1
|
Moazzen M, Shariatifar N, Sohrabvandi S, Mortazavian AM, Khoshtinat K, Khodaei SM, Khanniri E. Determination of Elements by ICP-OES Method in Ice-Cream and Cream Samples: A Risk Assessment Study by Monte Carlo Simulation. Biol Trace Elem Res 2025:10.1007/s12011-025-04578-1. [PMID: 40195256 DOI: 10.1007/s12011-025-04578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/08/2025] [Indexed: 04/09/2025]
Abstract
Since the consumption of dairy products, especially ice cream and cream, is very high in Iran and the world, either directly or indirectly, and no study has been conducted so far on measuring elements in different types of ice cream and cream, the aim of the present study was to investigate levels of 15 elements (Co, Mn, Fe, Cr, Se, Mg, P, Ca, Zn, Hg, Al, Ni, Cd, As, and Pb) by using ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy) technique in the mentioned products along with a health risk assessment by Monte Carlo Simulation. Based on our findings, in all samples, the highest average level of toxic elements was related to Al (29.2 ± 23.9 µg/kg fw or fresh weight), and the lowest mean level of toxic elements was related to Hg (not found). Moreover, the highest average level of essential elements was related to P (8895 ± 4369 µg/kg fw) and the lowest mean level of essential elements was related to Se (0.610 ± 0.150 µg/kg fw). Also, the highest averages of toxic elements in cream was related to As (12.5 µg/kg fw) and in ice cream was related to Al (43.9 µg/kg fw), and the lowest averages were obtained for Hg (not found) in both products. Also, the highest and lowest averages of essential elements in cream were related to P (10641 µg/kg fw) and Se (not found), respectively, and in the ice cream were related to Ca (8135 µg/kg fw) and Se (0.630 µg/kg fw), respectively. In the end, the levels of elements in all ice cream and cream samples were below the standard level. The Monte Carlo method risk assessment reveals that the non-carcinogenic risks from consuming cream and ice cream pose no threat to children or adults (TTHQ < 1.00), but on the contrary, the outcomes of the carcinogenic risk assessment show the TILCR values for both groups exceed acceptable limits, that this indicating a potential risk threat from these products. The principal component analysis (PCA) results revealed the categorization of various toxic and essential elements in all samples. Based on the results obtained, it can be concluded that the consumption of these products is somewhat safe, but more monitoring is needed in the food cycle from farm to fork.
Collapse
Affiliation(s)
- Mojtaba Moazzen
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Mohammad Mortazavian
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Khadijeh Khoshtinat
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Mahsa Khodaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Khanniri
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Vásquez-Domínguez E, Lozano-Bilbao E, Pascual Alayón PJ, Hardisson A, Casañas Machin I, Paz S, Gonález-Weller D, Rubio C, Gutiérrez ÁJ. Temporal variations of metals and trace elements in tuna spines from the canary islands from 1990s to 2000s. Sci Rep 2025; 15:3961. [PMID: 39893218 PMCID: PMC11787311 DOI: 10.1038/s41598-025-87116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
Tuna, due to their position in the food web, serve as excellent biomonitors for assessing the health of marine ecosystems. Analyzing their organs and tissues provides valuable insight into element concentrations, as tuna possess the capacity to bioaccumulate pollutants. In the present study, 12 trace elements and metals (Al, B, Cd, Co, Cr, Cu, Fe, Li, Mo, Ni, Pb, Zn) were analyzed in dorsal fin spines samples of four tuna species: Katsuwonus pelamis, Thunnus albacares, Thunnus obesus and Thunnus thynnus from individuals captured in the surrounding waters of the Canary Islands, between 1990 and 2007. To analyze the data, descriptive statistics and one-way and two-way PERMANOVAs were carried out, with species factor and decade-species as factors, respectively. The highest concentrations were recorded for the elements: Al, Fe, B and Zn, with greater significant differences between species in the concentrations of Cu, and in both decades, in Fe, Pb and Zn. The comparison of the concentrations of elements between decades showed a decrease in them, from the 90s to the 2000s. There is no similar information on the metal content in spines for these species, providing relevant information, which may be of interest to future studies.
Collapse
Affiliation(s)
- Eunice Vásquez-Domínguez
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Tenerife, Spain
| | - Enrique Lozano-Bilbao
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Tenerife, Spain.
| | - Pedro J Pascual Alayón
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía. IEO-CSIC, Pesquera de San Andrés.S/C de Tenerife, Calle Farola del Mar 22, Dársena, 38180, España
| | - Arturo Hardisson
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Tenerife, Spain
| | - Iván Casañas Machin
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía. IEO-CSIC, Pesquera de San Andrés.S/C de Tenerife, Calle Farola del Mar 22, Dársena, 38180, España
| | - Soraya Paz
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Tenerife, Spain
| | - Dailos Gonález-Weller
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Tenerife, Spain
- Laboratorio Central, Servicio Público Canario de Salud, Santa Cruz de Tenerife, Spain
| | - Carmen Rubio
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Tenerife, Spain
| | - Ángel J Gutiérrez
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Tenerife, Spain.
| |
Collapse
|
3
|
Lozano-Bilbao E, Hardisson A, González-Weller D, Paz S, Rubio C, Gutiérrez ÁJ. Metal variability of the shrimp Palaemon elegans across coastal zones: anthropogenic and geological impacts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59882-59893. [PMID: 39361200 DOI: 10.1007/s11356-024-35207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/28/2024] [Indexed: 10/29/2024]
Abstract
This study focused on 120 specimens of the shrimp Palaemon elegans collected in intertidal zones in eight selected areas. This study aimed to assess the suitability of P. elegans as a bioindicator of natural and anthropogenic marine pollution. Metal concentrations of aluminum (Al), cadmium (Cd), copper (Cu), iron (Fe), lead (Pb), and zinc (Zn) were measured in shrimp collected from various sites in the Canary Islands, including areas affected by volcanic activity, industrial activity, and control zones. The determination of metal concentrations was conducted using inductively coupled plasma optical emission spectrophotometry (ICP-OES). The results showed significant differences in metal concentrations across the studied sites, with the highest levels of Al, Cu, Fe, Pb, and Zn observed in areas impacted by the Tajogaite volcanic eruption and harbor activity. Sites near old landfills and sewage pipes also exhibited elevated levels of Cd, Cu, and Pb, indicating strong anthropogenic influence. Al was found in the highest concentration in Harbour, reaching 25.7 ± 6.2 mg/kg, while the lowest concentration was observed in Control Lp at 11.5 ± 0.69 mg/kg. Conversely, lower metal concentrations were detected in control zones and areas with high dinoflagellate presence, suggesting a potential role of bioremediation by marine phytoplankton. The ability of P. elegans to accumulate metals in its tissues, particularly in areas of high pollution, highlights its potential as a bioindicator species. This study underscores the importance of P. elegans in monitoring marine pollution and provides insights into the environmental impact of both natural and human-induced contamination on coastal ecosystems.
Collapse
Affiliation(s)
- Enrique Lozano-Bilbao
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain.
- Grupo de Investigación en Ecología Marina Aplicada y Pesquerías (EMAP), Instituto de Investigación de Estudios Ambientales y Recursos Naturales (I-UNAT), Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017, Las Palmas de Gran Canaria, Las Palmas, Spain.
| | - Arturo Hardisson
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
| | - Dailos González-Weller
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
- Servicio Público Canario de Salud, Laboratorio Central. Santa Cruz de Tenerife, 38006, Santa Cruz de Tenerife, Spain
| | - Soraya Paz
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
| | - Carmen Rubio
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
| | - Ángel J Gutiérrez
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071, Santa Cruz de Tenerife, Spain
| |
Collapse
|
4
|
Mortazavi MS, Sharifian S, Nozar SLM, Koohkan H, Dehghani R. Introducing bio-indicator fish of the Persian Gulf based on health risk assessment of 27 commercial species. J Trace Elem Med Biol 2024; 83:127373. [PMID: 38176317 DOI: 10.1016/j.jtemb.2023.127373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND The increasing consumption of seafood may bring health risks. It will be especially important for the people living along the coasts who are highly dependent on seafood for food and income. METHODS In this research, a comprehensive health risk assessment was performed on 27 species of high-consumption commercial fish sampled from stations located in Hormozgan province within the Northeast Persian Gulf. Concentrations of trace metals and their health risk were investigated. RESULTS Spatial distribution of trace metals in commercial fish showed central stations including Kong and Greater Tonb have higher concentrations of all trace metals except Pb. Some metals showed a significant correlation between concentrations. Our finding indicated the average concentration of all trace metals except Ni in all species was below the concentrations proposed by WHO/FAO/USEPA. EDI for all metals in all species in both adult and child age groups was lower than its RfD (oral reference dose of trace metal) showing the daily consumption of these fish does not pose any health risk and implicates seafood consumption guidelines or policies. Values of THQ for each metal and HI for all metals were lower than 1 in all commercial fish indicating the lack of non-cancerous health risk through the long-term consumption of these fish. The research found potential health risks associated with the consumption of these fish, specifically related to the metals Cr, Ni, and Cd. CONCLUSION In total, health risk indices proposed eight fish as bio-indicator species of the Persian Gulf. The findings emphasize the risk management of commercial fish consumption, especially bio-indicator species, in Hormozgan province, the Northeast Persian Gulf.
Collapse
Affiliation(s)
- Mohammad Seddiq Mortazavi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran.
| | - Sana Sharifian
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| | - Seyedeh Laili Mohebbi Nozar
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| | - Hadi Koohkan
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| | - Reza Dehghani
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| |
Collapse
|
5
|
Taghavi M, Shadboorestan A, Kalankesh LR, Mohammadi-Bardbori A, Ghaffari HR, Safa O, Farshidfar G, Omidi M. Health risk assessment of heavy metal toxicity in the aquatic environment of the Persian Gulf. MARINE POLLUTION BULLETIN 2024; 202:116360. [PMID: 38636344 DOI: 10.1016/j.marpolbul.2024.116360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
This study aims to explore the potential health risks linked to four heavy metals/metalloids (Pb, Cd, As, Hg) present in four commercially important fish species (Scombromorus commerson, Pseudorhombus elevatus, Thunnus tonggol and Otolithes ruber) in the Persian Gulf. Metals in fish muscle tissue were analyzed via ICP-MS. The analysis revealed that Scombromorus commerson (except for Pb) and Thunnus tonggol (except for As) exhibited the highest and lowest contamination levels, respectively. The Hazard Index findings highlighted arsenic and mercury as the most hazardous elements. However, the Target Hazard Quotient values for each metal and fish species remained within safe thresholds. The highest and lowest Total Carcinogenic Risk was concerning Pseudorhombus elevates (As: 7.41-E05), and Thunnus thonggol (Pb: 3.21-E07), respectively. TCR analysis suggests that the cancer risk of studied metals was below the negligible level (TCR < 10-6) or within the acceptable level (10-6 < TCR < 10-4), potentially not posing carcinogenic risks through extended consumption.
Collapse
Affiliation(s)
- Mahmoud Taghavi
- Department of Environmental Health Engineering, School of Health, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Laleh R Kalankesh
- Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Reza Ghaffari
- Department of Environmental Health, School of Health, Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Omid Safa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Gholamreza Farshidfar
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmoud Omidi
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
6
|
Monjezi SD, Bakhtiyari AR, Alavi-Yeganeh MS. Sourcing aliphatic and polycyclic aromatic hydrocarbons (PAHs) in Jinga shrimp (Metapenaeus affinis) muscle tissues and surface sediments (study case: Northwest Persian Gulf). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28644-28657. [PMID: 38558344 DOI: 10.1007/s11356-024-32738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
This study addresses the sources of aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of the northwestern Persian Gulf and the muscle tissues of Jinga shrimp (Metapenaeus affinis), a commercially important aquatic species. In November 2018, 28 Jinga shrimp samples were systematically collected from four key fishing areas in Behrgan and Khormusi: Imam Khomeini Port (S1), Mahshahr Port (S2), Sejafi (S3), and Behrgan Wharf (S4). Additionally, sediment samples were collected from these locations, and AHs and PAHs concentrations were analyzed using gas chromatography-mass spectrometry (GC-MS). The average aliphatic concentration in Jinga shrimp was 4800.32 (μg g-1 DW), exceeding the sediment samples' 2496.69 (μg g-1 DW) estimate. Hydrocarbon component analysis revealed EPA priority list (PAH-16) and measured PAHs (PAH-29) concentrations in Jinga shrimp ranging from 1095.8 to 2698.3 (ng g-1 DW) and in sediments from 653.6 to 1019.5 (ng g-1 DW). Elevated AHs and PAHs in Jinga shrimp, compared to sediments, suggest a petrogenic source, notably at station S4 near Behrgansar and Nowruz oil fields. Low molecular weight (LMW) compounds dominated in both shrimp and sediment PAHs. Aliphatic composition profiles in shrimps closely mirrored sediment profiles, illustrating an even-to-odd carbon dominance gradient. Diagnostic ratio examinations of hydrocarbons indicated pervasive petroleum derivatives in the environment. This study establishes a direct correlation between hydrocarbon concentrations in shrimp and sediment samples and the corresponding aliphatic groups, PAH-16, and PAH-29. The findings underscore the potential of Jinga shrimp as a reliable indicator of hydrocarbon pollution in the northwestern Persian Gulf.
Collapse
Affiliation(s)
- Shaghayegh Davodi Monjezi
- Department of Environmental Science, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Noor, Iran
| | - Alireaza Riyahi Bakhtiyari
- Department of Environmental Science, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Noor, Iran.
| | - Mohammad Sadegh Alavi-Yeganeh
- Department of Marine Biology, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Noor, Iran
| |
Collapse
|
7
|
Mahmudiono T, Esfandiari Z, Zare A, Sarkhoshkalat M, Mehri F, Fakhri Y. Concentration of potentially toxic elements in fillet shrimps of Mediterranean Sea: Systematic review, meta-analysis and health risk assessment. Food Chem X 2024; 21:101206. [PMID: 38379801 PMCID: PMC10876684 DOI: 10.1016/j.fochx.2024.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024] Open
Abstract
In this study, an attempt was made to meta-analyzed the concentration of potentially toxic elements (PTEs) in shrimps tissue of Mediterranean Sea and health risk of consumers was estimated. Search was conducted in international databases includes Scopus, PubMed, Embase, Science Direct and Web of Science from 1 January 2010 to 20 July 2023. The random effects model used to meta-analysis of concentration of PTEs in shrimp in subgroups. In addition, non-carcinogenic and carcinogenic risks for adults and children were calculated using target hazard quotient (THQ) and cancer risk (CR). Meta-analysis concentration of PTEs in shrimps was conducted using random effects model based on country subgroups. The rank order of PTEs based on mean (pooled) level in fillet of shrimps was Fe (15.395 mg/kg-ww) > Zn (10.428 mg/kg-ww) > Cu (6.941 mg/kg-ww) Pb (5.7 mg/kg-ww) > Ni (1.115 mg/kg-ww) > As (0.681 mg/kg-ww) > Cd (0.412 mg/kg-ww) > Hg (0.300 mg/kg-ww). THQ level in adults and children due to Cd and Pb in Italy was higher than 1 value. THQ level in adults and children due to Cu, Ni, Fe, Zn and inorganic As was lower than 1 value. CR due to inorganic As in Greece and Türkiye for adults and children was higher than 1E-6 value. Therefore, it was recommended to continuously monitor and reduce the concentration of PTEs in shrimps in Italy, Greece and Türkiye, especially.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Zahra Esfandiari
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Zare
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
8
|
Nyero A, Achaye I, Upoki Anywar G, Malinga GM. Inorganic nutrients and heavy metals in some wild edible plants consumed by rural communities in Northern Uganda: Implications for human health. Heliyon 2023; 9:e18999. [PMID: 37636347 PMCID: PMC10447991 DOI: 10.1016/j.heliyon.2023.e18999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
For centuries, wild edible plant species have sustained local communities across Africa by supplementing households' diets in seasons of food shortage. Wild edible plants contain inorganic nutrients, which are essential for the proper functioning of organisms. However, their nutritional contents have not been well researched and are generally poorly understood. This study aimed to quantify the levels of inorganic micro-and macronutrients as well as heavy metals (Mg, Ca, K, Fe, Zn, Cd, Hg and Pb) in selected wild edible plants traditionally consumed among the Acholi communities in northern Uganda, and associated health risks of consuming them. The leaves and young stems of 12 wild edible plants, viz: Acalypha rhomboidea, Asystacia gangetica, Crassocephalum sacrobasis, Crotalaria ochroleuca, Heterotis rotundifolia, Hibiscus cannabinus, Hibiscus sp., Hibiscus surattensis, Ipomoea eriocarpa, Maerua angolensis, Senna obtusifolia and Vigna membranacea were air-dried and crushed to powder. The powders were then macerated using aqua regia solution and analyzed in triplicates using the Atomic Absorption Spectrophotometry (AAS). The target hazard quotient (THQ) of Pb was calculated for non-carcinogenic health risks. Mg, Ca, K, Fe, Zn and Pb were detectable in all the wild edible plants sampled. All inorganic nutrients (mg/100gdw), were below the Recommended Daily Allowance (RDA); Mg (9.4 ± 0.19 to 10.4 ± 0.15), Ca (119 ± 5.82 to 1265 ± 14.9), Fe (3.29 ± 0.02 to 11.2 ± 0.09), Zn (0.52 ± 0.02 to 2.36 ± 0.03). Hg and Cd were below detectable limits in all the samples tested. The content of Pb (0.69 ± 0.11 to1.22 ± 0.07) was higher than the CODEX and EU limits of 0.1 ppm (0.001 mg/g) but was below the recommended threshold of 1. The health risk assessment revealed no potential hazards both in children and adults. However, there is a need to study the bioavailability of Pb when the vegetables are consumed due to factors such as indigestion and antinutritional compounds.
Collapse
Affiliation(s)
- Alfred Nyero
- Department of Chemistry, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Innocent Achaye
- Department of Chemistry, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Godwin Upoki Anywar
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | | |
Collapse
|
9
|
Panda BP, Mohanta YK, Parida SP, Pradhan A, Mohanta TK, Patowary K, Wan Mahari WA, Lam SS, Ghfar AA, Guerriero G, Verma M, Sarma H. Metal pollution in freshwater fish: A key indicator of contamination and carcinogenic risk to public health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121796. [PMID: 37169242 DOI: 10.1016/j.envpol.2023.121796] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Metals are micropollutants that cannot be degraded by microorganisms and are infiltrated into various environmental media, including both freshwater and marine water. Metals from polluted water are absorbed by many aquatic species, especially fish. Fish is a staple food in the diets of many regions in the world; hence, both the type and concentration of metals accumulated and transferred from contaminated water sources to fish must be determined and assessed. In this study, the heavy metal concentration was determined and assessed in fish collected from freshwater sources via published literature and Estimated of Daily Intake (EDI), Target hazard quotient (THQ), and Carcinogenic Risk (CR) analyses, aiming to examine the metal pollution in freshwater fish. The fish was used as a bioindicator, and Geographic information system (GIS)was sued to map the polluted regions. The results confirmed that Pb was detected in fish sampled at 28 locations, Cr at 24 locations, Cu and Zn at 30 locations, with values Pb detected ranging from 0.0016 mg kg-1 to 44.3 mg kg-1, Cr detected ranging from 0.07 mg kg-1 to 27 mg kg-1, Cu detected ranging from 0.031 mg kg-1 to 35.54 mg kg-1, and Zn detected ranging from 0.242 mg kg-1 to 103.2 mg kg-1. The strongest positive associations were discovered between Cu-Zn (r = 0.74, p < 0.05) and Cr-Zn (r = 0.57, p < 0.05). Spatial distribution maps depicting the consumption of fish as food and its corresponding Pb and Cr intake revealed a higher incidence of both carcinogenic and non-carcinogenic health concerns attributed to Pb and Cr in the region with populations consuming the fish.
Collapse
Affiliation(s)
- Bibhu Prasad Panda
- Salim Ali Centre for Ornithology and Natural History, Coimbatore, 641108, Tamil Nadu, India; Environmental Sciences, Department of Chemistry and BBRC, ITER, Siksha' O' Anusandhan (Deemed to Be University), Bhubaneswar, 751030, Odisha, India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi, 793101, Meghalaya, India
| | - Siba Prasad Parida
- Dept. of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Abanti Pradhan
- Environmental Sciences, Department of Chemistry and BBRC, ITER, Siksha' O' Anusandhan (Deemed to Be University), Bhubaneswar, 751030, Odisha, India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Kaustuvmani Patowary
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi, 793101, Meghalaya, India
| | - Wan Adibah Wan Mahari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Giulia Guerriero
- Department of Biology, Federico II University of Naples, Via Cinthia 26, 80126, Napoli, Italy
| | - Meenakshi Verma
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Hemen Sarma
- Bioremediation Technology Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar, (BTR), Assam, 783370, India.
| |
Collapse
|
10
|
Boudebbouz A, Boudalia S, Bousbia A, Gueroui Y, Boussadia MI, Chelaghmia ML, Zebsa R, Affoune AM, Symeon GK. Determination of Heavy Metal Levels and Health Risk Assessment of Raw Cow Milk in Guelma Region, Algeria. Biol Trace Elem Res 2023; 201:1704-1716. [PMID: 35666385 DOI: 10.1007/s12011-022-03308-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
During the recent decades, adverse effects of unexpected contaminants, such as heavy metals on raw cow milk quality, have threatened human health. The objective of this study was to determine heavy metal levels in raw milk collected from autochthonous bovine breeds in the eastern region of Algeria. Eighty-eight pooled milk samples were analyzed using atomic absorption spectrometry for Pb, Cd, Cr, Cu, Ni, Fe, and Zn, and dietary risks were estimated for infants, children, and adults with minimum, average, and maximum milk consumption scenarios. Results revealed that Pb (0.94 ± 0.49 mg/kg), Cd (0.03 ± 0.01 mg/kg), and Cu (0.14 ± 0.08 mg/kg) levels in all analyzed samples were higher than their corresponding maximum residue levels (MRLs). The task hazard quotient (THQ) values suggest potential risk for infants in the three scenarios from Pb, Cd, and Cr; for children in the three scenarios from Pb and in the high scenario from Cr; and for adults in the medium and high scenarios from Pb. The hazard index (HI) values were higher than 1, and the contributions of each metal to the overall HI followed a descending order of Pb, Cr, Cd, Ni, Zn, Cu, and Fe with values of 68.19%, 15.39%, 6.91%, 4.94%, 3.42%, 0.88%, and 0.28%, respectively. Our results indicated that there may be a potential risk of heavy metals, especially Pb, for infants through raw cow milk consumption. Moreover, data actualization and continuous monitoring are necessary and recommended to evaluate heavy metal effects in future studies.
Collapse
Affiliation(s)
- Ali Boudebbouz
- Laboratoire de Biologie, Eau Et Environnement, Département d'Écologie Et Génie de L'Environnement, Université 8 Mai 1945 Guelma, BP 4010, Guelma, 24000, Algérie
| | - Sofiane Boudalia
- Laboratoire de Biologie, Eau Et Environnement, Département d'Écologie Et Génie de L'Environnement, Université 8 Mai 1945 Guelma, BP 4010, Guelma, 24000, Algérie.
| | - Aissam Bousbia
- Laboratoire de Biologie, Eau Et Environnement, Département d'Écologie Et Génie de L'Environnement, Université 8 Mai 1945 Guelma, BP 4010, Guelma, 24000, Algérie
| | - Yassine Gueroui
- Département de Biologie, Université 8 Mai 1945 Guelma, BP 4010, Guelma, 24000, Algérie
| | - Meriem Imen Boussadia
- Département de Biologie, Université 8 Mai 1945 Guelma, BP 4010, Guelma, 24000, Algérie
| | - Mohamed Lyamine Chelaghmia
- Laboratoire d'Analyses Industrielles Et Génie Des Matériaux, Université 8 Mai 1945 Guelma, BP 4010, Guelma, 24000, Algérie
| | - Rabah Zebsa
- Laboratoire de Biologie, Eau Et Environnement, Département d'Écologie Et Génie de L'Environnement, Université 8 Mai 1945 Guelma, BP 4010, Guelma, 24000, Algérie
| | - Abed Mohamed Affoune
- Laboratoire d'Analyses Industrielles Et Génie Des Matériaux, Université 8 Mai 1945 Guelma, BP 4010, Guelma, 24000, Algérie
| | - George K Symeon
- Research Institute of Animal Science, HAO-Demeter, 58100, Giannitsa, GR, Greece
| |
Collapse
|
11
|
Aski MAH, Ghobadi S, Sari AA, Ardeshir RA, Arabi MHG, Manouchehri H. Health risk assessment of heavy metals (Zn, Pb, Cd, and Hg) in water and muscle tissue of farmed carp species in North Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32464-32472. [PMID: 36462077 DOI: 10.1007/s11356-022-24043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
This cross-sectional study was conducted to determine and compare the concentrations of heavy metals (Zn, Pb, Cd, and Hg) in carp-farming water and muscle of various carp species including common carp (Cyprinus carpio), bighead carp (Hypophthalmichthys nobilis), silver carp (Hypophthalmichthys molitrix), and grass carp (Ctenopharyngodon idella) collected from three major warm-water fish farms in Mazandaran Province (Iran) during March 2018 to March 2019. In addition, bioaccumulation of heavy metals (BCFs) and carcinogenic and non-carcinogenic risk assessments of consumers exposed to heavy metals through fish consumption were estimated. The water concentration of all metals in this study was lower than permissible limits. The concentration of Zn in the water (10.21-17.11 μg L-1) was higher than that of other metals in all sites, followed by Pb > Cd > Hg. In fish muscle, Zn concentration in silver carp was the highest, and the lowest concentrations were related to Hg and Cd in common carp and grass carp, respectively. The target hazard quotients (THQ) indicated that the non-carcinogenic health risk to humans was relatively low by consuming four farmed carp species products. The carcinogenic risk of inorganic Pb was 1.24E-04 (common carp) to 2.11E-04 (grass carp) for adults, which is within the acceptable range. The values of BCFs for all metals demonstrated that farmed carp muscle could not be considered a bioaccumulative tissue for heavy metals. The results indicated that the concentrations of heavy metals in the farmed carp species in North Iran were relatively low and did not cause considerable human health risks.
Collapse
Affiliation(s)
| | - Shayan Ghobadi
- Department of Fisheries, Islamic Azad University, Babol Branch, Babol, Iran
| | | | - Rashid Alijani Ardeshir
- Marine Biotechnology Department, College of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | | | - Hamed Manouchehri
- Department of Fisheries, Islamic Azad University, Babol Branch, Babol, Iran
| |
Collapse
|
12
|
Öğretmen ÖY. Investigation of Antibiotic Residue, Nitrofuran Compounds, Microbial Properties and Heavy Metal Amount in Rainbow Trout ( Oncorhynchus mykiss). JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2023. [DOI: 10.1080/10498850.2023.2179906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Özen Yusuf Öğretmen
- Faculty of Fisheries, Department of Seafood Processing Technology, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
13
|
Saleem M, Sens DA, Somji S, Pierce D, Wang Y, Leopold A, Haque ME, Garrett SH. Contamination Assessment and Potential Human Health Risks of Heavy Metals in Urban Soils from Grand Forks, North Dakota, USA. TOXICS 2023; 11:132. [PMID: 36851006 PMCID: PMC9958806 DOI: 10.3390/toxics11020132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal (HM) pollution of soil is an increasingly serious problem worldwide. The current study assessed the metal levels and ecological and human health risk associated with HMs in Grand Forks urban soils. A total 40 composite surface soil samples were investigated for Mn, Fe, Co, Ni, Cu, Zn, As, Pb, Hg, Cr, Cd and Tl using microwave-assisted HNO3-HCl acid digestion and inductively coupled plasma mass spectrometry (ICP-MS) analysis. The enrichment factor (EF), contamination factor (CF), geoaccumulation index (Igeo), ecological risk and potential ecological risk index were used for ecological risk assessment. The park soils revealed the following decreasing trend for metal levels: Fe > Mn > Zn > Cr > Ni > Cu > Pb > As > Co > Cd > Tl > Hg. Based on mean levels, all the studied HMs except As and Cr were lower than guideline limits set by international agencies. Principal component analysis (PCA) indicated that Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Pb, Cr and Tl may originate from natural sources, while Hg, Pb, As and Cd may come from anthropogenic/mixed sources. The Igeo results showed that the soil was moderately polluted by As and Cd and, based on EF results, As and Cd exhibited significant enrichment. The contamination factor analysis revealed that Zn and Pb showed moderate contamination, Hg exhibited low to moderate contamination and As and Cd showed high contamination in the soil. Comparatively higher risk was noted for children over adults and, overall, As was the major contributor (>50%), followed by Cr (>13%), in the non-carcinogenic risk assessment. Carcinogenic risk assessment revealed that As and Cr pose significant risks to the populations associated with this urban soil. Lastly, this study showed that the soil was moderately contaminated by As, Cd, Pb and Hg and should be regularly monitored for metal contamination.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - David Pierce
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | - Yuqiang Wang
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | - August Leopold
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | - Mohammad Ehsanul Haque
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
14
|
Nyarko E, Boateng CM, Asamoah O, Edusei MO, Mahu E. Potential human health risks associated with ingestion of heavy metals through fish consumption in the Gulf of Guinea. Toxicol Rep 2023; 10:117-123. [PMID: 36698915 PMCID: PMC9869475 DOI: 10.1016/j.toxrep.2023.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Heavy metal pollution of the marine environment has toxic implications for both the aquatic biota and human health. We examined the levels of Zinc (Zn), Lead (Pb), Copper (Cu), Cadmium (Cd), Arsenic (As) and Mercury (Hg) in muscles of Sardinella maderensis, Dentex angolensis, Sphyraena sphyraena and Penaeus notialis caught from the coastal waters of Ghana using inductively coupled plasma mass spectrometry method. Penaeus notialis recorded the highest concentrations of all the metals (Cu:12.08 ± 1.46 µg/g, Zn: 19.20 ± 2.27 µg/g, As: 8.46 ± 2.42 µg/g, and Cd: 0.03 ± 0.01 µg/g) except Hg. Mercury was relatively high in D. angolensis (0.14 ± 0.03 µg/g). Apart from As, all metals were within globally permissible daily limits for consumption by human per meal. The estimated Target Hazard Quotient due to the intake of Hg through D. angolensis consumption exceeded the threshold value across all age categories. Carcinogenic risks due to As intake through P. notialis consumption far exceeded the 10-6 threshold for all age groups in Ghana. It is recommended that the consumption of these fish species particularly, the shrimp P. notialis be done cautiously to avoid possible future health challenges.
Collapse
Affiliation(s)
| | - Charles Mario Boateng
- Department of Marine and Fisheries Sciences, University of Ghana, Legon, Ghana,Corresponding author.
| | - Obed Asamoah
- Department of Marine and Fisheries Sciences, University of Ghana, Legon, Ghana
| | - Maurice Oti Edusei
- Department of Marine and Fisheries Sciences, University of Ghana, Legon, Ghana
| | - Edem Mahu
- Department of Marine and Fisheries Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
15
|
Ali AS, Bayih AA, Gari SR. Meta-analysis of public health risks of lead accumulation in wastewater, irrigated soil, and crops nexus. Front Public Health 2022; 10:977721. [PMID: 36330130 PMCID: PMC9623109 DOI: 10.3389/fpubh.2022.977721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/21/2022] [Indexed: 01/25/2023] Open
Abstract
Lead (Pb) from different sources accumulate in the irrigation water, irrigated soil and in different parts of plants. Reports show contradictory findings and high variability of lead accumulation and associated public health risks. We hypothesized that lead accumulation in irrigation water, soil and edible plants is high enough to be a public health risk. By using the standard procedures for meta-analysis, 24 studies were qualified. The studies included in the meta-analysis are concentrated in few countries with strong authors' key words co-occurrence relationship. The mean concentration of Pb in the irrigation wastewater ranged from 0.0196 ± 0.01 mg/l to 52.4 ± 0.02 mg/l in wastewater and about 50% of the values are beyond the limits for irrigation water standard. The study also showed that the concentration of Pb in the irrigated soil vary significantly from a minimum of 0.04 ± 2.3 mg/l in Ethiopia to a maximum of 441 ± 19.8 mg/l in Iran (P < 0.01). Based on effect size analysis, the weight of the studies ranged from 0.1 to 5.4% indicating that the studies' contribution to the overall effect is barely different. The heterogeneity test statistics also indicates considerable variability between the studies (I2 = 98%, P-value < 0.001). The subgroup analysis showed large between-studies heterogeneity in both groups (Tau2 = 28.64; T2 = 98%). A total of 44 crops were studied, of which 38 were leafy and non-leafy vegetables. Most popular crops including spinach, cabbage and lettuce are most frequently studied crops. In all crops, the Pb level in crops produced by using untreated wastewater are beyond the WHO limit for edibility. In all of the studies, the pollution load index (PLI) and soil accumulation factor (SAF) is much higher indicating that there is a buildup of Pb concentration in wastewater irrigated soil. The plant concentration factor (PCF) calculated shows the high Pb accumulation potential of the edible parts of the crops. The health risk index (HRI) calculated shows that in all of the studied crops from India, Iraq, Morocco and Egypt are much higher than one indicating the high health risk of consumption.
Collapse
Affiliation(s)
- Adane Sirage Ali
- Department of Urban Environmental Management, Kotebe University of Education, Addis Ababa, Ethiopia,Department of Water and Public Health, Institute of Ethiopian Water Resources, Addis Ababa University, Addis Ababa, Ethiopia,*Correspondence: Adane Sirage Ali
| | - Argaw Ambelu Bayih
- Department of Water and Public Health, Institute of Ethiopian Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sirak Robele Gari
- Department of Water and Public Health, Institute of Ethiopian Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
16
|
Kumar D, Yadav GP, Dalbhagat CG, Mishra HN. Effects of Cold Plasma on Food Poisoning Microbes and Food Contaminants including Toxins and Allergens: A Review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Devesh Kumar
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Gorenand Prasad Yadav
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Chandrakant Genu Dalbhagat
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| |
Collapse
|
17
|
Sharifian S, Mortazavi MS, Nozar SLM. Health risk assessment of commercial fish and shrimp from the North Persian Gulf. J Trace Elem Med Biol 2022; 72:127000. [PMID: 35605439 DOI: 10.1016/j.jtemb.2022.127000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Bioaccumulation of trace metals in the food web demands continuous monitoring of seafood safety. Here, the food safety of commercial fish bluespot mullet Crenimugil seheli, deep flounder Pseudorhombus elevates, and Jinga shrimp Metapenaeus affinis was assessed from commercial and industrial region of the West Bandar Abbas, the North Persian Gulf, for the first time. METHODS For this purpose, concentrations of trace metals Ni, Zn, Cu, Cr, Cd, and Pb, and their health risks were investigated. RESULTS Results showed the average concentration of all trace metals in all species was below concentrations proposed by WHO/FAO/USEPA. The finding on risk assessment of three species indicated three species are safe for daily consumption. Long-term consumption of three species would not pose potential non-carcinogenic health risk. However, it would result in carcinogenic effects from the ingestion of trace metals Ni, Cr, and Cd. CONCLUSIONS The data emphasizes the need for the continuous monitoring in this industrial region in the future to manage and control pollutant sources and to ensure the quality of seafood.
Collapse
Affiliation(s)
- Sana Sharifian
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| | - Mohammad Seddiq Mortazavi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran.
| | - Seyedeh Laili Mohebbi Nozar
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| |
Collapse
|
18
|
Recent Advances in Cold Plasma Technology for Food Processing. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Sharifian S, Taherizadeh MR, Dehghani M, Nabavi M. Food safety of the green tiger shrimp Penaeus semisulcatus from the Persian Gulf. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23861-23870. [PMID: 34817819 DOI: 10.1007/s11356-021-17620-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Seafood is a rich source of essential compounds for human health, but the consumption of aquatic products that are exposed to environmental pollutants, especially trace metals, comes with risk. Therefore, in this study, the levels of nickel, zinc, and lead in the muscle of shrimp Penaeus semisulcatus caught from the north of the Persian Gulf as a polluted environment were measured, and the health risks were assessed. The results showed that the level of Zn (300.88 ± 2.76 µg/g) in the muscle of shrimp was higher than Ni (6.82 ± 0.10) and Pb (1.10 ± 0.09 µg/g), and the amount of accumulation of all three metals is higher than the allowable limit proposed by the FAO/WHO. According to values of estimated daily intake (EDI) and target hazard quotient (THQ), the consumption of shrimp has no or minimal risk for health. However, the target cancer risk (TR) of Ni (adult, 0.00294; child, 0.00196) indicated that Ni accumulation is associated with carcinogenic risks. These findings may be helpful in the proper management of seafood quality and public health in the Persian Gulf.
Collapse
Affiliation(s)
- Sana Sharifian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | - Mohammad Reza Taherizadeh
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Mohsen Dehghani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Moein Nabavi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| |
Collapse
|
20
|
Bineshpour M, Payandeh K, Nazarpour A, Sabzalipour S. Status, source, human health risk assessment of potential toxic elements (PTEs), and Pb isotope characteristics in urban surface soil, case study: Arak city, Iran. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4939-4958. [PMID: 33210156 DOI: 10.1007/s10653-020-00778-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/04/2020] [Indexed: 05/06/2023]
Abstract
The current study was conducted to assess the level of potentially toxic elements (PTEs) contamination (Cu, Pb, Zn, Cr, As, Cd, and Ni) in surface soils from Arak city. Arak, which is an industrial city, is a prominent center of chemicals, metal/electric, manufacturing factories, and other industries. Forty-three surface soil samples were collected from 0-20 cm after removing the visible surface contamination in the dry season in June 2017. Metal concentrations were found highly variable, ranging from 174-3950 mg/kg for Cu, 181-3740 mg/kg for Pb, 48-186 mg/kg for Zn, 105-1721 mg/kg for Ni, 0.8-0.9 mg/kg for As, 114-1624 mg/kg for Cr, and 3.45-12.36 mg/kg for Cd. The results of geochemical fraction indicated that the main components of Pb, Cr, and Zn at most of the sampling sites are Fe-Mn bound/reducible. Meanwhile, the residual fraction is the dominant fraction of sequence extraction for Ni, Cu, and Cd. Higher values of reducible bound for Pb, Cr, and Zn, as well as a considerable percentage of Ni, Cu, and Cd, imply that the main source of the studied PTEs (except As) in the study area is both anthropogenic and geogenic inputs. The results of principal component analysis (PCA), correlation analysis, enrichment factor (EF), enrichment index (EI), and top enrichment factor (TEF) confirm that Pb, Ni, Cu, Cr, Cd, and Zn had a similar anthropogenic source which is confirmed by geochemical fractionation analysis. Carcinogenic risks (CR) of studied PTEs were estimated to be higher than the target limit of 1.0E-06, for adults and children except for Cr with values of 5.91E-04, and 3.81E-04 for children and adults, respectively. Higher CR values of Cr compared to other PTEs in Arak surface soil demonstrate that living target populations, including children and adults, particularly children, are more at risk of carcinogenic risks of PTEs. 206Pb/207Pb ratios of the collected samples indicated that Pb in Arak surface sample was derived from industrial inputs and deposition, as well as re-suspension vehicle exhaust emission from previously leaded gasoline. The findings concerning the applied end-member contribution of geogenic and industrial and vehicle emission represented that the contribution could vary from 68.0% to 15% (mean: 39.3) for industrial emission, 65% to 19% for vehicle exhaust (mean: 39), and 46% to 10% (mean: 21.6) for geogenic sources.
Collapse
Affiliation(s)
- Meghdad Bineshpour
- Department of Environmental Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Khoshnaz Payandeh
- Department of Soil Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Ahad Nazarpour
- Department of Environmental Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
- Department of Geology, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
| | - Sima Sabzalipour
- Department of Environmental Sciences, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|
21
|
Sheikhzadeh H, Hamidian AH. Bioaccumulation of heavy metals in fish species of Iran: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3749-3869. [PMID: 33818681 DOI: 10.1007/s10653-021-00883-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Accumulation of heavy metals (HMs) in fish tissues is an important factor in monitoring the health and safety of aquatic ecosystems. Furthermore, fish are important parts of aquatic food chains and play a significant role in human health. Considering the significant role of fish in the diet of humans and their ability to transfer and biomagnify HMs, it is necessary to determine and study these contaminants in fish tissues, especially in the edible parts of the fish. In addition to the other ecological and economic services of aquatic ecosystems, water bodies, especially the Persian Gulf in the south and the Caspian Sea in the north of Iran, are the main sources of seafood for people in nearby areas, as well as people living farther away who have gained access to seafood due to the extensive trade of aquatic organisms. This study provides an overview of the health conditions of the aquatic ecosystems in Iran by monitoring HM bioaccumulation in fish species. For this purpose, we reviewed, summarized, and evaluated papers published on HM concentrations in fish species from different aquatic ecosystems, including the Persian Gulf, the Caspian Sea, wetlands, rivers, qanats, water reservoirs, lakes, and dams, with emphasis on species habitats, feeding habits, and target organs in accumulation of HMs. Generally, the highest concentrations of HMs were observed in fishes collected from the Persian Gulf, followed by species from the Caspian Sea. Species inhabiting the lower zone of the water column and carnivorous and/or omnivorous species showed the highest levels of HMs. Moreover, liver was the main accumulator organ for HMs.
Collapse
Affiliation(s)
- Hassan Sheikhzadeh
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box: 4314, 31587-77878, Karaj, Iran
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box: 4314, 31587-77878, Karaj, Iran.
| |
Collapse
|
22
|
Thai VN, Dehbandi R, Fakhri Y, Sarafraz M, Nematolahi A, Dehghani SS, Gholizadeh A, Mousavi Khaneghah A. Potentially Toxic Elements (PTEs) in the Fillet of Narrow-Barred Spanish Mackerel (Scomberomorus commerson): a Global Systematic Review, Meta-analysis and Risk Assessment. Biol Trace Elem Res 2021; 199:3497-3509. [PMID: 33180263 DOI: 10.1007/s12011-020-02476-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
The contamination of seafood like narrow-barred Spanish mackerel (Scomberomorus commerson) fillets by potentially toxic elements (PTEs) has converted to worldwide health concerns. In this regard, the related citations regarding the concentration of PTEs in fillets of narrow-barred Spanish mackerel were collected through some of the international databases such as Scopus, Cochrane, PubMed, and Scientific Information Database (SID) up to 10 March 2020. The concentration of PTEs in fillets of narrow-barred Spanish mackerel fish was meta-analyzed and the health risk (non-carcinogenic risk) was estimated by the total target hazard quotient (TTHQ). The meta-analysis of data indicated that the rank order of PTEs in fillet of narrow-barred Spanish mackerel was Fe (10,853.29 μg/kg-ww) > Zn (4007.00 μg/kg-ww) > Cu (1005.66 μg/kg-ww) > total Cr (544.14 μg/kg-ww) > Mn (515.93 μg/kg-ww) > Ni (409.90 μg/kg-ww) > Pb (180.99 μg/kg-ww) > As (93.11 μg/kg-ww) > methyl Hg (66.60 μg/kg-ww) > Cd (66.03 μg/kg-ww). The rank order of health risk assessment based on the country by the aid of TTHQ for adult consumers was Malaysia (0.22251) > Philippines (0.21912) > Egypt (0.08684) > Taiwan (0.07430) > Bahrain (0.04893) > Iran (0.03528) > China (0.00620) > Pakistan (0.00316) > Yemen (0.00157) > India (0.00073). In addition, the rank order of health risk assessment based on the country by the aid of TTHQ for child consumers was Malaysia (1.03838) > Philippines (1.02257) > Egypt (0.40523) > Taiwan (0.34674) > Bahrain (0.22832) > Iran (0.16466) > China (0.02892) > Pakistan (0.01474) > Yemen (0.00731) > India (0.00340). Therefore, the children in Malaysia and the Philippines were at considerable non-carcinogenic risk. Hence, approaching the recommended control plans in order to decrease the non-carcinogenic risk associated with the ingestion of PTEs via the consumption of narrow-barred Spanish mackerel fish fillets is crucial.
Collapse
Affiliation(s)
- Van Nam Thai
- Ho Chi Minh City University of Technology (HUTECH) 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Reza Dehbandi
- Department of Environmental Health Engineering, Health Sciences Research Center, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Mansour Sarafraz
- Environmental Health Research Center, Department of Environmental Health Engineering, Faculty of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amene Nematolahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Seyedeh Samaneh Dehghani
- Department of Environmental Health Engineering, Student Research Committee, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolmajid Gholizadeh
- Department of Environmental Health Engineering, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
23
|
Fakhri Y, Hoseinvandtabar S, Heidarinejad Z, Borzoei M, Bagheri M, Dehbandi R, Thai VN, Mousavi Khaneghah A. The concentration of potentially hazardous elements (PHEs) in the muscle of blue crabs (Callinectes sapidus) and associated health risk. CHEMOSPHERE 2021; 279:130431. [PMID: 33894515 DOI: 10.1016/j.chemosphere.2021.130431] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
In this study, the concentration of potentially hazardous elements (PHEs) in the muscle of Blue crabs (Callinectes sapidus) from the Strait of Hormuz was analyzed and following the health risk in the consumers by uncertainty and sensitivity analysis in the Monte Carlo simulation (MCS) technique was estimated. Fifty-eight blue card samples (male blue crabs = 33 samples; female blue crabs = 25 samples) were collected in the Strait of Hormuz from May to September 2020 for analysis of Nickel (Ni), Lead (Pb), Cadmium (Cd), and Iron (Fe) using Flame Absorption Spectrometer (FAAS). The order of PHEs in the in muscle male blue crabs was Fe (414.37 ± 288.07 μg/kg.ww) > Pb (238.78 ± 87.83 μg/kg.ww) > Ni (92.57 ± 39.72 μg/kg.ww) > Cd (52.73 ± 18.39 μg/kg.ww) and in female blue crabs Fe (461.16 ± 320.56 μg/kg.ww) > Pb (230.79 ± 125.59 μg/kg.ww) > Ni (84.13 ± 46.07 μg/kg.ww) > Cd (67.412 ± 43.93 μg/kg.ww). The concentration of PHEs muscle of male blue crabs and female blue crabs was not significantly different (P-value > 0.05). Uncertainty of non-carcinogenic risk revealed that P95% of total target hazard quotient (TTHQ) in the adult and children consumers due to ingestion male blue crabs was 5.30E-3 and 1.08E-3, respectively, and P95% of TTHQ in the adult and children due to ingestion female blue crabs was 7.05E-3 and 1.20E-3, respectively. P95% of TTHQ in both adult and children consumers was lower than one value. Therefore, consumers are at the acceptable range of the non-carcinogenic risk due to ingestion muscle of male and female blue crabs in Bandar Abbas. Although the non-carcinogenic risk of blue crab was in the safe range, due to the increase in its consumption and the increase of pollution sources in the Persian Gulf, it is recommended to monitor PHEs in Blue's muscle crabs.
Collapse
Affiliation(s)
- Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Somayeh Hoseinvandtabar
- Student Research committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zoha Heidarinejad
- PhD student in Environmental Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Borzoei
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Bagheri
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Reza Dehbandi
- Department of Environmental Health Engineering, Health Sciences Research Center, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Van Nam Thai
- Ho Chi Minh City University of Technology (HUTECH) 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam.
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro, Lobato, 80, Caixa, Postal: 6121, CEP: 13083-862, Campinas, São Paulo, Brazil
| |
Collapse
|
24
|
Dehghani M, Sharifian S, Taherizadeh MR, Nabavi M. Tracing the heavy metals zinc, lead and nickel in banana shrimp (Penaeus merguiensis) from the Persian Gulf and human health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38817-38828. [PMID: 33745043 DOI: 10.1007/s11356-021-13063-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Seafood has long been considered a unique source of nutrition. However, increasing trends in consumption of marine products must be considered, especially in potentially polluted environments such as the Persian Gulf. This study was undertaken to analyse the level of heavy metal contamination of nickel (Ni), zinc (Zn), and lead (Pb) in shrimp (Penaeus merguiensis) captured from the northern Persian Gulf. The concentration of heavy metals in the muscle of shrimp followed the order Zn > Ni > Pb. The content of Zn and Ni was higher than recommended standard limits by the FAO/WHO. The combined impact of all metals was lower than the acceptable limit of 1 in shrimp. The carcinogenic risk for Ni was higher than the unacceptable value. In total, our finding indicated no potential health risk from the daily consumption of this species. However, long-term consumption of shrimp can pose a risk of carcinogenic effects of nickel. Continuous monitoring of these trace metals in seafood is necessary to ensure the quality of seafood and food safety.
Collapse
Affiliation(s)
- Mohsen Dehghani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | - Sana Sharifian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Mohammad Reza Taherizadeh
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Moein Nabavi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| |
Collapse
|
25
|
Fakhri Y, Nematollahi A, Abdi-Moghadam Z, Daraei H, Ghasemi SM, Thai VN. Concentration of Potentially Harmful Elements (PHEs) in Trout Fillet (Rainbow and Brown) Fish: a Global Systematic Review and Meta-analysis and Health Risk Assessment. Biol Trace Elem Res 2021; 199:3089-3101. [PMID: 33037496 DOI: 10.1007/s12011-020-02419-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
In this work, articles regarding the concentration on potentially harmful elements (PHEs) in fillet trout (rainbow and brown) fishes were retrieved from Cochrane, Scopus, and PubMed databases between 1 January 1983 and 30 April 2020. The pooled concentration of PHEs in fillet trout fishes was meta-analyzed using a random-effect model (REM) and following the non-carcinogenic and carcinogenic risks was calculated using the Monte Carlo simulation (MCS) method. The meta-analysis of 42 articles (43 data report) revealed that a sort of PHEs in fillet trout was 19,996.64 μg/kg ww for Fe; 1834.75 μg/kg ww for Co; 772.21 μg/kg ww for Cu; 335.78 μg/kg ww for Ni; 290.46 μg/kg ww for Se; 226.20for Cr; 178.11 μg/kg ww for Pb; 77.40 μg/kg ww for Hg; 19.40 μg/kg ww for Cd; and 3.66 μg/kg ww for inorganic As. The non-carcinogenic risk assessment indicated that the lowest and highest hazard index (HI) in the adults was Pakistan (0.0012) and Turkey (0.2388), respectively, and in children was Pakistan (0.0057) and Turkey (1.114), respectively. The non-carcinogenic risk was acceptable for adult consumers in all countries (HI > 1 value) but non-carcinogenic risk for children was not acceptable in Turkey. The sort of countries based on carcinogenic risk in the adults due to inorganic As was China (1.44E-06) > Iran (9.14E-08) > Turkey (4.45E-08) > Portugal (9.04E-10). The carcinogenic risk was threshold for adult consumers in China (CR < 10-6). Consumption of fillet trout (rainbow and brown) content of PHEs in many countries cannot endanger the health of consumers.
Collapse
Affiliation(s)
- Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Zohreh Abdi-Moghadam
- Department of Food Science and Nutrition, Faculty of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Hasti Daraei
- Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Van Nam Thai
- Ho Chi Minh City University of Technology (HUTECH), 475A Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam.
| |
Collapse
|
26
|
Fathabad AE, Tajik H, Najafi ML, Jafari K, Mousavi Khaneghah A, Fakhri Y, Thai VN, Oliveri Conti G, Miri M. The concentration of the potentially toxic elements (PTEs) in the muscle of fishes collected from Caspian Sea: A health risk assessment study. Food Chem Toxicol 2021; 154:112349. [PMID: 34144100 DOI: 10.1016/j.fct.2021.112349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/16/2022]
Abstract
In the present study, the concentration of (potentially toxic element) PTEs in the five fish species from the Caspian Sea (from five coastal areas) was measured and compared. The target hazard quotient (THQ) and total THQ (TTHQ) were calculated using Monte Carlo simulations to determine the non-carcinogenic risk in both children and adults consumers. The highest concentration of PTEs was associated with chromium (Cr) measured in Cyprinus carpio, sampled from Bandar Anzali (1.56 ± 0.14 μg/g dw), and the minimum PTEs level was nickel (Ni) in Vimba from Astara (0.02 ± 0.01 μg/g d w). The rank order for PTEs based on THQ was mercury (Hg) > cadmium (Cd) > lead (Pb)> Ni > tin (Sn) > Total Cr. For adults, the fishes rank order based on TTHQ was: Cyprinus carpio (3.268) > Chelon saliens (2.89) > Rutilus frisii kutum kanesky (2.28) > Oncorhynchus mykis (1.39) > Vimba (0.25); and for children was Cyprinus carpio (15.25) > Chelon saliens (13.47) > Rutilus frisii kutum kanesky (10.63) > Oncorhynchus mykis (6.48) > Vimba (1.16). Overall this study showed that the levels of PTEs in investigated fish species had a potential non-carcinogenic risk for both children and adults (TTHQ>1).
Collapse
Affiliation(s)
- Ayub Ebadi Fathabad
- Social Determinants of Health Research Center, Department of Public Health, School of Health, Birjand University of Medical Science, Birjand, Iran
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Moslem Lari Najafi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Jafari
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Van Nam Thai
- Ho Chi Minh City University of Technology (HUTECH) 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratory, Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.
| | - Mohammad Miri
- Non-communicable Diseases Research Center, Department of Environmental Health Engineering, Faculty of Health, Sabzevar University of Medical Sciences & Health Services, Sabzevar, Iran.
| |
Collapse
|
27
|
Nematollahi A, Kamankesh M, Hosseini H, Ghasemi J, Hosseini-Esfahani F, Mohammadi A, Mousavi Khaneghah A. Acrylamide content of collected food products from Tehran's market: a risk assessment study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30558-30570. [PMID: 32468359 DOI: 10.1007/s11356-020-09323-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Acrylamide concentration in food products collected from the Tehran market was investigated by the aid of a dispersive liquid-liquid microextraction (DLLME) system coupled with gas chromatography-mass spectrometry (GC-MS). Also, the dietary exposure distribution and related potential risk for acrylamide ingestion were estimated by the Monte Carlo simulation (MCS). The highest and lowest mean concentration of acrylamide was detected in coffee and roasted nuts samples as 549 and 133 μg/kg, respectively. The mean acrylamide dietary exposure values for children (3-10 years), adolescents (11-17 years), adults (18-60 years), and seniors (61-96 years) were estimated to be 1.81, 1.02, 0.61, and 0.53 μg/kg body weight (BW)/day, respectively. In all age groups, except children, the estimated exposure in men and boys was higher than that in women and girls. Bread, despite containing low acrylamide content groups (157 μg/kg while compared with other, except roasted nuts), showed with the highest contribution rate in all age groups due to its high consumption rate. The estimated incremental lifetime cancer risk (ILCR) for all age groups was noted as greater than 10-4 indicating serious risk to the population. Moreover, the margin of exposure (MOE) values based on carcinogenicity showed health concern to all age groups (< 10,000). Regarding the non-carcinogenic risk, the target hazard quotient (THQ) was lower than 1, and MOE based on neurotoxicity was higher than 125 (safety thresholds), which represented negligible and ignorable risk in all age groups except in a small group of children and adolescents. Graphical abstract.
Collapse
Affiliation(s)
- Amene Nematollahi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Firoozeh Hosseini-Esfahani
- Nutrition and Endocrine Research Center and Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Monteiro Lobato, 80, Caixa Postal 6121, Campinas, São Paulo, 13083-862, Brazil.
| |
Collapse
|
28
|
Fakhri Y, Djahed B, Toolabi A, Raoofi A, Gholizadeh A, Eslami H, Taghavi M, Alipour MR, Mousavi Khaneghah A. Potentially toxic elements (PTEs) in fillet tissue of common carp (Cyprinus carpio): a systematic review, meta-analysis and risk assessment study. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1737826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yadolah Fakhri
- Department of Environmental Health Engineering, Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Babak Djahed
- Department of Environmental Health Engineering, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Ali Toolabi
- Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Science, Bam, Iran
| | - Amir Raoofi
- Leishmaniasis Research Center, Department of Anatomical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abdolmajid Gholizadeh
- Department of Environmental Health Engineering, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hadi Eslami
- Department of Environmental Health Engineering, School of Health, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahmoud Taghavi
- Department of Environmental Health, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad reza Alipour
- Department of Environmental Health Engineering, Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
29
|
Fakhri Y, Atamaleki A, Asadi A, Ghasemi SM, Mousavi Khaneghah A. Bioaccumulation of potentially toxic elements (PTEs) in muscle Tilapia spp fish: a systematic review, meta-analysis, and non-carcinogenic risk assessment. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1690518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yadolah Fakhri
- Department of Environmental Health Engineering, Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Atamaleki
- Department of Environmental Health Engineering, Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anvar Asadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
30
|
Heshmati A, Sadati R, Ghavami M, Mousavi Khaneghah A. The concentration of potentially toxic elements (PTEs) in muscle tissue of farmed Iranian rainbow trout (Oncorhynchus mykiss), feed, and water samples collected from the west of Iran: a risk assessment study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34584-34593. [PMID: 31650477 DOI: 10.1007/s11356-019-06593-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The pollution of the environment by potentially toxic elements (PTEs) is one of the most important raised concerns. Therefore, the current investigation was devoted to measuring the concentration of lead (Pb), cadmium (Cd), elemental mercury (Hg), nickel (Ni), iron (Fe), zinc (Zn), and copper (Cu) in muscle tissue of farmed rainbow trout (n = 30) as well as their feed (n = 15) and water (n = 15) samples collected from farms (Hamadan Province, Iran) by the aid of an inductively coupled plasma atomic emission spectrometer (ICP-OES). Also, the associated risk for human and biomagnification factor (BMF) and bioconcentration factor (BCF) for PTEs in the fish muscle through feed and water were calculated. The mean concentration of Pb, Cd, Hg, Ni, Fe, Zn, and Cu in rainbow trout muscle was reported as 0.056 ± 0.040 μg g-1 wet weight, <LOD, 0.014 ± 0.016 μg g-1 wet weight, 0.140 ± 0.188 μg g-1 wet weight, 1.051 ± 0.909 μg g-1 wet weight, 0.635 ± 0.725 μg g-1 wet weight, and 0.275 ± 0.325 μg g-1 wet weight, respectively, while all of the samples were contaminated in the concentrations below the permitted limits by regulatory bodies such as EC, Food and Agriculture Organization (FAO), and WHO/FAO. No significant difference between the amounts of PTEs among the collected feed and water samples was noted, while the corresponded values for PTE concentrations also were lower than the allowable limits. The values of BMF and BCF for all analyzed PTEs through water and feed were lower than 1000, demonstrating that the rainbow trout muscle could not be considered as a bioaccumulative tissue for PTEs. Additionally, no health risk due to ingestions of investigated PTEs via consumption of this rainbow trout fish was noted.
Collapse
Affiliation(s)
- Ali Heshmati
- Department of Nutrition and Food Safety, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rafieh Sadati
- College of Food Science and Technology, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Ghavami
- College of Food Science and Technology, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80. Caixa Postal: 6121, Campinas, São Paulo, 13083-862, Brazil.
| |
Collapse
|
31
|
Li Y, Zhao J, Zhang G, Zhang L, Ding S, Shang E, Xia X. Visible-light-driven photocatalytic disinfection mechanism of Pb-BiFeO 3/rGO photocatalyst. WATER RESEARCH 2019; 161:251-261. [PMID: 31202112 DOI: 10.1016/j.watres.2019.06.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/09/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
While the visible-light-driven photocatalytic disinfection techniques for drinking water have recently attracted tremendous attentions, it is necessary to further improve the solar energy utilization efficiency. In this study, we synthesized Pb-BiFeO3 photocatalysts doped with different amounts of reduced graphene oxide (Pb-BiFeO3/rGO). The photocatalytic disinfection efficiencies toward gram-negative Escherichia coli (E. coli) and gram-positive Staphylococcus aureus (S. aureus) were evaluated under visible-light irradiation (λ ≥ 400 nm). The results indicated that Pb-BiFeO3 with 0.5 wt% rGO (Pb-BiFeO3/0.5% rGO) exhibited the highest disinfection efficiency. Complete inactivation was reached within 30 min and 90 min for E. coli and S. aureus, respectively. The transcriptomic analysis results indicated that Pb-BiFeO3/0.5% rGO deregulates the genes in E. coli cells that are involved in the cell membrane damage and oxidative stress responses. This was validated by the cell leakage of nucleic acids or proteins, transmission electron microscopy images of the bacteria, and the disinfection efficiency decrease caused by the introduction of scavenger of hydroxyl radical (HO•). Metal ions (Pb2+, Bi2+, and Fe3+) released from the photocatalysts did not contribute to the disinfection process. For the first time, our results elucidated that the photocatalytic disinfection mechanism of Pb-BiFeO3/rGO toward E. coli was mainly associated with oxidative stress due to HO• generation and the loss of membrane integrity from direct contact with the photocatalyst. After four consecutive cycles, the Pb-BiFeO3/0.5% rGO photocatalyst exhibited a strong antibacterial efficiency. The excellent disinfection efficiency and stability of Pb-BiFeO3/0.5% rGO suggests that this photocatalyst shows great potential for drinking water disinfection.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Jian Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Guangshan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, PR China
| | - Shiyuan Ding
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, PR China
| | - Enxiang Shang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
32
|
The concentration of potentially toxic elements (PTEs) in honey: A global systematic review and meta-analysis and risk assessment. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Francisco LFV, do Amaral Crispim B, Spósito JCV, Solórzano JCJ, Maran NH, Kummrow F, do Nascimento VA, Montagner CC, De Oliveira KMP, Barufatti A. Metals and emerging contaminants in groundwater and human health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24581-24594. [PMID: 31236862 DOI: 10.1007/s11356-019-05662-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Groundwaters are normally consumed without previous treatment and therefore the monitoring of contaminants in order to guarantee its safety is necessary. Thus, we aimed to evaluate the groundwater contamination by metals and emerging contaminants, seeking to understand the relationship between their presence in the groundwater and the use and land cover profile of Itaporã and Caarapó. In addition, the contaminant concentrations observed were compared with maximum permitted values (MPV) and/or with calculated water quality criteria (WQC) for human consumption to investigate possible human health risks due to the groundwater intake. We collected one groundwater sample from each of the 12 wells located in Itaporã and 11 wells located in Caarapó. The metals were analyzed using ICP-OES and the emerging contaminants using LC-MS/MS. At least 1 of the 9 metals analyzed was found in each of the samples. In 12 samples, the metal concentrations verified exceeded the MPV or calculated WQC. A risk to human health has been observed for metals Co, Mn, Cr, and Ni. The emerging contaminant concentrations found in some samples were low (ng/L) and probably did not pose health risks, but their presence in the groundwater showed the impact of agriculture and the inadequate disposal of domestic sewage in the wells of both cities.
Collapse
Affiliation(s)
| | - Bruno do Amaral Crispim
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Rua João Rosa Góes, 1761 - Vila Progresso, PO Box 322, Dourados, MS, 79.825-070, Brazil
| | | | | | - Nayara Halimy Maran
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Fábio Kummrow
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | | | | | - Kelly Mari Pires De Oliveira
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Rua João Rosa Góes, 1761 - Vila Progresso, PO Box 322, Dourados, MS, 79.825-070, Brazil
| | - Alexeia Barufatti
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Rua João Rosa Góes, 1761 - Vila Progresso, PO Box 322, Dourados, MS, 79.825-070, Brazil.
| |
Collapse
|
34
|
Ahmed ASS, Rahman M, Sultana S, Babu SMOF, Sarker MSI. Bioaccumulation and heavy metal concentration in tissues of some commercial fishes from the Meghna River Estuary in Bangladesh and human health implications. MARINE POLLUTION BULLETIN 2019; 145:436-447. [PMID: 31590808 DOI: 10.1016/j.marpolbul.2019.06.035] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/29/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
Despite the beneficial aspect of aquatic food's consumption, bioaccumulation of toxic metals in fish can enhance the health risk for the consumers. Heavy metals were measured from editable tissues of some commercial fish species like Latis calcarifer, Silonia silondia, Clupisoma garua, Planiliza subviridis, Otolithoides pama, Tenulosa ilisa, Rhinomugil corsula, and Aila coila in the Meghna river estuary in Noakhali district. Heavy metals such as As, Pb, Cd, Cu, and Cr were detected by ICP-MS, which were significantly different (p ≤ 0.01), and the hierarchy of all mean concentrations were: Cu (5.14 mg/kg) > Pb (3.79 mg/kg) > As (1.08 mg/kg) > Cr (0.78 mg/kg) > Cd (0.12 mg/kg). The mean concentration of Cu (6.62 mg/kg) imparted to the maximum level in L. calcarifer, which slightly exceeded the Bangladesh food safety guideline. The mean BAFs of the contaminants were found as: Pb (1042.29) > Cr (1036.47) > As (934.84) > Cd (832.77) > Cu (772). Further, L. calcarifer, S. silondia, C. garua, and P. subviridis showed the bioaccumulative status. To assess the health risk effects, estimated daily intake (EDI), target hazard quotient (THQ) and carcinogenic risk (CR) were conducted. THQs for both adult and children consumers were <1, indicating that, consumers would not experience the non-carcinogenic health effects. Although children were more susceptible than adults, CR for all the consumers was found in the acceptable range (10-6 to 10-4).
Collapse
Affiliation(s)
- A S Shafiuddin Ahmed
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Bangladesh.
| | - Moshiur Rahman
- National Agricultural technology Program Phase-II Project (NATP-02), Department of Fisheries, Bangladesh
| | | | - S M Omar Faruque Babu
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Bangladesh
| | | |
Collapse
|
35
|
Gholami Z, Abtahi M, Golbini M, Parseh I, Alinejad A, Avazpour M, Moradi S, Fakhri Y, Mousavi Khaneghah A. The concentration and probabilistic health risk assessment of nitrate in Iranian drinking water: a case study of Ilam city. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1614958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zeinab Gholami
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Abtahi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Golbini
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Iman Parseh
- Department of Environmental Health Engineering, Behbahan faculty of Medical Science, Behbahan, Iran
| | - Abdolazim Alinejad
- Department of Environmental Health Engineering, School of Public Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Moayed Avazpour
- Department of Environmental Health Engineering, School of Public Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Samin Moradi
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yadolah Fakhri
- Department of Environmental Health Engineering, Student Research Committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
36
|
Keramati H, Miri A, Baghaei M, Rahimizadeh A, Ghorbani R, Fakhri Y, Bay A, Moradi M, Bahmani Z, Ghaderpoori M, Mousavi Khaneghah A. Fluoride in Iranian Drinking Water Resources: a Systematic Review, Meta-analysis and Non-carcinogenic Risk Assessment. Biol Trace Elem Res 2019; 188:261-273. [PMID: 29943372 DOI: 10.1007/s12011-018-1418-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/18/2018] [Indexed: 12/07/2022]
Abstract
A systematic review, meta-analysis, and non-carcinogenic risk considering fluoride content of drinking water resources of 31 provinces of Iran among some international databases such as Science Direct, Scopus, PubMed, and national databases including SID and Irandoc (2011 to July 2017) were conducted. In this context, 10 articles (40 studies) with 1706 samples were included in meta-analyses and risk assessment studies. The pooled concentration of fluoride in the cold, mild, and warm weather provinces were calculated as 0.39 mg/L (95% CI 0.32-0.48 mg/L), 0.52 (95% CI 0.43-0.61 mg/L), and 0.75 (95% CI 0.56-0.94 mg/L), respectively. The pooled concentration of fluoride in Iranian drinking water resources was 0.51 (95% CI 0.45-0.57 mg/L). The minimum and maximum concentrations of fluoride content were related to Kermanshah (0.19 mg/L) and Kerman (1.13 mg/L) provinces, respectively. The HQ of fluoride in the children and adults were 0.462 and 0.077, respectively as children are more vulnerable than adults. The HQ for children and adults was lower than 1 value. Therefore, there is no considerable non-carcinogenic risk for consumers due to drinking water in Iran. Although the non-carcinogenic of fluoride in drinking water was not significant, fluoride entry from other sources, such as food or inhalation, could endanger the health of the residents of Kerman and Bushehr provinces.
Collapse
Affiliation(s)
- Hassan Keramati
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Miri
- Department of Nutrition, School of Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Mehdi Baghaei
- Department of Environmental Engineering-Water and Wastewater, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
| | - Aziz Rahimizadeh
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Raheb Ghorbani
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Yadolah Fakhri
- Department of Environmental Health Engineering, School of Public Health, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abotaleb Bay
- Environmental Health Research Center, Golestan University of Medical Sciences, Golestan, Iran
| | - Masoud Moradi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Bahmani
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mansour Ghaderpoori
- Department of Environmental Health Engineering, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato, 80, 6121, Campinas, São Paulo, 13083-862, Brazil
| |
Collapse
|
37
|
Patra P, Mohandass C, Chakraborty P. Snapshot of environmental condition in different tropical estuarine systems by using S. cucullata (an edible oyster) as bio-indicator. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11342-11354. [PMID: 30798497 DOI: 10.1007/s11356-019-04564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Accumulation of toxic metals and indigenous bacteria in oyster, (Saccostrea cucullata) and their impact on antioxidant enzyme activities in the biological system was studied and used to provide snapshot of environmental condition in different tropical estuarine systems. The sedimentary Cd, Pb, and Hg concentration varied from 0.1 to 1.8, 22.0 to 98.0, and 0.03 to 0.11 mg kg-1 (dry wt.) respectively. The bioaccumulated Cd, Pb, and Hg concentration in the oysters ranged from 3.6 to 9.0, 0.03 to 8.0, and 0.06 to 0.1 mg kg-1 (dry wt.) respectively. In the oyster, the Cd concentration was well above the safe limit whereas the Pb and Hg concentrations were below the safe limit recommended by the European Commission (EC No. 1881/2006) for human consumption. The MPN value in the raw oyster for fecal coliforms (33-110 × 103/100 g) exceeded the United States Food and Drug Administration (USFDA) approved limits. Increase in antioxidant enzymes (catalase, superoxide dismutase, glutathione-s-transferase, and metallothionein) activities with increasing pollutants loading was observed. The activities of antioxidant enzymes in the oyster were found to be very useful tool for evaluating environmental condition in any tropical estuarine systems.
Collapse
Affiliation(s)
- Prantick Patra
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | - Chellandi Mohandass
- CSIR-National Institute of Oceanography-Regional Centre, Mumbai, 400 053, India.
| | - Parthasarathi Chakraborty
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
- Centre for Oceans, Rivers, Atmosphere and Land Sciences, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
38
|
Gavahian M, Khaneghah AM. Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Crit Rev Food Sci Nutr 2019; 60:1581-1592. [DOI: 10.1080/10408398.2019.1584600] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| |
Collapse
|
39
|
Rahmani J, Miri A, Mohseni-Bandpei A, Fakhri Y, Bjørklund G, Keramati H, Moradi B, Amanidaz N, Shariatifar N, Khaneghah AM. Contamination and Prevalence of Histamine in Canned Tuna from Iran: A Systematic Review, Meta-Analysis, and Health Risk Assessment. J Food Prot 2018; 81:2019-2027. [PMID: 30476444 DOI: 10.4315/0362-028x.jfp-18-301] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Histamine is one of the most important health issues associated with consumption of canned tuna because of possible allergic and anaphylactic reactions in consumers. Although the concentrations of histamine in tuna in Iran have been investigated in several studies, definitive conclusions are elusive. This study was undertaken as a systematic review and meta-analysis of the concentration and prevalence of histamine in Iranian canned tuna, and the related health risk was assessed. An extensive search of articles in the databases Scopus, PubMed, and Scientific Information Database resulted in 11 articles and a total of 693 samples for inclusion in this review. The minimum and maximum concentrations of histamine were determined as 8.59 ± 14.24 and 160.52 ± 87.59 mg kg−1, respectively. The mean concentration was calculated as 77.86 mg kg−1 (95% confidence interval [CI], 47.51 to 108.21 mg kg−1), which was lower than the 200 mg kg−1 recommended limit by the U.S. Food and Drug Administration (FDA). The mean prevalence of histamine was 9.19% (95%; CI, 6.88 to 11.5%). The 95% value of the target hazard quotient for adult consumers was calculated as 0.10. In all studies performed in Iran, the concentration of histamine in canned tuna was lower than FDA standard. Health risk assessment indicated low histamine risk (target hazard quotient < 1) for adults in Iran from consumption of canned tuna.
Collapse
Affiliation(s)
- Jamal Rahmani
- 1 Department of Community Nutrition, Student Research Committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Miri
- 2 Department of Nutrition, School of Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Anoushiravan Mohseni-Bandpei
- 3 Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadolah Fakhri
- 4 Department of Environmental Health Engineering, Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Geir Bjørklund
- 5 Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Hassan Keramati
- 6 Department of Environmental Health Engineering, School of Public Health, Semnan University of Medical Sciences, Semnan, Iran
| | - Bigard Moradi
- 7 Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazak Amanidaz
- 8 Environmental Health Research Center, Golestan University of Medical Sciences, Golestan, Iran
| | - Nabi Shariatifar
- 9 Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- 10 Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Sa˜o Paulo 13083-862, Brazil.,11 Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan (ORCID: http://orcid.org/0000-0001-5769-0004 [A.M.K.])
| |
Collapse
|
40
|
Tajdar-Oranj B, Shariatifar N, Alimohammadi M, Peivasteh-Roudsari L, Khaniki GJ, Fakhri Y, Mousavi Khaneghah A. The concentration of heavy metals in noodle samples from Iran's market: probabilistic health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30928-30937. [PMID: 30178415 DOI: 10.1007/s11356-018-3030-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
In the current study, the concentration of heavy metals including lead (Pb), chromium (Cr), cadmium (Cd), and aluminum (Al) in commonly instant noodles consumed in Iran (either imported from other countries or produced in Iran) was investigated by acid digestion method followed by an inductively coupled plasma optical emission spectrometry system (ICP-OES). Also, the associated non-carcinogenic risk due to ingestion of heavy metals for adults and children was estimated by calculating percentile 95% target hazard quotient (THQ) in the Monte Carlo simulation (MCS) method. The average concentrations of Pb, Cr, Cd, and Al in Iranian instant noodle samples were measured as 1.21 ± 0.81, 0.08 ± 0.10, 0.03 ± 0.06, and 9.15 ± 4.82 (mg/kg) and in imported instant noodle samples were 1.00 ± 0.61, 0.07 ± 0.07, 0.04 ± 0.03, and 15.90 ± 0.93 (mg/kg), respectively. A significant difference (p value < 0.05) in the mean concentration of Pb, Cr, Cd, and Al of Iranian instant noodle and imported instant noodle samples was observed. Also, the concentration of Pb, Cr, Cd, and Al in all brands of instant noodle (0.025 mg/kg, 0.050 mg/kg, 0.003 mg/kg, and 0.237 mg/kg, respectively) surpassed the WHO-permitted limits for Pb, Cr, Cd, and Al. Percentile 95% of THQ of Pb, Cr, Cd, and Al for the adult consumers was calculated as 0.012, 0.000007, 0.010, and 1.789; while in the case of children, percentile 95% of THQ of Pb, Cr, Cd, and Al was defined as 0.044, 0.00023, 0.035, and 6.167, respectively. Health risk assessment indicated that both adults and children are at considerable non-carcinogenic health risk for Al (THQ > 1). Therefore, approaching the required strategies in order to reduce the concentration of heavy metals particularly Al in the instant noodle is recommended.
Collapse
Affiliation(s)
- Behrouz Tajdar-Oranj
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Halal Research Center of IRI.FDA.MOH, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Peivasteh-Roudsari
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Jahed Khaniki
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Yadolah Fakhri
- Department of Environmental Health Engineering, School of Public Health, Student research committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato, 80, Caixa Postal: 6121, Campinas, São Paulo, 13083-862, Brazil.
| |
Collapse
|
41
|
Fakhri Y, Mousavi Khaneghah A, Conti GO, Ferrante M, Khezri A, Darvishi A, Ahmadi M, Hasanzadeh V, Rahimizadeh A, Keramati H, Moradi B, Amanidaz N. Probabilistic risk assessment (Monte Carlo simulation method) of Pb and Cd in the onion bulb (Allium cepa) and soil of Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30894-30906. [PMID: 30178411 DOI: 10.1007/s11356-018-3081-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Recently, the exposure to heavy metals through the consumption of vegetables has become a global concern. In this regard, the current study was aimed to measure the concentrations of lead (Pb) and cadmium (Cd) in the collected onion bulb samples as well as the surrounded soil using a flame atomic absorption spectrometer (FAAS). Additionally, the target hazard quotient (THQ) for males and females in all age groups of consumers were estimated by using Monte Carlo Simulation (MCS) method. Furthermore, the soil threshold values (STVs) were evaluated to investigate the heavy metal contents in the soil based on the established standard limits. In this context, 45 onion bulbs (HashtBandi region, 25 and Ravang region, 20) and 41 soil (HashtBandi region, 21 and Ravang region, 20) samples were collected (March-May of 2016). The average concentrations of Pb in the onions from HashtBandi and Ravang regions were determined as 0.0052 ± 0.0011 and 0.0061 ± 0.0022 mg/kg, and for Cd were 0.0095 ± 0.0024 and 0.0011 ± 0.0035 mg/kg, respectively. The average concentration of Pb in the soil from HashtBandi and Ravang regions were measured as 3.99 ± 3.77 and 2.03 ± 0.69 mg/kg, and for Cd, the corresponding values were determined as 2.21 ± 3.17 and 2.22 ± 0.92 mg/kg, respectively. The average concentration of Pb and Cd in both investigated onion bulb and soil were lower than Iranian national (onion bulb: Pb = 0.1 mg/kg, Cd = 0.05 mg/kg) and FAO/WHO (onion bulb: Pb = 0.3 mg/kg, Cd = 0.1 mg/kg; soil: Pb = 50 mg/kg, Cd = 0.3 mg/kg) standard limits. Moreover, the THQ and total target hazard quotient (TTHQ) for males and females in all age groups were less than 1 value. Therefore, no risk of the exposure to Pb and Cd as result of onion bulb consumption was reported. STVs for Pb and Cd in the HashtBandi region were calculated as 3.99 and 2.21 mg/kg, and Ravang as 2.03 and 2.22 mg/kg, respectively. Due to the higher calculated STVs for Cd while compared with the established standard limit for the soil, the further revisions regarding the heavy metal standard limits in the soil were recommended.
Collapse
Affiliation(s)
- Yadolah Fakhri
- Department of Environmental Health Engineering, Student Research Committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Gea Oliveri Conti
- Department of Medical, Surgical Sciences, and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences, and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Azimeh Khezri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Darvishi
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mehrdad Ahmadi
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Vajihe Hasanzadeh
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Aziz Rahimizadeh
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Hassan Keramati
- Department of Environmental Health Engineering, School of Public Health, Semnan University of Medical Sciences, Semnan, Iran
| | - Bigard Moradi
- Department of Health Public, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazak Amanidaz
- Environmental Health Research Center, Golestan University of Medical Sciences, Golestan, Iran
| |
Collapse
|
42
|
Razzaghi N, Ziarati P, Rastegar H, Shoeibi S, Amirahmadi M, Conti GO, Ferrante M, Fakhri Y, Mousavi Khaneghah A. The concentration and probabilistic health risk assessment of pesticide residues in commercially available olive oils in Iran. Food Chem Toxicol 2018; 120:32-40. [DOI: 10.1016/j.fct.2018.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/24/2018] [Accepted: 07/01/2018] [Indexed: 12/01/2022]
|
43
|
Shahrbabki PE, Hajimohammadi B, Shoeibi S, Elmi M, Yousefzadeh A, Conti GO, Ferrante M, Amirahmadi M, Fakhri Y, Mousavi Khaneghah A. Probabilistic non-carcinogenic and carcinogenic risk assessments (Monte Carlo simulation method) of the measured acrylamide content in Tah-dig using QuEChERS extraction and UHPLC-MS/MS. Food Chem Toxicol 2018; 118:361-370. [DOI: 10.1016/j.fct.2018.05.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/07/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
|
44
|
Rahmani J, Fakhri Y, Shahsavani A, Bahmani Z, Urbina MA, Chirumbolo S, Keramati H, Moradi B, Bay A, Bjørklund G. A systematic review and meta-analysis of metal concentrations in canned tuna fish in Iran and human health risk assessment. Food Chem Toxicol 2018; 118:753-765. [DOI: 10.1016/j.fct.2018.06.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/06/2018] [Accepted: 06/13/2018] [Indexed: 01/21/2023]
|
45
|
The prevalence of aflatoxin M1 in milk of Middle East region: A systematic review, meta-analysis and probabilistic health risk assessment. Food Chem Toxicol 2018; 118:653-666. [DOI: 10.1016/j.fct.2018.06.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/30/2018] [Accepted: 06/07/2018] [Indexed: 01/04/2023]
|
46
|
Yousefi M, Shemshadi G, Khorshidian N, Ghasemzadeh-Mohammadi V, Fakhri Y, Hosseini H, Mousavi Khaneghah A. Polycyclic aromatic hydrocarbons (PAHs) content of edible vegetable oils in Iran: A risk assessment study. Food Chem Toxicol 2018; 118:480-489. [PMID: 29857019 DOI: 10.1016/j.fct.2018.05.063] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 11/30/2022]
Abstract
Totally forty samples (23 brands) of different types of edible oils including frying oil (n = 14), blended oil (n = 13), sunflower oil (n = 6), corn oil (n = 5) and canola oil (n = 2) from Iran's market were analyzed for PAHs content by a High-performance liquid chromatography coupled with fluorescence detector. Also, the Health risk assessment in the adults and children consumers were estimated by the calculating margin of exposure (MOE) and the incremental lifetime cancer risk (ILCR) in the Monte Carlo Simulation (MCS) method. Approximately all of the samples contained different amounts of PAHs, while concentrations of BaP, PAH 4, PAH 8 and PAH 13 were reported as 0.90-11.33, 3.51-84.03, 7.41-117.12 and 129.28-19.54 μg/kg, respectively. Light polycyclic aromatic hydrocarbons corresponded to 65% of total PAHs while the remaining 35% belonged to heavy polycyclic aromatic hydrocarbons. Based on BaP content, 12 samples were above the standard limits (2 μg/kg) which set by the Standard Organization of Iran and the European Union, whereas 15 samples exceeded maximum limit 10 μg/kg set for PAH 4 established by EU. Percentile 95% of MOE in the adults due to ingestion of sunflower, corn, frying and blended oils were determined as 4.10E+5; 4.05E+5; , 2.17E+5, 2.33E+5, respectively and in the children due to ingestion of sunflower oil, corn oil, frying oil and blended oil were calculated as 5.38E+4, 4.49E+4, 2.86E+4, 3.37E+4. Regarding the percentile of 95% ILCR in the adults due to ingestion of sunflower oil, corn oil, frying oil and blended oil were reported as 4.5E-6, 4.17E-6l, 5.20E-6, 4.93E-6 and also this value in the children in the same rank order of products can be summarized as 3.43E-5, 3.94 E-5, 3.17E-5, 3.76E-5. The rank order of edible oils investigated based on MOE was sunflower oil > corn oil > blended oil > frying oil; and based on ILCR, frying oil > blended oil > sunflower oil > corn oil. The health risk assessment according to MCS method indicated that adults and children are not at considerable health risk; MOE ≥ 1E+4 and ILCR < 1E-4).
Collapse
Affiliation(s)
- Mojtaba Yousefi
- Student Research Committee, Department of Food Sciences and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences, Tehran, Iran; Food Safety Research Center (Salt), School of Nutrition and Food Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Ghazal Shemshadi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt), School of Nutrition and Food Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Vahid Ghasemzadeh-Mohammadi
- Department of Food Sciences and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadolah Fakhri
- Department of Environmental Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Sciences and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
47
|
Fakhri Y, Saha N, Miri A, Baghaei M, Roomiani L, Ghaderpoori M, Taghavi M, Keramati H, Bahmani Z, Moradi B, Bay A, Pouya RH. Metal concentrations in fillet and gill of parrotfish (Scarus ghobban) from the Persian Gulf and implications for human health. Food Chem Toxicol 2018; 118:348-354. [PMID: 29782897 DOI: 10.1016/j.fct.2018.05.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/05/2018] [Accepted: 05/17/2018] [Indexed: 12/16/2022]
Abstract
Despite the benefits of seafood's consumption, the bioaccumulation of metals in fish can endanger consumers' health. This study analyzed lead (Pb), mercury (Hg), Arsenic (As), and Cadmium (Cd) concentrations in fillet and gill of parrotfish (Scarus ghobban) using flame atomic adsorption spectroscopy (FAAS). The potential non-carcinogenic and carcinogenic health risks due to consumption of Scarus ghobban fillet were assessed by estimating average target hazard quotient (THQ) and total target hazard quotient (TTHQ) and Incremental Lifetime Cancer Risk cancer risk (ILCR) of the analyzed metals. This study indicated that Cd, Pb, As and Hg concentrations were significantly (p < 0.05) lower than Food and Agriculture Organization (FAO) and national standard limits. The meal concentrations (μg/kg dry weight) in both fillet and gill were ranked as follows Pb > Cd > As > Hg. THQ and TTHQ were lower than 1 for adults and children, indicating that consumers were not at considerable non-carcinogenic risk. However, ILCR value for As was greater than 10-4, indicating that consumers are at carcinogenic risk. Overall, this research highlighted that although the consumption of parrotfish from the Persian Gulf does not pose non-carcinogenic health risks, carcinogenic risks derived from toxic As can be detrimental for local consumers.
Collapse
Affiliation(s)
- Yadolah Fakhri
- Department of Environmental Health Engineering, Student Research Committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narottam Saha
- School of Earth and Environmental Sciences, The University of Queensland, Queensland, Australia
| | - Ali Miri
- Department of Nutrition, School of Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Mehdi Baghaei
- Department of Environmental Engineering-Water and Wastewater, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran.
| | - Laleh Roomiani
- Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
| | - Mansour Ghaderpoori
- Department of Environmental Health Engineering, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahmoud Taghavi
- Department of Environmental Health Engineering, School of Public Health, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hassan Keramati
- Department of Environmental Health Engineering, School of Public Health, Semnan University of Medical Sciences, Semnan, Iran
| | - Zohreh Bahmani
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Bigard Moradi
- Department of Health Public, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abotaleb Bay
- Environmental Health Research Center, Golstan University of Medical Sciences, Golstan, Iran.
| | | |
Collapse
|
48
|
Fathabad AE, Shariatifar N, Moazzen M, Nazmara S, Fakhri Y, Alimohammadi M, Azari A, Mousavi Khaneghah A. Determination of heavy metal content of processed fruit products from Tehran's market using ICP- OES: A risk assessment study. Food Chem Toxicol 2018; 115:436-446. [DOI: 10.1016/j.fct.2018.03.044] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/18/2018] [Accepted: 03/30/2018] [Indexed: 01/19/2023]
|
49
|
Stochastic exposure and health risk assessment of rice contamination to the heavy metals in the market of Iranshahr, Iran. Food Chem Toxicol 2018; 115:405-412. [DOI: 10.1016/j.fct.2018.03.040] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/18/2018] [Accepted: 03/28/2018] [Indexed: 11/16/2022]
|
50
|
Radon 222 in drinking water resources of Iran: A systematic review, meta-analysis and probabilistic risk assessment (Monte Carlo simulation). Food Chem Toxicol 2018; 115:460-469. [DOI: 10.1016/j.fct.2018.03.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/18/2018] [Accepted: 03/29/2018] [Indexed: 12/07/2022]
|