1
|
Yuan F, Sun Y, Dai GC, Yao Q, Zhou YB, Zang YC, Liu XL, Xue BX. Comprehensive Analysis of Prognostic Value and Immune Infiltration of TFAP2 Family Members in Bladder Cancer from Database and FFPE Sample. J Cancer 2023; 14:3050-3065. [PMID: 37859819 PMCID: PMC10583590 DOI: 10.7150/jca.86838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023] Open
Abstract
Background: Bladder cancer (BLCA) is one of the common malignant tumors worldwide. Recent studies have shown that Transcription factor activating protein-2(TFAP2) family proteins plays a bidirectional regulatory role in the process of tumorigenesis versus evolution by regulating the expression of tumor associated genes. However, little is known about the function of distinct TFAP2s proteins in patient with BLCA. Methods: Formalin-fixed paraffin-embedded (FFPE) sample tissues and clinical data of 240 patients with bladder cancer were collected for immunohistochemical analysis. The Human Protein Atlas, Gene Expression Profiling Interactive Analysis (GEPIA), Shiny Methylation Analysis Resource Tool (SMART), Kaplan-Meier plotter, cBioPortal, Metascape, LinkedOmics, TIMER and CIBERSORT were utilized to analyze differential expression, prognostic value, genetic alteration and immune cell infiltration of TFAP2 family in patients with BLCA. Results: Our study found that TFAP2 family proteins are generally expressed higher in BLCA tissues than in normal tissues. However, they show different trends in the growth, metastasis and survival prognosis of BLCA. TFAP2A and TFAP2C was associated with worse clinical stage and prognosis in BLCA patients, while TFAP2B, TFAP2D and TFAP2E showed the opposite trend. Importantly, the functions of the differentially expressed TFAP2s were primarily related to the developmental process, reproductive process, response to stimulus and immune system process, etc. Moreover, TFAP2 family was significantly correlated with the infiltration of six immune cell types and might regulate TAM polarization. Conclusion: TFAP2 family might be an important regulator of immune cell infiltration and a valuable prognostic biomarker in patients with BLCA.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Sun
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Guang-Cheng Dai
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiu Yao
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-bing Zhou
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ya-cheng Zang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Long Liu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo-Xin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Chin FW, Chan SC, Veerakumarasivam A. Homeobox Gene Expression Dysregulation as Potential Diagnostic and Prognostic Biomarkers in Bladder Cancer. Diagnostics (Basel) 2023; 13:2641. [PMID: 37627900 PMCID: PMC10453580 DOI: 10.3390/diagnostics13162641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/27/2023] Open
Abstract
Homeobox genes serve as master regulatory transcription factors that regulate gene expression during embryogenesis. A homeobox gene may have either tumor-promoting or tumor-suppressive properties depending on the specific organ or cell lineage where it is expressed. The dysregulation of homeobox genes has been reported in various human cancers, including bladder cancer. The dysregulated expression of homeobox genes has been associated with bladder cancer clinical outcomes. Although bladder cancer has high risk of tumor recurrence and progression, it is highly challenging for clinicians to accurately predict the risk of tumor recurrence and progression at the initial point of diagnosis. Cystoscopy is the routine surveillance method used to detect tumor recurrence. However, the procedure causes significant discomfort and pain that results in poor surveillance follow-up amongst patients. Therefore, the development of reliable non-invasive biomarkers for the early detection and monitoring of bladder cancer is crucial. This review provides a comprehensive overview of the diagnostic and prognostic potential of homeobox gene expression dysregulation in bladder cancer.
Collapse
Affiliation(s)
- Fee-Wai Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Soon-Choy Chan
- School of Liberal Arts, Science and Technology, Perdana University, Kuala Lumpur 50490, Malaysia
| | - Abhi Veerakumarasivam
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
3
|
Kuo CY, Moi SH, Hou MF, Luo CW, Pan MR. Chromatin Remodeling Enzyme Cluster Predicts Prognosis and Clinical Benefit of Therapeutic Strategy in Breast Cancer. Int J Mol Sci 2023; 24:ijms24065583. [PMID: 36982660 PMCID: PMC10055970 DOI: 10.3390/ijms24065583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
The treatment provided for breast cancer depends on the expression of hormone receptors, human epidermal growth factor receptor-2 (HER2), and cancer staging. Surgical intervention, along with chemotherapy or radiation therapy, is the mainstay of treatment. Currently, precision medicine has led to personalized treatment using reliable biomarkers for the heterogeneity of breast cancer. Recent studies have shown that epigenetic modifications contribute to tumorigenesis through alterations in the expression of tumor suppressor genes. Our aim was to investigate the role of epigenetic modifications in genes involved in breast cancer. A total of 486 patients from The Cancer Genome Atlas Pan-cancer BRCA project were enrolled in our study. Hierarchical agglomerative clustering analysis further divided the 31 candidate genes into 2 clusters according to the optimal number. Kaplan–Meier plots showed worse progression-free survival (PFS) in the high-risk group of gene cluster 1 (GC1). In addition, the high-risk group showed worse PFS in GC1 with lymph node invasion, which also presented a trend of better PFS when chemotherapy was combined with radiotherapy than when chemotherapy was administered alone. In conclusion, we developed a novel panel using hierarchical clustering that high-risk groups of GC1 may be promising predictive biomarkers in the clinical treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Chia-Yu Kuo
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sin-Hua Moi
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chi-Wen Luo
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Correspondence: (C.-W.L.); (M.-R.P.); Tel.: +886-7-3121101 (ext. 2260) (C.-W.L.); +886-7-3121101 (ext. 5092-34) (M.-R.P.); Fax: +886-7-3165011 (C.-W.L.); +886-7-3218309 (M.-R.P.)
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (C.-W.L.); (M.-R.P.); Tel.: +886-7-3121101 (ext. 2260) (C.-W.L.); +886-7-3121101 (ext. 5092-34) (M.-R.P.); Fax: +886-7-3165011 (C.-W.L.); +886-7-3218309 (M.-R.P.)
| |
Collapse
|
4
|
Methylation analysis of histone 4-related gene HIST1H4F and its effect on gene expression in bladder cancer. Gene 2023; 866:147352. [PMID: 36898511 DOI: 10.1016/j.gene.2023.147352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Recently, aberrant DNA methylation of the HIST1H4F gene (encodes Histone 4 protein) has been shown in many types of cancer, which may serve as a promising biomarker for early cancer diagnosis. However, the correlation between DNA methylation of the HIST1H4F gene and its role in gene expression is unclear in bladder cancer. Therefore, the first objective of this study is to explore the DNA methylation pattern of the HIST1H4F gene and then further elucidate its effects on HIST1H4F mRNA expression in bladder cancer. To this end, the methylation pattern of the HIST1H4F gene was analyzed by pyrosequencing and the effects of the methylation profiles of this gene on HIST1H4F mRNA expression in bladder cancer were examined by qRT-PCR. Sequencing analysis revealed significantly higher methylation frequencies of the HIST1H4F gene in bladder tumor samples compared to normal samples (p < 0,0001). However, when we evaluated the correlations between hypermethylation of HIST1H4F and the clinicopathological parameters (tumor stage, tumor grade, lymph node metastasis, muscle-invasion), no significant difference was found between the groups (p > 0.05). In addition, we examined the role of hypermethylation of the HIST1H4F gene on HIST1H4F mRNA expression. We found that hypermethylation of HIST1H4F in the exon have no effect HIST1H4F mRNA expression in bladder cancer (p > 0.05). We also confirmed our finding in cultured T24 cell line which HIST1H4F gene is hypermethylated. Our results suggest that hypermethylation of the HIST1H4F seems to be a promising early diagnostic biomarker in bladder cancer patients. However, further studies are needed to determine the role of HIST1H4F hypermethylation in tumorigenesis.
Collapse
|
5
|
Ma W, Li X, Yang L, Pan J, Chen Y, Lu Y, Dong X, Li D, Gan W. High VSX1 expression promotes the aggressiveness of clear cell renal cell carcinoma by transcriptionally regulating FKBP10. J Transl Med 2022; 20:554. [PMID: 36463181 PMCID: PMC9719260 DOI: 10.1186/s12967-022-03772-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/12/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC), the most common urological malignancy, has an unfavorable prognosis and an unknown mechanism of progression. Through survival analyses screening of The Cancer Genome Atlas (TCGA) dataset, we identified Visual system homeobox1 (VSX1) as a novel potential prognostic biomarker in ccRCC and subsequently investigated the oncogenic role of VSX1 in ccRCC. METHODS The differential expression of VSX1 in human tumors and the clinical prognoses were analyzed in the TCGA dataset and Gene Expression Omnibus. Spearman's correlation coefficient was determined for the correlation analysis of VSX1 expression and other genes of interest. The roles of VSX1 in cell proliferation, invasion, and migration of ccRCC cells were evaluated via the CCK-8 assay, colony formation assay, and Transwell assay, respectively. Further results were demonstrated by western blotting, immunohistochemistry, qRT-PCR, tumor sphere formation, flow cytometry, and the dual‑luciferase reporter assay. RESULTS VSX1 mRNA upregulation was generally observed in multiple human malignancies from the TCGA database and was confirmed in ccRCC clinical specimens from our department. High VSX1 expression usually indicated that overall and disease-free survival were unfavorable for patients with ccRCC. In terms of mechanism, knockdown or overexpression of VSX1 affected ccRCC aggressiveness in vitro. The dual-luciferase reporter gene assay implied that VSX1 overexpression significantly increased the luciferase activity of TMEM44, FKBP10, and TRIB3, which indicated that VSX1 promoted ccRCC invasiveness via transcriptional regulation of these genes. The significantly enhanced growth in vitro that was induced by stable VSX1 overexpression was almost restored to normal by the knockdown of FKBP10. CONCLUSIONS This study demonstrated that VSX1 was a novel prognostic biomarker in ccRCC and that high VSX1 expression promoted cell proliferation, invasion, and migration in ccRCC via transcriptional activation of downstream target genes.
Collapse
Affiliation(s)
- Wenliang Ma
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Xin Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Lei Yang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Jun Pan
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Yi Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China
| | - Yanwen Lu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Xiang Dong
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, People's Republic of China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Ward K, Kitchen MO, Mathias SJ, Khanim FL, Bryan RT. Novel intravesical therapeutics in the treatment of non-muscle invasive bladder cancer: Horizon scanning. Front Surg 2022; 9:912438. [PMID: 35959122 PMCID: PMC9360612 DOI: 10.3389/fsurg.2022.912438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Non-muscle-invasive bladder cancer (NMIBC) is a common and heterogeneous disease; many patients develop recurrent or progress to muscle-invasive disease. Intravesical drug therapy is a pillar in the current management of NMIBC; notwithstanding, Mitomycin C (MMC) and Bacillus Calmette-Guérin (BCG) have numerous limitations including international supply issues, and local and systemic toxicity. Here we review novel intravesical therapeutic options and drug delivery devices with potential for clinical use in the treatment of NMIBC. Methods PubMed, ClinicalTrials.gov and Cochrane Library searches were undertaken. Systematic reviews, meta-analyses, randomised controlled trials, single-arm clinical trials and national/international conference proceedings were included. Results Novel intravesical drugs, including chemotherapeutic agents, immune checkpoint inhibitors, monoclonal antibodies and gene therapies, have demonstrated varying efficacy in the treatment of NMIBC. Current evidence for the majority of treatments is mostly limited to single-arm trials in patients with recurrent NMIBC. Various novel methods of drug delivery have also been investigated, with encouraging preliminary results supporting the intravesical delivery of hyperthermic MMC and MMC hydrogel formulations. Conclusions Novel therapeutic agents and drug delivery systems will be important in the future intravesical management of NMIBC. As our understanding of the molecular diversity of NMIBC develops, molecular subtyping will become fundamental in the personalisation of intravesical treatments. Further randomised studies are urgently required to investigate the efficacy of novel intravesical treatments and novel regimens, in comparison to current standards-of-care, particularly in the context of international BCG shortages.
Collapse
Affiliation(s)
- Kelly Ward
- The Bladder Cancer Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Mark O Kitchen
- School of Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - Suresh-Jay Mathias
- New Cross Hospital, The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
| | - Farhat L Khanim
- The Bladder Cancer Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Richard T Bryan
- The Bladder Cancer Research Centre, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
Meghani K, Folgosa Cooley L, Piunti A, Meeks JJ. Role of Chromatin Modifying Complexes and Therapeutic Opportunities in Bladder Cancer. Bladder Cancer 2022; 8:101-112. [PMID: 35898580 PMCID: PMC9278011 DOI: 10.3233/blc-211609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/14/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Chromatin modifying enzymes, mainly through post translational modifications, regulate chromatin architecture and by extension the underlying transcriptional kinetics in normal and malignant cells. Muscle invasive bladder cancer (MIBC) has a high frequency of alterations in chromatin modifiers, with 76% of tumors exhibiting mutation in at least one chromatin modifying enzyme [1]. Additionally, clonal expansion of cells with inactivating mutations in chromatin modifiers has been identified in the normal urothelium, pointing to a currently unknown role of these proteins in normal bladder homeostasis. OBJECTIVE To review current knowledge of chromatin modifications and enzymes regulating these processes in Bladder cancer (BCa). METHODS By reviewing current literature, we summarize our present knowledge of external stimuli that trigger loss of equilibrium in the chromatin accessibility landscape and emerging therapeutic interventions for targeting these processes. RESULTS Genetic lesions in BCa lead to altered function of chromatin modifying enzymes, resulting in coordinated dysregulation of epigenetic processes with disease progression. CONCLUSION Mutations in chromatin modifying enzymes are wide-spread in BCa and several promising therapeutic targets for modulating activity of these genes are currently in clinical trials. Further research into understanding how the epigenetic landscape evolves as the disease progresses, could help identify patients who might benefit the most from these targeted therapies.
Collapse
Affiliation(s)
- Khyati Meghani
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
| | - Lauren Folgosa Cooley
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
| | - Andrea Piunti
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
| | - Joshua J. Meeks
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago IL, USA
| |
Collapse
|
8
|
Zhu Y, Song Z, Wang Z, Chen G. Protective Prognostic Biomarkers Negatively Correlated with Macrophage M2 Infiltration in Low-Grade Glioma. JOURNAL OF ONCOLOGY 2022; 2022:3623591. [PMID: 35432538 PMCID: PMC9012619 DOI: 10.1155/2022/3623591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
Tumor-associated Macrophages (TAMs) play a vital role in the progression of glioma. Macrophage M2 has been confirmed to promote immunosuppression and proliferation of low-grade glioma (LGG). Here, we searched for genes negatively correlated with Macrophages M2 by bioinformatical methods and investigated their protective ability for prognosis. LGG and adjacent normal samples were screened out in TCGA and three GEO datasets. 326 overlapped differentially expressed genes were calculated, and their biological functions were investigated by Go and KEGG analyses. Macrophage M2 accounted for the highest proportion among all 22 immune cells by CIBERSORT deconvolution algorithm. The proportion of Macrophage M2 in LGG was also higher than that in normal tissue according to several deconvolution algorithms. 43 genes in the blue module negatively correlated with Macrophage M2 infiltration were identified by weighted gene coexpression network analysis (WGCNA). Through immune infiltration and correlation analysis, FGFBP3, VAX2, and SHD were selected and they were enriched in G protein-coupled receptors' signaling regulation and cytokine receptor interaction. They could prolong the overall and disease-free survival time. Univariate and multivariate Cox regression analyses were applied to evaluate prognosis prediction ability. Interestingly, FGFBP3 and AHD were independent prognostic predictors. A nomogram was drawn, and its 1-year, 3-year, and 5-year survival prognostic value was verified by ROC curves and calibration plots. In conclusion, FGFBP3, VAX2, and SHD were protective prognostic biomarkers against Macrophage M2 infiltration in low-grade glioma. The FGFBP3 and SHD were independent factors to effectively predict long-term survival probability.
Collapse
Affiliation(s)
- Yunyang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhaoming Song
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
9
|
Zhang Z, Li Q, Li A, Wang F, Li Z, Meng Y, Zhang Q. Identifying a hypoxia related score to predict the prognosis of bladder cancer: a study with The Cancer Genome Atlas (TCGA) database. Transl Androl Urol 2022; 10:4353-4364. [PMID: 35070817 PMCID: PMC8749062 DOI: 10.21037/tau-21-569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background Recurrence is common in bladder cancer, with a hypoxic tumor microenvironment (TME) playing a role in genetic instability and prognosis of bladder cancer. However, we still lack practical hypoxia related model for predicting the prognosis of bladder cancer. In this study, we identified new prognosis-related hypoxia genes and established a new hypoxia score related signature. Methods The Gene Set Variation Analysis (GSVA) algorithm was utilized to calculate the hypoxia score of bladder cancer cases found on the The Cancer Genome Atlas (TCGA) database on the gene expression profiles. The cases were first divided into low- and high-hypoxia score groups and then differentially expressed genes (DEGs) expression analysis was conducted. Hypoxia-related genes were identified using weighted gene co-expression network analysis (WGCNA). We then conducted a protein-protein interaction (PPI) network and carried out functional enrichment analysis of the genes that overlapped between DEGs and hypoxia-related genes. LASSO Cox regression analysis was used to establish a hypoxia-related prognostic signature, which was validated using the GSE69795 dataset downloaded from GEO database. Results Results from Kaplan-Meier analysis showed that patients with a high hypoxia score had significantly poor overall survival compared to patients with low hypoxia score. We selected 270 DEGs between low- and high-hypoxia score groups, while WGCNA analysis identified 1,313 genes as hypoxia-related genes. A total of 170 genes overlapped between DEGs and hypoxia-related genes. LASSO algorithms identified 29 genes associated with bladder cancer prognosis, which were used to construct a novel 29-gene signature model. The prognostic risk model performed well, since the receiver operating characteristic (ROC) curve showed an accuracy of 0.802 (95% CI: 0.759–0.844), and Cox proportional hazards regression analysis proved the model an independent predictor with hazard ratio (HR) =1.789 (95% CI: 1.585–2.019) (P<0.001). The low-risk score patients had remarkably longer overall survival than patients with a higher score (survival rate 71.06% vs. 23.66%) in the The Cancer Genome Atlas (TCGA) cohort (P<0.0001) and in the dataset GSE69795 (P=0.0079). Conclusions We established a novel 29-gene hypoxia-related signature model to predict the prognosis of bladder cancer cases. This model and identified hypoxia-related genes may further been used as biomarkers, assisting the evaluation of prognosis of bladder cancer cases and decision making in clinical practice.
Collapse
Affiliation(s)
- Zhenan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Qinhan Li
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Aolin Li
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Feng Wang
- Department of Urology, People's Hospital of Tibet Autonomous Region, Lhasa, China
| | - Zhicun Li
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Yisen Meng
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Qian Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
| |
Collapse
|
10
|
Zhou M, Hong S, Li B, Liu C, Hu M, Min J, Tang J, Hong L. Development and Validation of a Prognostic Nomogram Based on DNA Methylation-Driven Genes for Patients With Ovarian Cancer. Front Genet 2021; 12:675197. [PMID: 34567062 PMCID: PMC8458765 DOI: 10.3389/fgene.2021.675197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
Background: DNA methylation affects the development, progression, and prognosis of various cancers. This study aimed to identify DNA methylated-differentially expressed genes (DEGs) and develop a methylation-driven gene model to evaluate the prognosis of ovarian cancer (OC). Methods: DNA methylation and mRNA expression profiles of OC patients were downloaded from The Cancer Genome Atlas, Genotype-Tissue Expression, and Gene Expression Omnibus databases. We used the R package MethylMix to identify DNA methylation-regulated DEGs and built a prognostic signature using LASSO Cox regression. A quantitative nomogram was then drawn based on the risk score and clinicopathological features. Results: We identified 56 methylation-related DEGs and constructed a prognostic risk signature with four genes according to the LASSO Cox regression algorithm. A higher risk score not only predicted poor prognosis, but also was an independent poor prognostic indicator, which was validated by receiver operating characteristic (ROC) curves and the validation cohort. A nomogram consisting of the risk score, age, FIGO stage, and tumor status was generated to predict 3- and 5-year overall survival (OS) in the training cohort. The joint survival analysis of DNA methylation and mRNA expression demonstrated that the two genes may serve as independent prognostic biomarkers for OS in OC. Conclusion: The established qualitative risk score model was found to be robust for evaluating individualized prognosis of OC and in guiding therapy.
Collapse
Affiliation(s)
- Min Zhou
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shasha Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bingshu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Hu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Min
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianming Tang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Kang B, Lee HS, Jeon SW, Park SY, Choi GS, Lee WK, Heo S, Lee DH, Kim DS. Progressive alteration of DNA methylation of Alu, MGMT, MINT2, and TFPI2 genes in colonic mucosa during colorectal cancer development. Cancer Biomark 2021; 32:231-236. [PMID: 34092617 DOI: 10.3233/cbm-203259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world. It is characterized by different pathways of carcinogenesis and is a heterogeneous disease with diverse molecular landscapes that reflect histopathological and clinical information. Changes in the DNA methylation status of colon epithelial cells have been identified as critical components in CRC development and appear to be emerging biomarkers for the early detection and prognosis of CRC. OBJECTIVE To explore the underlying disease mechanisms and identify more effective biomarkers of CRC. METHODS We compared the levels and frequencies of DNA methylation in 11 genes (Alu, APC, DAPK, MGMT, MLH1, MINT1, MINT2, MINT3, p16, RGS6, and TFPI2) in colorectal cancer and its precursor adenomatous polyp with normal tissue of healthy subjects using pyrosequencing and then evaluated the clinical value of these genes. RESULTS Aberrant methylation of Alu, MGMT, MINT2, and TFPI2 genes was progressively accumulated during the normal-adenoma-carcinoma progression. Additionally, CGI methylation occurred either as an adenoma-associated event for APC, MLH1, MINT1, MINT31, p16, and RGS6 or a tumor-associated event for DAPK. Moreover, relatively high levels and frequencies of DAPK, MGMT, and TFPI2 methylation were detected in the peritumoral nonmalignant mucosa of cancer patients in a field-cancerization manner, as compared to normal mucosa from healthy subjects. CONCLUSION This study identified several biomarkers associated with the initiation and progression of CRC. As novel findings, they may have important clinical implications for CRC diagnostic and prognostic applications. Further large-scale studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Ben Kang
- Department of Pediatrics and Bio-medical Research Institute, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Hyun Seok Lee
- Department of Internal Medicine, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Seong Woo Jeon
- Department of Internal Medicine, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Soo Yeun Park
- Department of General Surgery, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Gyu Seog Choi
- Department of General Surgery, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Won Kee Lee
- Department of Preventive Medicine, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Somi Heo
- Department of Preventive Medicine, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Duk Hee Lee
- Department of Preventive Medicine, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Dong Sun Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| |
Collapse
|
12
|
Küster MM, Schneider MA, Richter AM, Richtmann S, Winter H, Kriegsmann M, Pullamsetti SS, Stiewe T, Savai R, Muley T, Dammann RH. Epigenetic Inactivation of the Tumor Suppressor IRX1 Occurs Frequently in Lung Adenocarcinoma and Its Silencing Is Associated with Impaired Prognosis. Cancers (Basel) 2020; 12:E3528. [PMID: 33256112 PMCID: PMC7760495 DOI: 10.3390/cancers12123528] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Iroquois homeobox (IRX) encodes members of homeodomain containing genes which are involved in development and differentiation. Since it has been reported that the IRX1 gene is localized in a lung cancer susceptibility locus, the epigenetic regulation and function of IRX1 was investigated in lung carcinogenesis. We observed frequent hypermethylation of the IRX1 promoter in non-small cell lung cancer (NSCLC) compared to small cell lung cancer (SCLC). Aberrant IRX1 methylation was significantly correlated with reduced IRX1 expression. In normal lung samples, the IRX1 promoter showed lower median DNA methylation levels (<10%) compared to primary adenocarcinoma (ADC, 22%) and squamous cell carcinoma (SQCC, 14%). A significant hypermethylation and downregulation of IRX1 was detected in ADC and SQCC compared to matching normal lung samples (p < 0.0001). Low IRX1 expression was significantly correlated with impaired prognosis of ADC patients (p = 0.001). Reduced survival probability was also associated with higher IRX1 promoter methylation (p = 0.02). Inhibition of DNA methyltransferase (DNMT) activity reactivated IRX1 expression in human lung cancer cell lines. Induced DNMT3A and EZH2 expression was correlated with downregulation of IRX1. On the cellular level, IRX1 exhibits nuclear localization and expression of IRX1 induced fragmented nuclei in cancer cells. Localization of IRX1 and induction of aberrant nuclei were dependent on the presence of the homeobox of IRX1. By data mining, we showed that IRX1 is negatively correlated with oncogenic pathways and IRX1 expression induces the proapoptotic regulator BAX. In conclusion, we report that IRX1 expression is significantly associated with improved survival probability of ADC patients. IRX1 hypermethylation may serve as molecular biomarker for ADC diagnosis and prognosis. Our data suggest that IRX1 acts as an epigenetically regulated tumor suppressor in the pathogenesis of lung cancer.
Collapse
Affiliation(s)
- Miriam M. Küster
- Faculty of Biology, Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (M.M.K.); (A.M.R.)
| | - Marc A. Schneider
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (M.A.S.); (S.R.); (T.M.)
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
| | - Antje M. Richter
- Faculty of Biology, Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (M.M.K.); (A.M.R.)
| | - Sarah Richtmann
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (M.A.S.); (S.R.); (T.M.)
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
| | - Hauke Winter
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
- Department of Surgery, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany
| | - Mark Kriegsmann
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
- Department of Pathology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Soni S. Pullamsetti
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thorsten Stiewe
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University, 35032 Marburg, Germany
| | - Rajkumar Savai
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (M.A.S.); (S.R.); (T.M.)
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
| | - Reinhard H. Dammann
- Faculty of Biology, Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (M.M.K.); (A.M.R.)
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
| |
Collapse
|
13
|
Braun Y, Filipski K, Bernatz S, Baumgarten P, Roller B, Zinke J, Zeiner PS, Ilina E, Senft C, Ronellenfitsch MW, Plate KH, Bähr O, Hattingen E, Steinbach JP, Mittelbronn M, Harter PN. Linking epigenetic signature and metabolic phenotype in IDH mutant and IDH wildtype diffuse glioma. Neuropathol Appl Neurobiol 2020; 47:379-393. [PMID: 33080075 DOI: 10.1111/nan.12669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 01/17/2023]
Abstract
AIMS Changes in metabolism are known to contribute to tumour phenotypes. If and how metabolic alterations in brain tumours contribute to patient outcome is still poorly understood. Epigenetics impact metabolism and mitochondrial function. The aim of this study is a characterisation of metabolic features in molecular subgroups of isocitrate dehydrogenase mutant (IDHmut) and isocitrate dehydrogenase wildtype (IDHwt) gliomas. METHODS We employed DNA methylation pattern analyses with a special focus on metabolic genes, large-scale metabolism panel immunohistochemistry (IHC), qPCR-based determination of mitochondrial DNA copy number and immune cell content using IHC and deconvolution of DNA methylation data. We analysed molecularly characterised gliomas (n = 57) for in depth DNA methylation, a cohort of primary and recurrent gliomas (n = 22) for mitochondrial copy number and validated these results in a large glioma cohort (n = 293). Finally, we investigated the potential of metabolic markers in Bevacizumab (Bev)-treated gliomas (n = 29). RESULTS DNA methylation patterns of metabolic genes successfully distinguished the molecular subtypes of IDHmut and IDHwt gliomas. Promoter methylation of lactate dehydrogenase A negatively correlated with protein expression and was associated with IDHmut gliomas. Mitochondrial DNA copy number was increased in IDHmut tumours and did not change in recurrent tumours. Hierarchical clustering based on metabolism panel IHC revealed distinct subclasses of IDHmut and IDHwt gliomas with an impact on patient outcome. Further quantification of these markers allowed for the prediction of survival under anti-angiogenic therapy. CONCLUSION A mitochondrial signature was associated with increased survival in all analyses, which could indicate tumour subgroups with specific metabolic vulnerabilities.
Collapse
Affiliation(s)
- Yannick Braun
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Katharina Filipski
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Simon Bernatz
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Peter Baumgarten
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,Department of Neurosurgery, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Bastian Roller
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Jenny Zinke
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Pia S Zeiner
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,Dr. Senckenberg Institute for Neurooncology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Elena Ilina
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Christian Senft
- Department of Neurosurgery, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Michael W Ronellenfitsch
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Dr. Senckenberg Institute for Neurooncology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| | - Karl H Plate
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| | - Oliver Bähr
- Dr. Senckenberg Institute for Neurooncology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Elke Hattingen
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany.,Department of Neuroradiology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Joachim P Steinbach
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Dr. Senckenberg Institute for Neurooncology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| | - Michel Mittelbronn
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,Luxembourg Centre of Neuropathology (LCNP), Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg.,National Centre of Pathology (NCP), Laboratoire national de santé (LNS), Luxembourg.,Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg
| | - Patrick N Harter
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Studies have shown the three-member paraoxonase (PON) multigene family to be involved in the development of a large variety of diseases with an inflammatory component. Environmental factors such as lifestyle-related factors differ widely between populations and it is important to consider that their impacts may be exerted through the epigenetic mechanisms, which connect genes, the environment and disease development and are a potential therapeutic avenue. RECENT FINDINGS In the review period, very little was published on epigenetics of PON2 or PON3, mostly on their diagnostic value in cancer by measuring methylation levels of these genes. However, the picture is more promising with PON1. Here, several studies have linked the epigenetic regulation of PON1 to various metabolic processes and particularly to the development of several diseases, including stroke, heart disease, aortic valve stenosis and chronic obstructive pulmonary disease. SUMMARY Studies into the epigenetic regulation of the PON family are in their infancy. However, recent studies linking epigenetic regulation of PON1 to disease development will encourage further research and open up the possibility for new potential therapeutic interventions.
Collapse
Affiliation(s)
- Abdolkarim Mahrooz
- Molecular and Cell Biology Research Centre, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|
15
|
Song F, Li L, Zhang B, Zhao Y, Zheng H, Yang M, Li X, Tian J, Huang C, Liu L, Wang Q, Zhang W, Chen K. Tumor specific methylome in Chinese high-grade serous ovarian cancer characterized by gene expression profile and tumor genotype. Gynecol Oncol 2020; 158:178-187. [PMID: 32362568 DOI: 10.1016/j.ygyno.2020.04.688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/11/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Extensive genetic and limited epigenetics have been characterized by the Cancer Genome Atlas (TCGA) among Western High-grade serous ovarian cancer (HGSOC). The present study aimed to characterize Chinese HGSOC at genome scale. METHODS We used reduced representation bisulfite sequencing to investigate whole-genome and tumor-specific DNA methylation in 21 HGSOC tumors paired with their normal tissues, followed by a replication study involving additional 41 HGSOC patients. Altered methylation patterns in HGSOC were further characterized by gene expression profiles and whole-exome sequencing data. RESULTS Comparing HGSOC tumors with normal tissues we observed global hypomethylation but with more specific hypermethylation in gene promoter. Totally, we revealed 159,881 differentially methylated regions (DMRs) and 4060 differentially expressed genes (DEGs). By integrating DNA methylation and mRNA expression data, we identified 153 negative (mainly in the upstream region) and 115 positive (mainly in the CDS regions) DMRs-DEGs correlated pairs, respectively. The negatively correlated DMRs-DEGs underlined Wnt and cell adhesion molecule binding as critical canonical pathways disrupted by DNA methylation. Eleven DMRs (in CAPS, FZD7, CDKN2A, PON3, KLF4, etc.), accompanied with a global DNA methylation marker, were validated in the replication samples. Whole-exome sequencing presented a relatively less dominated TP53 mutation in Chinese HGSOC compared to TCGA dataset. Unsupervised analysis of the three-level omics data identified differential methylation and expression subgroups based on tumor genetics, one of which presented increased DNA methylation and significantly associated with TP53 mutation. CONCLUSIONS Our individual and integrated analyses contribute details about the tissue-specific genetic and DNA methylation landscape of Chinese HGSOC.
Collapse
Affiliation(s)
- Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Lian Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | | | - Yanrui Zhao
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Meng Yang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Xiangchun Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Jing Tian
- Department of Gynecological Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Caiyun Huang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Luyang Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Qinghua Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wei Zhang
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, USA; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| |
Collapse
|
16
|
Casamassimi A, Rienzo M, Di Zazzo E, Sorrentino A, Fiore D, Proto MC, Moncharmont B, Gazzerro P, Bifulco M, Abbondanza C. Multifaceted Role of PRDM Proteins in Human Cancer. Int J Mol Sci 2020; 21:ijms21072648. [PMID: 32290321 PMCID: PMC7177584 DOI: 10.3390/ijms21072648] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The PR/SET domain family (PRDM) comprise a family of genes whose protein products share a conserved N-terminal PR [PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1)] homologous domain structurally and functionally similar to the catalytic SET [Su(var)3-9, enhancer-of-zeste and trithorax] domain of histone methyltransferases (HMTs). These genes are involved in epigenetic regulation of gene expression through their intrinsic HMTase activity or via interactions with other chromatin modifying enzymes. In this way they control a broad spectrum of biological processes, including proliferation and differentiation control, cell cycle progression, and maintenance of immune cell homeostasis. In cancer, tumor-specific dysfunctions of PRDM genes alter their expression by genetic and/or epigenetic modifications. A common characteristic of most PRDM genes is to encode for two main molecular variants with or without the PR domain. They are generated by either alternative splicing or alternative use of different promoters and play opposite roles, particularly in cancer where their imbalance can be often observed. In this scenario, PRDM proteins are involved in cancer onset, invasion, and metastasis and their altered expression is related to poor prognosis and clinical outcome. These functions strongly suggest their potential use in cancer management as diagnostic or prognostic tools and as new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Anna Sorrentino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| |
Collapse
|
17
|
Prognostic value of Iroquois homeobox 1 methylation in non-small cell lung cancers. Genes Genomics 2020; 42:571-579. [PMID: 32200543 DOI: 10.1007/s13258-020-00925-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) poses a great threat to human health. DNA methylation abnormalities play a central role in the development and outcome of most human malignancies, providing potential biomarkers for diagnosis and prognosis. Iroquois homeobox 1 (IRX1) can act as a tumor suppressor or promoter depending on the tumor microenvironment, and its role in lung cancer is still controversial. OBJECTIVE The purpose of this study was to investigate the biological role and prognostic value of IRX1 in NSCLC. METHODS We examined the methylation status of IRX1 promoter in 146 tumors from patients with NSCLC using pyrosequencing and analyzed the association between methylation status and overall patient survival. RESULTS A total of 37 cases (25.3%) showed IRX1 methylation-positive tumors when compared with matched normal tissues. No association between IRX1 expression level and methylation status was found in lung cancer cell lines. IRX1 methylation significantly correlated with smoking status and TP53 mutation. Patients with IRX1 methylation showed significantly longer survival than patients without methylation (log-rank P = 0.011). In a multivariate analysis of prognostic factors, IRX1 methylation in tumor samples was an independent prognostic factor (adjusted hazard ratio = 0.35, 95% confidence interval 0.17-0.73, P = 0.005). CONCLUSION These results suggest that IRX1 promoter methylation may be a tumor-associated event and an independent predictor of survival advantage in patients with NSCLC. Further large-scale studies are needed to confirm these findings.
Collapse
|
18
|
Kober P, Boresowicz J, Rusetska N, Maksymowicz M, Paziewska A, Dąbrowska M, Kunicki J, Bonicki W, Ostrowski J, Siedlecki JA, Bujko M. The Role of Aberrant DNA Methylation in Misregulation of Gene Expression in Gonadotroph Nonfunctioning Pituitary Tumors. Cancers (Basel) 2019; 11:E1650. [PMID: 31731486 PMCID: PMC6895980 DOI: 10.3390/cancers11111650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
Gonadotroph nonfunctioning pituitary adenomas (NFPAs) are common intracranial tumors, but the role of aberrant epigenetic regulation in their development remains poorly understood. In this study, we investigated the effect of impaired CpG methylation in NFPAs. We determined DNA methylation and transcriptomic profiles in 32 NFPAs and normal pituitary sections using methylation arrays and sequencing, respectively. Ten percent of differentially methylated CpGs were correlated with gene expression, and the affected genes are involved in a variety of tumorigenesis-related pathways. Different proportions of gene body and promoter region localization were observed in CpGs with negative and positive correlations between methylation and gene expression, and different proportions of CpGs were located in 'open sea' and 'shelf/shore' regions. The expression of ~8% of genes differentially expressed in NFPAs was related to aberrant methylation. Methylation levels of seven CpGs located in the regulatory regions of FAM163A, HIF3A and PRSS8 were determined by pyrosequencing, and gene expression was measured by qRT-PCR and immunohistochemistry in 83 independent NFPAs. The results clearly confirmed the negative correlation between methylation and gene expression for these genes. By identifying which aberrantly methylated CpGs affect gene expression in gonadotrophinomas, our data confirm the role of aberrant methylation in pathogenesis of gonadotroph NFPAs.
Collapse
Affiliation(s)
- Paulina Kober
- Department of Molecular and Translational Oncology, Maria Skłodowska-Curie Institute—Oncology Center, 02-034 Warsaw, Poland; (P.K.); (J.B.); (N.R.); (J.A.S.)
| | - Joanna Boresowicz
- Department of Molecular and Translational Oncology, Maria Skłodowska-Curie Institute—Oncology Center, 02-034 Warsaw, Poland; (P.K.); (J.B.); (N.R.); (J.A.S.)
| | - Natalia Rusetska
- Department of Molecular and Translational Oncology, Maria Skłodowska-Curie Institute—Oncology Center, 02-034 Warsaw, Poland; (P.K.); (J.B.); (N.R.); (J.A.S.)
| | - Maria Maksymowicz
- Department of Pathology and Laboratory Diagnostics, Maria Skłodowska-Curie Institute—Oncology Center, 02-034 Warsaw, Poland;
| | - Agnieszka Paziewska
- Department of Genetics, Maria Skłodowska-Curie Institute—Oncology Center, 02-034 Warsaw, Poland; (A.P.); (M.D.); (J.O.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, 01-813 Warsaw, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Maria Skłodowska-Curie Institute—Oncology Center, 02-034 Warsaw, Poland; (A.P.); (M.D.); (J.O.)
| | - Jacek Kunicki
- Department of Neurosurgery, Maria Skłodowska-Curie Institute—Oncology Center, 02-034 Warsaw, Poland; (J.K.); (W.B.)
| | - Wiesław Bonicki
- Department of Neurosurgery, Maria Skłodowska-Curie Institute—Oncology Center, 02-034 Warsaw, Poland; (J.K.); (W.B.)
| | - Jerzy Ostrowski
- Department of Genetics, Maria Skłodowska-Curie Institute—Oncology Center, 02-034 Warsaw, Poland; (A.P.); (M.D.); (J.O.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, 01-813 Warsaw, Poland
| | - Janusz A. Siedlecki
- Department of Molecular and Translational Oncology, Maria Skłodowska-Curie Institute—Oncology Center, 02-034 Warsaw, Poland; (P.K.); (J.B.); (N.R.); (J.A.S.)
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Skłodowska-Curie Institute—Oncology Center, 02-034 Warsaw, Poland; (P.K.); (J.B.); (N.R.); (J.A.S.)
| |
Collapse
|
19
|
Guo B, Zhang Y, Yuan K, Jiang FX, Cui QB, Zhou Q, Dong HX, Chen W, Yang SS. Depletion of VAX2 Restrains the Malignant Progression of Papillary Thyroid Carcinoma by Modulating ERK Signaling Pathway. Open Life Sci 2019; 14:237-245. [PMID: 33817157 PMCID: PMC7874804 DOI: 10.1515/biol-2019-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/22/2019] [Indexed: 11/30/2022] Open
Abstract
Objective Ventral anterior homeobox 2 (VAX2) gene is a key regulating factor for the development of the ventral region of the eye, and has recently attracted much attention from the cancer treatment field. Our study aimed to explore the effect of VAX2 on papillary thyroid carcinoma (PTC). Methods We determined the expression levels of VAX2 in PTC based on The Cancer Genome Atlas (TCGA) database. We then assessed the prognosis of patients with PTC, and analyzed the association between VAX2 expression and clinicopathological characteristics. Subsequently, we measured the biological functions of VAX2 in PTC using qRT-PCR, cell counting kit-8 (CCK-8) assay, colony formation assay, wound healing assay, transwell assays and western blot. Results VAX2 was up-regulated in PTC tissues when compared with normal thyroid tissues, and high expression level of VAX2 was positively correlated with poor prognosis. Furthermore, knockdown of VAX2 significantly inhibited the proliferation, migration and invasion of PTC cells. Importantly, through western blot analysis, we found that the expression of phosphorylated-(p) ERK and p-MEK in ERK signaling pathway showed a significant decrease after knockdown of VAX2. Conclusion These findings suggest that VAX2 may be involved in the malignant progression of PTC, and hold significant potential as a therapeutic target for PTC.
Collapse
Affiliation(s)
- Bei Guo
- Department of Otorlaryngology Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Zhang
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Yuan
- Department of Otorlaryngology Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng-Xia Jiang
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian-Bo Cui
- Department of Otorlaryngology Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Zhou
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong-Xia Dong
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Chen
- Department of Otorlaryngology Head and Neck Surgery, The Central Hospital of Wuhan, NO.26 Shengli street, Jiangan district, Wuhan, Hubei 430014, P.R. China.,Department of Otorlaryngology Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shun-Shi Yang
- Department of Ultrasound, The Central Hospital of Wuhan, NO.26 Shengli street, Jiangan district, Wuhan, Hubei 430014, P.R. China.,Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
20
|
Tracey LJ, Justice MJ. Off to a Bad Start: Cancer Initiation by Pluripotency Regulator PRDM14. Trends Genet 2019; 35:489-500. [PMID: 31130394 DOI: 10.1016/j.tig.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
Abstract
Despite advances in chemotherapies that improve cancer survival, most patients who relapse succumb to the disease due to the presence of cancer stem cells (CSCs), which are highly chemoresistant. The pluripotency factor PR domain 14 (PRDM14) has a key role in initiating many types of cancer. Normally, PRDM14 uses epigenetic mechanisms to establish and maintain the pluripotency of embryonic cells, and its role in cancer is similar. This important link between cancer and induced pluripotency is a key revelation for how CSCs may form: pluripotency genes, such as PRDM14, can expand stem-like cells as they promote ongoing DNA damage. PRDM14 and its protein-binding partners, the ETO/CBFA2T family, are ideal candidates for eliminating CSCs from relevant cancers, preventing relapse and improving long-term survival.
Collapse
Affiliation(s)
- Lauren J Tracey
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ONT, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ONT, M5S 1A8, Canada
| | - Monica J Justice
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ONT, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ONT, M5S 1A8, Canada.
| |
Collapse
|
21
|
Moinova HR, LaFramboise T, Lutterbaugh JD, Chandar AK, Dumot J, Faulx A, Brock W, De la Cruz Cabrera O, Guda K, Barnholtz-Sloan JS, Iyer PG, Canto MI, Wang JS, Shaheen NJ, Thota PN, Willis JE, Chak A, Markowitz SD. Identifying DNA methylation biomarkers for non-endoscopic detection of Barrett's esophagus. Sci Transl Med 2019; 10:10/424/eaao5848. [PMID: 29343623 DOI: 10.1126/scitranslmed.aao5848] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/08/2017] [Indexed: 12/17/2022]
Abstract
We report a biomarker-based non-endoscopic method for detecting Barrett's esophagus (BE) based on detecting methylated DNAs retrieved via a swallowable balloon-based esophageal sampling device. BE is the precursor of, and a major recognized risk factor for, developing esophageal adenocarcinoma. Endoscopy, the current standard for BE detection, is not cost-effective for population screening. We performed genome-wide screening to ascertain regions targeted for recurrent aberrant cytosine methylation in BE, identifying high-frequency methylation within the CCNA1 locus. We tested CCNA1 DNA methylation as a BE biomarker in cytology brushings of the distal esophagus from 173 individuals with or without BE. CCNA1 DNA methylation demonstrated an area under the curve of 0.95 for discriminating BE-related metaplasia and neoplasia cases versus normal individuals, performing identically to methylation of VIM DNA, an established BE biomarker. When combined, the resulting two biomarker panel was 95% sensitive and 91% specific. These results were replicated in an independent validation cohort of 149 individuals who were assayed using the same cutoff values for test positivity established in the training population. To progress toward non-endoscopic esophageal screening, we engineered a well-tolerated, swallowable, encapsulated balloon device able to selectively sample the distal esophagus within 5 min. In balloon samples from 86 individuals, tests of CCNA1 plus VIM DNA methylation detected BE metaplasia with 90.3% sensitivity and 91.7% specificity. Combining the balloon sampling device with molecular assays of CCNA1 plus VIM DNA methylation enables an efficient, well-tolerated, sensitive, and specific method of screening at-risk populations for BE.
Collapse
Affiliation(s)
- Helen R Moinova
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Thomas LaFramboise
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - James D Lutterbaugh
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Apoorva Krishna Chandar
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - John Dumot
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Ashley Faulx
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Wendy Brock
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | | | - Kishore Guda
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Prasad G Iyer
- Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Marcia I Canto
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Jean S Wang
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas J Shaheen
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Prashanti N Thota
- Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Joseph E Willis
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA. .,Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.,University Hospitals Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Amitabh Chak
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.,University Hospitals Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Sanford D Markowitz
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.,University Hospitals Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
22
|
Bosschieter J, Nieuwenhuijzen JA, Hentschel A, van Splunter AP, Segerink LI, Vis AN, Wilting SM, Lissenberg-Witte BI, A van Moorselaar RJ, Steenbergen RD. A two-gene methylation signature for the diagnosis of bladder cancer in urine. Epigenomics 2019; 11:337-347. [PMID: 30706728 DOI: 10.2217/epi-2018-0094] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM To analyze the potential of 14 cancer-associated genes, including six miRNAs, for bladder cancer (BC) diagnosis in urine. PATIENTS & METHODS DNA methylation levels of 14 genes were analyzed in urine of 72 BC patients and 75 healthy controls using quantitative methylation-specific PCR. Multivariate logistic regression analysis was used to determine an optimal marker panel. RESULTS Ten genes were significantly hypermethylated in BC patients. The GHSR/MAL combination showed the best diagnostic performance, reaching a sensitivity of 92% (95% CI: 86-99) and a specificity of 85% (95% CI: 76-94). CONCLUSION We identified a novel two-gene panel with a high diagnostic accuracy for BC that can be applied in a noninvasive, urine-based test.
Collapse
Affiliation(s)
- Judith Bosschieter
- Amsterdam UMC, Vrije Universiteit Amsterdam, Urology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jakko A Nieuwenhuijzen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Urology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Anouk Hentschel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Urology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Annina P van Splunter
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Loes I Segerink
- BIOS Lab on a Chip group, MESA+ & MIRA institutes, University of Twente, Enschede, The Netherlands
| | - André N Vis
- Amsterdam UMC, Vrije Universiteit Amsterdam, Urology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Saskia M Wilting
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Birgit I Lissenberg-Witte
- Amsterdam UMC, Vrije Universiteit Amsterdam, Epidemiology & Biostatistics, Amsterdam Public Health, Amsterdam, The Netherlands
| | - R Jeroen A van Moorselaar
- Amsterdam UMC, Vrije Universiteit Amsterdam, Urology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Renske Dm Steenbergen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Han W, Wang Y, Fan J, Wang C. Is APC hypermethylation a diagnostic biomarker for bladder cancer? A meta-analysis. Onco Targets Ther 2018; 11:8359-8369. [PMID: 30568459 PMCID: PMC6267632 DOI: 10.2147/ott.s177601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective Numerous studies have been performed to investigate the association between APC promoter hypermethylation and bladder cancer risk. Nevertheless, the conclusion was uncertain due to small sample size, different ethnicities, and tumor subtype. Hence, to accurately assess the effect of APC promoter hypermethylation on the risk of bladder cancer, we performed the meta-analysis. Materials and methods We retrieved the relevant literatures from electronic databases such as PubMed, Web of Science, Wanfang, Vapp, and CNKI (Chinese National Knowledge Infrastructure). 95% CI and OR were calculated to evaluate the associations of APC promoter hypermethylation with risk and clinical features of bladder cancer. Heterogeneity among studies was assessed with Q test and I 2 statistic. In addition, the diagnostic sensitivity, specificity, and area under the curve (AUC) value of APC hypermethylation for bladder cancer were calculated. Results In total, 14 articles with 531 controls and 1,293 cases were included to assess the associations of APC promoter hypermethylation with the risk and clinical characteristics of bladder cancer. The significant association between APC promoter hypermethylation and bladder cancer risk was detected (OR =17.01, CI =7.40-39.07). Furthermore, the results revealed that APC promoter hypermethylation was significantly correlated with the grade of bladder tumor (pTNM stage: OR =1.84, CI =0.87-3.93; grade: OR =4.11, CI =1.62-10.43). According to the results of diagnostic evaluation, the diagnostic sensitivity, specificity, and AUC value of APC hypermethylation for bladder cancer risk were 0.52 (95% CI =0.41-0.63), 0.98 (95% CI =0.90-1.00), and 0.80 (95% CI =0.76-0.83), respectively. Conclusion This meta-analysis revealed that APC promoter hypermethylation was a risk factor for bladder cancer risk. In addition, APC promoter hypermethylation was significantly associated with the grade of bladder cancer. APC hypermethylation might be a useful biomarker for the clinical diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Wei Han
- Department of Pharmacy, Central Hospital of Zibo Mining Group Limited Liability Company, Zibo, China
| | - Yutao Wang
- Shandong Institute of Prevention and Control for Endemic Disease, Thyroid Disease Prevention and Control Center, Jinan, China,
| | - Jingli Fan
- Shandong Institute of Prevention and Control for Endemic Disease, Thyroid Disease Prevention and Control Center, Jinan, China,
| | - Chunlei Wang
- Shandong Institute of Prevention and Control for Endemic Disease, Thyroid Disease Prevention and Control Center, Jinan, China,
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Epigenetics refers to processes that alter gene expression without altering primary DNA. Over that past decade, there is a growing focus on epigenetic mechanisms in cancer research and its importance in cancer biology. This review summarizes epigenetic dysregulation in bladder cancer. RECENT FINDINGS Epigenetic alterations are overall shared across various grades and stages of bladder cancer. High grade invasive tumors demonstrate a greater degree and intensity of methylation and may have a unique methylation pattern. Environmental exposures may influence epigenetic alterations directly independent of genomic change. Non-coding RNAs play an important role in cancer phenotype, especially in the context of integrative genomic analyses. DNA hypermethylation and non-coding RNAs have potential as robust bladder cancer biomarkers; however, they require further study and validation. Changes in chromatin and histone modification are attractive targets for therapy and are currently in clinical trials. Epigenetic dysregulation may be an important key in improving the understanding of bladder cancer pathogenesis, especially through integrative genomic analyses. Deeper understanding of these pathways can help identify clinically relevant biomarkers and therapeutic targets to validate for diagnosis, monitoring, prognosis, and treatment for bladder cancer.
Collapse
Affiliation(s)
- Sima P Porten
- Department of Urology, University of California San Francisco (UCSF), Mailbox Code 1695, 550 16th Street, 6th Floor, San Francisco, CA, 94143, USA.
| |
Collapse
|
25
|
Huang D, Wang Y, He Y, Wang G, Wang W, Han X, Sun Y, Lin L, Shan B, Shen G, Cheng M, Bian G, Fang X, Hu S, Pan Y. Paraoxonase 3 is involved in the multi-drug resistance of esophageal cancer. Cancer Cell Int 2018; 18:168. [PMID: 30386177 PMCID: PMC6198441 DOI: 10.1186/s12935-018-0657-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023] Open
Abstract
Background Drug resistance prevents the effective treatment of cancers. DNA methylation has been found to participate in the development of cancer drug resistance. Methods We performed the wound-healing and invasion assays to test the effect of the paraoxonase gene PON3 on esophageal cancer (EC) cells. In addition, in vivo EC-derived tumor xenografts in nude mice were generated to test the effect of PON3 on the chemoresistance of EC cells. Results We found that PON3 is hypermethylated in drug-resistant EC cell line K150, which in-return down-regulates its expression. The following experiments by the forced changes of PON3 level in vitro and in vivo demonstrated that the PON3 expression negatively correlates with drug resistance in EC cells. Further wound-healing and invasion assays showed that PON3 suppresses the migration and invasion of EC cells. Conclusion Our data established that PON3 is associated with the EC drug resistance, which may serve as a biomarker for the potential therapeutic treatment of EC. Electronic supplementary material The online version of this article (10.1186/s12935-018-0657-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dabing Huang
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China.,3Department of Geriatrics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001 Anhui People's Republic of China.,Gerontology Institute of Anhui Province, Hefei, 230001 Anhui People's Republic of China
| | - Yong Wang
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China
| | - Yifu He
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China
| | - Gang Wang
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China
| | - Wei Wang
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China
| | - Xinghua Han
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China
| | - Yubei Sun
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China
| | - Lin Lin
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China
| | - Benjie Shan
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China
| | - Guodong Shen
- 2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China.,3Department of Geriatrics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001 Anhui People's Republic of China.,Gerontology Institute of Anhui Province, Hefei, 230001 Anhui People's Republic of China
| | - Min Cheng
- 2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China.,3Department of Geriatrics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001 Anhui People's Republic of China.,Gerontology Institute of Anhui Province, Hefei, 230001 Anhui People's Republic of China
| | - Geng Bian
- 2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China.,3Department of Geriatrics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001 Anhui People's Republic of China.,Gerontology Institute of Anhui Province, Hefei, 230001 Anhui People's Republic of China
| | - Xiang Fang
- 2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China.,3Department of Geriatrics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001 Anhui People's Republic of China.,Gerontology Institute of Anhui Province, Hefei, 230001 Anhui People's Republic of China
| | - Shilian Hu
- 2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China.,3Department of Geriatrics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001 Anhui People's Republic of China.,Gerontology Institute of Anhui Province, Hefei, 230001 Anhui People's Republic of China
| | - Yueyin Pan
- 1Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui People's Republic of China.,2Department of Oncology, The Affiliated Hospital of Anhui Medical University, Hefei, 230001 Anhui People's Republic of China
| |
Collapse
|
26
|
Lipunova N, Wesselius A, Cheng KK, van Schooten FJ, Bryan RT, Cazier JB, Galesloot TE, Kiemeney LALM, Zeegers MP. Genome-wide Association Study for Tumour Stage, Grade, Size, and Age at Diagnosis of Non-muscle-invasive Bladder Cancer. Eur Urol Oncol 2018; 2:381-389. [PMID: 31277774 DOI: 10.1016/j.euo.2018.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Non-muscle-invasive bladder cancer (NMIBC) causes a considerable health burden due to the high recurrence and progression rates. Past studies have identified multiple candidate loci associated with NMIBC prognosis, albeit lacking validation. Moreover, scarce reports exist on genetic susceptibility to independent prognostic predictors of NMIBC, such as stage or grade. OBJECTIVE To investigate genetic associations with NMIBC tumour and patient characteristics at the time of diagnosis. DESIGN, SETTING, AND PARTICIPANTS A sample of 653 NMIBC cases comes from the Bladder Cancer Prognosis Programme. Replication of the significant findings was conducted in the Nijmegen Bladder Cancer Study cohort (N=1470). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS A genome-wide association study (GWAS) was carried out for outcomes of tumour size (as a continuous variable in centimetres), stage (Tis and T1 vs Ta), grade (G3 vs G2 and G1), and age (as continuous [years] and dichotomous [70.2 yr as a cut-off] variables). RESULTS AND LIMITATIONS Significant (p<5E-08) associations (N=61) with tumour size, stage, grade, and age were identified in the GWAS discovery stage. None of the variants were independently significantly associated in the replication cohort. A meta-analysis of both cohorts suggests that rs180940944 (13q13.3 locus, NBEA) was associated with tumour size as a continuous variable (ß=0.9cm, p=2.92E-09). However, other single nucleotide polymorphisms in this region did not show evidence of association in the meta-analysis. CONCLUSIONS Our study suggests that rs180940944 (NBEA) is associated with an increased NMIBC tumour size at the time of diagnosis. Given study limitations, further replication is essential to validate the finding. PATIENT SUMMARY The current study reports on a genome-wide association study on non-muscle-invasive bladder cancer tumour and patient characteristics. We suggest that NBEA gene might be associated with increased tumour size at the time of diagnosis. The result must be replicated to establish validity.
Collapse
Affiliation(s)
- Nadezda Lipunova
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK; Department of Complex Genetics, Maastricht University, The Netherlands; Centre for Computational Biology, University of Birmingham, UK.
| | - Anke Wesselius
- Department of Complex Genetics, Maastricht University, The Netherlands
| | - Kar K Cheng
- Institute for Applied Health Research, University of Birmingham, UK
| | | | - Richard T Bryan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Jean-Baptiste Cazier
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK; Centre for Computational Biology, University of Birmingham, UK
| | - Tessel E Galesloot
- Radboud University Medical Center, Radboud Institute for Health Sciences, The Netherlands
| | | | - Maurice P Zeegers
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK; Department of Complex Genetics, Maastricht University, The Netherlands
| |
Collapse
|
27
|
Kober P, Boresowicz J, Rusetska N, Maksymowicz M, Goryca K, Kunicki J, Bonicki W, Siedlecki JA, Bujko M. DNA methylation profiling in nonfunctioning pituitary adenomas. Mol Cell Endocrinol 2018; 473:194-204. [PMID: 29410024 DOI: 10.1016/j.mce.2018.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/21/2017] [Accepted: 01/29/2018] [Indexed: 01/08/2023]
Abstract
Nonfunctioning pituitary adenomas (NFPAs) are among the most frequent intracranial tumors but their molecular background, including changes in epigenetic regulation, remains poorly understood. We performed genome-wide DNA methylation profiling of 34 NFPAs and normal pituitary samples. Methylation status of the selected genomic regions and expression level of corresponding genes were assessed in a group of 75 patients. NFPAs exhibited distinct global methylation profile as compared to normal pituitary. Aberrant DNA methylation appears to contribute to deregulation of the cancer-related pathways as shown by preliminary functional analysis. Promoter hypermethylation and decreased expression level of SFN, STAT5A, DUSP1, PTPRE and FGFR2 was confirmed in the enlarged group of NFPAs. Difference in the methylation profiles between invasive and non-invasive NFPAs is very slight. Nevertheless, invasiveness-related aberrant epigenetic deregulation of the particular genes was found including upregulation of ITPKB and downregulation CNKSR1 in invasive tumors.
Collapse
Affiliation(s)
- Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Joanna Boresowicz
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland; Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Nataliia Rusetska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Maria Maksymowicz
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jacek Kunicki
- Department of Neurosurgery, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Wiesław Bonicki
- Department of Neurosurgery, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Janusz Aleksander Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| |
Collapse
|
28
|
Iftimie S, García-Heredia A, Pujol-Bosch F, Pont-Salvadó A, López-Azcona AF, Hernández-Aguilera A, Cabré N, Luciano-Mateo F, Fort-Gallifa I, Castro A, Camps J, Joven J. Serum Paraoxonase-1 Concentration as a Potential Predictor of Urinary Bladder Cancer Recurrence. A Five Year Follow-Up Study. Arch Med Res 2018; 49:119-122. [PMID: 29699809 DOI: 10.1016/j.arcmed.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/13/2018] [Indexed: 02/08/2023]
Abstract
This study provides preliminary information on the usefulness of measuring serum paraoxonase-1 (PON1) concentration and activity (and other inflammatory markers) to predict tumor recurrence in patients with urinary bladder cancer. We studied a total of 39 hospitalized patients in whom the diagnosis of urinary bladder cancer was confirmed by transurethral resection. After five years of follow-up, 29 patients presented with tumor recurrence. As control subjects, we also studied 61 healthy subjects and a further 132 hospitalized patients who had a urinary catheter-related infection due to causes other than cancer. Results showed that urinary bladder patients had lower serum PON1 concentration and activity, and higher chemokine (C-C motif) ligand 2, C-reactive protein, and procalcitonin concentrations than the control individuals. Patients with tumor recurrence had significantly lower serum PON1 concentration than patients without tumor recurrence. The mean area under the curve of the receiver operating characteristics plot for serum PON1 concentration in discriminating patients with and those without tumor recurrence was 0.755 and the best combination of sensitivity and specificity was obtained at PON1 = 100 mg/L (0.72 and 0.80, respectively). Establishing this value as a cut-off, positive predictive value was = 0.91, and negative predictive value was = 0.50. These results suggest that the measurement of serum PON1 concentration may be a high-sensitivity marker of tumor recurrence in urinary bladder cancer patients.
Collapse
Affiliation(s)
- Simona Iftimie
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Anabel García-Heredia
- Biomedical Research Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Francesc Pujol-Bosch
- Department of Urology, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Antoni Pont-Salvadó
- Department of Urology, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Ana Felisa López-Azcona
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Anna Hernández-Aguilera
- Biomedical Research Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Noemí Cabré
- Biomedical Research Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Fedra Luciano-Mateo
- Biomedical Research Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Isabel Fort-Gallifa
- Biomedical Research Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Antoni Castro
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Jordi Camps
- Biomedical Research Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Catalonia, Spain.
| | - Jorge Joven
- Biomedical Research Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| |
Collapse
|
29
|
Saif I, Kasmi Y, Allali K, Ennaji MM. Prediction of DNA methylation in the promoter of gene suppressor tumor. Gene 2018; 651:166-173. [DOI: 10.1016/j.gene.2018.01.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/23/2017] [Accepted: 01/25/2018] [Indexed: 10/18/2022]
|
30
|
Sanford T, Meng MV, Railkar R, Agarwal PK, Porten SP. Integrative analysis of the epigenetic basis of muscle-invasive urothelial carcinoma. Clin Epigenetics 2018; 10:19. [PMID: 29456764 PMCID: PMC5809922 DOI: 10.1186/s13148-018-0451-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
Background Elucidation of epigenetic alterations in bladder cancer will lead to further understanding of the biology of the disease and hopefully improved therapies. Our aim was to perform an integrative epigenetic analysis of invasive urothelial carcinoma of the bladder to identify the epigenetic abnormalities involved in the development and progression of this cancer. Methods Pre-processed methylation data and RNA-seq data were downloaded from The Cancer Genome Atlas (TCGA) and processed using the R package TCGA-Assembler. An R package MethylMix was used to perform an analysis incorporating both methylation and gene expression data on all samples, as well as a subset analysis comparing patients surviving less than 2 years and patients surviving more than 2 years. Genes associated with poor prognosis were individually queried. Pathway analysis was performed on statistically significant genes identified by MethylMix criteria using ConsensusPathDB. Validation was performed using flow cytometry on bladder cancer cell lines. Results A total of 408 patients met all inclusion criteria. There were a total of 240 genes differentially methylated by MethylMix criteria. Review of individual genes specific to poor-prognosis patients revealed the majority to be candidate tumor suppressors in other cancer types. Pathway analysis showed increase in methylation of genes involved in antioxidant pathways including glutathione and NRF2. Genes involved in estrogen metabolism were also hypermethylated while genes involved in the EGFR pathway were found to be hypomethylated. EGFR expression was confirmed to be elevated in six bladder cancer cell lines. Conclusions In patients with invasive urothelial carcinoma, we found differential methylation in patients with better and worse prognosis after cystectomy. Differentially methylated genes are involved in many relevant oncologic pathways, including EGFR and antioxidant pathways, that may be a target for therapy or chemoprevention.
Collapse
Affiliation(s)
- Thomas Sanford
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10—Hatfield CRC, Room 2-5952, Bethesda, MD 20892-1210 USA
| | - Maxwell V. Meng
- Department of Urology, University of California, Mail code 1695, 550 16th Street, 6th Floor, San Francisco, CA 94143 USA
| | - Reema Railkar
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10—Hatfield CRC, Room 2-5952, Bethesda, MD 20892-1210 USA
| | - Piyush K. Agarwal
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10—Hatfield CRC, Room 2-5952, Bethesda, MD 20892-1210 USA
| | - Sima P. Porten
- Department of Urology, University of California, Mail code 1695, 550 16th Street, 6th Floor, San Francisco, CA 94143 USA
| |
Collapse
|
31
|
Kitchen MO, Bryan RT, Emes RD, Luscombe CJ, Cheng KK, Zeegers MP, James ND, Gommersall LM, Fryer AA. HumanMethylation450K Array-Identified Biomarkers Predict Tumour Recurrence/Progression at Initial Diagnosis of High-risk Non-muscle Invasive Bladder Cancer. BIOMARKERS IN CANCER 2018; 10:1179299X17751920. [PMID: 29343995 PMCID: PMC5764140 DOI: 10.1177/1179299x17751920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/15/2017] [Indexed: 01/03/2023]
Abstract
Background: High-risk non-muscle invasive bladder cancer (HR-NMIBC) is a clinically unpredictable disease. Despite clinical risk estimation tools, many patients are undertreated with intra-vesical therapies alone, whereas others may be over-treated with early radical surgery. Molecular biomarkers, particularly DNA methylation, have been reported as predictive of tumour/patient outcomes in numerous solid organ and haematologic malignancies; however, there are few reports in HR-NMIBC and none using genome-wide array assessment. We therefore sought to identify novel DNA methylation markers of HR-NMIBC clinical outcomes that might predict tumour behaviour at initial diagnosis and help guide patient management. Patients and methods: A total of 21 primary initial diagnosis HR-NMIBC tumours were analysed by Illumina HumanMethylation450 BeadChip arrays and subsequently bisulphite Pyrosequencing. In all, 7 had not recurred at 1 year after resection and 14 had recurred and/or progressed despite intra-vesical BCG. A further independent cohort of 32 HR-NMIBC tumours (17 no recurrence and 15 recurrence and/or progression despite BCG) were also assessed by bisulphite Pyrosequencing. Results: Array analyses identified 206 CpG loci that segregated non-recurrent HR-NMIBC tumours from clinically more aggressive recurrence/progression tumours. Hypermethylation of CpG cg11850659 and hypomethylation of CpG cg01149192 in combination predicted HR-NMIBC recurrence and/or progression within 1 year of diagnosis with 83% sensitivity, 79% specificity, and 83% positive and 79% negative predictive values. Conclusions: This is the first genome-wide DNA methylation analysis of a unique HR-NMIBC tumour cohort encompassing known 1-year clinical outcomes. Our analyses identified potential novel epigenetic markers that could help guide individual patient management in this clinically unpredictable disease.
Collapse
Affiliation(s)
- Mark O Kitchen
- Institute for Science and Technology in Medicine, Keele University, London, UK.,Urology Department, University Hospitals of North Midlands NHS Trust, Stafford, UK
| | - Richard T Bryan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Richard D Emes
- Advanced Data Analysis Centre, University of Nottingham, Nottingham, UK
| | | | - K K Cheng
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Maurice P Zeegers
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.,Department of Complex Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands.,CAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | - Lyndon M Gommersall
- Urology Department, University Hospitals of North Midlands NHS Trust, Stafford, UK
| | - Anthony A Fryer
- Institute for Science and Technology in Medicine, Keele University, London, UK
| |
Collapse
|
32
|
Guan HJ, Li XX, Guo YP, Dong J, Rong SZ, Niu YY, Meng LL, Zhao FY, Fan XJ, Zhang YS, Yang YD, Nan XH, Qi BL. Methylation of the suppressor of cytokine signaling 3 gene (SOCS3) in bladder cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11326-11334. [PMID: 31966487 PMCID: PMC6965827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/09/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND It has been identified consequences of dysregulation of JAK-STAT signalling, particularly in regard to JAK-STAT signalling that has been shown to have roles in the oncogenesis of several cell types. SOCS3 protein, the negative regulatory protein of JAK-STAT signaling pathway, may also plays critical regulatory roles in cancer initiation and progression. SOCS3 promoter hypermethylation has often been identified in human cancers; however, the precise role of SOCS3 in bladder cancer is unclear. METHODS The methylation status of the SOCS3 was analyzed in an age (±5 years) and sex-matched case-control study, including 112 bladder cancer cases and 118 normal controls, using the MassARRAY EpiTYPER system. RESULTS Methylation rate of JAK2, SOCS3 and STAT3 gene were shown to vary among different CpG island. The methylation rate of SOCS3 gene was also much higher in BCa than in normal control participants, but the methylation rate of JAK2, STAT3 gene weren't different in Bca and normal control participants. CONCLUSIONS Our study demonstrates that promoter hypermethylation of SOCS3 gene is associated with BCa and thus, may serve as an independent prognostic biomarker.
Collapse
Affiliation(s)
- Hong-Jun Guan
- College of Public Health, Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Xiao-Xia Li
- College of Public Health, Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Yu-Peng Guo
- College of Public Health, Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Jing Dong
- College of Public Health, Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Sheng-Zhong Rong
- College of Public Health, Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Ying-Ying Niu
- College of Public Health, Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Li-Li Meng
- College of Public Health, Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Fu-Yang Zhao
- College of Public Health, Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Xing-Jun Fan
- College of Public Health, Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Yue-Shun Zhang
- Hongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Yin-Dong Yang
- Hongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Xi-Hao Nan
- Hongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| | - Bao-Lin Qi
- Hongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiang, Heilongjiang, P. R. China
| |
Collapse
|
33
|
Olkhov-Mitsel E, Savio AJ, Kron KJ, Pethe VV, Hermanns T, Fleshner NE, van Rhijn BW, van der Kwast TH, Zlotta AR, Bapat B. Epigenome-Wide DNA Methylation Profiling Identifies Differential Methylation Biomarkers in High-Grade Bladder Cancer. Transl Oncol 2017; 10:168-177. [PMID: 28167242 PMCID: PMC5293735 DOI: 10.1016/j.tranon.2017.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 01/22/2023] Open
Abstract
Epigenetic changes, including CpG island hypermethylation, occur frequently in bladder cancer (BC) and may be exploited for BC detection and distinction between high-grade (HG) and low-grade (LG) disease. Genome-wide methylation analysis was performed using Agilent Human CpG Island Microarrays to determine epigenetic differences between LG and HG cases. Pathway enrichment analysis and functional annotation determined that the most frequently methylated pathways in HG BC were enriched for anterior/posterior pattern specification, embryonic skeletal system development, neuron fate commitment, DNA binding, and transcription factor activity. We identified 990 probes comprising a 32-gene panel that completely distinguished LG from HG based on methylation. Selected genes from this panel, EOMES, GP5, PAX6, TCF4, and ZSCAN12, were selected for quantitative polymerase chain reaction–based validation by MethyLight in an independent series (n = 84) of normal bladder samples and LG and HG cases. GP5 and ZSCAN12, two novel methylated genes in BC, were significantly hypermethylated in HG versus LG BC (P ≤ .03). We validated our data in a second independent cohort of LG and HG BC cases (n = 42) from The Cancer Genome Atlas (TCGA). Probes representing our 32-gene panel were significantly differentially methylated in LG versus HG tumors (P ≤ .04). These results indicate the ability to distinguish normal tissue from cancer, as well as LG from HG, based on methylation and reveal important pathways dysregulated in HG BC. Our findings were corroborated using publicly available data sets from TCGA. Ultimately, the creation of a methylation panel, including GP5 and ZSCAN12, able to distinguish between disease phenotypes will improve disease management and patient outcomes.
Collapse
Affiliation(s)
- Ekaterina Olkhov-Mitsel
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1.
| | - Andrea J Savio
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1.
| | - Ken J Kron
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1.
| | - Vaijayanti V Pethe
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9.
| | - Thomas Hermanns
- Department of Surgery and Surgical Oncology, Division of Urology, The Princess Margaret Cancer Centre, University Health Network, 610 University Ave., Toronto, Ontario, Canada, M5G 2M9.
| | - Neil E Fleshner
- Department of Surgery and Surgical Oncology, Division of Urology, The Princess Margaret Cancer Centre, University Health Network, 610 University Ave., Toronto, Ontario, Canada, M5G 2M9.
| | - Bas W van Rhijn
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Surgery and Surgical Oncology, Division of Urology, The Princess Margaret Cancer Centre, University Health Network, 610 University Ave., Toronto, Ontario, Canada, M5G 2M9.
| | - Theodorus H van der Kwast
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1; Department of Pathology, University Health Network, 200 Elizabeth St., Toronto, Ontario, Canada, M5G 2C4.
| | - Alexandre R Zlotta
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Surgery, Division of Urology, Sinai Health System, 600 University Ave., Toronto, Ontario, Canada, M5G 1X5.
| | - Bharati Bapat
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1; Department of Pathology, University Health Network, 200 Elizabeth St., Toronto, Ontario, Canada, M5G 2C4.
| |
Collapse
|
34
|
Kural KC, Tandon N, Skoblov M, Kel-Margoulis OV, Baranova AV. Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. BMC Genomics 2016; 17:1030. [PMID: 28105936 PMCID: PMC5249001 DOI: 10.1186/s12864-016-3352-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background In culturing normal diploid cells, senescence may either happen naturally, in the form of replicative senescence, or it may be a consequence of external challenges such as oxidative stress. Here we present a comparative analysis aimed at reconstruction of molecular cascades specific for replicative (RS) and stressinduced senescence (SIPS) in human fibroblasts. Results An involvement of caspase-3/keratin-18 pathway and serine/threonine kinase Aurora A/ MDM2 pathway was shared between RS and SIPS. Moreover, stromelysin/MMP3 and N-acetylglucosaminyltransferase enzyme MGAT1, which initiates the synthesis of hybrid and complex Nglycans, were identified as key orchestrating components in RS and SIPS, respectively. In RS only, Aurora-B driven cell cycle signaling was deregulated in concert with the suppression of anabolic branches of the fatty acids and estrogen metabolism. In SIPS, Aurora-B signaling is deprioritized, and the synthetic branches of cholesterol metabolism are upregulated, rather than downregulated. Moreover, in SIPS, proteasome/ubiquitin ligase pathways of protein degradation dominate the regulatory landscape. This picture indicates that SIPS proceeds in cells that are actively fighting stress which facilitates premature senescence while failing to completely activate the orderly program of RS. The promoters of genes differentially expressed in either RS or SIPS are unusually enriched by the binding sites for homeobox family proteins, with particular emphasis on HMX1, IRX2, HDX and HOXC13. Additionally, we identified Iroquois Homeobox 2 (IRX2) as a master regulator for the secretion of SPP1-encoded osteopontin, a stromal driver for tumor growth that is overexpressed by both RS and SIPS fibroblasts. The latter supports the hypothesis that senescence-specific de-repression of SPP1 aids in SIPS-dependent stromal activation. Conclusions Reanalysis of previously published experimental data is cost-effective approach for extraction of additional insignts into the functioning of biological systems. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3352-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kamil C Kural
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | | | - Mikhail Skoblov
- Research Centre for Medical Genetics, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | | | - Ancha V Baranova
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA. .,Research Centre for Medical Genetics, Moscow, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.
| |
Collapse
|
35
|
Abstract
DNA methylation alterations are common in urothelial carcinoma, a prevalent cancer worldwide caused predominantly by chemical carcinogens. Recent studies have proposed sets of hypermethylated genes as promising diagnostic and prognostic biomarkers from urine or tissue samples, which require validation. Other studies have revealed intriguing links between specific carcinogens and DNA methylation alterations in cancer tissues or blood that might clarify carcinogenesis mechanisms and aid prevention. Like DNA methylation alterations, mutations in chromatin regulators are frequent, underlining the importance of epigenetic changes. However, the relations between the two changes and their functions in urothelial carcinogenesis remain unclear. Transcription factor genes with altered methylation deserve particular interest. Elucidating the functional impact of methylation changes is a prerequisite for their therapeutic targeting.
Collapse
Affiliation(s)
- Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Wolfgang Goering
- Department of Pathology, Medical Faculty, Heinrich Heine University Duesseldorf, Germany
| |
Collapse
|