1
|
Nguyen TTT, Jeon SJ, Song DY, Kim DH, Lee HB. Exploring Diversity within Chytridiales and Rhizophydiales ( Chytridiomycota) in Korea. MYCOBIOLOGY 2025; 53:27-35. [PMID: 39895931 PMCID: PMC11780703 DOI: 10.1080/12298093.2024.2436204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 02/04/2025]
Abstract
Chytridiomycota is the most species-rich phylum of basal lineage fungi with a worldwide distribution. Its species constitute essential components of freshwater ecosystems. However, the diversity of this group in Korea remains understudied. A survey of Chytridiales and Rhizophydiales fungi was conducted in soil and freshwater environments in Korea, and seven strains were isolated. Based on morphological and molecular data, a previously unidentified, novel Rhizophydium species was discovered, designated Rhizophydium multiplex sp. nov. In addition, Chytriomyces hyalinus and Globomyces pollinis-pini were isolated for the first time in Korea. Detailed descriptions and illustrations of the three species are provided. This study highlights the potential diversity of chytrid fungi in Korea.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Sun Jeong Jeon
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Do Young Song
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Dong Hee Kim
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Hyang Burm Lee
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
2
|
Kalaiventhan Y, Seto K, Wolf M. ITS2 rRNA Gene Sequence-Structure Phylogeny of the Chytridiomycota (Opisthokonta, Fungi). BIOLOGY 2025; 14:36. [PMID: 39857267 PMCID: PMC11762872 DOI: 10.3390/biology14010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
To date, standard rRNA marker genes have had limited success in resolving the phylogeny of the phylum Chytridiomycota. Whereas the conserved and easily alignable ribosomal small subunit 18S rRNA gene had problems resolving nodes relating orders, the internal transcribed spacer 2 (ITS2) has been claimed to not be alignable for this group of organisms. Although the ITS2 is a fast-evolving locus, its secondary structure is well conserved. To improve the accuracy and robustness of Chytridiomycota phylogeny, in this study, we attempt, for the first, time to reconstruct an ITS2 sequence-structure phylogeny using the primary sequence and the secondary structure information simultaneously in inferring alignments and trees. Although currently only possible for a fraction of the available data, we show a well-supported ITS2 tree for selected organisms. The results are promising for further exploration of the large number of available ITS2 sequences.
Collapse
Affiliation(s)
- Yuveantheni Kalaiventhan
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Kensuke Seto
- Faculty of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, Japan;
| | - Matthias Wolf
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| |
Collapse
|
3
|
Zhang Y, Gong W, Gao Y, Zhao K, Wang F, Liu Y, Zhang M, Yu X. Pathotype Identification and Host Resistance Evaluation of Clubroot in Zhejiang Province, China. PLANT DISEASE 2024; 108:3473-3483. [PMID: 39082928 DOI: 10.1094/pdis-12-23-2748-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is a globally destructive soilborne disease affecting cruciferous plants. In this study, the predominant pathotypes of P. brassicae in six cities within Zhejiang Province were identified using the Williams and European clubroot differential (ECD) systems. A phylogenetic analysis of P. brassicae isolates infecting cruciferous crops worldwide was conducted using MEGA, and their ITS2 secondary structures were predicted through the ITS2 database. Accessions of Brassica rapa, B. oleracea, B. juncea, and Eruca sativa Mill. were employed to assess clubroot resistance. The results revealed that the prevalent pathotypes in Zhejiang Province were pathotype 1, ECD20/31/12 and ECD24/16/30; pathotype 3, ECD20/15/4; pathotype 8, ECD16/0/0 and ECD24/0/0; and pathotype 2, ECD16/15/15. Isolates from distinct genera of Brassicaceae formed separate branches in the evolutionary tree. Moreover, isolates of Brassica crops from Zhejiang Province exhibited homology with those from other global regions, a finding corroborated by their ITS2 secondary structure. Approximately 80 and 95% of B. rapa and B. juncea crops displayed susceptible phenotypes for pathotype 8, ECD16/0/0, whereas approximately 60% of B. oleracea crops exhibited resistance. Furthermore, three Brassica crop accessions showed significant variation in resistance to the pathogen, both among morphological and geographical origin groups. This study contributes to understanding the distribution of diverse P. brassicae pathotypes in different regions of Zhejiang Province and facilitates the identification of Brassica crops with potential disease resistance suitable for cultivation in the province.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou 310058, China
| | - Wenfeng Gong
- College of Plant Science, Xizang Agricultural and Animal Husbandry College, Nyingchi 860000, China
| | - Yingying Gao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou 310058, China
| | - Kun Zhao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou 310058, China
| | - Fangzhan Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou 310058, China
| | - Yapei Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou 310058, China
| | - Mei Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou 310058, China
| | - Xiaolin Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Laboratory of Horticultural Plant Growth & Quality Regulation, Ministry of Agriculture, Hangzhou 310058, China
- College of Plant Science, Xizang Agricultural and Animal Husbandry College, Nyingchi 860000, China
| |
Collapse
|
4
|
Retter A, Griebler C, Nilsson RH, Haas J, Birk S, Breyer E, Baltar F, Karwautz C. Metabarcoding reveals ecologically distinct fungal assemblages in river and groundwater along an Austrian alpine to lowland gradient. FEMS Microbiol Ecol 2024; 100:fiae139. [PMID: 39390678 PMCID: PMC11523079 DOI: 10.1093/femsec/fiae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/04/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
Biodiversity, the source of origin, and ecological roles of fungi in groundwater are to this day a largely neglected field in fungal and freshwater ecology. We used DNA-based Illumina high-throughput sequence analysis of both fungal gene markers 5.8S and internal transcribed spacers region 2 (ITS2), improving taxonomic classification. This study focused on the groundwater and river mycobiome along an altitudinal and longitudinal transect of a pre-alpine valley in Austria in two seasons. Using Bayesian network modeling approaches, we identified patterns in fungal community assemblages that were mostly shaped by differences in landscape (climatic, topological, and geological) and environmental conditions. While river fungi were comparatively more diverse, unique fungal assemblages could be recovered from groundwater, including typical aquatic lineages such as Rozellomycota and Olpidiomycota. The most specious assemblages in groundwater were not linked to the input of organic material from the surface, and as such, seem to be sustained by characteristic groundwater conditions. Based on what is known from closely related fungi, our results suggest that the present fungal communities potentially contribute to mineral weathering, carbon cycling, and denitrification in groundwater. Furthermore, we were able to observe the effects of varying land cover due to agricultural practices on fungal biodiversity in groundwater ecosystems. This study contributes to improving our understanding of fungi in the subsurface aquatic biogeosphere.
Collapse
Affiliation(s)
- Alice Retter
- Leibniz Institute for Freshwater Ecology and Inland Fisheries, IGB, Zur alten Fischerhuette 2, 16775 Neuglobsow, Germany
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - R Henrik Nilsson
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Göteborg, Sweden
| | - Johannes Haas
- Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, 8010 Graz, Austria
| | - Steffen Birk
- Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, 8010 Graz, Austria
| | - Eva Breyer
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- College of Oceanography and Ecological Science, Shanghai Ocean University, 1104 Pingliang Rd, Yangpu District, 200082 Shanghai, China
| | - Clemens Karwautz
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
5
|
Thomé PC, Wolinska J, Van Den Wyngaert S, Reñé A, Ilicic D, Agha R, Grossart HP, Garcés E, Monaghan MT, Strassert JFH. Phylogenomics including new sequence data of phytoplankton-infecting chytrids reveals multiple independent lifestyle transitions across the phylum. Mol Phylogenet Evol 2024; 197:108103. [PMID: 38754710 DOI: 10.1016/j.ympev.2024.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/01/2023] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Parasitism is the most common lifestyle on Earth and has emerged many times independently across the eukaryotic tree of life. It is frequently found among chytrids (Chytridiomycota), which are early-branching unicellular fungi that feed osmotrophically via rhizoids as saprotrophs or parasites. Chytrids are abundant in most aquatic and terrestrial environments and fulfil important ecosystem functions. As parasites, they can have significant impacts on host populations. They cause global amphibian declines and influence the Earth's carbon cycle by terminating algal blooms. To date, the evolution of parasitism within the chytrid phylum remains unclear due to the low phylogenetic resolution of rRNA genes for the early diversification of fungi, and because few parasitic lineages have been cultured and genomic data for parasites is scarce. Here, we combine transcriptomics, culture-independent single-cell genomics and a phylogenomic approach to overcome these limitations. We newly sequenced 29 parasitic taxa and combined these with existing data to provide a robust backbone topology for the diversification of Chytridiomycota. Our analyses reveal multiple independent lifestyle transitions between parasitism and saprotrophy among chytrids and multiple host shifts by parasites. Based on these results and the parasitic lifestyle of other early-branching holomycotan lineages, we hypothesise that the chytrid last common ancestor was a parasite of phytoplankton.
Collapse
Affiliation(s)
- Pauline C Thomé
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Silke Van Den Wyngaert
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany; Department of Biology, University of Turku, Turku, Finland
| | - Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Barcelona, Spain
| | - Doris Ilicic
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - Ramsy Agha
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany; Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Barcelona, Spain
| | - Michael T Monaghan
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Jürgen F H Strassert
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| |
Collapse
|
6
|
Davis WJ. Martha Jane Powell, 27 January 1948-20 June 2023: Distinguished chytrid taxonomist and mentor. Mycologia 2024; 116:621-624. [PMID: 38941122 DOI: 10.1080/00275514.2024.2335863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
|
7
|
Qiao H, Gao D, Yuan T. Differences in rhizosphere soil fungal communities of wild and cultivated Paeonia ludlowii species. FRONTIERS IN PLANT SCIENCE 2023; 14:1194598. [PMID: 37767294 PMCID: PMC10520497 DOI: 10.3389/fpls.2023.1194598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023]
Abstract
Introduction Paeonia ludlowii is a rare and endangered plant species with a high application value. However, its low cultivation success rate in China has severely limited its protection, development, and utilization. In addition to natural factors, microorganisms in the rhizosphere play an important role in determining its cultivation success. Methods In this study, growth indexes and soil physicochemical properties of both wild (origin: Nyingchi) and cultivated (introduction: Luanchuan) species of P. ludlowii were measured during the flowering, fruiting, and autumn foliage stages. ITS high-throughput sequencing technology was employed to detect rhizosphere soil fungi, and the diversity, community structure, functional prediction, molecular network, and ecological processes of the microbial community assembly were examined by multidirectional analysis. Results and discussion The results indicated that: both wild and cultivated P. ludlowii species were able to flower and fruit normally, although the wild species had a higher number of flowers and fruits and higher soil available phosphorus and available potassium contents than those of the cultivated species. Ascomycota and Basidiomycota were the dominant rhizosphere soil fungal phyla in both P. ludlowii species. However, our network analysis showed that Ascomycota as the key fungal phylum of the wild species, whereas the cultivated species lacked key fungi. The community assembly mechanisms of rhizosphere soil fungi in both wild and cultivated species were primarily stochasticity, with no significant differences between them. Based on the results of FUNGuild and molecular network analyses, cultivated species had a higher proportion of fungi, such as Soil Saprotroph, that can easily cause diseases. Additionally, the network connections among fungi were weaker in the cultivated species than those in the wild species, which increased the cultivated species susceptibility to external environmental interferences. Therefore, from a soil microorganism perspective, this study suggests that, after the introduction and cultivation of P. ludlowii, if rhizosphere soil fungi fail to gradually form a close network relationship and instead promote the growth of pathogenic fungi, the fungal ecosystem would become vulnerable.
Collapse
Affiliation(s)
- Hongyong Qiao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Danlei Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- Science and Technology Development Center, National Forestry and Grassland Administration, Beijing, China
| | - Tao Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
8
|
Alors D, Boussiba S, Zarka A. Drought Resistant Resting Cysts of Paraphysoderma sedebokerense Preserves the Species Viability and Its Virulence. PLANTS (BASEL, SWITZERLAND) 2023; 12:3230. [PMID: 37765394 PMCID: PMC10537327 DOI: 10.3390/plants12183230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
The blastocladialean fungus P. sedebokerense is a facultative parasite of economically important microalgae and for this reason it has gained a lot of interest. P. sedebokerense has a complex life cycle which includes vegetative and resting stages. The resting cysts were assumed to play an essential role in survival by resisting drought, but this ability was never tested and the factors that trigger their formation were not evaluated. This study was aimed to induce resting cyst formation and germination in P. sedebokerense. At first, we tested the survival of P. sedebokerense liquid cultures and found that infectivity is retained for less than two months when the cultures were stored on the bench at room temperature. We noticed that dry cultures retained the infectivity for a longer time. We, thus, developed a method, which is based on dehydration and rehydration of the biomass, to produce, maintain, and germinate resting cysts of P. sedebokerense in both saprophytic and parasitic modes of growth. When the dry cultures were rehydrated and incubated at 30 °C, resting cysts asynchronously germinated after 5 h and the "endosporangium" was protruding outside of the cyst. Our method can be used to preserve P. sedebokerense for research purposes with the advantage of no need for expensive equipment.
Collapse
Affiliation(s)
- David Alors
- Microalgal Biotechnology Laboratory, the Jacob Blaustein Institutes for Desert Research, Sede-Boker Campus Ben Gurion University of the Negev, Beersheba 8499000, Israel;
- Departamento de Biología y Químicas, Facultad de Recursos Naturales, Campus San Juan Pablo II, Universidad Católica de Temuco, Temuco 478 0694, Chile
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, the Jacob Blaustein Institutes for Desert Research, Sede-Boker Campus Ben Gurion University of the Negev, Beersheba 8499000, Israel;
| | - Aliza Zarka
- Microalgal Biotechnology Laboratory, the Jacob Blaustein Institutes for Desert Research, Sede-Boker Campus Ben Gurion University of the Negev, Beersheba 8499000, Israel;
| |
Collapse
|
9
|
Ettinger CL, Ostovar T, Yacoub M, Ahrendt S, Hice RH, Federici BA, Stajich JE. Genomes and transcriptomes help unravel the complex life cycle of the blastoclad fungus, Coelomomyces lativittatus, an obligate parasite of mosquitoes and microcrustaceans. Mycologia 2023; 115:630-647. [PMID: 37494633 DOI: 10.1080/00275514.2023.2228182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023]
Abstract
Species of the phylum Blastocladiomycota, early-diverging zoosporic (flagellated) lineages of fungi, are vastly understudied. This phylum includes the genus Coelomomyces, which consists of more than 80 fungal species that are obligate parasites of arthropods. Known Coelomomyces species lack a complete asexual life cycle, instead surviving through an obligate heterecious alternation of generations life cycle. Despite their global distribution and interesting life cycle, little is known about the genomics of any Coelomomyces species. To address this, we generated three draft-level genomes and annotations for C. lativittatus representing its haploid meiospore, orange gamete, and amber gamete life stages. These draft genome assemblies ranged in size from 5002 to 5799 contigs, with a total length of 19.8-22.8 Mb and a mean of 7416 protein-coding genes. We then demonstrated the utility of these genomes by combining the draft annotations as a reference for analysis of C. lativittatus transcriptomes. We analyzed transcriptomes from across host-associated life stages, including infected larvae and excised mature sporangia from the mosquito Anopheles quadrimaculatus. We identified differentially expressed genes and enriched GO terms both across and within life stages and used these to make hypotheses about C. lativittatus biology. Generally, we found the C. lativittatus transcriptome to be a complex and dynamic expression landscape; GO terms related to metabolism and transport processes were enriched during infection and terms related to dispersal were enriched during sporulation. We further identified five high mobility group (HMG)-box genes in C. lativittatus, three belonging to clades with mating type (MAT) loci from other fungi, as well as four ortholog expansions in C. lativittatus compared with other fungi. The C. lativittatus genomes and transcriptomes reported here are a valuable resource and may be leveraged toward furthering understanding of the biology of these and other early-diverging fungal lineages.
Collapse
Affiliation(s)
- Cassandra L Ettinger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California 92521
| | - Talieh Ostovar
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California 92521
- UCR/SDSU Joint Doctoral Program in Evolutionary Biology, San Diego State University, San Diego, California 92182
| | - Mark Yacoub
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California 92521
| | - Steven Ahrendt
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California 92521
| | - Robert H Hice
- Department of Entomology, University of California, Riverside, Riverside, California 92521
| | - Brian A Federici
- Department of Entomology, University of California, Riverside, Riverside, California 92521
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California 92521
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California 92521
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California 92521
| |
Collapse
|
10
|
Pagani DM, Ventura SPR, Vu D, Mendes-Pereira T, Ribeiro Tomé LM, de Carvalho DS, Costa-Rezende DH, Kato RB, García GJY, Geml J, Robert V, They NH, Brenig B, Azevedo V, Scroferneker ML, Valente P, Góes-Neto A. Unveiling Fungal Community Structure along Different Levels of Anthropic Disturbance in a South American Subtropical Lagoon. J Fungi (Basel) 2023; 9:890. [PMID: 37754998 PMCID: PMC10532596 DOI: 10.3390/jof9090890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Studies of fungal communities through amplicon metagenomics in aquatic environments, particularly in freshwater ecosystems, are still relatively recent. Unfortunately, many of these water bodies are facing growing threats from human expansion, such as effluent discharge from various human activities. As a result, these effluents have the potential to significantly alter the characteristics of water bodies and, subsequently, impact the diversity of their resident microorganisms. In this context, our objective was to investigate whether the fungal community structure varies according to the presence of different anthropic disturbances. We expect (i) the diversity of fungi will be greater and (ii) more specific unique operational taxonomic units (OTUs) related to each ecotonal system will be found compared to other sites of a lagoon. The study was conducted in the Tramandaí Lagoon (subtropical southern Brazil) at four distinct sampling points (estuary, middle of the lagoon, crop field area, and near a residential area where the Tramandaí River flows into the lagoon). As expected, the estuary and residential zones, which are ecotones, exhibited greater fungal diversity and more specific OTUs compared to the middle of the lagoon and crop field area. Moreover, a substantial proportion of fungal taxa could not be identified at the genus level, with many only classified at the phylum level, indicating potential new lineages. These findings underscore our limited understanding of the subtropical freshwater mycobiota.
Collapse
Affiliation(s)
- Danielle Machado Pagani
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil; (D.M.P.); (P.V.)
| | - Stefânia P. R. Ventura
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (S.P.R.V.); (R.B.K.); (G.J.Y.G.); (V.A.)
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (D.V.); (V.R.)
| | - Thairine Mendes-Pereira
- Programa de Pós-Graduação em Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (T.M.-P.); (L.M.R.T.); (D.S.d.C.)
| | - Luiz Marcelo Ribeiro Tomé
- Programa de Pós-Graduação em Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (T.M.-P.); (L.M.R.T.); (D.S.d.C.)
| | - Daniel Santana de Carvalho
- Programa de Pós-Graduação em Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (T.M.-P.); (L.M.R.T.); (D.S.d.C.)
| | - Diogo Henrique Costa-Rezende
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, BA, Brazil;
| | - Rodrigo Bentes Kato
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (S.P.R.V.); (R.B.K.); (G.J.Y.G.); (V.A.)
| | - Glen Jasper Yupanqui García
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (S.P.R.V.); (R.B.K.); (G.J.Y.G.); (V.A.)
| | - József Geml
- ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Leányka U. 6, 3300 Eger, Hungary;
| | - Vincent Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (D.V.); (V.R.)
| | - Ng Haig They
- Laboratório de Ecologia Aquática Microbiana, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Departamento Interdisciplinar, Centro de Estudos Costeiros, Limnológicos e Marinhos, Universidade Federal do Rio Grande do Sul, Campus Litoral Norte, Tramandaí 95590-000, RS, Brazil;
| | - Bertram Brenig
- Institute of Veterinary Medicine, Georg-August-University Goettingen, 37073 Göttingen, Germany;
| | - Vasco Azevedo
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (S.P.R.V.); (R.B.K.); (G.J.Y.G.); (V.A.)
- Laboratory of Cellular and Molecular Genetics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Maria Lúcia Scroferneker
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil;
| | - Patricia Valente
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil; (D.M.P.); (P.V.)
| | - Aristóteles Góes-Neto
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (S.P.R.V.); (R.B.K.); (G.J.Y.G.); (V.A.)
- Programa de Pós-Graduação em Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (T.M.-P.); (L.M.R.T.); (D.S.d.C.)
| |
Collapse
|
11
|
Rúa-Giraldo ÁL. Fungal taxonomy: A puzzle with many missing pieces. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:288-311. [PMID: 37721899 PMCID: PMC10588969 DOI: 10.7705/biomedica.7052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/24/2023] [Indexed: 09/20/2023]
Abstract
Fungi are multifaceted organisms found in almost all ecosystems on Earth, where they establish various types of symbiosis with other living beings. Despite being recognized by humans since ancient times, and the high number of works delving into their biology and ecology, much is still unknown about these organisms. Some criteria classically used for their study are nowadays limited, generating confusion in categorizing them, and even more, when trying to understand their genealogical relationships. To identify species within Fungi, phenotypic characters to date are not sufficient, and to construct a broad phylogeny or a phylogeny of a particular group, there are still gaps affecting the generated trees, making them unstable and easily debated. For health professionals, fungal identification at lower levels such as genus and species, is enough to select the most appropriate therapy for their control, understand the epidemiology of clinical pictures associated, and recognize outbreaks and antimicrobial resistance. However, the taxonomic location within the kingdom, information with apparently little relevance, can allow phylogenetic relationships to be established between fungal taxa, facilitating the understanding of their biology, distribution in nature, and pathogenic potential evolution. Advances in molecular biology and computer science techniques from the last 30 years have led to crucial changes aiming to establish the criteria to define a fungal species, allowing us to reach a kind of stable phylogenetic construction. However, there is still a long way to go, and it requires the joint work of the scientific community at a global level and support for basic research.
Collapse
|
12
|
Orosz F. The Unicellular, Parasitic Fungi, Sanchytriomycota, Possess a DNA Sequence Possibly Encoding a Long Tubulin Polymerization Promoting Protein (TPPP) but Not a Fungal-Type One. Microorganisms 2023; 11:2029. [PMID: 37630588 PMCID: PMC10459994 DOI: 10.3390/microorganisms11082029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The unicellular, parasitic fungi of the phylum Sanchytriomycota (sanchytrids) were discovered a few years ago. These unusual chytrid-like fungi parasitize algae. The zoospores of the species of the phylum contain an extremely long kinetosome composed of microtubular singlets or doublets and a non-motile pseudocilium (i.e., a reduced posterior flagellum). Fungi provide an ideal opportunity to test and confirm the correlation between the occurrence of flagellar proteins (the ciliome) and that of the eukaryotic cilium/flagellum since the flagellum occurs in the early-branching phyla and not in terrestrial fungi. Tubulin polymerization promoting protein (TPPP)-like proteins, which contain a p25alpha domain, were also suggested to belong to the ciliome and are present in flagellated fungi. Although sanchytrids have lost many of the flagellar proteins, here it is shown that they possess a DNA sequence possibly encoding long (animal-type) TPPP, but not the fungal-type one characteristic of chytrid fungi. Phylogenetic analysis of p25alpha domains placed sanchytrids into a sister position to Blastocladiomycota, similarly to species phylogeny, with maximal support.
Collapse
Affiliation(s)
- Ferenc Orosz
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| |
Collapse
|
13
|
Gryganskyi AP, Golan J, Muszewska A, Idnurm A, Dolatabadi S, Mondo SJ, Kutovenko VB, Kutovenko VO, Gajdeczka MT, Anishchenko IM, Pawlowska J, Tran NV, Ebersberger I, Voigt K, Wang Y, Chang Y, Pawlowska TE, Heitman J, Vilgalys R, Bonito G, Benny GL, Smith ME, Reynolds N, James TY, Grigoriev IV, Spatafora JW, Stajich JE. Sequencing the Genomes of the First Terrestrial Fungal Lineages: What Have We Learned? Microorganisms 2023; 11:1830. [PMID: 37513002 PMCID: PMC10386755 DOI: 10.3390/microorganisms11071830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The first genome sequenced of a eukaryotic organism was for Saccharomyces cerevisiae, as reported in 1996, but it was more than 10 years before any of the zygomycete fungi, which are the early-diverging terrestrial fungi currently placed in the phyla Mucoromycota and Zoopagomycota, were sequenced. The genome for Rhizopus delemar was completed in 2008; currently, more than 1000 zygomycete genomes have been sequenced. Genomic data from these early-diverging terrestrial fungi revealed deep phylogenetic separation of the two major clades-primarily plant-associated saprotrophic and mycorrhizal Mucoromycota versus the primarily mycoparasitic or animal-associated parasites and commensals in the Zoopagomycota. Genomic studies provide many valuable insights into how these fungi evolved in response to the challenges of living on land, including adaptations to sensing light and gravity, development of hyphal growth, and co-existence with the first terrestrial plants. Genome sequence data have facilitated studies of genome architecture, including a history of genome duplications and horizontal gene transfer events, distribution and organization of mating type loci, rDNA genes and transposable elements, methylation processes, and genes useful for various industrial applications. Pathogenicity genes and specialized secondary metabolites have also been detected in soil saprobes and pathogenic fungi. Novel endosymbiotic bacteria and viruses have been discovered during several zygomycete genome projects. Overall, genomic information has helped to resolve a plethora of research questions, from the placement of zygomycetes on the evolutionary tree of life and in natural ecosystems, to the applied biotechnological and medical questions.
Collapse
Affiliation(s)
- Andrii P. Gryganskyi
- Division of Biological & Nanoscale Technologies, UES, Inc., Dayton, OH 45432, USA
| | - Jacob Golan
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Anna Muszewska
- Institute of Biochemistry & Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland;
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Somayeh Dolatabadi
- Biology Department, Hakim Sabzevari University, Sabzevar 96179-76487, Iran;
| | - Stephen J. Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.J.M.); (I.V.G.)
| | - Vira B. Kutovenko
- Department of Agrobiology, National University of Life & Environmental Sciences, 03041 Kyiv, Ukraine; (V.B.K.)
| | - Volodymyr O. Kutovenko
- Department of Agrobiology, National University of Life & Environmental Sciences, 03041 Kyiv, Ukraine; (V.B.K.)
| | | | - Iryna M. Anishchenko
- MG Kholodny Institute of Botany, National Academy of Sciences, 01030 Kyiv, Ukraine;
| | - Julia Pawlowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological & Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland;
| | - Ngoc Vinh Tran
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (N.V.T.); (G.L.B.); (M.E.S.)
| | - Ingo Ebersberger
- Leibniz Institute for Natural Product Research & Infection Biology, 07745 Jena, Germany; (I.E.); (K.V.)
| | - Kerstin Voigt
- Leibniz Institute for Natural Product Research & Infection Biology, 07745 Jena, Germany; (I.E.); (K.V.)
| | - Yan Wang
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Ying Chang
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore;
| | - Teresa E. Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA; (T.E.P.); (N.R.)
| | - Joseph Heitman
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Rytas Vilgalys
- Biology Department, Duke University, Durham, NC 27708, USA;
| | - Gregory Bonito
- Department of Plant, Soil & Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Gerald L. Benny
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (N.V.T.); (G.L.B.); (M.E.S.)
| | - Matthew E. Smith
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (N.V.T.); (G.L.B.); (M.E.S.)
| | - Nicole Reynolds
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA; (T.E.P.); (N.R.)
| | - Timothy Y. James
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (S.J.M.); (I.V.G.)
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Joseph W. Spatafora
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
| | - Jason E. Stajich
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 93106, USA;
| |
Collapse
|
14
|
Structure and Function Analysis of Cultivated Meconopsis integrifolia Soil Microbial Community Based on High-Throughput Sequencing and Culturability. BIOLOGY 2023; 12:biology12020160. [PMID: 36829439 PMCID: PMC9952792 DOI: 10.3390/biology12020160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
(1) Background: The structure, function, and community interactions of soil microbial communities of cultivated Meconopsis integrifolia were characterized by studying this alpine flower and traditional endangered Tibetan medicine. (2) Methods: Soil bacteria and fungi were studied based on high-throughput sequencing technology. Bacteria were isolated using culturomics and functionally identified as IAA-producing, organic phosphorus-dissolving, inorganic phosphorus-dissolving, and iron-producing carriers. (3) Results: The dominant bacterial phyla were found to be Proteobacteria and Acidobacteria, and unclassified_Rhizobiales was the most abundant genus. Ascomycota and Mortierellomycota were the dominant fungal phyla. The bacteria were mainly carbon and nitrogen metabolizers, and the fungi were predominantly Saprotroph-Symbiotroph. The identified network was completely dominated by positive correlations, but the fungi were more complex than the bacteria, and the bacterial keystones were unclassified_Caulobacteraceae and Pedobacter. Most of the keystones of fungi belonged to the phyla Ascomycetes and Basidiomycota. The highest number of different species of culturable bacteria belonged to the genus Streptomyces, with three strains producing IAA, 12 strains solubilizing organic phosphorus, one strain solubilizing inorganic phosphorus, and nine strains producing iron carriers. (4) Conclusions: At the cost of reduced ecological stability, microbial communities increase cooperation toward promoting overall metabolic efficiency and enabling their survival in the extreme environment of the Tibetan Plateau. These pioneering results have value for the protection of endangered Meconopsis integrifolia under global warming and the sustainable utilization of its medicinal value.
Collapse
|
15
|
Leonard G, Galindo LJ, Milner DS, Avelar GM, Gomes-Vieira AL, Gomes SL, Richards TA. A Genome Sequence Assembly of the Phototactic and Optogenetic Model Fungus Blastocladiella emersonii Reveals a Diversified Nucleotide-Cyclase Repertoire. Genome Biol Evol 2022; 14:evac157. [PMID: 36281075 PMCID: PMC9730499 DOI: 10.1093/gbe/evac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 01/04/2023] Open
Abstract
The chytrid fungus Blastocladiella emersonii produces spores with swimming tails (zoospores); these cells can sense and swim toward light. Interest in this species stems from ongoing efforts to develop B. emersonii as a model for understanding the evolution of phototaxis and the molecular cell biology of the associated optogenetic circuits. Here, we report a highly contiguous genome assembly and gene annotation of the B. emersonii American Type Culture Collection 22665 strain. We integrate a PacBio long-read library with an Illumina paired-end genomic sequence survey leading to an assembly of 21 contigs totaling 34.27 Mb. Using these data, we assess the diversity of sensory system encoding genes. These analyses identify a rich complement of G-protein-coupled receptors, ion transporters, and nucleotide cyclases, all of which have been diversified by domain recombination and tandem duplication. In many cases, these domain combinations have led to the fusion of a protein domain to a transmembrane domain, tying a putative signaling function to the cell membrane. This pattern is consistent with the diversification of the B. emersonii sensory-signaling systems, which likely plays a varied role in the complex life cycle of this fungus.
Collapse
Affiliation(s)
- Guy Leonard
- Department of Biology, University of Oxford, United Kingdom
| | | | - David S Milner
- Department of Biology, University of Oxford, United Kingdom
| | - Gabriela Mol Avelar
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, United Kingdom
| | - André L Gomes-Vieira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Suely L Gomes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | | |
Collapse
|
16
|
On the TPPP Protein of the Enigmatic Fungus, Olpidium-Correlation between the Incidence of p25alpha Domain and That of the Eukaryotic Flagellum. Int J Mol Sci 2022; 23:ijms232213927. [PMID: 36430412 PMCID: PMC9698843 DOI: 10.3390/ijms232213927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Loss of the flagellum was an important step in the evolution of fungi. The flagellated fungi of the phylum Olpidiomycota are the closest relative of the non-flagellated terrestrial fungi. There are genes encoding proteins, the occurrence of which shows a strong correlation with the incidence of the flagellum. One of these gene/protein families is "TPPP-like proteins" whose main feature is the presence of the p25alpha domain. The functional link between TPPP and flagellum has also been shown. Most of the phyla of flagellated fungi have been known to contain TPPP-like proteins but Olpidiomycota was an exception. This study demonstrates that Olpidium bornovanus, similarly to some fungi of Chytridiomycota and Blastocladiomycota, has a "fungal-type" TPPP characterized by the presence of two (a complete and an incomplete) p25alpha domains.
Collapse
|
17
|
Retinal chromophore charge delocalization and confinement explain the extreme photophysics of Neorhodopsin. Nat Commun 2022; 13:6652. [PMID: 36333283 PMCID: PMC9636224 DOI: 10.1038/s41467-022-33953-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
The understanding of how the rhodopsin sequence can be modified to exactly modulate the spectroscopic properties of its retinal chromophore, is a prerequisite for the rational design of more effective optogenetic tools. One key problem is that of establishing the rules to be satisfied for achieving highly fluorescent rhodopsins with a near infrared absorption. In the present paper we use multi-configurational quantum chemistry to construct a computer model of a recently discovered natural rhodopsin, Neorhodopsin, displaying exactly such properties. We show that the model, that successfully replicates the relevant experimental observables, unveils a geometrical and electronic structure of the chromophore featuring a highly diffuse charge distribution along its conjugated chain. The same model reveals that a charge confinement process occurring along the chromophore excited state isomerization coordinate, is the primary cause of the observed fluorescence enhancement.
Collapse
|
18
|
Wang F, Wang K, Cai L, Zhao M, Kirk PM, Fan G, Sun Q, Li B, Wang S, Yu Z, Han D, Ma J, Wu L, Yao Y. Fungal names: a comprehensive nomenclatural repository and knowledge base for fungal taxonomy. Nucleic Acids Res 2022; 51:D708-D716. [PMID: 36271801 PMCID: PMC9825588 DOI: 10.1093/nar/gkac926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/14/2022] [Accepted: 10/07/2022] [Indexed: 01/30/2023] Open
Abstract
Fungal taxonomy is a complex and rapidly changing subject, which makes proper naming of fungi challenging for taxonomists. A registration platform with a standardized and information-integrated database is a powerful tool for efficient research on fungal taxonomy. Fungal Names (FN, https://nmdc.cn/fungalnames/; launched in 2011) is one of the three official fungal nomenclatural repositories authorized by the International Nomenclature Committee for Fungi (NCF). Currently, FN includes >567 000 taxon names from >10 000 related journals and books published since 1596 and covers >147 000 collection records of type specimens/illustrations from >5000 preserving agencies. FN is also a knowledge base that integrates nomenclature information with specimens, culture collections and herbaria/fungaria, publications and taxonomists, and represents a summary of the history and recent advances in fungal taxonomy. Published fungal names are categorized based on well-accepted nomenclature rules and can be readily searched with different keywords and strategies. In combination with a standardized name checking tool and a sequence alignment-based identification package, FN makes the registration and typification of nomenclatural novelties of fungi convenient and accurate.
Collapse
Affiliation(s)
| | | | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingjun Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Paul M Kirk
- Jodrell Laboratory, Royal Botanical Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - Guomei Fan
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Qinglan Sun
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Bo Li
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Shuai Wang
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Zhengfei Yu
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Dong Han
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Juncai Ma
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Linhuan Wu
- To whom correspondence should be addressed. Tel: +86 10 64807385;
| | - Yijian Yao
- Correspondence may also be addressed to Yijian Yao. Tel: 86 10 64807595;
| |
Collapse
|
19
|
Abstract
It has been assumed that fungi are characterized by a haploid-dominant life cycle with a general absence of mitosis in the diploid stage (haplontic life cycles). However, this characterization is based largely on information for Dikarya, a group of fungi that contains mushrooms, lichens, molds, yeasts, and most described fungi. We now appreciate that most early-diverging lineages of fungi are not Dikarya and share traits with protists, such as flagellated life stages. Here, we generated an improved phylogeny of the fungi by generating genome sequences of 69 zoosporic fungi. We show, using the estimated heterozygosity of these genomes, that many fungal lineages have diploid-dominant life cycles (diplontic). This finding forces us to rethink the early evolution of the fungal cell. Most of the described species in kingdom Fungi are contained in two phyla, the Ascomycota and the Basidiomycota (subkingdom Dikarya). As a result, our understanding of the biology of the kingdom is heavily influenced by traits observed in Dikarya, such as aerial spore dispersal and life cycles dominated by mitosis of haploid nuclei. We now appreciate that Fungi comprises numerous phylum-level lineages in addition to those of Dikarya, but the phylogeny and genetic characteristics of most of these lineages are poorly understood due to limited genome sampling. Here, we addressed major evolutionary trends in the non-Dikarya fungi by phylogenomic analysis of 69 newly generated draft genome sequences of the zoosporic (flagellated) lineages of true fungi. Our phylogeny indicated five lineages of zoosporic fungi and placed Blastocladiomycota, which has an alternation of haploid and diploid generations, as branching closer to the Dikarya than to the Chytridiomyceta. Our estimates of heterozygosity based on genome sequence data indicate that the zoosporic lineages plus the Zoopagomycota are frequently characterized by diploid-dominant life cycles. We mapped additional traits, such as ancestral cell-cycle regulators, cell-membrane– and cell-wall–associated genes, and the use of the amino acid selenocysteine on the phylogeny and found that these ancestral traits that are shared with Metazoa have been subject to extensive parallel loss across zoosporic lineages. Together, our results indicate a gradual transition in the genetics and cell biology of fungi from their ancestor and caution against assuming that traits measured in Dikarya are typical of other fungal lineages.
Collapse
|
20
|
You MP, Eshete BB, Kemal SA, Barbetti MJ. Faba Bean Gall Pathogen Physoderma viciae: New Primers Reveal Its Puzzling Association with the Field Pea Ascochyta Complex. PLANT DISEASE 2022; 106:2299-2303. [PMID: 35124995 DOI: 10.1094/pdis-11-21-2576-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent morphological and molecular studies confirmed Physoderma viciae, and not Olpidium viciae, to be the causative agent of the devastating Faba Bean Gall (FBG) disease on faba bean (Vicia faba) in Ethiopia and also highlighted its ability to cross-infect with other host genera such as Pisum and Trifolium. In this study, the first pair of specific primer 'Physo 1' and primer pair 'Physo D' are reported from molecular sequences of this pathogen from the conserved LSU (S28) gene. Whereas 'Physo 1' readily detects P. viciae, 'Physo D', clearly separates its identity from the common and confounding presence of Didymella/Phoma spp. The study also reports the presence of the Ascochyta blight pathogen complex, symptomless but almost universal on field pea (Pisum sativum), within faba bean infested by P. viciae. We emphasize historical evidence confirming such unique association in other legumes, such as the subterranean clover (Trifolium subterraneum). This new finding has significant implications for rotations involving different legume crop and/or forage legume genera and possibly provides the first explanation for the widespread occurrence of the field pea Ascochyta blight pathogen complex even in the absence of field pea cropping for many years.
Collapse
Affiliation(s)
- Ming Pei You
- School of Agriculture and Environment and the UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | - Seid Ahmed Kemal
- International Center for Agricultural Research in the Dry Areas, Station Exp. Institut National de Recherche Agronomique (INRA)-Quich, Rue Hafiane Cherkaoui Agdal, Rabat Instituts, Rabat, Morocco
| | - Martin J Barbetti
- School of Agriculture and Environment and the UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
21
|
Pathogenesis: How a killer fungus targets its host. Curr Biol 2022; 32:R583-R585. [PMID: 35728533 DOI: 10.1016/j.cub.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cellular signals that trigger pathogen recognition of its target hosts are critical components in the infection cycle. A new study describes the amphibian host cues that induce spore germination in the deadly pathogen that causes chytridiomycosis.
Collapse
|
22
|
Gryganskyi AP, Golan J, Hajek AE. Season-long infection of diverse hosts by the entomopathogenic fungus Batkoa major. PLoS One 2022; 17:e0261912. [PMID: 35511895 PMCID: PMC9070890 DOI: 10.1371/journal.pone.0261912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Populations of the entomopathogenic fungus Batkoa major were analyzed using sequences of four genomic regions and evaluated in relation to their genetic diversity, insect hosts and collection site. This entomophthoralean pathogen killed numerous insect species from 23 families and five orders in two remote locations during 2019. The host list of this biotrophic pathogen contains flies, true bugs, butterflies and moths, beetles, and barkflies. Among the infected bugs (Order Hemiptera), the spotted lanternfly (Lycorma delicatula) is a new invasive planthopper pest of various woody plants that was introduced to the USA from Eastern Asia. A high degree of clonality occurred in the studied populations and high gene flow was revealed using four molecular loci for the analysis of population structure. We did not detect any segregation in the population regarding host affiliation (by family or order), or collection site. This is the first description of population structure of a biotrophic fungus-generalist in the entomopathogenic Order Entomophthorales. This analysis aimed to better understand the potential populations of entomopathogen-generalists infecting emerging invasive hosts in new ecosystems.
Collapse
Affiliation(s)
| | - Jacob Golan
- Departments of Botany and Bacteriology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ann E. Hajek
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Cavalier-Smith T. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi. PROTOPLASMA 2022; 259:487-593. [PMID: 34940909 PMCID: PMC9010356 DOI: 10.1007/s00709-021-01665-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/03/2021] [Indexed: 05/19/2023]
Abstract
I thoroughly discuss ciliary transition zone (TZ) evolution, highlighting many overlooked evolutionarily significant ultrastructural details. I establish fundamental principles of TZ ultrastructure and evolution throughout eukaryotes, inferring unrecognised ancestral TZ patterns for Fungi, opisthokonts, and Corticata (i.e., kingdoms Plantae and Chromista). Typical TZs have a dense transitional plate (TP), with a previously overlooked complex lattice as skeleton. I show most eukaryotes have centriole/TZ junction acorn-V filaments (whose ancestral function was arguably supporting central pair microtubule-nucleating sites; I discuss their role in centriole growth). Uniquely simple malawimonad TZs (without TP, simpler acorn) pinpoint the eukaryote tree's root between them and TP-bearers, highlighting novel superclades. I integrate TZ/ciliary evolution with the best multiprotein trees, naming newly recognised major eukaryote clades and revise megaclassification of basal kingdom Protozoa. Recent discovery of non-photosynthetic phagotrophic flagellates with genome-free plastids (Rhodelphis), the sister group to phylum Rhodophyta (red algae), illuminates plant and chromist early evolution. I show previously overlooked marked similarities in cell ultrastructure between Rhodelphis and Picomonas, formerly considered an early diverging chromist. In both a nonagonal tube lies between their TP and an annular septum surrounding their 9+2 ciliary axoneme. Mitochondrial dense condensations and mitochondrion-linked smooth endomembrane cytoplasmic partitioning cisternae further support grouping Picomonadea and Rhodelphea as new plant phylum Pararhoda. As Pararhoda/Rhodophyta form a robust clade on site-heterogeneous multiprotein trees, I group Pararhoda and Rhodophyta as new infrakingdom Rhodaria of Plantae within subkingdom Biliphyta, which also includes Glaucophyta with fundamentally similar TZ, uniquely in eukaryotes. I explain how biliphyte TZs generated viridiplant stellate-structures.
Collapse
|
24
|
van de Vossenberg BTLH, Prodhomme C, Vossen JH, van der Lee TAJ. Synchytrium endobioticum, the potato wart disease pathogen. MOLECULAR PLANT PATHOLOGY 2022; 23:461-474. [PMID: 35029012 PMCID: PMC8916214 DOI: 10.1111/mpp.13183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED Potato wart disease is considered one of the most important quarantine pests for cultivated potato and is caused by the obligate biotrophic chytrid fungus Synchytrium endobioticum. This review integrates observations from early potato wart research and recent molecular, genetic, and genomic studies of the pathogen and its host potato. Taxonomy, epidemiology, pathology, and formation of new pathotypes are discussed, and a model for molecular S. endobioticum-potato interaction is proposed. TAXONOMY Currently classified as kingdom: Fungi, phylum: Chytridiomycota, class: Chytridiomycetes, order: Chytridiales, family: Synchytriaceae, genus: Synchytrium, species: Synchytrium endobioticum, there is strong molecular support for Synchytriaceae to be transferred to the order Synchytriales. HOSTS AND DISEASE SYMPTOMS Solanum tuberosum is the main host for S. endobioticum but other solanaceous species have been reported as alternative hosts. It is not known if these alternative hosts play a role in the survival of the pathogen in (borders of) infested fields. Disease symptoms on potato tubers are characterized by the warty cauliflower-like malformations that are the result of cell enlargement and cell multiplication induced by the pathogen. Meristematic tissue on tubers, stolons, eyes, sprouts, and inflorescences can be infected while the potato root system seems to be immune. PATHOTYPES For S. endobioticum over 40 pathotypes, which are defined as groups of isolates with a similar response to a set of differential potato varieties, are described. Pathotypes 1(D1), 2(G1), 6(O1), and 18(T1) are currently regarded to be most widespread. However, with the current differential set other pathogen diversity largely remains undetected. PATHOGEN-HOST INTERACTION A single effector has been described for S. endobioticum (AvrSen1), which is recognized by the potato Sen1 resistance gene product. This is also the first effector that has been described in Chytridiomycota, showing that in this fungal division resistance also fits the gene-for-gene concept. Although significant progress was made in the last decade in mapping wart disease resistance loci, not all resistances present in potato breeding germplasm could be identified. The use of resistant varieties plays an essential role in disease management.
Collapse
Affiliation(s)
| | | | - Jack H. Vossen
- Plant BreedingWageningen University & ResearchWageningenNetherlands
| | | |
Collapse
|
25
|
Phytocompounds as an Alternative Antimicrobial Approach in Aquaculture. Antibiotics (Basel) 2022; 11:antibiotics11040469. [PMID: 35453220 PMCID: PMC9031819 DOI: 10.3390/antibiotics11040469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Despite culturing the fastest-growing animal in animal husbandry, fish farmers are often adversely economically affected by pathogenic disease outbreaks across the world. Although there are available solutions such as the application of antibiotics to mitigate this phenomenon, the excessive and injudicious use of antibiotics has brought with it major concerns to the community at large, mainly due to the rapid development of resistant bacteria. At present, the use of natural compounds such as phytocompounds that can be an alternative to antibiotics is being explored to address the issue of antimicrobial resistance (AMR). These phytocompounds are bioactive agents that can be found in many species of plants and hold much potential. In this review, we will discuss phytocompounds extracted from plants that have been evidenced to contain antimicrobial, antifungal, antiviral and antiparasitic activities. Further, it has also been found that compounds such as terpenes, phenolics, saponins and alkaloids can be beneficial to the aquaculture industry when applied. This review will focus mainly on compounds that have been identified between 2000 and 2021. It is hoped this review will shed light on promising phytocompounds that can potentially and effectively mitigate AMR.
Collapse
|
26
|
Mondini A, Anwar MZ, Ellegaard-Jensen L, Lavin P, Jacobsen CS, Purcarea C. Heat Shock Response of the Active Microbiome From Perennial Cave Ice. Front Microbiol 2022; 12:809076. [PMID: 35360653 PMCID: PMC8960993 DOI: 10.3389/fmicb.2021.809076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Ice caves constitute the newly investigated frozen and secluded model habitats for evaluating the resilience of ice-entrapped microbiomes in response to climate changes. This survey identified the total and active prokaryotic and eukaryotic communities from millennium-old ice accumulated in Scarisoara cave (Romania) using Illumina shotgun sequencing of the ribosomal RNA (rRNA) and messenger RNA (mRNA)-based functional analysis of the metatranscriptome. Also, the response of active microbiome to heat shock treatment mimicking the environmental shift during ice melting was evaluated at both the taxonomic and metabolic levels. The putatively active microbial community was dominated by bacterial taxa belonging to Proteobacteria and Bacteroidetes, which are highly resilient to thermal variations, while the scarcely present archaea belonging to Methanomicrobia was majorly affected by heat shock. Among eukaryotes, the fungal rRNA community was shared between the resilient Chytridiomycota and Blastocladiomycota, and the more sensitive Ascomycota and Basidiomycota taxa. A complex microeukaryotic community highly represented by Tardigrada and Rotifera (Metazoa), Ciliophora and Cercozoa (Protozoa), and Chlorophyta (Plantae) was evidenced for the first time in this habitat. This community showed a quick reaction to heat shock, followed by a partial recovery after prolonged incubation at 4°C due to possible predation processes on the prokaryotic cluster. Analysis of mRNA differential gene expression revealed the presence of an active microbiome in the perennial ice from the Scarisoara cave and associated molecular mechanisms for coping with temperature variations by the upregulation of genes involved in enzyme recovery, energy storage, carbon and nitrogen regulation, and cell motility. This first report on the active microbiome embedded in perennial ice from caves and its response to temperature stress provided a glimpse into the impact of glaciers melting and the resilience mechanisms in this habitat, contributing to the knowledge on the functional role of active microbes in frozen environments and their response to climatic changes.
Collapse
Affiliation(s)
- Antonio Mondini
- Department of Microbiology, Institute of Biology, Bucharest, Romania
| | - Muhammad Zohaib Anwar
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, Denmark
- Center for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, Denmark
| | - Paris Lavin
- Centre of Biotechnology and Bioengineering (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Carsten Suhr Jacobsen
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, Denmark
| | - Cristina Purcarea
- Department of Microbiology, Institute of Biology, Bucharest, Romania
- *Correspondence: Cristina Purcarea,
| |
Collapse
|
27
|
Ilicic D, Grossart HP. Basal Parasitic Fungi in Marine Food Webs-A Mystery Yet to Unravel. J Fungi (Basel) 2022; 8:114. [PMID: 35205868 PMCID: PMC8874645 DOI: 10.3390/jof8020114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Although aquatic and parasitic fungi have been well known for more than 100 years, they have only recently received increased awareness due to their key roles in microbial food webs and biogeochemical cycles. There is growing evidence indicating that fungi inhabit a wide range of marine habitats, from the deep sea all the way to surface waters, and recent advances in molecular tools, in particular metagenome approaches, reveal that their diversity is much greater and their ecological roles more important than previously considered. Parasitism constitutes one of the most widespread ecological interactions in nature, occurring in almost all environments. Despite that, the diversity of fungal parasites, their ecological functions, and, in particular their interactions with other microorganisms remain largely speculative, unexplored and are often missing from current theoretical concepts in marine ecology and biogeochemistry. In this review, we summarize and discuss recent research avenues on parasitic fungi and their ecological potential in marine ecosystems, e.g., the fungal shunt, and emphasize the need for further research.
Collapse
Affiliation(s)
- Doris Ilicic
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany;
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany;
- Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469 Potsdam, Germany
| |
Collapse
|
28
|
Sime-Ngando T, Jobard M, Rasconi S. Fluorescence In Situ Hybridization of Uncultured Zoosporic Fungi. Fungal Biol 2022. [DOI: 10.1007/978-3-030-83749-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Sime-Ngando T, Jobard M. Real-Time Quantitative PCR Assay for the Assessment of Uncultured Zoosporic Fungi. Fungal Biol 2022. [DOI: 10.1007/978-3-030-83749-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Early-diverging fungal phyla: taxonomy, species concept, ecology, distribution, anthropogenic impact, and novel phylogenetic proposals. FUNGAL DIVERS 2021; 109:59-98. [PMID: 34608378 PMCID: PMC8480134 DOI: 10.1007/s13225-021-00480-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
The increasing number of new fungal species described from all over the world along with the use of genetics to define taxa, has dramatically changed the classification system of early-diverging fungi over the past several decades. The number of phyla established for non-Dikarya fungi has increased from 2 to 17. However, to date, both the classification and phylogeny of the basal fungi are still unresolved. In this article, we review the recent taxonomy of the basal fungi and re-evaluate the relationships among early-diverging lineages of fungal phyla. We also provide information on the ecology and distribution in Mucoromycota and highlight the impact of chytrids on amphibian populations. Species concepts in Chytridiomycota, Aphelidiomycota, Rozellomycota, Neocallimastigomycota are discussed in this paper. To preserve the current application of the genus Nephridiophaga (Chytridiomycota: Nephridiophagales), a new type species, Nephridiophaga blattellae, is proposed.
Collapse
|
31
|
Kumar V, Sarma VV, Thambugala KM, Huang JJ, Li XY, Hao GF. Ecology and Evolution of Marine Fungi With Their Adaptation to Climate Change. Front Microbiol 2021; 12:719000. [PMID: 34512597 PMCID: PMC8430337 DOI: 10.3389/fmicb.2021.719000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023] Open
Abstract
Climate change agitates interactions between organisms and the environment and forces them to adapt, migrate, get replaced by others, or extinct. Marine environments are extremely sensitive to climate change that influences their ecological functions and microbial community including fungi. Fungi from marine habitats are engaged and adapted to perform diverse ecological functions in marine environments. Several studies focus on how complex interactions with the surrounding environment affect fungal evolution and their adaptation. However, a review addressing the adaptation of marine fungi to climate change is still lacking. Here we have discussed the adaptations of fungi in the marine environment with an example of Hortaea werneckii and Aspergillus terreus which may help to reduce the risk of climate change impacts on marine environments and organisms. We address the ecology and evolution of marine fungi and the effects of climate change on them to explain the adaptation mechanism. A review of marine fungal adaptations will show widespread effects on evolutionary biology and the mechanism responsible for it.
Collapse
Affiliation(s)
- Vinit Kumar
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | | | - Kasun M. Thambugala
- Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Jun-Jie Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiang-Yang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ge-Fei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
32
|
Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota. Nat Commun 2021; 12:4973. [PMID: 34404788 PMCID: PMC8371127 DOI: 10.1038/s41467-021-25308-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Compared to multicellular fungi and unicellular yeasts, unicellular fungi with free-living flagellated stages (zoospores) remain poorly known and their phylogenetic position is often unresolved. Recently, rRNA gene phylogenetic analyses of two atypical parasitic fungi with amoeboid zoospores and long kinetosomes, the sanchytrids Amoeboradix gromovi and Sanchytrium tribonematis, showed that they formed a monophyletic group without close affinity with known fungal clades. Here, we sequence single-cell genomes for both species to assess their phylogenetic position and evolution. Phylogenomic analyses using different protein datasets and a comprehensive taxon sampling result in an almost fully-resolved fungal tree, with Chytridiomycota as sister to all other fungi, and sanchytrids forming a well-supported, fast-evolving clade sister to Blastocladiomycota. Comparative genomic analyses across fungi and their allies (Holomycota) reveal an atypically reduced metabolic repertoire for sanchytrids. We infer three main independent flagellum losses from the distribution of over 60 flagellum-specific proteins across Holomycota. Based on sanchytrids' phylogenetic position and unique traits, we propose the designation of a novel phylum, Sanchytriomycota. In addition, our results indicate that most of the hyphal morphogenesis gene repertoire of multicellular fungi had already evolved in early holomycotan lineages.
Collapse
|
33
|
Solving a long-standing enigma: Myrmicinosporidium durum belongs to Blastocladiomycota, a phylum of primarily aquatic fungi. J Invertebr Pathol 2021; 184:107640. [PMID: 34166714 DOI: 10.1016/j.jip.2021.107640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/05/2021] [Accepted: 06/13/2021] [Indexed: 11/22/2022]
Abstract
Myrmicinosporidium durumHölldobler (1933) is a widely distributed fungal endoparasite of ants. However, little is known about its biology, ecology, or evolutionary history. Our study investigated the phylogenetics of this entomopathogenic fungus using a molecular approach. Samples of M. durum were obtained from infected Solenopsis fugax workers collected in Warsaw (Poland). Analyses of rDNA markers revealed that M. durum belongs to a phylum of primarily aquatic fungi, Blastocladiomycota. It is currently the only species from this group known to parasitise hymenopterans. Our findings have clarified this fungus' taxonomy and suggest future directions for research into its biology, ecology, and infection dynamics.
Collapse
|
34
|
Blaalid R, Khomich M. Current knowledge of Chytridiomycota diversity in Northern Europe and future research needs. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Simmons DR, Longcore JE, James TY. Polyrhizophydium stewartii, the first known rhizomycelial genus and species in the Rhizophydiales, is closely related to Batrachochytrium. Mycologia 2021; 113:684-690. [PMID: 33847227 DOI: 10.1080/00275514.2021.1885206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Molecular and ultrastructural investigations of the Chytridiomycota during the last 20 years have led to the separation of new orders, including the Rhizophydiales. Most species in this order are morphologically similar, possessing monocentric, eucarpic, spherical thalli. Here, based on analysis of nuc 18S and 28S rDNA, we add the new genus and species Polyrhizophydium stewartii to the order. This saprobe of moribund aquatic plant leaves is the first known rhizomycelial species in the order. In our molecular phylogeny, P. stewartii groups with the amphibian pathogens Batrachochytriuim dendrobatidis and B. salamandrivorans, making it of particular interest to investigators studying evolutionary pathways associated with host-switching and morphological adaptation.
Collapse
Affiliation(s)
- D Rabern Simmons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109-1085
| | - Joyce E Longcore
- School of Biology and Ecology, University of Maine, Orono, Maine 04469-5722
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109-1085
| |
Collapse
|
36
|
Saye LMG, Navaratna TA, Chong JPJ, O’Malley MA, Theodorou MK, Reilly M. The Anaerobic Fungi: Challenges and Opportunities for Industrial Lignocellulosic Biofuel Production. Microorganisms 2021; 9:694. [PMID: 33801700 PMCID: PMC8065543 DOI: 10.3390/microorganisms9040694] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
Lignocellulose is a promising feedstock for biofuel production as a renewable, carbohydrate-rich and globally abundant source of biomass. However, challenges faced include environmental and/or financial costs associated with typical lignocellulose pretreatments needed to overcome the natural recalcitrance of the material before conversion to biofuel. Anaerobic fungi are a group of underexplored microorganisms belonging to the early diverging phylum Neocallimastigomycota and are native to the intricately evolved digestive system of mammalian herbivores. Anaerobic fungi have promising potential for application in biofuel production processes due to the combination of their highly effective ability to hydrolyse lignocellulose and capability to convert this substrate to H2 and ethanol. Furthermore, they can produce volatile fatty acid precursors for subsequent biological conversion to H2 or CH4 by other microorganisms. The complex biological characteristics of their natural habitat are described, and these features are contextualised towards the development of suitable industrial systems for in vitro growth. Moreover, progress towards achieving that goal is reviewed in terms of process and genetic engineering. In addition, emerging opportunities are presented for the use of anaerobic fungi for lignocellulose pretreatment; dark fermentation; bioethanol production; and the potential for integration with methanogenesis, microbial electrolysis cells and photofermentation.
Collapse
Affiliation(s)
- Luke M. G. Saye
- Department of Biology, University of York, York YO10 5DD, UK; (L.M.G.S.); (J.P.J.C.)
- Department of Agriculture and the Environment, Harper Adams University, Newport TF10 8NB, UK
| | - Tejas A. Navaratna
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA; (T.A.N.); (M.A.O.)
| | - James P. J. Chong
- Department of Biology, University of York, York YO10 5DD, UK; (L.M.G.S.); (J.P.J.C.)
| | - Michelle A. O’Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA; (T.A.N.); (M.A.O.)
| | - Michael K. Theodorou
- Department of Agriculture and the Environment, Harper Adams University, Newport TF10 8NB, UK
| | - Matthew Reilly
- Department of Biology, University of York, York YO10 5DD, UK; (L.M.G.S.); (J.P.J.C.)
| |
Collapse
|
37
|
Jesus AL, Jerônimo GH, Pires-Zottarelli CLA. Two new species of Chytriomycetaceae: Morphological, phylogenetic, and ultrastructural characterization. Mycologia 2021; 113:312-325. [PMID: 33538654 DOI: 10.1080/00275514.2020.1843328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Systematics of Chytridiales has been deeply influenced by analyses of molecular loci and zoospore ultrastructure. Even though the Chytridiales is the largest order within Chytridiomycota, Brazilian isolates of this clade have been poorly integrated. Here, we isolated seven species and documented their morphology, including zoospore ultrastructure for Siphonaria aurea, and phylogenetic positions for all based on analyses of nuc 18S and 28S rDNA. Phylogenetic results support the placement of these species in Chytriomycetaceae and Chytridiaceae, with two new species described, Rhizidium crepaturum and Siphonaria aurea, and Rodmanochytrium sphaericum recorded for the first time from Brazil.
Collapse
Affiliation(s)
- Ana L Jesus
- Núcleo de Pesquisa em Micologia, Instituto de Botânica, Av. Miguel Stéfano 3687, São Paulo, São Paulo, Brazil
| | - Gustavo H Jerônimo
- Núcleo de Pesquisa em Micologia, Instituto de Botânica, Av. Miguel Stéfano 3687, São Paulo, São Paulo, Brazil
| | - Carmen L A Pires-Zottarelli
- Núcleo de Pesquisa em Micologia, Instituto de Botânica, Av. Miguel Stéfano 3687, São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Alors D, Boussiba S, Zarka A. Paraphysoderma sedebokerense Infection in Three Economically Valuable Microalgae: Host Preference Correlates with Parasite Fitness. J Fungi (Basel) 2021; 7:jof7020100. [PMID: 33535515 PMCID: PMC7912770 DOI: 10.3390/jof7020100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/27/2022] Open
Abstract
The blastocladialean fungus Paraphysoderma sedebokerense parasitizes three microalgae species of economic interest: Haematococcus pluvialis, Chromochloris zofingiensis and Scenedesmus dimorphus. For the first time, we characterized the developmental stages of isolated fungal propagules in H. pluvialis co-culture, finding a generation time of 16 h. We established a patho-system to compare the infection in the three different host species for 48 h, with two different setups to quantify parameters of the infection and parameters of the parasite fitness. The prevalence of the parasite in H. pluvialis and C. zofingiensis cultures was 100%, but only 20% in S. dimorphus culture. The infection of S. dimorphus not only reached lower prevalence but was also qualitatively different; the infection developed preferentially on senescent cells and more resting cysts were produced, being consistent with a reservoir host. In addition, we carried out cross infection experiments and the inoculation of a mixed algal culture containing the three microalgae, to determine the susceptibility of the host species and to investigate the preference of P. sedebokerense for these microalgae. The three tested microalgae showed different susceptibility to P. sedebokerense, which correlates with blastoclad’s preference to the host in the following order: H. pluvialis > C. zofingiensis > S. dimorphus.
Collapse
|
39
|
Long rDNA amplicon sequencing of insect-infecting nephridiophagids reveals their affiliation to the Chytridiomycota and a potential to switch between hosts. Sci Rep 2021; 11:396. [PMID: 33431987 PMCID: PMC7801462 DOI: 10.1038/s41598-020-79842-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Nephridiophagids are unicellular eukaryotes that parasitize the Malpighian tubules of numerous insects. Their life cycle comprises multinucleate vegetative plasmodia that divide into oligonucleate and uninucleate cells, and sporogonial plasmodia that form uninucleate spores. Nephridiophagids are poor in morphological characteristics, and although they have been tentatively identified as early-branching fungi based on the SSU rRNA gene sequences of three species, their exact position within the fungal tree of live remained unclear. In this study, we describe two new species of nephridiophagids (Nephridiophaga postici and Nephridiophaga javanicae) from cockroaches. Using long-read sequencing of the nearly complete rDNA operon of numerous further species obtained from cockroaches and earwigs to improve the resolution of the phylogenetic analysis, we found a robust affiliation of nephridiophagids with the Chytridiomycota-a group of zoosporic fungi that comprises parasites of diverse host taxa, such as microphytes, plants, and amphibians. The presence of the same nephridiophagid species in two only distantly related cockroaches indicates that their host specificity is not as strict as generally assumed.
Collapse
|
40
|
Muturi SM, Muthui LW, Njogu PM, Onguso JM, Wachira FN, Opiyo SO, Pelle R. Metagenomics survey unravels diversity of biogas microbiomes with potential to enhance productivity in Kenya. PLoS One 2021; 16:e0244755. [PMID: 33395690 PMCID: PMC7781671 DOI: 10.1371/journal.pone.0244755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
The obstacle to optimal utilization of biogas technology is poor understanding of biogas microbiomes diversities over a wide geographical coverage. We performed random shotgun sequencing on twelve environmental samples. Randomized complete block design was utilized to assign the twelve treatments to four blocks, within eastern and central regions of Kenya. We obtained 42 million paired-end reads that were annotated against sixteen reference databases using two ENVO ontologies, prior to β-diversity studies. We identified 37 phyla, 65 classes and 132 orders. Bacteria dominated and comprised 28 phyla, 42 classes and 92 orders, conveying substrate's versatility in the treatments. Though, Fungi and Archaea comprised 5 phyla, the Fungi were richer; suggesting the importance of hydrolysis and fermentation in biogas production. High β-diversity within the taxa was largely linked to communities' metabolic capabilities. Clostridiales and Bacteroidales, the most prevalent guilds, metabolize organic macromolecules. The identified Cytophagales, Alteromonadales, Flavobacteriales, Fusobacteriales, Deferribacterales, Elusimicrobiales, Chlamydiales, Synergistales to mention but few, also catabolize macromolecules into smaller substrates to conserve energy. Furthermore, δ-Proteobacteria, Gloeobacteria and Clostridia affiliates syntrophically regulate PH2 and reduce metal to provide reducing equivalents. Methanomicrobiales and other Methanomicrobia species were the most prevalence Archaea, converting formate, CO2(g), acetate and methylated substrates into CH4(g). Thermococci, Thermoplasmata and Thermoprotei were among the sulfur and other metal reducing Archaea that contributed to redox balancing and other metabolism within treatments. Eukaryotes, mainly fungi were the least abundant guild, comprising largely Ascomycota and Basidiomycota species. Chytridiomycetes, Blastocladiomycetes and Mortierellomycetes were among the rare species, suggesting their metabolic and substrates limitations. Generally, we observed that environmental and treatment perturbations influenced communities' abundance, β-diversity and reactor performance largely through stochastic effect. Understanding diversity of biogas microbiomes over wide environmental variables and its' productivity provided insights into better management strategies that ameliorate biochemical limitations to effective biogas production.
Collapse
Affiliation(s)
- Samuel Mwangangi Muturi
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
- Institute for Bioteschnology Research, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Lucy Wangui Muthui
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | - Paul Mwangi Njogu
- Institute for Energy and Environmental Technology, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Justus Mong’are Onguso
- Institute for Bioteschnology Research, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | | | - Stephen Obol Opiyo
- OARDC, Molecular and Cellular Imaging Center-Columbus, Ohio State University, Columbus, Ohio, United States of America
- The University of Sacread Heart, Gulu, Uganda
| | - Roger Pelle
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| |
Collapse
|
41
|
Orosz F. On the TPPP-like proteins of flagellated fungi. Fungal Biol 2020; 125:357-367. [PMID: 33910677 DOI: 10.1016/j.funbio.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
TPPP-like proteins, exhibiting microtubule stabilizing function, constitute a eukaryotic superfamily, characterized by the presence of the p25alpha domain. TPPPs in the strict sense are present in animals except Trichoplax adhaerens, which instead contains apicortin where a part of the p25alpha domain is combined with a DCX domain. Apicortin is absent in other animals and occurs mostly in the protozoan phylum, Apicomplexa. A strong correlation between the occurrence of p25alpha domain and that of the eukaryotic cilium/flagellum was suggested. Species of the deeper branching clades of Fungi possess flagellum but others lost it thus investigation of fungal genomes can help testing of this suggestion. Indeed, these proteins are present in early branching Fungi. Both TPPP and apicortin are present in Rozellomycota (Cryptomycota) and Chytridiomycota, TPPP in Blastocladiomycota, apicortin in Neocallimastigomycota, Monoblepharomycota and the non-flagellated Mucoromycota. Beside the "normal" TPPP occurring in animals, a special, fungal-type TPPP is also present in Fungi, in which a part of the p25alpha domain is duplicated. Dikarya, the most developed subkingdom of Fungi, lacks both flagellum and TPPPs. Thus it is strengthened that each ciliated/flagellated organism contains p25alpha domain-containing proteins while there are very few non-flagellated ones where p25alpha domain can be found.
Collapse
Affiliation(s)
- Ferenc Orosz
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117, Budapest, Hungary.
| |
Collapse
|
42
|
Where are the basal fungi? Current status on diversity, ecology, evolution, and taxonomy. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00642-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Broser M, Spreen A, Konold PE, Schiewer E, Adam S, Borin V, Schapiro I, Seifert R, Kennis JTM, Bernal Sierra YA, Hegemann P. NeoR, a near-infrared absorbing rhodopsin. Nat Commun 2020; 11:5682. [PMID: 33173168 PMCID: PMC7655827 DOI: 10.1038/s41467-020-19375-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
The Rhizoclosmatium globosum genome encodes three rhodopsin-guanylyl cyclases (RGCs), which are predicted to facilitate visual orientation of the fungal zoospores. Here, we show that RGC1 and RGC2 function as light-activated cyclases only upon heterodimerization with RGC3 (NeoR). RGC1/2 utilize conventional green or blue-light-sensitive rhodopsins (λmax = 550 and 480 nm, respectively), with short-lived signaling states, responsible for light-activation of the enzyme. The bistable NeoR is photoswitchable between a near-infrared-sensitive (NIR, λmax = 690 nm) highly fluorescent state (QF = 0.2) and a UV-sensitive non-fluorescent state, thereby modulating the activity by NIR pre-illumination. No other rhodopsin has been reported so far to be functional as a heterooligomer, or as having such a long wavelength absorption or high fluorescence yield. Site-specific mutagenesis and hybrid quantum mechanics/molecular mechanics simulations support the idea that the unusual photochemical properties result from the rigidity of the retinal chromophore and a unique counterion triad composed of two glutamic and one aspartic acids. These findings substantially expand our understanding of the natural potential and limitations of spectral tuning in rhodopsin photoreceptors.
Collapse
Affiliation(s)
- Matthias Broser
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| | - Anika Spreen
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Patrick E Konold
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Enrico Schiewer
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Suliman Adam
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Veniamin Borin
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Reinhard Seifert
- Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - John T M Kennis
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | | | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| |
Collapse
|
44
|
Floc'h JB, Hamel C, Harker KN, St-Arnaud M. Fungal Communities of the Canola Rhizosphere: Keystone Species and Substantial Between-Year Variation of the Rhizosphere Microbiome. MICROBIAL ECOLOGY 2020; 80:762-777. [PMID: 31897569 DOI: 10.1007/s00248-019-01475-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/16/2019] [Indexed: 05/25/2023]
Abstract
Rhizosphere microbes influence one another, forming extremely complex webs of interactions that may determine plant success. Identifying the key factors that structure the fungal microbiome of the plant rhizosphere is a necessary step in optimizing plant production. In a long-term field experiment conducted at three locations in the Canadian prairies, we tested the following hypotheses: (1) diversification of cropping systems influences the fungal microbiome of the canola (Brassica napus) rhizosphere; (2) the canola rhizosphere has a core fungal microbiome, i.e., a set of fungi always associated with canola; and (3) some taxa within the rhizosphere microbiome of canola are highly interrelated and fit the description of hub taxa. Our results show that crop diversification has a significant effect on the structure of the rhizosphere fungal community but not on fungal diversity. We also discovered and described a canola core microbiome made up of one zero-radius operational taxonomic unit (ZOTU), cf. Olpidium brassicae, and an eco-microbiome found only in 2013 consisting of 47 ZOTUs. Using network analysis, we identified four hub taxa in 2013: ZOTU14 (Acremonium sp.), ZOTU28 (Sordariomycetes sp.), ZOTU45 (Mortierella sp.) and ZOTU179 (cf. Ganoderma applanatum), and one hub taxon, ZOTU17 (cf. Mortierella gamsii) in 2016. None of these most interacting taxa belonged to the core microbiome or eco-microbiome for each year of sampling. This temporal variability puts into question the idea of a plant core fungal microbiome and its stability. Our results provide a basis for the development of ecological engineering strategies for the improvement of canola production systems in Canada.
Collapse
Affiliation(s)
- Jean-Baptiste Floc'h
- Institut de recherche en biologie végétale, ,Université de Montréal, 4101 East, Sherbrooke Street, Montréal, QC, H1X 2B2, Canada
- Jardin Botanique de Montréal, Montreal, Canada
- Québec Research and Development Centre of Quebec, Agriculture and Agri-Food Canada, Quebec City, QC, Canada
| | - Chantal Hamel
- Institut de recherche en biologie végétale, ,Université de Montréal, 4101 East, Sherbrooke Street, Montréal, QC, H1X 2B2, Canada
- Jardin Botanique de Montréal, Montreal, Canada
- Québec Research and Development Centre of Quebec, Agriculture and Agri-Food Canada, Quebec City, QC, Canada
| | - K Neil Harker
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Marc St-Arnaud
- Institut de recherche en biologie végétale, ,Université de Montréal, 4101 East, Sherbrooke Street, Montréal, QC, H1X 2B2, Canada.
- Jardin Botanique de Montréal, Montreal, Canada.
| |
Collapse
|
45
|
Nie Y, Cai Y, Gao Y, Yu DS, Wang ZM, Liu XY, Huang B. Three new species of Conidiobolus sensu stricto from plant debris in eastern China. MycoKeys 2020; 73:133-149. [PMID: 33117082 PMCID: PMC7561611 DOI: 10.3897/mycokeys.73.56905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/23/2020] [Indexed: 11/12/2022] Open
Abstract
The genus Conidiobolus Bref. is widely distributed and the Conidiobolus sensu lato contained three other genera, Capillidium, Microconidiobolus and Neoconidiobolus. A molecular phylogeny based on the nuclear large subunit of rDNA (nucLSU), the mitochondrial small subunit of rDNA (mtSSU) and the translation elongation factor 1-alpha gene (TEF1) revealed three novel species within the clade of Conidiobolus s.s., i.e. C. bifurcatus sp. nov., C. taihushanensis sp. nov. and C. variabilis sp. nov. These three species were isolated from plant debris in eastern China. Morphologically, C. bifurcatus sp. nov. is characterised by its secondary conidiophores often branched at the tip to form two short stipes each bearing a secondary conidium. C. taihushanensis sp. nov. is different from the others in its straight apical mycelia and the production of 2-5 conidia. C. variabilis sp. nov. is distinctive because of its various shapes of primary conidia. All these three new taxa are illustrated herein with an update key to the species of the genus Conidiobolus s.s.
Collapse
Affiliation(s)
- Yong Nie
- Anhui Provincial Key Laboratory for Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China.,School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243002, China
| | - Yue Cai
- Department of Biological and Environmental Engineering, Hefei University, Hefei 230601, China
| | - Yang Gao
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - De-Shui Yu
- Anhui Provincial Key Laboratory for Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Zi-Min Wang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243002, China
| | - Xiao-Yong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Huang
- Anhui Provincial Key Laboratory for Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
46
|
Venard CM, Vasudevan KK, Stearns T. Cilium axoneme internalization and degradation in chytrid fungi. Cytoskeleton (Hoboken) 2020; 77:365-378. [PMID: 33103844 PMCID: PMC7944584 DOI: 10.1002/cm.21637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Loss of the cilium is important for cell cycle progression and certain developmental transitions. Chytrid fungi are a group of basal fungi that have retained centrioles and cilia, and they can disassemble their cilia via axoneme internalization as part of the transition from free-swimming spores to sessile sporangia. While this type of cilium disassembly has been observed in many single-celled eukaryotes, it has not been well characterized because it is not observed in common model organisms. To better characterize cilium disassembly via axoneme internalization, we focused on chytrids Rhizoclosmatium globosum and Spizellomyces punctatus to represent two lineages of chytrids with different motility characteristics. Our results show that each chytrid species can reel in its axoneme into the cell body along its cortex on the order of minutes, while S. punctatus has additional faster ciliary compartment loss and lash-around mechanisms. S. punctatus retraction can also occur away from the cell cortex and is partially actin dependent. Post-internalization, the tubulin of the axoneme is degraded in both chytrids over the course of about 2 hr. Axoneme disassembly and axonemal tubulin degradation are both partially proteasome dependent. Overall, chytrid cilium disassembly is a fast process that separates axoneme internalization and degradation.
Collapse
Affiliation(s)
- Claire M Venard
- Department of Biology, Stanford University, Stanford, California
| | | | - Tim Stearns
- Department of Biology, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| |
Collapse
|
47
|
Swafford AJM, Hussey SP, Fritz-Laylin LK. High-efficiency electroporation of chytrid fungi. Sci Rep 2020; 10:15145. [PMID: 32934254 PMCID: PMC7493940 DOI: 10.1038/s41598-020-71618-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022] Open
Abstract
Two species of parasitic fungi from the phylum Chytridiomycota (chytrids) are annihilating global amphibian populations. These chytrid species-Batrachochytrium dendrobatidis and B. salamandrivorans-have high rates of mortality and transmission. Upon establishing infection in amphibians, chytrids rapidly multiply within the skin and disrupt their hosts' vital homeostasis mechanisms. Current disease models suggest that chytrid fungi locate and infect their hosts during a motile, unicellular 'zoospore' life stage. Moreover, other chytrid species parasitize organisms from across the tree of life, making future epidemics in new hosts a likely possibility. Efforts to mitigate the damage and spread of chytrid disease have been stymied by the lack of knowledge about basic chytrid biology and tools with which to test molecular hypotheses about disease mechanisms. To overcome this bottleneck, we have developed high-efficiency delivery of molecular payloads into chytrid zoospores using electroporation. Our electroporation protocols result in payload delivery to between 75 and 97% of living cells of three species: B. dendrobatidis, B. salamandrivorans, and a non-pathogenic relative, Spizellomyces punctatus. This method lays the foundation for molecular genetic tools needed to establish ecological mitigation strategies and answer broader questions in evolutionary and cell biology.
Collapse
Affiliation(s)
- Andrew J M Swafford
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Shane P Hussey
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Lillian K Fritz-Laylin
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
48
|
Ettinger CL, Eisen JA. Fungi, bacteria and oomycota opportunistically isolated from the seagrass, Zostera marina. PLoS One 2020; 15:e0236135. [PMID: 32697800 PMCID: PMC7375540 DOI: 10.1371/journal.pone.0236135] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/29/2020] [Indexed: 01/18/2023] Open
Abstract
Fungi in the marine environment are often neglected as a research topic, despite that fungi having critical roles on land as decomposers, pathogens or endophytes. Here we used culture-dependent methods to survey the fungi associated with the seagrass, Zostera marina, also obtaining bacteria and oomycete isolates in the process. A total of 108 fungi, 40 bacteria and 2 oomycetes were isolated. These isolates were then taxonomically identified using a combination of molecular and phylogenetic methods. The majority of the fungal isolates were classified as belonging to the classes Eurotiomycetes, Dothideomycetes, and Sordariomycetes. Most fungal isolates were habitat generalists like Penicillium sp. and Cladosporium sp., but we also cultured a diverse set of rare taxa including possible habitat specialists like Colletotrichum sp. which may preferentially associate with Z. marina leaf tissue. Although the bulk of bacterial isolates were identified as being from known ubiquitous marine lineages, we also obtained several Actinomycetes isolates and a Phyllobacterium sp. We identified two oomycetes, another understudied group of marine microbial eukaryotes, as Halophytophthora sp. which may be opportunistic pathogens or saprophytes of Z. marina. Overall, this study generates a culture collection of fungi which adds to knowledge of Z. marina associated fungi and highlights a need for more investigation into the functional and evolutionary roles of microbial eukaryotes associated with seagrasses.
Collapse
Affiliation(s)
- Cassandra L. Ettinger
- Genome Center, University of California, Davis, CA, United States of America
- Department of Evolution and Ecology, University of California, Davis, CA, United States of America
| | - Jonathan A. Eisen
- Genome Center, University of California, Davis, CA, United States of America
- Department of Evolution and Ecology, University of California, Davis, CA, United States of America
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, United States of America
| |
Collapse
|
49
|
Powell MJ, Longcore JE, Redhead SA. Donald John Stoddart Barr, 18 September 1937–20 November 2018. Mycologia 2020. [DOI: 10.1080/00275514.2020.1749510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Martha J. Powell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487
| | - Joyce E. Longcore
- School of Biology and Ecology, University of Maine, Orono, Maine 04469
| | - Scott A. Redhead
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada K1A 0C6
| |
Collapse
|
50
|
Menolli N, Sánchez-García M. Brazilian fungal diversity represented by DNA markers generated over 20 years. Braz J Microbiol 2020; 51:729-749. [PMID: 31828716 PMCID: PMC7203393 DOI: 10.1007/s42770-019-00206-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022] Open
Abstract
Molecular techniques using fungal DNA barcoding (ITS) and other markers have been key to identifying the biodiversity of different geographic areas, mainly in megadiverse countries. Here, we provide an overview of the fungal diversity in Brazil based on DNA markers of phylogenetic importance generated since 1996. We retrieved fungal sequences of ITS, LSU, SSU, tef1-α, β-tubulin, rpb1, rpb2, actin, chitin synthase, and ATP6 from GenBank using different field keywords that indicated their origin in Brazil. A total of 19,440 sequences were recovered. ITS is the most representative marker (11,209 sequences), with 70.1% belonging to Ascomycota, 18.6% Basidiomycota, 10.2% unidentified, 1.1% Mucoromycota, two sequences of Olpidium bornovanus (Fungi incertae sedis), one sequence of Blastocladiomycota (Allomyces arbusculus), and one sequence of Chytridiomycota (Batrachochytrium dendrobatidis). Considering the sequences of all selected markers, only the phyla Cryptomycota and Entorrhizomycota were not represented. Based on ITS, using a cutoff of 98%, all sequences comprise 3047 OTUs, with the majority being Ascomycota (2088 OTUs) and Basidiomycota (681 OTUs). Previous numbers based mainly on morphological and bibliographical data revealed 5264 fungal species from Brazil, with a predominance of Basidiomycota (2741 spp.) and Ascomycota (1881 spp.). The unidentified ITS sequences not assigned to a higher taxonomic level represent 1.61% of all ITS sequences sampled and correspond to 38 unknown class-level lineages (75% cutoff). A maximum likelihood phylogeny based on LSU illustrates the fungal classes occurring in Brazil.
Collapse
Affiliation(s)
- Nelson Menolli
- Departamento de Ciências da Natureza e Matemática (DCM), Subárea de Biologia (SAB), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Câmpus São Paulo, Rua Pedro Vicente 625, São Paulo, SP, 01109-010, Brazil.
- Núcleo de Pesquisa em Micologia, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-012, Brazil.
| | - Marisol Sánchez-García
- Biology Department, Clark University, Worcester, MA, 01610, USA
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75005, Sweden
| |
Collapse
|