hazardous secondary metabolite, aflatoxin. This study identified and further characterized aflatoxigenic A. flavus from groundnuts sampled from sundry shops in Kenya using integrated morphological and molecular approaches. The groundnuts were plated on potato dextrose agar for isolation and morphological observation of A. flavus based on macroscopic and microscopic features. Molecular characterization was done through amplification and comparison of the partial sequence of the ITS1-5.8S-ITS2 region. The expression analysis of aflR, aflS, aflD, aflP, and aflQ genes in the aflatoxin biosynthesis pathways was conducted to confirm the positive identification of A. flavus. The gene expression also aided to delineate toxigenic isolates of A. flavus from atoxigenic ones. Morphologically, 18 isolates suspected to be A. flavus were identified. Out of these, 14 isolates successfully amplified the 500 bp ITS region of A. flavus or Aspergillus oryzae, while 4 isolates were not amplified. All the remaining 14 isolates expressed at least one of the aflatoxigenic genes but only 5 had all the genes expressed. Partial sequencing revealed that isolates 5, 11, 12, 13, and 15 had 99.2%, 97.6%, 98.4%, 97.5%, and 100% homology, respectively, to the A. flavus isolate LUOHE, ITS-5.8S-ITS2, obtained from the NCBI database. The five isolates were accurate identification of atoxigenic A. flavus. Precise identification of toxigenic strains of A. flavus will be useful in establishing control strategies of the fungus in food products.
Collapse
|
36
|
Masiello M, Somma S, Haidukowski M, Logrieco AF, Moretti A. Genetic polymorphisms associated to SDHI fungicides resistance in selected Aspergillus flavus strains and relation with aflatoxin production. Int J Food Microbiol 2020; 334:108799. [PMID: 32799117 DOI: 10.1016/j.ijfoodmicro.2020.108799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022]
Abstract
Aspergillus flavus is a common and ubiquitous fungal species able to colonize several agricultural commodities, in both pre- and post-harvest conditions. This species represents a very harmful plant pathogen for its ability to synthesize aflatoxin B1, responsible for human primary hepatocellular carcinoma and classified as a group I (human carcinogenic) by the International Agency for Research on Cancer. Several approaches have been proposed to control A. flavus development and related aflatoxin production in field and storage conditions. The Succinate Dehydrogenase Inhibitor (SDHI) fungicide boscalid has been shown to control A. flavus growth and aflatoxin contamination both in vitro and in field experiments. However, this compound is classified as medium-high risk fungicide for triggering fungal resistance and, indeed, resistant strains can occur on crops treated with boscalid. In this paper, we selected laboratory A. flavus strains resistant to boscalid grown on agar medium containing 50 mg/L of boscalid. In order to investigate the molecular mechanism responsible for the resistant phenotype, specific primer pairs were designed to amplify the whole SdhB, SdhC and SdhD genes. By amino acid sequence analysis, two point mutations, Tyrosine replacing Histidine at codon 249 of SdhB (H249Y) and Arginine replacing Glycine at codon 91 of SdhC (G91R), were identified. The effect of SDHI boscalid and isopyrazam on mycelial growth and conidial germination was evaluated. Both resistant genotypes showed high resistance (MIC and EC50 > 1000 mg/L) to boscalid. A positive cross-resistance was found between boscalid and isopyrazam. Specific sub-lethal doses of both fungicides (0.5 mg/L of boscalid and 0.01 mg/L of isopyrazam) interfered with the mechanisms associated to pigmentation of colonies. In particular, fungal colonies appeared depigmented lacking the typical A. flavus green colour shown on un-amended fungicide medium. A strict correlation between lack of pigmentation and increasing aflatoxin production was also observed.
Collapse
Affiliation(s)
- M Masiello
- Institute of Sciences of Food Production, Research National Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy.
| | - S Somma
- Institute of Sciences of Food Production, Research National Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy.
| | - M Haidukowski
- Institute of Sciences of Food Production, Research National Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy.
| | - A F Logrieco
- Institute of Sciences of Food Production, Research National Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy.
| | - A Moretti
- Institute of Sciences of Food Production, Research National Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
37
|
Accinelli C, Abbas HK, Bruno V, Nissen L, Vicari A, Bellaloui N, Little NS, Thomas Shier W. Persistence in soil of microplastic films from ultra-thin compostable plastic bags and implications on soil Aspergillus flavus population. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 113:312-318. [PMID: 32570156 DOI: 10.1016/j.wasman.2020.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
An increasing number of states and municipalities are choosing to reduce plastic litter by replacing plastic items, particularly single-use ones, with same-use products manufactured from compostable plastics. This study investigated the formation and persistence of compostable film microplastic particles (CFMPs) from ultra-thin compostable carrier bags in soil under laboratory conditions, and the potential impact of CFMPs on Aspergillus flavus populations in the soil. During a 12-month incubation period, compostable film samples in soils with small, medium or large populations of indigenous A. flavus, underwent 5.9, 9.8, and 17.1% reduction in total surface area, respectively. Despite the low levels of deterioration, the number of CFMPs released increased steadily over the incubation period, particularly fragments with size < 0.05 mm. Up to 88.4% of the released fragments had associated A. flavus and up to 68% of isolates from CFMPs produced aflatoxins. A. flavus levels associated with CFMPs increased rapidly during the initial part of the 12-month incubation period, whereas the percent aflatoxigenicity continued to increase even after A. flavus density leveled off later. During 12 months incubation, A. flavus DNA amounts recovered from CFMPs increased in soils with all levels of indigenous A. flavus, with the largest increases (119.1%) occurring in soil containing the lowest indigenous A. flavus. These results suggest that burying compostable film in soil, or application of compost containing CFMPs, may reduce soil quality and increase risk of adverse impacts from elevated aflatoxigenic A. flavus populations in soil.
Collapse
Affiliation(s)
- Cesare Accinelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna 40127, Italy.
| | - Hamed K Abbas
- USDA-ARS, Biological Control of Pests Research Unit, Stoneville, MS 38776, USA
| | - Veronica Bruno
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna 40127, Italy
| | - Lorenzo Nissen
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna 40127, Italy
| | - Alberto Vicari
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna 40127, Italy
| | - Nacer Bellaloui
- Crop Genetic Systems Research Unit, US Department of Agriculture, Agricultural Research Service, Stoneville, MS 38776, USA
| | - Nathan S Little
- USDA-ARS, Southern Insect Management Research Unit, Stoneville, MS 38776, USA
| | - W Thomas Shier
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
38
|
Isolation and Identification of Aspergillus Section Nigri, and Genotype Associated with Ochratoxin A and Fumonisin B2 Production in Garlic Marketed in Brazil. Curr Microbiol 2020; 77:1150-1158. [DOI: 10.1007/s00284-020-01915-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/07/2020] [Indexed: 02/03/2023]
|
39
|
Agriopoulou S, Stamatelopoulou E, Varzakas T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020; 9:E137. [PMID: 32012820 PMCID: PMC7074356 DOI: 10.3390/foods9020137] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mycotoxins are toxic substances that can infect many foods with carcinogenic, genotoxic, teratogenic, nephrotoxic, and hepatotoxic effects. Mycotoxin contamination of foodstuffs causes diseases worldwide. The major classes of mycotoxins that are of the greatest agroeconomic importance are aflatoxins, ochratoxins, fumonisins, trichothecenes, emerging Fusarium mycotoxins, enniatins, ergot alkaloids, Alternaria toxins, and patulin. Thus, in order to mitigate mycotoxin contamination of foods, many control approaches are used. Prevention, detoxification, and decontamination of mycotoxins can contribute in this purpose in the pre-harvest and post-harvest stages. Therefore, the purpose of the review is to elaborate on the recent advances regarding the occurrence of main mycotoxins in many types of important agricultural products, as well as the methods of inactivation and detoxification of foods from mycotoxins in order to reduce or fully eliminate them.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (E.S.); (T.V.)
| | | | | |
Collapse
|
40
|
Pruter LS, Brewer MJ, Weaver MA, Murray SC, Isakeit TS, Bernal JS. Association of Insect-Derived Ear Injury With Yield and Aflatoxin of Maize Hybrids Varying in Bt Transgenes. ENVIRONMENTAL ENTOMOLOGY 2019; 48:1401-1411. [PMID: 31586402 DOI: 10.1093/ee/nvz112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Environmental factors have been associated with the production of aflatoxin in maize, Zea mays L., and it is inconclusive whether transgenic, Bacillus thuringiensis (Bt), maize has an impact on aflatoxin accumulation. Maize hybrids differing in transgenes were planted in two locations from 2014 to 2017. Yield, aflatoxin, and ear injury caused by corn earworm, Helicoverpa zea (Boddie), and fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), were measured across three groups of hybrids differing in transgenes including near-isogenic hybrids, and water-stressed conditions. The hybrid groups consisted of non-Bt hybrids with no Bt transgenes, a second group with one or more Cry-Bt transgenes, and the third group with vegetative insecticidal Bt protein and Cry-Bt transgenes (Cry/Vip-Bt). Across the six data sets derived from 11 experiments, the Cry-Bt and Cry/Vip-Bt hybrids had less ear injury and aflatoxin on average than non-Bt hybrids. The effects of ear injury on yield and aflatoxin were more prominent and consistent in Corpus Christi, TX, where hybrids experienced more water-limited conditions than in College Station, TX. The trend of increased aflatoxin among hybrids with increased ear injury was further resolved when looking at Cry-Bt and Cry/Vip-Bt isogenic hybrids in Corpus Christi. The results supported that the maize hybrids with the inclusion of Cry-Bt and Cry/Vip-Bt transgenes warrant further investigation in an integrated approach to insect and aflatoxin management in sub-tropical rain-fed maize production regions. Research outcomes may be improved by focusing on areas prone to water-stress and by using hybrids with similar genetic backgrounds.
Collapse
Affiliation(s)
- Luke S Pruter
- Entomology Program, Texas A&M AgriLife Research & Extension Center, Corpus Christi, TX
| | - Michael J Brewer
- Entomology Program, Texas A&M AgriLife Research & Extension Center, Corpus Christi, TX
| | - Mark A Weaver
- Department of Plant Pathology, USDA-ARS, Stoneville, MS
| | - Seth C Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX
| | - Thomas S Isakeit
- Department of Plant Pathology, Texas A&M University, College Station, TX
| | - Julio S Bernal
- Department of Entomology, Texas A&M University, College Station, TX
| |
Collapse
|
41
|
Ranjbar R, Roayaei Ardakani M, Mehrabi Kushki M, kazeminezhad I. Identification of Toxigenic Aspergillus Species from Rice of Khuzestan and Mycotoxins in Imported Cereals. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2019. [DOI: 10.30699/ijmm.13.5.355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Dallabona C, Pioli M, Spadola G, Orsoni N, Bisceglie F, Lodi T, Pelosi G, Restivo FM, Degola F. Sabotage at the Powerhouse? Unraveling the Molecular Target of 2-Isopropylbenzaldehyde Thiosemicarbazone, a Specific Inhibitor of Aflatoxin Biosynthesis and Sclerotia Development in Aspergillus flavus, Using Yeast as a Model System. Molecules 2019; 24:molecules24162971. [PMID: 31426298 PMCID: PMC6719062 DOI: 10.3390/molecules24162971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 11/16/2022] Open
Abstract
Amongst the various approaches to contain aflatoxin contamination of feed and food commodities, the use of inhibitors of fungal growth and/or toxin biosynthesis is showing great promise for the implementation or the replacement of conventional pesticide-based strategies. Several inhibition mechanisms were found taking place at different levels in the biology of the aflatoxin-producing fungal species such as Aspergillus flavus: compounds that influence aflatoxin production may block the biosynthetic pathway through the direct control of genes belonging to the aflatoxin gene cluster, or interfere with one or more of the several steps involved in the aflatoxin metabolism upstream. Recent findings pointed to mitochondrial functionality as one of the potential targets of some aflatoxin inhibitors. Additionally, we have recently reported that the effect of a compound belonging to the class of thiosemicarbazones might be related to the energy generation/carbon flow and redox homeostasis control by the fungal cell. Here, we report our investigation about a putative molecular target of the 3-isopropylbenzaldehyde thiosemicarbazone (mHtcum), using the yeast Saccharomyces cerevisiae as model system, to demonstrate how the compound can actually interfere with the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Marianna Pioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Giorgio Spadola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Nicolò Orsoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Tiziana Lodi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Francesco Maria Restivo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy.
| |
Collapse
|
43
|
Mukasa Y, Kyamanywa S, Sserumaga JP, Otim M, Tumuhaise V, Erbaugh M, Egonyu JP. An atoxigenic L-strain of Aspergillus flavus (Eurotiales: Trichocomaceae) is pathogenic to the coffee twig borer, Xylosandrus compactus (Coleoptera: Curculionidea: Scolytinae). ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:508-517. [PMID: 30307121 DOI: 10.1111/1758-2229.12705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/01/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
This study isolated and evaluated virulence of fungal entomopathogens of Xylosandrus compactus - an important pest of Robusta coffee in Sub-Saharan Africa. A survey was conducted in five farming systems in Uganda to isolate entomopathogens associated with X. compactus. Four fungal isolates were screened for virulence against X. compactus in the laboratory at 1 × 107 conidia ml-1 where an atoxigenic L-strain of A. flavus killed 70%-100% of all stages of X. compactus compared with other unidentified isolates which caused 20%-70% mortalities. The time taken by A. flavus to kill 50% of X. compactus eggs, larvae, pupae and adults in the laboratory was 2-3 days; whereas the other unidentified fungal isolates took 4-7 days. The concentrations of A. flavus that killed 50% of different stages of X. compactus were 5 × 105 , 12 × 105 , 17 × 105 and 30 × 105 conidia ml-1 for larvae, eggs, pupae and adults respectively. A formulation of A. flavus in oil caused higher mortalities of X. compactus larvae, pupae and adults in the field (71%-79%) than its formulation in water (33%-47%). The atoxigenic strain of A. flavus could therefore be developed into a safe biopesticide against X. compactus.
Collapse
Affiliation(s)
- Yosia Mukasa
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Samuel Kyamanywa
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | - Julius P Sserumaga
- Department of Agriculture, National Crops Resources Research Institute, Kampala, Uganda
| | - Michael Otim
- Department of Agriculture, National Crops Resources Research Institute, Kampala, Uganda
| | | | - Mark Erbaugh
- College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - James P Egonyu
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| |
Collapse
|
44
|
Vicente S, Pok PS, García Londoño VA, Pacin A. Aflatoxins distribution in fractions derived from tofu production. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1559-1566. [DOI: 10.1080/19440049.2019.1640893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sebastián Vicente
- Fundación de Investigaciones Científicas Teresa Benedictina de la Cruz, Luján, Buenos Aires, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Provincia de Buenos Aires, Argentina
| | - Paula Sol Pok
- Departamentos de Química Orgánica e Industrias, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Víctor Alonso García Londoño
- Fundación de Investigaciones Científicas Teresa Benedictina de la Cruz, Luján, Buenos Aires, Argentina
- Departamentos de Química Orgánica e Industrias, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Pacin
- Fundación de Investigaciones Científicas Teresa Benedictina de la Cruz, Luján, Buenos Aires, Argentina
| |
Collapse
|
45
|
Degola F, Marzouk B, Gori A, Brunetti C, Dramis L, Gelati S, Buschini A, Restivo FM. Aspergillus flavus as a Model System to Test the Biological Activity of Botanicals: An Example on Citrullus colocynthis L. Schrad. Organic Extracts. Toxins (Basel) 2019; 11:toxins11050286. [PMID: 31121811 PMCID: PMC6563254 DOI: 10.3390/toxins11050286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/22/2022] Open
Abstract
Citrullus colocynthis L. Schrader is an annual plant belonging to the Cucurbitaceae family, widely distributed in the desert areas of the Mediterranean basin. Many pharmacological properties (anti-inflammatory, anti-diabetic, analgesic, anti-epileptic) are ascribed to different organs of this plant; extracts and derivatives of C. colocynthis are used in folk Berber medicine for the treatment of numerous diseases-such as rheumatism arthritis, hypertension bronchitis, mastitis, and even cancer. Clinical studies aimed at confirming the chemical and biological bases of pharmacological activity assigned to many plant/herb extracts used in folk medicine often rely on results obtained from laboratory preliminary tests. We investigated the biological activity of some C. colocynthis stem, leaf, and root extracts on the mycotoxigenic and phytopathogenic fungus Aspergillus flavus, testing a possible correlation between the inhibitory effect on aflatoxin biosynthesis, the phytochemical composition of extracts, and their in vitro antioxidant capacities.
Collapse
Affiliation(s)
- Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Belsem Marzouk
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy of Monastir, University of Monastir, 5000 Monastir, Tunisia.
| | - Antonella Gori
- Tree and Timber Institute (IVALSA), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Cecilia Brunetti
- Tree and Timber Institute (IVALSA), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
- Department of Agriculture, Environment, Food and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy.
| | - Lucia Dramis
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Stefania Gelati
- Department of Packaging, Experimental Station for the Food Preserving Industry (SSICA), Viale Tanara 31/A, 43121 Parma, Italy.
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
- Center for Molecular and Translational Oncology, Parco Area delle Scienze, 43124 Parma, Italy.
| | - Francesco M Restivo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
46
|
Fang J, Zheng Z, Yang Z, Peng X, Zuo Z, Cui H, Ouyang P, Shu G, Chen Z, Huang C. Ameliorative effects of selenium on the excess apoptosis of the jejunum caused by AFB 1 through death receptor and endoplasmic reticulum pathways. Toxicol Res (Camb) 2018; 7:1108-1119. [PMID: 30510680 PMCID: PMC6220717 DOI: 10.1039/c8tx00068a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
Aflatoxin B1 (AFB1), one of most potent and common mycotoxins in human food and animal feed, has hepatotoxic and carcinogenic effects on humans and poultry. Recent studies indicated that selenium (Se) has a protective effect on apoptosis induced by toxin poisoning. The present study was designed to reveal the ameliorative effects of selenium on the expression of apoptosis related molecules in the jejunum of broilers exposed to an AFB1 diet for 3 weeks. A total of 216 one-day-old healthy Cobb broilers were randomly divided into the control group (0 mg kg-1 AFB1), AFB1 group (0.6 mg kg-1 AFB1), AFB1 + Se group (0.6 mg kg-1 AFB1 + 0.4 mg kg-1 supplement Se) and Se group (0.4 mg kg-1 supplement Se), respectively. TUNEL and flow cytometry assays both indicated that 0.4 mg kg-1 selenium could ameliorate excess apoptosis caused by AFB1 in jejunal cells. Moreover, the expressions of FAS, FASL, TNF-α, TNF-R1, CASPASE-3, CASPASE-8, CASPASE-10, GRP78 and GRP94 analyzed by qRT-PCR demonstrated that 0.4 mg kg-1 selenium restored these parameters to be close to those in the control group. In summary, supplementation of selenium at a concentration of 0.4 mg kg-1 selenium could protect the chicken's jejunum from excess apoptosis caused by 0.6 mg kg-1 AFB1 through down-regulating the expression of death receptor pathway and endoplasmic reticulum pathway related molecules. According to this conclusion, this study may contribute to a better understanding of selenium's protective role against AFB1 poisoning.
Collapse
Affiliation(s)
- Jing Fang
- College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , Sichuan 611130 , PR China .
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province , College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , Sichuan 611130 , PR China
| | - Zhixiang Zheng
- College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , Sichuan 611130 , PR China .
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province , College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , Sichuan 611130 , PR China
| | - Zhuangzhi Yang
- Chengdu Academy of Agriculture and Forestry Sciences , Chengdu 611130 , Sichuan , PR China
| | - Xi Peng
- College of Life Sciences , China West Normal University , Nanchong , Sichuan 637002 , PR China .
| | - Zhicai Zuo
- College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , Sichuan 611130 , PR China .
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province , College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , Sichuan 611130 , PR China
| | - Hengmin Cui
- College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , Sichuan 611130 , PR China .
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province , College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , Sichuan 611130 , PR China
| | - Ping Ouyang
- College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , Sichuan 611130 , PR China .
| | - Gang Shu
- College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , Sichuan 611130 , PR China .
| | - Zhengli Chen
- College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , Sichuan 611130 , PR China .
| | - Chao Huang
- College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , Sichuan 611130 , PR China .
| |
Collapse
|
47
|
Camiletti BX, Moral J, Asensio CM, Torrico AK, Lucini EI, Giménez-Pecci MDLP, Michailides TJ. Characterization of Argentinian Endemic Aspergillus flavus Isolates and Their Potential Use as Biocontrol Agents for Mycotoxins in Maize. PHYTOPATHOLOGY 2018; 108:818-828. [PMID: 29384448 DOI: 10.1094/phyto-07-17-0255-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Maize (Zea mays L.) is a highly valuable crop in Argentina, frequently contaminated with the mycotoxins produced by Aspergillus flavus. Biocontrol products formulated with atoxigenic (nontoxic) strains of this fungal species are well known as an effective method to reduce this contamination. In the present study, 83 A. flavus isolates from two maize regions of Argentina were characterized and evaluated for their ability to produce or lack of producing mycotoxins in order to select atoxigenic strains to be used as potential biocontrol agents (BCA). All of the isolates were tested for aflatoxin and cyclopiazonic acid (CPA) production in maize kernels and a liquid culture medium. Genetic diversity of the nonaflatoxigenic isolates was evaluated by analysis of vegetative compatibility groups (VCG) and confirmation of deletions in the aflatoxin biosynthesis cluster. Eight atoxigenic isolates were compared for their ability to reduce aflatoxin and CPA contamination in maize kernels in coinoculation tests. The A. flavus population was composed of 32% aflatoxin and CPA producers and 52% CPA producers, and 16% was determined as atoxigenic. All of the aflatoxin producer isolates also produced CPA. Aflatoxin and CPA production was significantly higher in maize kernels than in liquid medium. The 57 nonaflatoxigenic strains formed six VCG, with AM1 and AM5 being the dominant groups, with a frequency of 58 and 35%, respectively. In coinoculation experiments, all of the atoxigenic strains reduced aflatoxin from 54 to 83% and CPA from 60 to 97%. Members of group AM1 showed a greater aflatoxin reduction than members of AM5 (72 versus 66%) but no differences were detected in CPA production. Here, we described for the first time atoxigenic isolates of A. flavus that show promise to be used as BCA in maize crops in Argentina. This innovating biological control approach should be considered, developed further, and used by the maize industry to preserve the quality properties and food safety of maize kernels in Argentina.
Collapse
Affiliation(s)
- Boris X Camiletti
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Juan Moral
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Claudia M Asensio
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Ada Karina Torrico
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Enrique I Lucini
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - María de la Paz Giménez-Pecci
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Themis J Michailides
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| |
Collapse
|
48
|
Zeidan R, Ul-Hassan Z, Al-Thani R, Balmas V, Jaoua S. Application of Low-Fermenting Yeast Lachancea thermotolerans for the Control of Toxigenic Fungi Aspergillus parasiticus, Penicillium verrucosum and Fusarium graminearum and Their Mycotoxins. Toxins (Basel) 2018; 10:E242. [PMID: 29904020 PMCID: PMC6024770 DOI: 10.3390/toxins10060242] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 11/21/2022] Open
Abstract
Mycotoxins are important contaminants of food and feed. In this study, low fermenting yeast (Lachancea thermotolerans) and its derivatives were applied against toxigenic fungi and their mycotoxins. A. parasiticus, P. verrucosum and F. graminearum and their mycotoxins were exposed to yeast volatile organic compounds (VOCs) and cells, respectively. VOCs reduced significantly the fungal growth (up to 48%) and the sporulation and mycotoxin synthesis (up to 96%). Very interestingly, it was shown that even 7 yeast colonies reduced Fusarium’s growth and the synthesis of its mycotoxin, deoxynivalenol (DON). Moreover, decreasing yeast nutrient concentrations did not affect the inhibition of fungal growth, but reduced DON synthesis. In addition, inactivated yeast cells were able to remove up to 82% of the ochratoxin A (OTA). As an application of these findings, the potentialities of the VOCs to protect tomatoes inoculated with F. oxysporum was explored and showed that while in the presence of VOCs, no growth was observed of F. oxysporum on the inoculated surface areas of tomatoes, in the absence of VOCs, F. oxysporum infection reached up to 76% of the tomatoes’ surface areas. These results demonstrate that the application of yeasts and their derivatives in the agriculture and food industry might be considered as a very promising and safe biocontrol approach for food contamination.
Collapse
Affiliation(s)
- Randa Zeidan
- Department of Biological & Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713 Doha, Qatar.
| | - Zahoor Ul-Hassan
- Department of Biological & Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713 Doha, Qatar.
| | - Roda Al-Thani
- Department of Biological & Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713 Doha, Qatar.
| | - Virgilio Balmas
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy.
| | - Samir Jaoua
- Department of Biological & Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713 Doha, Qatar.
| |
Collapse
|
49
|
A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food Chem Toxicol 2018; 114:246-259. [PMID: 29476792 DOI: 10.1016/j.fct.2018.02.044] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/01/2018] [Accepted: 02/19/2018] [Indexed: 01/24/2023]
Abstract
Contamination of animal feed with mycotoxins still occurs very often, despite great efforts in preventing it. Animal feeds are contaminated, at low levels, with several mycotoxins, particularly with those produced by Aspergillus and Fusarium genera (Aflatoxin B1, Ochratoxin A, Zearalenone, Deoxynivalenol and Fumonisina B1). In animal feed, to date, only Aflatoxin B1 is limited through EU regulation. Consequently, mycotoxins cause serious disorders and diseases in farm animals. In 2009, the European Union (386/2009/EC) approved the use of mycotoxin-detoxifying agents, as feed additives, to prevent mycotoxicoses in farm animals. The present review gives an overview of the problem of multi-mycotoxin contamination of feed, and aims to classify mycotoxin adsorbing agents (minerals, organic, and synthetic) for feed decontamination, focusing on adsorbents with the ability to bind to multiple mycotoxins, which should have a more effective application in farms but they are still little studied in scientific literature.
Collapse
|
50
|
Moore GG, Olarte RA, Horn BW, Elliott JL, Singh R, O'Neal CJ, Carbone I. Global population structure and adaptive evolution of aflatoxin-producing fungi. Ecol Evol 2017; 7:9179-9191. [PMID: 29152206 PMCID: PMC5677503 DOI: 10.1002/ece3.3464] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 07/28/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
Aflatoxins produced by several species in Aspergillus section Flavi are a significant problem in agriculture and a continuous threat to human health. To provide insights into the biology and global population structure of species in section Flavi, a total of 1,304 isolates were sampled across six species (A. flavus, A. parasiticus, A. nomius, A. caelatus, A. tamarii, and A. alliaceus) from single fields in major peanut‐growing regions in Georgia (USA), Australia, Argentina, India, and Benin (Africa). We inferred maximum‐likelihood phylogenies for six loci, both combined and separately, including two aflatoxin cluster regions (aflM/alfN and aflW/aflX) and four noncluster regions (amdS, trpC, mfs and MAT), to examine population structure and history. We also employed principal component and STRUCTURE analysis to identify genetic clusters and their associations with six different categories (geography, species, precipitation, temperature, aflatoxin chemotype profile, and mating type). Overall, seven distinct genetic clusters were inferred, some of which were more strongly structured by G chemotype diversity than geography. Populations of A. flavus S in Benin were genetically distinct from all other section Flavi species for the loci examined, which suggests genetic isolation. Evidence of trans‐speciation within two noncluster regions, whereby A. flavus SBG strains from Australia share haplotypes with either A. flavus or A. parasiticus, was observed. Finally, while clay soil and precipitation may influence species richness in Aspergillus section Flavi, other region‐specific environmental and genetic parameters must also be considered.
Collapse
Affiliation(s)
- Geromy G Moore
- Southern Regional Research Center Agricultural Research Service U.S. Department of Agriculture New Orleans LA USA
| | - Rodrigo A Olarte
- Department of Plant Biology University of Minnesota St. Paul MN USA
| | - Bruce W Horn
- Department of Agriculture Agricultural Research Service National Peanut Research Laboratory Dawson GA USA
| | - Jacalyn L Elliott
- Department of Entomology and Plant Pathology Center for Integrated Fungal Research North Carolina State University Raleigh NC USA
| | - Rakhi Singh
- Department of Entomology and Plant Pathology Center for Integrated Fungal Research North Carolina State University Raleigh NC USA
| | - Carolyn J O'Neal
- Department of Entomology and Plant Pathology Center for Integrated Fungal Research North Carolina State University Raleigh NC USA
| | - Ignazio Carbone
- Department of Entomology and Plant Pathology Center for Integrated Fungal Research North Carolina State University Raleigh NC USA
| |
Collapse
|