1
|
Feng S, Luo Y, Chen Y, Zhu H, Zhao T, Ma F, Lin Y, Ning Y, Wu J. Individualized responses to acupuncture in premature ovarian insufficiency: A study protocol for a nested case-control trial with transcriptome analysis. Heliyon 2024; 10:e37859. [PMID: 39328559 PMCID: PMC11425121 DOI: 10.1016/j.heliyon.2024.e37859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Background Premature ovarian insufficiency (POI), a modifiable cause of infertility with substantial implications for women's well-being, prompts the exploration of efficacious adjunctive treatments. Acupuncture emerges as a promising therapeutic avenue; however, the nuanced effects of acupuncture in POI warrant more comprehensive investigation. The intricate mechanisms dictating individualized responses remain elusive. This trial seeks to assess the effectiveness of acupuncture as an adjunctive treatment for POI, concurrently delving into the impact of transcriptome analysis on peripheral blood to unravel the underpinnings of these individual variations. The overarching objective is to enrich our comprehension of acupuncture's therapeutic potential in the context of POI, with a view to advancing holistic patient care. Methods/design Constituting an open-label, nested case-control study, this research endeavors to enroll 108 women diagnosed with POI. Participants will be randomly assigned in a 1:1 ratio to either the study group or the control group, each comprising 54 subjects. Ten patients from each group meeting specific criteria will partake in transcriptome analysis. An additional 10 subjects meeting the study criteria will form a healthy control group. The study group will exclusively undergo acupuncture treatment, while the control group will solely receive Fenmutong. Acupuncture sessions, administered thrice weekly across three menstrual cycles from the fifth day of menstruation, constitute the intervention. Primary outcome measurement rests on Follicle-Stimulating Hormone (FSH) levels, supplemented by secondary assessments encompassing biometric features, hormone biomarkers, anxiety and depression scores, and transcriptome analysis. Baseline measurements precede intervention, with post-intervention evaluations following. The study endeavors to discern specific genes linked to individualized responses to acupuncture. Data analysis, employing SPSS 25.0 software, incorporates a meticulous examination of peripheral blood samples for transcriptome analysis. The investigation aspires to shed light on genetic determinants influencing the effects of acupuncture on women with POI, thereby fostering elevated standards in patient care and management. Discussion This study pivots on the principal objective of scrutinizing the efficacy of acupuncture as an adjunctive treatment for POI. Beyond effectiveness, it undertakes an exploration of the intricate mechanisms underlying the diverse responses exhibited by individuals in the context of acupuncture, augmenting the depth of understanding in this therapeutic domain.
Collapse
Affiliation(s)
- Shiyu Feng
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yu Luo
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yan Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Haimin Zhu
- Southern Medical University, Guangzhou 510515, China
| | - Tianqi Zhao
- Southern Medical University, Guangzhou 510515, China
| | - Fei Ma
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Southern Medical University, Guangzhou 510515, China
| | - Yanting Lin
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
| | - Yan Ning
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Southern Medical University, Guangzhou 510515, China
| | - Jiaman Wu
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518028, China
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
高 慧, 钱 贝, 倪 艳, 孙 莉, 傅 君. [Research Progress in the Pathogenesis of Polycystic Ovary Syndrome]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1049-1054. [PMID: 39170002 PMCID: PMC11334293 DOI: 10.12182/20240760208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Indexed: 08/23/2024]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common gynecological endocrine disorders. Most pathophysiological changes of PCOS begin in the peripubertal phase, and these pathophysiological changes will continuously affect women's health in the later stages of their lives. The pathogenic mechanisms of PCOS remain unclear, involving key aspects such as the regulation of hypothalamic-pituitary function, ovarian cellular functions, androgen levels, and insulin resistance. Herein, we summarized the latest findings on the pathogenesis of PCOS from the perspectives of the genetic background, intrauterine development, neuroendocrine function, inflammatory factors, gut microbiome, and environmental factors. This review will help provide new ideas for a deeper understanding of the disease, as well as its clinical diagnosis and treatment.
Collapse
Affiliation(s)
- 慧慧 高
- 浙江大学医学院附属儿童医院 小儿青少年妇科 国家儿童健康与疾病临床医学研究中心 (杭州 310052)National Clinical Research Center for Child Health, Department of Pediatric and Adolescent Gynecology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - 贝冉 钱
- 浙江大学医学院附属儿童医院 小儿青少年妇科 国家儿童健康与疾病临床医学研究中心 (杭州 310052)National Clinical Research Center for Child Health, Department of Pediatric and Adolescent Gynecology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - 艳 倪
- 浙江大学医学院附属儿童医院 小儿青少年妇科 国家儿童健康与疾病临床医学研究中心 (杭州 310052)National Clinical Research Center for Child Health, Department of Pediatric and Adolescent Gynecology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - 莉颖 孙
- 浙江大学医学院附属儿童医院 小儿青少年妇科 国家儿童健康与疾病临床医学研究中心 (杭州 310052)National Clinical Research Center for Child Health, Department of Pediatric and Adolescent Gynecology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - 君芬 傅
- 浙江大学医学院附属儿童医院 小儿青少年妇科 国家儿童健康与疾病临床医学研究中心 (杭州 310052)National Clinical Research Center for Child Health, Department of Pediatric and Adolescent Gynecology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| |
Collapse
|
3
|
Roza M, Eriksson ANM, Svanholm S, Berg C, Karlsson O. Male-transmitted transgenerational effects of the herbicide linuron on DNA methylation profiles in Xenopus tropicalis brain and testis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:170949. [PMID: 38365020 DOI: 10.1016/j.scitotenv.2024.170949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
The herbicide linuron can cause endocrine disrupting effects in Xenopus tropicalis frogs, including offspring that were never exposed to the contaminant. The mechanisms by which these effects are transmitted across generations need to be further investigated. Here, we examined transgenerational alterations of brain and testis DNA methylation profiles paternally inherited from grandfathers developmentally exposed to an environmentally relevant concentration of linuron. Reduced representation bisulfite sequencing (RRBS) revealed numerous differentially methylated regions (DMRs) in brain (3060 DMRs) and testis (2551 DMRs) of the adult male F2 generation. Key genes in the brain involved in somatotropic (igfbp4) and thyrotropic signaling (dio1 and tg) were differentially methylated and correlated with phenotypical alterations in body size, weight, hind limb length and plasma glucose levels, indicating that these methylation changes could be potential mediators of the transgenerational effects of linuron. Testis DMRs were found in genes essential for spermatogenesis, meiosis and germ cell development (piwil1, spo11 and tdrd9) and their methylation levels were correlated with the number of germ cells nests per seminiferous tubule, an endpoint of disrupted spermatogenesis. DMRs were also identified in several genes central for the machinery that regulates the epigenetic landscape including DNA methylation (dnmt3a and mbd2) and histone acetylation (hdac8, ep300, elp3, kat5 and kat14), which may at least partly drive the linuron-induced transgenerational effects. The results from this genome-wide DNA methylation profiling contribute to better understanding of potential transgenerational epigenetic inheritance mechanisms in amphibians.
Collapse
Affiliation(s)
- Mauricio Roza
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | | | - Sofie Svanholm
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Cecilia Berg
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
4
|
Nilsson EE, McBirney M, De Santos S, King SE, Beck D, Greeley C, Holder LB, Skinner MK. Multiple generation distinct toxicant exposures induce epigenetic transgenerational inheritance of enhanced pathology and obesity. ENVIRONMENTAL EPIGENETICS 2023; 9:dvad006. [PMID: 38162685 PMCID: PMC10756336 DOI: 10.1093/eep/dvad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/12/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Three successive multiple generations of rats were exposed to different toxicants and then bred to the transgenerational F5 generation to assess the impacts of multiple generation different exposures. The current study examines the actions of the agricultural fungicide vinclozolin on the F0 generation, followed by jet fuel hydrocarbon mixture exposure of the F1 generation, and then pesticide dichlorodiphenyltrichloroethane on the F2 generation gestating females. The subsequent F3 and F4 generations and F5 transgenerational generation were obtained and F1-F5 generations examined for male sperm epigenetic alterations and pathology in males and females. Significant impacts on the male sperm differential DNA methylation regions were observed. The F3-F5 generations were similar in ∼50% of the DNA methylation regions. The pathology of each generation was assessed in the testis, ovary, kidney, and prostate, as well as the presence of obesity and tumors. The pathology used a newly developed Deep Learning, artificial intelligence-based histopathology analysis. Observations demonstrated compounded disease impacts in obesity and metabolic parameters, but other pathologies plateaued with smaller increases at the F5 transgenerational generation. Observations demonstrate that multiple generational exposures, which occur in human populations, appear to increase epigenetic impacts and disease susceptibility.
Collapse
Affiliation(s)
- Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Margaux McBirney
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Sarah De Santos
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Stephanie E King
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Colin Greeley
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164, USA
| | - Lawrence B Holder
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
5
|
Philibert P, Stévant I, Déjardin S, Girard M, Sellem E, Durix Q, Messager A, Gonzalez AA, Mialhe X, Pruvost A, Poulat F, Boizet-Bonhoure B. Intergenerational effects on fertility in male and female mice after chronic exposure to environmental doses of NSAIDs and 17α-ethinylestradiol mixtures. Food Chem Toxicol 2023; 182:114085. [PMID: 37844793 DOI: 10.1016/j.fct.2023.114085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and 17α-ethinylestradiol (EE2) are extensively used in human and veterinary medicine. Due to their partial removal by wastewater treatment plants, they are frequent environmental contaminants, particularly in drinking water. Here, we investigated the adverse outcomes of chronic exposure to mixtures of NSAIDs (ibuprofen, 2hydroxy-ibuprofen, diclofenac) and EE2 at two environmentally relevant doses in drinking water, on the reproductive organ development and fertility in F1-exposed male and female mice and in their F2 offspring. In male and female F1 mice, which were exposed to these mixtures, reproductive organ maturation, estrous cyclicity, and spermiogenesis were altered. These defects were observed also in F2 animals, in addition to some specific sperm parameter alterations in F2 males. Transcriptomic analysis revealed significant changes in gene expression patterns and associated pathways implicated in testis and ovarian physiology. Chronic exposure of mice to NSAID and EE2 mixtures at environmental doses intergenerationally affected male and female fertility (i.e. total number of pups and time between litters). Our study provides new insights into the adverse effects of these pharmaceuticals on the reproductive health and will facilitate the implementation of a future regulatory environmental risk assessment of NSAIDs and EE2 for human health.
Collapse
Affiliation(s)
- Pascal Philibert
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France; Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Carèmeau, CHU de Nîmes, Nîmes, France.
| | - Isabelle Stévant
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France; The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | - Stéphanie Déjardin
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France.
| | - Mélissa Girard
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France
| | - Eli Sellem
- Research and Development Department, Allice, Biology of Reproduction, INRA Domaine de Vilvert, Jouy en Josas, France
| | - Quentin Durix
- IExplore-RAM, Institut de Génomique Fonctionnelle, Centre National de La Recherche Scientifique, INSERM, Université de Montpellier UMR9002, Montpellier, France.
| | - Aurélie Messager
- Département Médicaments et Technologies pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, Gif-sur-Yvette, France.
| | | | - Xavier Mialhe
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France.
| | - Alain Pruvost
- Département Médicaments et Technologies pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, Gif-sur-Yvette, France.
| | - Francis Poulat
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France.
| | - Brigitte Boizet-Bonhoure
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France.
| |
Collapse
|
6
|
Banikazemi Z, Heidar Z, Rezaee A, Taghavi SP, Zadeh Modarres S, Asemi Z, Goleij P, Jahed F, Mazaheri E, Taghizadeh M. Long non-coding RNAs and female infertility: What do we know? Pathol Res Pract 2023; 250:154814. [PMID: 37757620 DOI: 10.1016/j.prp.2023.154814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Ten percent of people who are of reproductive age experience infertility. Sometimes the most effective therapies, including technology for assisted reproduction, may lead to unsuccessful implantation. Because of the anticipated epigenetic alterations of in vitro as well as in vitro fertilization growth of embryos, these fertility techniques have also been linked to unfavorable pregnancy outcomes linked to infertility. In this regard, a variety of non-coding RNAs such as long noncoding RNAs (lncRNAs) act as epigenetic regulators in the various physiological and pathophysiological events such as infertility. LncRNAs have been made up of cytoplasmic and nuclear nucleotides; RNA polymerase II transcribes these, which are lengthier than 200 nt. LncRNAs perform critical roles in a number of biological procedures like nuclear transport, X chromosome inactivation, apoptosis, stem cell pluripotency, as well as genomic imprinting. A significant amount of lncRNAs were linked into a variety of biological procedures as high throughput sequencing technology advances, including the development of the testes, preserving spermatogonial stem cells' capacity for differentiation along with self-renewal, and controlling spermatocyte meiosis. All of them point to possible utility of lncRNAs to be biomarkers and treatment aims for female infertility. Herein, we summarize various lncRNAs that are involved in female infertility.
Collapse
Affiliation(s)
- Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Heidar
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahrzad Zadeh Modarres
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Fatemeh Jahed
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elaheh Mazaheri
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Geng X, He Z, Bao Z, Di W, Gu Z. Aberrant HPO Axis Alterations and Autoimmune Abnormalities in PCOS Patients with DOR: A Retrospective Analysis. J Clin Med 2023; 12:5212. [PMID: 37629254 PMCID: PMC10455465 DOI: 10.3390/jcm12165212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND There is a group of polycystic ovary syndrome (PCOS) patients in clinic who have diminished ovarian reserve (DOR) in combination. This study was designed to evaluate the differences in glucolipid metabolism, hypothalamic-pituitary-ovarian (HPO) axis-related parameters, and autoimmune antibodies in PCOS patients with and without DOR. METHODS A total of 2307 PCOS patients, including 1757 patients with PCOS alone and 550 patients who have both PCOS and DOR, were enrolled in this retrospective study. Parameters of glucolipid metabolism, HPO axis-related parameters, and autoimmune antibodies were measured and analyzed. RESULTS The prevalence of DOR among all patients with PCOS was 23.84%. Many HPO axis-related parameters, such as follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), and prolactin (PRL) were significantly different in PCOS with DOR compared with PCOS without DOR. The FSH levels were positively correlated with LH, testosterone (T), and androstenedione (AD) levels, but had no association with glucolipid metabolism after adjusting for body mass index (BMI). Moreover, anti-ovarian antibody (AOAb) and anti-21-OH antibody (21-OHAb) levels were significantly elevated in PCOS patients with DOR. CONCLUSIONS PCOS patients with DOR showed more chaotic HPO axis hormone levels and elevated autoimmune antibodies, suggesting that autoimmune factors may be the cause of DOR in women with PCOS.
Collapse
Affiliation(s)
- Xueying Geng
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Zhihong He
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Zhouzhou Bao
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Wen Di
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Zhuowei Gu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| |
Collapse
|
8
|
Jaramillo Jaramillo L, Roldan Tabares M, Castañeda Palacio S, Martínez-Sánchez L. Fallo ovárico, una problemática para las mujeres en edad reproductiva y su relación genética. CLINICA E INVESTIGACION EN GINECOLOGIA Y OBSTETRICIA 2023. [DOI: 10.1016/j.gine.2023.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
9
|
Nakanishi N, Osuka S, Kono T, Kobayashi H, Ikeda S, Bayasula B, Sonehara R, Murakami M, Yoshita S, Miyake N, Muraoka A, Kasahara Y, Murase T, Nakamura T, Goto M, Iwase A, Kajiyama H. Upregulated Ribosomal Pathway Impairs Follicle Development in a Polycystic Ovary Syndrome Mouse Model: Differential Gene Expression Analysis of Oocytes. Reprod Sci 2023; 30:1306-1315. [PMID: 36194357 DOI: 10.1007/s43032-022-01095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/21/2022] [Indexed: 10/10/2022]
Abstract
Polycystic ovary syndrome (PCOS), a common endocrine disorder, is associated with impaired oocyte development, leading to infertility. However, the pathogenesis of PCOS has not been completely elucidated. This study aimed to determine the differentially expressed genes (DEGs) and epigenetic changes in the oocytes from a PCOS mouse model to identify the etiological factors. RNA-sequencing analysis revealed that 90 DEGs were upregulated and 27 DEGs were downregulated in mice with PCOS compared with control mice. DNA methylation analysis revealed 30 hypomethylated and 10 hypermethylated regions in the PCOS group. However, the DNA methylation status did not correlate with differential gene expression. The pathway enrichment analysis revealed that five DEGs (Rps21, Rpl36, Rpl36a, Rpl37a, and Rpl22l1) were enriched in ribosome-related pathways in the oocytes of mice with PCOS, and the immunohistochemical analysis revealed significantly upregulated expression levels of Rps21 and Rpl36. These results suggest that differential gene expression in the oocytes of mice in PCOS is related to impaired folliculogenesis. These findings improve our understanding of PCOS pathogenesis.
Collapse
Affiliation(s)
- Natsuki Nakanishi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
- Department of Maternal and Perinatal Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Hisato Kobayashi
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Shinya Ikeda
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Bayasula Bayasula
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Reina Sonehara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Mayuko Murakami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Sayako Yoshita
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Natsuki Miyake
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ayako Muraoka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yukiyo Kasahara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomohiko Murase
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Maki Goto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
10
|
Kefayati F, Karimi Babaahmadi A, Mousavi T, Hodjat M, Abdollahi M. Epigenotoxicity: a danger to the future life. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:382-411. [PMID: 36942370 DOI: 10.1080/10934529.2023.2190713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Environmental toxicants can regulate gene expression in the absence of DNA mutations via epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs' (ncRNAs). Here, all three epigenetic modifications for seven important categories of diseases and the impact of eleven main environmental factors on epigenetic modifications were discussed. Epigenetic-related mechanisms are among the factors that could explain the root cause of a wide range of common diseases. Its overall impression on the development of diseases can help us diagnose and treat diseases, and besides, predict transgenerational and intergenerational effects. This comprehensive article attempted to address the relationship between environmental factors and epigenetic modifications that cause diseases in different categories. The studies main gap is that the precise role of environmentally-induced epigenetic alterations in the etiology of the disorders is unknown; thus, still more well-designed researches need to be accomplished to fill this gap. The present review aimed to first summarize the adverse effect of certain chemicals on the epigenome that may involve in the onset of particular disease based on in vitro and in vivo models. Subsequently, the possible adverse epigenetic changes that can lead to many human diseases were discussed.
Collapse
Affiliation(s)
- Farzaneh Kefayati
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Karimi Babaahmadi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Philibert P, Déjardin S, Girard M, Durix Q, Gonzalez AA, Mialhe X, Tardat M, Poulat F, Boizet-Bonhoure B. Cocktails of NSAIDs and 17α Ethinylestradiol at Environmentally Relevant Doses in Drinking Water Alter Puberty Onset in Mice Intergenerationally. Int J Mol Sci 2023; 24:ijms24065890. [PMID: 36982971 PMCID: PMC10099742 DOI: 10.3390/ijms24065890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and 17α-ethinyl-estradiol (EE2) are among the most relevant endocrine-disrupting pharmaceuticals found in the environment, particularly in surface and drinking water due to their incomplete removal via wastewater treatment plants. Exposure of pregnant mice to NSAID therapeutic doses during the sex determination period has a negative impact on gonadal development and fertility in adults; however, the effects of their chronic exposure at lower doses are unknown. In this study, we investigated the impact of chronic exposure to a mixture containing ibuprofen, 2hydroxy-ibuprofen, diclofenac, and EE2 at two environmentally relevant doses (added to the drinking water from fetal life until puberty) on the reproductive tract in F1 exposed mice and their F2 offspring. In F1 animals, exposure delayed male puberty and accelerated female puberty. In post-pubertal F1 testes and ovaries, differentiation/maturation of the different gonad cell types was altered, and some of these modifications were observed also in the non-exposed F2 generation. Transcriptomic analysis of post-pubertal testes and ovaries of F1 (exposed) and F2 animals revealed significant changes in gene expression profiles and enriched pathways, particularly the inflammasome, metabolism and extracellular matrix pathways, compared with controls (non-exposed). This suggested that exposure to these drug cocktails has an intergenerational impact. The identified Adverse Outcome Pathway (AOP) networks for NSAIDs and EE2, at doses that are relevant to everyday human exposure, will improve the AOP network of the human reproductive system development concerning endocrine disruptor chemicals. It may serve to identify other putative endocrine disruptors for mammalian species based on the expression of biomarkers.
Collapse
Affiliation(s)
- Pascal Philibert
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Carèmeau, CHU de Nîmes, 30900 Nîmes, France
| | - Stéphanie Déjardin
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Mélissa Girard
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Quentin Durix
- IExplore-RAM, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Université de Montpellier and Institut National de la Santé Et de la Recherche Médicale (INSERM), 34090 Montpellier, France
| | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, UMS Biocampus, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Xavier Mialhe
- MGX-Montpellier GenomiX, UMS Biocampus, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Mathieu Tardat
- Biologie des Séquences Répétées, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, 34090 Montpellier, France
| | - Francis Poulat
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Brigitte Boizet-Bonhoure
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| |
Collapse
|
12
|
Singh S, Pal N, Shubham S, Sarma DK, Verma V, Marotta F, Kumar M. Polycystic Ovary Syndrome: Etiology, Current Management, and Future Therapeutics. J Clin Med 2023; 12:jcm12041454. [PMID: 36835989 PMCID: PMC9964744 DOI: 10.3390/jcm12041454] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder, typically characterized by anovulation, infertility, obesity, insulin resistance, and polycystic ovaries. Lifestyle or diet, environmental pollutants, genetics, gut dysbiosis, neuroendocrine alterations, and obesity are among the risk factors that predispose females to PCOS. These factors might contribute to upsurging metabolic syndrome by causing hyperinsulinemia, oxidative stress, hyperandrogenism, impaired folliculogenesis, and irregular menstrual cycles. Dysbiosis of gut microbiota may play a pathogenic role in the development of PCOS. The restoration of gut microbiota by probiotics, prebiotics, or a fecal microbiota transplant (FMT) might serve as an innovative, efficient, and noninvasive way to prevent and mitigate PCOS. This review deliberates on the variety of risk factors potentially involved in the etiology, prevalence, and modulation of PCOS, in addition to plausible therapeutic interventions, including miRNA therapy and the eubiosis of gut microbiota, that may help treat and manage PCOS.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhopal 462030, India
| | - Namrata Pal
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhopal 462030, India
| | - Swasti Shubham
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhopal 462030, India
| | - Devojit Kumar Sarma
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhopal 462030, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of MedicalSciences, Lucknow 226014, India
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention, 20144 Milano, Lombardia, Italy
- Correspondence: (F.M.); (M.K.)
| | - Manoj Kumar
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhopal 462030, India
- Correspondence: (F.M.); (M.K.)
| |
Collapse
|
13
|
Wang J, Sun X, Yang Z, Li S, Wang Y, Ren R, Liu Z, Yu D. Epigenetic regulation in premature ovarian failure: A literature review. Front Physiol 2023; 13:998424. [PMID: 36685174 PMCID: PMC9846267 DOI: 10.3389/fphys.2022.998424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Premature ovarian failure (POF), or premature ovarian insufficiency (POI), is a multifactorial and heterogeneous disease characterized by amenorrhea, decreased estrogen levels and increased female gonadotropin levels. The incidence of POF is increasing annually, and POF has become one of the main causes of infertility in women of childbearing age. The etiology and pathogenesis of POF are complex and have not yet been clearly elucidated. In addition to genetic factors, an increasing number of studies have revealed that epigenetic changes play an important role in the occurrence and development of POF. However, we found that very few papers have summarized epigenetic variations in POF, and a systematic analysis of this topic is therefore necessary. In this article, by reviewing and analyzing the most relevant literature in this research field, we expound on the relationship between DNA methylation, histone modification and non-coding RNA expression and the development of POF. We also analyzed how environmental factors affect POF through epigenetic modulation. Additionally, we discuss potential epigenetic biomarkers and epigenetic treatment targets for POF. We anticipate that our paper may provide new therapeutic clues for improving ovarian function and maintaining fertility in POF patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, Changchun, China
| | | | | | - Sijie Li
- Department of Breast Surgery, Changchun, China
| | - Yufeng Wang
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ruoxue Ren
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ziyue Liu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China,*Correspondence: Dehai Yu,
| |
Collapse
|
14
|
Rebuzzini P, Fabozzi G, Cimadomo D, Ubaldi FM, Rienzi L, Zuccotti M, Garagna S. Multi- and Transgenerational Effects of Environmental Toxicants on Mammalian Reproduction. Cells 2022; 11:cells11193163. [PMID: 36231124 PMCID: PMC9563050 DOI: 10.3390/cells11193163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
Environmental toxicants (ETs) are an exogenous chemical group diffused in the environment that contaminate food, water, air and soil, and through the food chain, they bioaccumulate into the organisms. In mammals, the exposure to ETs can affect both male and female fertility and their reproductive health through complex alterations that impact both gametogeneses, among other processes. In humans, direct exposure to ETs concurs to the declining of fertility, and its transmission across generations has been recently proposed. However, multi- and transgenerational inheritances of ET reprotoxicity have only been demonstrated in animals. Here, we review recent studies performed on laboratory model animals investigating the effects of ETs, such as BPA, phthalates, pesticides and persistent contaminants, on the reproductive system transmitted through generations. This includes multigenerational effects, where exposure to the compounds cannot be excluded, and transgenerational effects in unexposed animals. Additionally, we report on epigenetic mechanisms, such as DNA methylation, histone tails and noncoding RNAs, which may play a mechanistic role in a nongenetic transmission of environmental information exposure through the germline across generations.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, Via Ferrata 9, University of Pavia, 27100 Pavia, Italy
- Correspondence: (P.R.); (M.Z.); (S.G.); Tel.: +39-0382-986323 (P.R. & M.Z. & S.G.)
| | - Gemma Fabozzi
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
| | - Danilo Cimadomo
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
| | | | - Laura Rienzi
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via Sant’Andrea 34, 61029 Urbino, Italy
| | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, Via Ferrata 9, University of Pavia, 27100 Pavia, Italy
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
- Correspondence: (P.R.); (M.Z.); (S.G.); Tel.: +39-0382-986323 (P.R. & M.Z. & S.G.)
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, Via Ferrata 9, University of Pavia, 27100 Pavia, Italy
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
- Correspondence: (P.R.); (M.Z.); (S.G.); Tel.: +39-0382-986323 (P.R. & M.Z. & S.G.)
| |
Collapse
|
15
|
Chronic Exposure to Endocrine Disruptor Vinclozolin Leads to Lung Damage Via Nrf2–Nf-kb Pathway Alterations. Int J Mol Sci 2022; 23:ijms231911320. [PMID: 36232623 PMCID: PMC9569619 DOI: 10.3390/ijms231911320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Endocrine-disrupting substances (EDS) are common and pervasive in our environment and pose a serious risk to both human and animal health. Endocrine-disrupting compounds (EDCs) have been associated with a variety of detrimental human health effects, including respiratory issues, as a result of their ability to disrupt cell physiology. Vinclozolin ((RS)-3-(3,5-Dichlorophenyl)-5-methyl-5-vinyloxazolidine-2,4-dione) is a common dicarboximide fungicide used to treat plant diseases. Several studies have analyzed the effects of vinclozolin exposure on the reproductive system, but less is known about its effect on other organs such as the lung. Mice were exposed for 28 days to orally administered vinclozolin at a dose of 100 mg/kg. Vinclozolin exposure induced histological alterations and collagen depositions in the lung. Additionally, vinclozolin induced inflammation and oxidative stress that led to lung apoptosis. Our study demonstrates for the first time that the toxicological effects of vinclozolin are not limited to the reproductive system but also involve other organs such as the lung.
Collapse
|
16
|
Chronic Exposure to Vinclozolin Induced Fibrosis, Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis in Mice Kidney. Int J Mol Sci 2022; 23:ijms231911296. [PMID: 36232596 PMCID: PMC9570110 DOI: 10.3390/ijms231911296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Vinclozolin is one of the most used fungicides in the control of fungi in fruits, vegetables, and ornamental plants. The effects of its exposure on different organs have been described, but information regarding its relevance to vinclozolin-induced nephrotoxicity is largely missing. This study focuses on the potential mechanism of vinclozolin-induced nephrotoxicity. CD1 male mice were administered vinclozolin (100 mg/kg) by oral gavage for 28 days. Vinclozolin administration decreased body weight over the treatment period and at the end of the experiment, increased the ratio of kidney weight to body weight and increased serum urea nitrogen and creatinine contents. Vinclozolin also induced histopathological alterations, including tubular dilatation and necrosis and impaired the integrity of the renal-tubular architecture and kidney fibrosis. The analyses conducted showed that vinclozolin administration altered the mRNA levels of mitochondrial function-related proteins (SIRT3, SIRT1, PGC-1α, TFAM, NRF1, VDAC-1, and Cyt c) and oxidative stress (increased lipid peroxidation and decreased total antioxidative capacity, catalase, and superoxide dismutase activities, glutathione levels, and glutathione peroxidase activity) in the kidneys. Furthermore, vinclozolin induced toxicity that altered Nrf2 signalling and the related proteins (HO-1 and NQO-1). Vinclozolin administration also affected both the extrinsic and intrinsic apoptotic pathways, upregulating the expression of proapoptotic factors (Bax, Caspase 3, and FasL) and downregulating antiapoptotic factor (Bcl-2) levels. This study suggests that vinclozolin induced nephrotoxicity by disrupting the transcription of mitochondrial function-related factors, the Nrf2 signalling pathway, and the extrinsic and intrinsic apoptotic pathways.
Collapse
|
17
|
Adegoke EO, Rahman MS, Amjad S, Pang WK, Ryu DY, Park YJ, Pang MG. Bisphenol A damages testicular junctional proteins transgenerationally in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119067. [PMID: 35231543 DOI: 10.1016/j.envpol.2022.119067] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/08/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Testicular junctions are pivotal to male fertility and regulated by constituent proteins. Increasing evidence suggests that environmental chemicals, including bisphenol A (BPA), may impact these proteins, but whether the impacts persist for generations is not yet known. Here, we investigate the effect of BPA (a ubiquitous endocrine-disrupting chemical) on testis and sperm functions and whether the effects are transferred to subsequent generations. Male mice (F0) were exposed to corn oil (Control) or 5 or 50 mg BPA/kg body weight/day from 6 to 12 weeks of age. The F0 were mated with wild-type females to produce the first filial (F1) generation. F2 and F3 were produced using similar procedures. Our results showed that BPA doses decreased the levels of some junctional proteins partly via binding with estrogen receptors (ERα and Erβ), upregulation of p-ERK1/2, P85, p-JNK and activation of p38 mitogen-activated protein kinase signaling. Consequently, testicular histological abnormalities, disrupted spermatogenesis, decreased sperm count, and inability to fertilize eggs were observed in mice exposed to BPA. These effects were transferred to successive generations (F2), partly through DNA methylation, but mostly alleviated in F3 males. Our findings suggest that paternal exposure to chemicals promoting alteration of testicular junctional proteins and its transgenerational inheritance is a key component of the origin of male reproductive health problems.
Collapse
Affiliation(s)
- Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Shereen Amjad
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
18
|
Chen P, Song Y, Xu W, Huang Y, Jia Y, Li C, Lan Y, Chu K, Ma L, Zhou J. Association between serum vitamin A levels and premature ovarian insufficiency: a case-control, cross-sectional survey study. BMC Endocr Disord 2022; 22:88. [PMID: 35379206 PMCID: PMC8981733 DOI: 10.1186/s12902-022-01003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/24/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Although vitamin A is known to play an important role in ovarian function, its association with ovarian insufficiency has not been reported yet. Therefore, the aim of the study was to explore the association between serum vitamin A levels and premature ovarian insufficiency (POI). METHODS This cross-sectional survey included women with POI (n = 47) and normo-ovulatory controls (n = 67) who were enrolled between December 2016 and May 2018 in Zhejiang, China. The serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), anti-Müllerian hormone (AMH), vitamin A, and total cholesterol (TC) were measured for each participant. The association of TC-adjusted vitamin A levels with the risk of POI was assessed using binary logistic regression analysis. RESULTS Serum vitamin A levels appeared to be slightly higher in the POI group than in the control group, but there was no evidence of a statistically significant difference (728.00 ± 176.00 µg/L vs. 503.93 ± 145.64 µg/L, p = 0.13). After adjustment for serum lipid levels, the serum vitamin A/TC ratio was significantly lower in the POI group than in the control group (143.14 ± 35.86 vs. 157.56 ± 35.21 µg/mmol, p = 0.04). Further, the serum vitamin A/TC ratio was significantly and inversely associated with POI risk (unadjusted odds ratio [OR] = 0.988, 95% confidence interval [CI]: 0.977-0.999, p = 0.04). The association remained after adjusting for confounding factors (age, BMI, annual household income, and education) (OR = 0.986, 95% CI: 0.972-0.999, p = 0.04). CONCLUSIONS Serum vitamin A/TC ratio was inversely associated with POI risk. Therefore, the serum vitamin A/TC ratio may serve as a predictive factor for POI, and vitamin A supplementation may play help prevent or treat POI.
Collapse
Affiliation(s)
- Peiqiong Chen
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China
| | - Yang Song
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China
| | - Wenxian Xu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China
| | - Yingxian Jia
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China
| | - Chunming Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China
| | - Yibing Lan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China
| | - Ketan Chu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China
| | - Linjuan Ma
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China.
| | - Jianhong Zhou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China.
| |
Collapse
|
19
|
Robaire B, Delbes G, Head JA, Marlatt VL, Martyniuk CJ, Reynaud S, Trudeau VL, Mennigen JA. A cross-species comparative approach to assessing multi- and transgenerational effects of endocrine disrupting chemicals. ENVIRONMENTAL RESEARCH 2022; 204:112063. [PMID: 34562476 DOI: 10.1016/j.envres.2021.112063] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
A wide range of chemicals have been identified as endocrine disrupting chemicals (EDCs) in vertebrate species. Most studies of EDCs have focused on exposure of both male and female adults to these chemicals; however, there is clear evidence that EDCs have dramatic effects when mature or developing gametes are exposed, and consequently are associated with in multigenerational and transgenerational effects. Several publications have reviewed such actions of EDCs in subgroups of species, e.g., fish or rodents. In this review, we take a holistic approach synthesizing knowledge of the effects of EDCs across vertebrate species, including fish, anurans, birds, and mammals, and discuss the potential mechanism(s) mediating such multi- and transgenerational effects. We also propose a series of recommendations aimed at moving the field forward in a structured and coherent manner.
Collapse
Affiliation(s)
- Bernard Robaire
- Department of Pharmacology and Therapeutics and of Obstetrics and Gynecology, McGill University, Montreal, Canada.
| | - Geraldine Delbes
- Centre Armand Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique (INRS), Laval, QC, Canada
| | - Jessica A Head
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Vicki L Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Université. Savoie Mont Blanc, CNRS, LECA, Grenoble, 38000, France
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
20
|
Nilsson EE, Ben Maamar M, Skinner MK. Role of epigenetic transgenerational inheritance in generational toxicology. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac001. [PMID: 35186326 PMCID: PMC8848501 DOI: 10.1093/eep/dvac001] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/04/2021] [Accepted: 02/03/2022] [Indexed: 05/27/2023]
Abstract
Many environmental toxicants have been shown to be associated with the transgenerational inheritance of increased disease susceptibility. This review describes the generational toxicity of some of these chemicals and their role in the induction of epigenetic transgenerational inheritance of disease. Epigenetic factors include DNA methylation, histone modifications, retention of histones in sperm, changes to chromatin structure, and expression of non-coding RNAs. For toxicant-induced epigenetic transgenerational inheritance to occur, exposure to a toxicant must result in epigenetic changes to germ cells (sperm or eggs) since it is the germ cells that carry molecular information to subsequent generations. In addition, the epigenetic changes induced in transgenerational generation animals must cause alterations in gene expression in these animals' somatic cells. In some cases of generational toxicology, negligible changes are seen in the directly exposed generations, but increased disease rates are seen in transgenerational descendants. Governmental policies regulating toxicant exposure should take generational effects into account. A new approach that takes into consideration generational toxicity will be needed to protect our future populations.
Collapse
Affiliation(s)
- Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Michael K Skinner
- **Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +509-335-1524; E-mail:
| |
Collapse
|
21
|
Rumph JT, Stephens VR, Martin JL, Brown LK, Thomas PL, Cooley A, Osteen KG, Bruner-Tran KL. Uncovering Evidence: Associations between Environmental Contaminants and Disparities in Women's Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031257. [PMID: 35162279 PMCID: PMC8835285 DOI: 10.3390/ijerph19031257] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
Abstract
Over the years, industrial accidents and military actions have led to unintentional, large-scale, high-dose human exposure to environmental contaminants with endocrine-disrupting action. These historical events, in addition to laboratory studies, suggest that exposure to toxicants such as dioxins and polychlorinated biphenyls negatively impact the reproductive system and likely influence the development of gynecologic diseases. Although high-level exposure to a single toxicant is rare, humans living in industrialized countries are continuously exposed to a complex mixture of manmade and naturally produced endocrine disruptors, including persistent organic pollutants and heavy metals. Since minorities are more likely to live in areas with known environmental contamination; herein, we conducted a literature review to identify potential associations between toxicant exposure and racial disparities in women's health. Evidence within the literature suggests that the body burden of environmental contaminants, especially in combination with inherent genetic variations, likely contributes to previously observed racial disparities in women's health conditions such as breast cancer, endometriosis, polycystic ovarian syndrome, uterine fibroids, and premature birth.
Collapse
Affiliation(s)
- Jelonia T. Rumph
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (J.T.R.); (J.L.M.); (L.K.B.); (P.L.T.); (A.C.)
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (V.R.S.); (K.G.O.)
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Victoria R. Stephens
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (V.R.S.); (K.G.O.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Joanie L. Martin
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (J.T.R.); (J.L.M.); (L.K.B.); (P.L.T.); (A.C.)
| | - LaKendria K. Brown
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (J.T.R.); (J.L.M.); (L.K.B.); (P.L.T.); (A.C.)
| | - Portia L. Thomas
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (J.T.R.); (J.L.M.); (L.K.B.); (P.L.T.); (A.C.)
| | - Ayorinde Cooley
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA; (J.T.R.); (J.L.M.); (L.K.B.); (P.L.T.); (A.C.)
| | - Kevin G. Osteen
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (V.R.S.); (K.G.O.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37208, USA
| | - Kaylon L. Bruner-Tran
- Women’s Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (V.R.S.); (K.G.O.)
- Correspondence:
| |
Collapse
|
22
|
Mohajer N, Joloya EM, Seo J, Shioda T, Blumberg B. Epigenetic Transgenerational Inheritance of the Effects of Obesogen Exposure. Front Endocrinol (Lausanne) 2021; 12:787580. [PMID: 34975759 PMCID: PMC8716683 DOI: 10.3389/fendo.2021.787580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and metabolic disorders have become a worldwide pandemic affecting millions of people. Although obesity is a multifaceted disease, there is growing evidence supporting the obesogen hypothesis, which proposes that exposure to a subset of endocrine disrupting chemicals (EDCs), known as obesogens, promotes obesity. While these effects can be observed in vitro using cell models, in vivo and human epidemiological studies have strengthened this hypothesis. Evidence from animal models showed that the effects of obesogen exposure can be inherited transgenerationally through at least the F4 generation. Transgenerational effects of EDC exposure predispose future generations to undesirable phenotypic traits and diseases, including obesity and related metabolic disorders. The exact mechanisms through which phenotypic traits are passed from an exposed organism to their offspring, without altering the primary DNA sequence, remain largely unknown. Recent research has provided strong evidence suggesting that a variety of epigenetic mechanisms may underlie transgenerational inheritance. These include differential DNA methylation, histone methylation, histone retention, the expression and/or deposition of non-coding RNAs and large-scale alterations in chromatin structure and organization. This review highlights the most recent advances in the field of epigenetics with respect to the transgenerational effects of environmental obesogens. We highlight throughout the paper the strengths and weaknesses of the evidence for proposed mechanisms underlying transgenerational inheritance and why none of these is sufficient to fully explain the phenomenon. We propose that changes in higher order chromatin organization and structure may be a plausible explanation for how some disease predispositions are heritable through multiple generations, including those that were not exposed. A solid understanding of these possible mechanisms is essential to fully understanding how environmental exposures can lead to inherited susceptibility to diseases such as obesity.
Collapse
Affiliation(s)
- Nicole Mohajer
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, United States
| | - Erika M. Joloya
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Jeongbin Seo
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Toshi Shioda
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, United States
| | - Bruce Blumberg
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, United States
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| |
Collapse
|
23
|
Sassi A, Désir J, Duerinckx S, Soblet J, Van Dooren S, Bonduelle M, Abramowicz M, Delbaere A. Compound heterozygous null mutations of NOBOX in sisters with delayed puberty and primary amenorrhea. Mol Genet Genomic Med 2021; 9:e1776. [PMID: 34480423 PMCID: PMC8580073 DOI: 10.1002/mgg3.1776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/02/2021] [Accepted: 07/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background Premature ovarian insufficiency (POI) is a heterogeneous clinical syndrome defined by a premature loss of ovarian function that associates menstrual disturbances and hypergonatropic hypogonadism. POI is a major cause of female infertility affecting 1% of women before the age of 40 and up to 0.01% before the age of 20. The etiology of POI may be iatrogenic, auto‐immune or genetic but remains however undetermined in a large majority of cases. An underlying genetic etiology has to be searched in idiopathic cases, particularly in the context of a family history of POI. Methods Whole exome sequencing (WES) was performed in trio in a Belgian patient presenting POI and in her two parents. The patient presented delayed puberty and primary amenorrhea with hypergonadotropic hypogonadism. Results WES identified two novel compound heterozygous truncating mutations in the Newborn oogenesis homeobox (NOBOX) gene, c.826C>T (p.(Arg276Ter)) and c.1421del (p.(Gly474AlafsTer76)). Both mutations were confirmed by Sanger sequencing in the proband's sister who presented the same phenotype. Both variants were pathogenic and very likely responsible for the severe POI in this family. Conclusion We report here for the first time compound heterozygous truncating mutations of NOBOX in outbred patients, generalizing biallelic NOBOX null mutations as a cause of severe POI with primary amenorrhea. In addition, our findings also suggest that NOBOX haploinsufficiency is tolerated.
Collapse
Affiliation(s)
- Asma Sassi
- Fertility Clinic, Department of Obstetrics and Gynecology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Désir
- Department of Genetics, Erasme Hospital, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah Duerinckx
- Institute of Interdisciplinary Research in Human and Molecular Biology, Human Genetics, IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Soblet
- Department of Genetics, Erasme Hospital, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Sonia Van Dooren
- Brussels Interuniversity Genomics High Throughput core (Bright Core), Brussels, Belgium
| | - Maryse Bonduelle
- Centre for Medical Genetics, Reproduction and Genetics, Reproduction and Genetics and Regenerative Medicine, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marc Abramowicz
- Department of Genetics, Erasme Hospital, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Institute of Interdisciplinary Research in Human and Molecular Biology, Human Genetics, IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Delbaere
- Fertility Clinic, Department of Obstetrics and Gynecology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
24
|
Toth GP, Bencic DC, Martinson JW, Flick RW, Lattier DL, Kostich MS, Huang W, Biales AD. Development of omics biomarkers for estrogen exposure using mRNA, miRNA and piRNAs. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105807. [PMID: 33838496 PMCID: PMC11654628 DOI: 10.1016/j.aquatox.2021.105807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The number of chemicals requiring risk evaluation exceeds our capacity to provide the underlying data using traditional methodology. This has led to an increased focus on the development of novel approach methodologies. This work aimed to expand the panel of gene expression-based biomarkers to include responses to estrogens, to identify training strategies that maximize the range of applicable concentrations, and to evaluate the potential for two classes of small non-coding RNAs (sncRNAs), microRNA (miRNA) and piwi-interacting RNA (piRNA), as biomarkers. To this end larval Pimephales promelas (96 hpf +/- 1h) were exposed to 5 concentrations of 17α- ethinylestradiol (0.12, 1.25, 2.5, 5.0, 10.0 ng/L) for 48 h. For mRNA-based biomarker development, RNA-seq was conducted across all concentrations. For sncRNA biomarkers, small RNA libraries were prepared only for the control and 10.0 ng/L EE2 treatment. In order to develop an mRNA classifier that remained accurate over the range of exposure concentrations, three different training strategies were employed that focused on 10 ng/L, 2.5 ng/L or a combination of both. Classifiers were tested against an independent test set of individuals exposed to the same concentrations used in training and subsequently against concentrations not included in model training. Both random forest (RF) and logistic regression with elastic net regularizations (glmnet) models trained on 10 ng/L EE2 performed poorly when applied to lower concentrations. RF models trained with either the 2.5 ng/L or combination (2.5 + 10 ng/L) treatments were able to accurately discriminate exposed vs. non-exposed across all but the lowest concentrations. glmnet models were unable to accurately classify below 5 ng/L. With the exception of the 10 ng/L treatment, few mRNA differentially expressed genes (DEG) were observed, however, there was marked overlap of DEGs across treatments. Overlapping DEGs have well established linkages to estrogen and several of the 81 DEGs identified in the 10 ng/L treatment have been previously utilized as estrogenic biomarkers (vitellogenin, estrogen receptor-β). Following multiple test correction, no sncRNAs were found to be differentially expressed, however, both miRNA and piRNA classifiers were able to accurately discriminate control and 10 ng/L exposed organisms with AUCs of 0.83 and 1.0 respectively. We have developed a highly discriminative estrogenic mRNA biomarker that is accurate over a range of concentrations likely to be found in real-world exposures. We have demonstrated that both miRNA and piRNA are responsive to estrogenic exposure, suggesting the need to further investigate their regulatory roles in the estrogenic response.
Collapse
Affiliation(s)
- Gregory P Toth
- US Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, United States
| | - David C Bencic
- US Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, United States
| | - John W Martinson
- US Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, United States
| | - Robert W Flick
- US Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, United States
| | - David L Lattier
- US Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, United States
| | - Mitchell S Kostich
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr, Farmington, CT 06032, United States
| | - Weichun Huang
- US Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, United States
| | - Adam D Biales
- US Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, United States.
| |
Collapse
|
25
|
Cirillo PM, La Merrill MA, Krigbaum NY, Cohn BA. Grandmaternal Perinatal Serum DDT in Relation to Granddaughter Early Menarche and Adult Obesity: Three Generations in the Child Health and Development Studies Cohort. Cancer Epidemiol Biomarkers Prev 2021; 30:1480-1488. [PMID: 33853850 DOI: 10.1158/1055-9965.epi-20-1456] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/08/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Serum DDTs during or just after pregnancy were associated with breast cancer in mothers (F0), and with breast cancer, mammographic density, and obesity in adult daughters (F1) in the Child Health and Development Studies multi-generational cohort in prior publications. Here, we investigate F0 perinatal serum DDT associations with granddaughters'(F2) measured obesity at a median age of 26 and self-reported age at menarche. METHODS F2 weight, height and waist circumference were measured by trained examiners. o,p'-DDT, p,p'-DDT and p,p'-DDE were measured in archived F0 perinatal serum. F0 DDT associations with F2 outcomes, accounting for F1 characteristics, were estimated in log-linear models adjusted for F0 and F1 body mass index (BMI), race, and menarche timing (N = 258 triads for obesity; N = 235 triads for early menarche). Interactions between F0 BMI and DDTs were estimated. RESULTS F0 o,p'-DDT was associated with F2 obesity [Odds ratio (OR), 2.6; 95% confidence interval (CI), 1.3-6.7; tertile 3 vs. 1), among normal weight F0 (70%), but not among overweight and obese F0 (P interaction = 0.03), independent of other DDTs. F0 o,p'-DDT was also associated with F2 early menarche (OR, 2.1; 95% CI, 1.1-3.9, tertile 3 vs. 1) and this association was not modified by F0 BMI. CONCLUSIONS Ancestral exposure to environmental chemicals, banned decades ago, may influence the development of earlier menarche and obesity, which are established risk factors for breast cancer and cardiometabolic diseases. IMPACT Discovery of actionable biomarkers of response to ancestral environmental exposures in young women may provide opportunities for breast cancer prevention.See related commentary by Fenton and Boyles, p. 1459.
Collapse
Affiliation(s)
- Piera M Cirillo
- Child Health and Development Studies of the Public Health Institute, Berkeley, California
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, Davis California
| | - Nickilou Y Krigbaum
- Child Health and Development Studies of the Public Health Institute, Berkeley, California
| | - Barbara A Cohn
- Child Health and Development Studies of the Public Health Institute, Berkeley, California.
| |
Collapse
|
26
|
Eiras MC, Pinheiro DP, Romcy KAM, Ferriani RA, Reis RMD, Furtado CLM. Polycystic Ovary Syndrome: the Epigenetics Behind the Disease. Reprod Sci 2021; 29:680-694. [PMID: 33826098 DOI: 10.1007/s43032-021-00516-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/21/2021] [Indexed: 10/21/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders, affecting approximately 5-20% of women of reproductive age. PCOS is a multifactorial, complex, and heterogeneous disease, characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovaries, which may lead to impaired fertility. Besides the reproductive outcomes, multiple comorbidities, such as metabolic disturbances, insulin resistance, obesity, diabetes, and cardiovascular disease, are associated with PCOS. In addition to the clear genetic basis, epigenetic alterations may also play a central role in PCOS outcomes, as environmental and hormonal alterations directly affect clinical manifestations and PCOS development. Here, we highlighted the epigenetic modifications in the multiplicity of clinical manifestations, as well as environmental epigenetic disruptors, as intrauterine hormonal and metabolic alterations affecting embryo development and the adulthood lifestyle, which may contribute to PCOS development. Additionally, we also discussed the new approaches for future studies and potential epigenetic biomarkers for the treatment of associated comorbidities and improvement in quality of life of women with PCOS.
Collapse
Affiliation(s)
- Matheus Credendio Eiras
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, SP, Brazil
| | - Daniel Pascoalino Pinheiro
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceara, Coronel Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, 60430-275, CE, Brazil
| | - Kalil Andrade Mubarac Romcy
- Drug Research and Development Center, Postgraduate Program in Medical and Surgical Sciences, Federal University of Ceara, Coronel Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, CE, 60430-275, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, SP, Brazil
| | - Rosana Maria Dos Reis
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, SP, Brazil.
| | - Cristiana Libardi Miranda Furtado
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, SP, Brazil. .,Drug Research and Development Center, Postgraduate Program in Medical and Surgical Sciences, Federal University of Ceara, Coronel Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, CE, 60430-275, Brazil.
| |
Collapse
|
27
|
Garrido N, Cruz F, Egea RR, Simon C, Sadler-Riggleman I, Beck D, Nilsson E, Ben Maamar M, Skinner MK. Sperm DNA methylation epimutation biomarker for paternal offspring autism susceptibility. Clin Epigenetics 2021; 13:6. [PMID: 33413568 PMCID: PMC7789568 DOI: 10.1186/s13148-020-00995-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/17/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) has increased over tenfold over the past several decades and appears predominantly associated with paternal transmission. Although genetics is anticipated to be a component of ASD etiology, environmental epigenetics is now also thought to be an important factor. Epigenetic alterations, such as DNA methylation, have been correlated with ASD. The current study was designed to identify a DNA methylation signature in sperm as a potential biomarker to identify paternal offspring autism susceptibility. METHODS AND RESULTS Sperm samples were obtained from fathers that have children with or without autism, and the sperm then assessed for alterations in DNA methylation. A genome-wide analysis (> 90%) for differential DNA methylation regions (DMRs) was used to identify DMRs in the sperm of fathers (n = 13) with autistic children in comparison with those (n = 13) without ASD children. The 805 DMR genomic features such as chromosomal location, CpG density and length of the DMRs were characterized. Genes associated with the DMRs were identified and found to be linked to previously known ASD genes, as well as other neurobiology-related genes. The potential sperm DMR biomarkers/diagnostic was validated with blinded test sets (n = 8-10) of individuals with an approximately 90% accuracy. CONCLUSIONS Observations demonstrate a highly significant set of 805 DMRs in sperm that can potentially act as a biomarker for paternal offspring autism susceptibility. Ancestral or early-life paternal exposures that alter germline epigenetics are anticipated to be a molecular component of ASD etiology.
Collapse
Affiliation(s)
- Nicolás Garrido
- IVI-RMA València, and IVI Foundation, Health Research Institute La Fe, València, Spain
| | - Fabio Cruz
- IVI-RMA València, and IVI Foundation, Health Research Institute La Fe, València, Spain
| | - Rocio Rivera Egea
- IVI-RMA València, and IVI Foundation, Health Research Institute La Fe, València, Spain
| | - Carlos Simon
- Dept Ob/Gyn, València University/Instituto de Investigacion Clinica, Hospital Clinico de Valencia (INCLIVA), and Igenomix Foundation, València, Spain
- Beth Israel Deaconess Medical Center, Harvard University, Boston, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
28
|
Environmentally Induced Epigenetic Transgenerational Inheritance and the Weismann Barrier: The Dawn of Neo-Lamarckian Theory. J Dev Biol 2020; 8:jdb8040028. [PMID: 33291540 PMCID: PMC7768451 DOI: 10.3390/jdb8040028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
For the past 120 years, the Weismann barrier and associated germ plasm theory of heredity have been a doctrine that has impacted evolutionary biology and our concepts of inheritance through the germline. Although August Weismann in his 1872 book was correct that the sperm and egg were the only cells to transmit molecular information to the subsequent generation, the concept that somatic cells do not impact the germline (i.e., the Weismann barrier) is incorrect. However, the doctrine or dogma of the Weismann barrier still influences many scientific fields and topics. The discovery of epigenetics, and more recently environmentally induced epigenetic transgenerational inheritance of phenotypic variation and pathology, have had significant impacts on evolution theory and medicine today. Environmental epigenetics and the concept of epigenetic transgenerational inheritance refute aspects of the Weismann barrier and require a re-evaluation of both inheritance theory and evolution theory.
Collapse
|
29
|
Rattan S, Flaws JA. The epigenetic impacts of endocrine disruptors on female reproduction across generations†. Biol Reprod 2020; 101:635-644. [PMID: 31077281 DOI: 10.1093/biolre/ioz081] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/18/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Humans and animals are repeatedly exposed to endocrine disruptors, many of which are ubiquitous in the environment. Endocrine disruptors interfere with hormone action; thus, causing non-monotonic dose responses that are atypical of standard toxicant exposures. The female reproductive system is particularly susceptible to the effects of endocrine disruptors. Likewise, exposures to endocrine disruptors during developmental periods are particularly concerning because programming during development can be adversely impacted by hormone level changes. Subsequently, developing reproductive tissues can be predisposed to diseases in adulthood and these diseases can be passed down to future generations. The mechanisms of action by which endocrine disruptors cause disease transmission to future generations are thought to include epigenetic modifications. This review highlights the effects of endocrine disruptors on the female reproductive system, with an emphasis on the multi- and transgenerational epigenetic effects of these exposures.
Collapse
Affiliation(s)
- Saniya Rattan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Illinois, USA
| |
Collapse
|
30
|
Chu K, Wang Y, He Y, Tang Y, Gu J, Wu S, Zhang H, Sun N, Li Z, Zhang Q, Li W. The psychosocial impact of premature ovarian insufficiency on male partners and their perceptions of the disease. PSYCHOL HEALTH MED 2020; 26:1248-1257. [PMID: 32844666 DOI: 10.1080/13548506.2020.1810717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Premature ovarian insufficiency (POI) is affecting about 1% women of reproductive age. However, current studies have primarily focused on women with the views of male partners greatly absent from the literature. We conduct this research to investigate the psychosocial effect of POI on male partners and their perceptions of the disease.52 male partners of POI patient (experiment group) and 52 controls (control group) were available for analysis. Anxiety, depression, and marital relationship were assessed for male partners in both groups. A questionnaire about perceptions of POI was completed by the experiment group. Male partners of POI patient experienced greater levels of anxiety (10.96 versus 4.88; P < 0.01) and depression (12.23 versus 5.19; P < 0.01) compared with controls. In addition, they experienced worse marital relationship in several aspects than their counterparts. The findings also demonstrate that most POI patient male partners had inadequate and inaccurate knowledge about their partners' disease, which may be the results of insufficient professional counseling from health-care practitioners. Moreover, their understanding level of the disease was correlated to anxiety (r = -0.64; P < 0.01), depression (r = -0.38; P < 0.01), and communication (r = 0.28; P < 0.05).The study highlights the need for health-care services, as well as support and professional information resources aimed at POI patients' male partners.
Collapse
Affiliation(s)
- Kun Chu
- Center for Reproductive Medicine, Changzheng Hosptial, Second Military Medical University, Shanghai, China
| | - Yining Wang
- Center for Reproductive Medicine, Changzheng Hosptial, Second Military Medical University, Shanghai, China
| | - Yi He
- Center for Reproductive Medicine, Changzheng Hosptial, Second Military Medical University, Shanghai, China
| | - Yunxiang Tang
- Department of Medical Psychology, Second Military Medical University, Shanghai, China
| | - Jiayi Gu
- Center for Reproductive Medicine, Changzheng Hosptial, Second Military Medical University, Shanghai, China
| | - Shuang Wu
- Center for Reproductive Medicine, Changzheng Hosptial, Second Military Medical University, Shanghai, China
| | - Honghong Zhang
- Center for Reproductive Medicine, Changzheng Hosptial, Second Military Medical University, Shanghai, China
| | - Ningxia Sun
- Center for Reproductive Medicine, Changzheng Hosptial, Second Military Medical University, Shanghai, China
| | - Ziyuan Li
- Center for Reproductive Medicine, Changzheng Hosptial, Second Military Medical University, Shanghai, China
| | - Qing Zhang
- Center for Reproductive Medicine, Changzheng Hosptial, Second Military Medical University, Shanghai, China
| | - Wen Li
- Center for Reproductive Medicine, Changzheng Hosptial, Second Military Medical University, Shanghai, China
| |
Collapse
|
31
|
Calaf GM, Bleak TC, Muñoz JP, Aguayo F. Markers of epithelial-mesenchymal transition in an experimental breast cancer model induced by organophosphorous pesticides and estrogen. Oncol Lett 2020; 20:84. [PMID: 32863917 PMCID: PMC7436934 DOI: 10.3892/ol.2020.11945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is a major health problem and accounted for 11.6% of all new cancer cases and 6.6% of all cancer deaths among women worldwide in 2018. However, its etiology has remained elusive. According to epidemiological studies, environmental factors are influencing the increase in the incidence of breast cancer risk. Components such as chemicals, including pesticides, are agents that produce deleterious effects on wildlife and humans. Among them, the organophosphorus pesticides, such as malathion, have largely been considered in this etiology. The epithelial-mesenchymal transition serves a key role in tumor progression and it is proposed that malathion is closely associated with the origin of this transition, among other causes. Moreover, proteins participating in this process are primordial in the transformation of a normal cell to a malignant tumor cell. The aim of the current study was to evaluate markers that indicated oncogenic properties. The results indicated greater expression levels of proteins associated with the epithelial-to-mesenchymal transition, including E-cadherin, Vimentin, Axl, and Slug in the rat mammary glands treated with malathion alone and combined with estrogen. Atropine was demonstrated to counteract the malathion effect as a muscarinic antagonist. The understanding of the use of markers in experimental models is crucial to identify different stages in the cancer process. The alteration of these markers may serve as a predicting factor that can be used to indicate whether a person has altered ducts or lobules in breast tissue within biopsies of individuals exposed to OPs or other environmental substances.
Collapse
Affiliation(s)
- Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile.,Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Tammy C Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Juan P Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Francisco Aguayo
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380000, Chile
| |
Collapse
|
32
|
Pan W, Ye X, Zhu Z, Li C, Zhou J, Liu J. A case-control study of arsenic exposure with the risk of primary ovarian insufficiency in women. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25220-25229. [PMID: 32347494 DOI: 10.1007/s11356-020-08806-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 04/07/2020] [Indexed: 05/18/2023]
Abstract
Arsenic, a well-known toxic metalloid, is ubiquitously existed in environment. Arsenic exposure has been associated with female reproductive health. However, a potential association between arsenic exposure and primary ovarian insufficiency (POI) in women has not been recognized yet. In this case-control study, a total of 169 POI cases and 209 healthy controls were recruited to determine urinary concentrations of arsenic and serum levels of reproductive hormones (follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-Mullerian hormone (AMH) and estradiol). The median concentration of urinary arsenic in cases (21.5 μg/L, 28.0 μg/g for creatinine adjustment) was significantly higher than that of controls (13.8 μg/L, 19.3 μg/g for creatinine adjustment). Urinary arsenic concentrations were significantly positively associated with the risk of POI (adjusted odds ratio (OR) = 2.66, 95% CI: 1.43-4.95 for the highest vs lowest tertile of arsenic, p = 0.002; p for trend = 0.004). We also assessed the associations between arsenic exposure and reproductive hormones that are important for ovarian functions. FSH and LH levels were positively associated with urinary arsenic, whereas AMH and estradiol levels were negatively correlated with this element. This study provided evidence that arsenic exposure could be the potential risk factor for POI in women.
Collapse
Affiliation(s)
- Wuye Pan
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zheying Zhu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunming Li
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jianhong Zhou
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
33
|
Habib H, Haider MR, Sharma S, Ahmad S, Dabeer S, Yar MS, Raisuddin S. Molecular interactions of vinclozolin metabolites with human estrogen receptors 1GWR-α and 1QKM and androgen receptor 2AM9-β: Implication for endocrine disruption. Toxicol Mech Methods 2020; 30:370-377. [PMID: 32208804 DOI: 10.1080/15376516.2020.1747123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/08/2020] [Accepted: 03/22/2020] [Indexed: 10/24/2022]
Abstract
Background: Vinclozolin (VCZ) is a widely used antifungal agent with capability to enter into the human food chain. VCZ metabolizes into seven metabolites M1-M7. Several studies have shown its effects on reprotoxicity. However, there is limited information available on the interaction of VCZ metabolites with nuclear receptors. In silico studies aimed at identifying interaction of endocrine disruptor with nuclear receptors serve a prescreening framework in risk assessment.Methods: We studied interactive potential of VCZ and its metabolites with human estrogen (ER) and androgen receptor (AR) using molecular docking method. Binding potential of VCZ and its metabolites with estrogen receptors 1GWR-α, 1QKM and androgen receptor 2AM9-β was checked by using Schrodinger Maestro 10.5. Estradiol (E2), a natural ligand of ER and AR was taken as a reference.Results: VCZ and its metabolites showed higher or similar binding efficiency on interaction with target proteins when compared with E2. VCZ and its metabolites also exhibited agonistic effect against 1GWR-α, 1QKM and 2AM9-β with strong binding potential to them.Conclusion: Some VCZ metabolites such as M4 and M5 showed higher binding potencies with 1GWR-α, 1QKM and 2AM9-β than E2. Toxicity data of VCZ is well endowed. However, endocrine disrupting potential of VCZ via nuclear receptor mediated pathway is less understood. This in silico study revealing that not only VCZ but its metabolites have potential to interact with 1GWR-α, 1QKM and 2AM9-β offers a platform for further exploration of VCZ in this direction.
Collapse
Affiliation(s)
- Haroon Habib
- Molecular Toxicology Laboratory, Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Shikha Sharma
- Molecular Toxicology Laboratory, Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Shahzad Ahmad
- Molecular Toxicology Laboratory, Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Sadaf Dabeer
- Molecular Toxicology Laboratory, Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Sheikh Raisuddin
- Molecular Toxicology Laboratory, Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
34
|
Plunk EC, Richards SM. Epigenetic Modifications due to Environment, Ageing, Nutrition, and Endocrine Disrupting Chemicals and Their Effects on the Endocrine System. Int J Endocrinol 2020; 2020:9251980. [PMID: 32774366 PMCID: PMC7391083 DOI: 10.1155/2020/9251980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
The epigenome of an individual can be altered by endogenous hormones, environment, age, diet, and exposure to endocrine disrupting chemicals (EDCs), and the effects of these modifications can be seen across generations. Epigenetic modifications to the genome can alter the phenotype of the individual without altering the DNA sequence itself. Epigenetic modifications include DNA methylation, histone modification, and aberrant microRNA (miRNA) expression; they begin during germ cell development and embryogenesis and continue until death. Hormone modulation occurs during the ageing process due to epigenetic modifications. Maternal overnutrition or undernutrition can affect the epigenome of the fetus, and the effects can be seen throughout life. Furthermore, maternal care during the childhood of the offspring can lead to different phenotypes seen in adulthood. Diseases controlled by the endocrine system, such as obesity and diabetes, as well as infertility in females can be associated with epigenetic changes. Not only can these phenotypes be seen in F1, but also some chemical effects can be passed through the germline and have effects transgenerationally, and the phenotypes are seen in F3. The following literature review expands upon these topics and discusses the state of the science related to epigenetic effects of age, diet, and EDCs on the endocrine system.
Collapse
Affiliation(s)
- Elizabeth C. Plunk
- Department of Biological and Environmental Sciences, University of Tennessee, Chattanooga, TN 37403, USA
| | - Sean M. Richards
- Department of Biological and Environmental Sciences, University of Tennessee, Chattanooga, TN 37403, USA
| |
Collapse
|
35
|
Perera BP, Faulk C, Svoboda LK, Goodrich JM, Dolinoy DC. The role of environmental exposures and the epigenome in health and disease. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:176-192. [PMID: 31177562 PMCID: PMC7252203 DOI: 10.1002/em.22311] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 05/02/2023]
Abstract
The genetic material of every organism exists within the context of regulatory networks that govern gene expression, collectively called the epigenome. Epigenetics has taken center stage in the study of diseases such as cancer and diabetes, but its integration into the field of environmental health is still emerging. As the Environmental Mutagenesis and Genomics Society (EMGS) celebrates its 50th Anniversary this year, we have come together to review and summarize the seminal advances in the field of environmental epigenomics. Specifically, we focus on the role epigenetics may play in multigenerational and transgenerational transmission of environmentally induced health effects. We also summarize state of the art techniques for evaluating the epigenome, environmental epigenetic analysis, and the emerging field of epigenome editing. Finally, we evaluate transposon epigenetics as they relate to environmental exposures and explore the role of noncoding RNA as biomarkers of environmental exposures. Although the field has advanced over the past several decades, including being recognized by EMGS with its own Special Interest Group, recently renamed Epigenomics, we are excited about the opportunities for environmental epigenetic science in the next 50 years. Environ. Mol. Mutagen. 61:176-192, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bambarendage P.U. Perera
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Christopher Faulk
- Department of Animal Sciences, University of Minnesota, St. Paul, Minnesota
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
- Correspondence to: Dana C. Dolinoy, Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan.
| |
Collapse
|
36
|
King SE, Nilsson E, Beck D, Skinner MK. Adipocyte epigenetic alterations and potential therapeutic targets in transgenerationally inherited lean and obese phenotypes following ancestral exposures. Adipocyte 2019; 8:362-378. [PMID: 31755359 PMCID: PMC6948971 DOI: 10.1080/21623945.2019.1693747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 01/01/2023] Open
Abstract
The incidence of obesity has increased dramatically over the past two decades with a prevalence of approximately 40% of the adult population within the United States. The current study examines the potential for transgenerational adipocyte (fat cell) epigenetic alterations. Adipocytes were isolated from the gonadal fat pad of the great-grand offspring F3 generation 1-year old rats ancestrally exposed to DDT (dichlorodiphenyltrichloroethane), atrazine, or vehicle control in order to obtain adipocytes for DNA methylation analysis. Observations indicate that there were differential DNA methylated regions (DMRs) in the adipocytes with the lean or obese phenotypes compared to control normal (non-obese or lean) populations. The comparison of epigenetic alterations indicated that there were substantial overlaps between the different treatment lineage groups for both the lean and obese phenotypes. Novel correlated genes and gene pathways associated with DNA methylation were identified, and may aid in the discovery of potential therapeutic targets for metabolic diseases such as obesity. Observations indicate that ancestral exposures during critical windows of development can induce the epigenetic transgenerational inheritance of DNA methylation changes in adipocytes that ultimately may contribute to an altered metabolic phenotype.
Collapse
Affiliation(s)
- Stephanie E. King
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
37
|
CD24: a marker of granulosa cell subpopulation and a mediator of ovulation. Cell Death Dis 2019; 10:791. [PMID: 31624236 PMCID: PMC6797718 DOI: 10.1038/s41419-019-1995-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/21/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Granulosa cells (GCs) play a critical role in driving the formation of ovarian follicles and building the cumulus-oocyte complex surrounding the ovum. We are particularly interested in assessing oocyte quality by examining the detailed gene expression profiles of human cumulus single cells. Using single-cell RNAseq techniques, we extensively investigated the single-cell transcriptomes of the cumulus GC populations from two women with normal ovarian function. This allowed us to elucidate the endogenous heterogeneity of GCs by uncovering the hidden GC subpopulation. The subsequent validation results suggest that CD24(+) GCs are essential for triggering ovulation. Treatment with human chorionic gonadotropin (hCG) significantly increases the expression of CD24 in GCs. CD24 in cultured human GCs is associated with hCG-induced upregulation of prostaglandin synthase (ARK1C1, PTGS2, PTGES, and PLA2G4A) and prostaglandin transporter (SLCO2A1 and ABCC4) expression, through supporting the EGFR-ERK1/2 pathway. In addition, it was observed that the fraction of CD24(+) cumulus GCs decreases in PCOS patients compared to that of controls. Altogether, the results support the finding that CD24 is an important mediator of ovulation and that it may also be used for therapeutic target of ovulatory disorders.
Collapse
|
38
|
Casier K, Boivin A, Carré C, Teysset L. Environmentally-Induced Transgenerational Epigenetic Inheritance: Implication of PIWI Interacting RNAs. Cells 2019; 8:cells8091108. [PMID: 31546882 PMCID: PMC6770481 DOI: 10.3390/cells8091108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Environmentally-induced transgenerational epigenetic inheritance is an emerging field. The understanding of associated epigenetic mechanisms is currently in progress with open questions still remaining. In this review, we present an overview of the knowledge of environmentally-induced transgenerational inheritance and associated epigenetic mechanisms, mainly in animals. The second part focuses on the role of PIWI-interacting RNAs (piRNAs), a class of small RNAs involved in the maintenance of the germline genome, in epigenetic memory to put into perspective cases of environmentally-induced transgenerational inheritance involving piRNA production. Finally, the last part addresses how genomes are facing production of new piRNAs, and from a broader perspective, how this process might have consequences on evolution and on sporadic disease development.
Collapse
Affiliation(s)
- Karine Casier
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, CNRS, Laboratoire Biologie du Développement, Institut de Biologie Paris-Seine, UMR7622, 75005 Paris, France.
| | - Antoine Boivin
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, CNRS, Laboratoire Biologie du Développement, Institut de Biologie Paris-Seine, UMR7622, 75005 Paris, France.
| | - Clément Carré
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, CNRS, Laboratoire Biologie du Développement, Institut de Biologie Paris-Seine, UMR7622, 75005 Paris, France.
| | - Laure Teysset
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, CNRS, Laboratoire Biologie du Développement, Institut de Biologie Paris-Seine, UMR7622, 75005 Paris, France.
| |
Collapse
|
39
|
Xavier MJ, Roman SD, Aitken RJ, Nixon B. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update 2019; 25:518-540. [DOI: 10.1093/humupd/dmz017] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/19/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Abstract
BACKGROUND
A defining feature of sexual reproduction is the transmission of genomic information from both parents to the offspring. There is now compelling evidence that the inheritance of such genetic information is accompanied by additional epigenetic marks, or stable heritable information that is not accounted for by variations in DNA sequence. The reversible nature of epigenetic marks coupled with multiple rounds of epigenetic reprogramming that erase the majority of existing patterns have made the investigation of this phenomenon challenging. However, continual advances in molecular methods are allowing closer examination of the dynamic alterations to histone composition and DNA methylation patterns that accompany development and, in particular, how these modifications can occur in an individual’s germline and be transmitted to the following generation. While the underlying mechanisms that permit this form of transgenerational inheritance remain unclear, it is increasingly apparent that a combination of genetic and epigenetic modifications plays major roles in determining the phenotypes of individuals and their offspring.
OBJECTIVE AND RATIONALE
Information pertaining to transgenerational inheritance was systematically reviewed focusing primarily on mammalian cells to the exclusion of inheritance in plants, due to inherent differences in the means by which information is transmitted between generations. The effects of environmental factors and biological processes on both epigenetic and genetic information were reviewed to determine their contribution to modulating inheritable phenotypes.
SEARCH METHODS
Articles indexed in PubMed were searched using keywords related to transgenerational inheritance, epigenetic modifications, paternal and maternal inheritable traits and environmental and biological factors influencing transgenerational modifications. We sought to clarify the role of epigenetic reprogramming events during the life cycle of mammals and provide a comprehensive review of how the genomic and epigenomic make-up of progenitors may determine the phenotype of its descendants.
OUTCOMES
We found strong evidence supporting the role of DNA methylation patterns, histone modifications and even non-protein-coding RNA in altering the epigenetic composition of individuals and producing stable epigenetic effects that were transmitted from parents to offspring, in both humans and rodent species. Multiple genomic domains and several histone modification sites were found to resist demethylation and endure genome-wide reprogramming events. Epigenetic modifications integrated into the genome of individuals were shown to modulate gene expression and activity at enhancer and promoter domains, while genetic mutations were shown to alter sequence availability for methylation and histone binding. Fundamentally, alterations to the nuclear composition of the germline in response to environmental factors, ageing, diet and toxicant exposure have the potential to become hereditably transmitted.
WIDER IMPLICATIONS
The environment influences the health and well-being of progeny by working through the germline to introduce spontaneous genetic mutations as well as a variety of epigenetic changes, including alterations in DNA methylation status and the post-translational modification of histones. In evolutionary terms, these changes create the phenotypic diversity that fuels the fires of natural selection. However, rather than being adaptive, such variation may also generate a plethora of pathological disease states ranging from dominant genetic disorders to neurological conditions, including spontaneous schizophrenia and autism.
Collapse
Affiliation(s)
- Miguel João Xavier
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shaun D Roman
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Chemical Biology and Clinical Pharmacology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - R John Aitken
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett Nixon
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
40
|
Sadler-Riggleman I, Klukovich R, Nilsson E, Beck D, Xie Y, Yan W, Skinner MK. Epigenetic transgenerational inheritance of testis pathology and Sertoli cell epimutations: generational origins of male infertility. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz013. [PMID: 31528361 PMCID: PMC6736068 DOI: 10.1093/eep/dvz013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/28/2019] [Accepted: 07/19/2019] [Indexed: 05/12/2023]
Abstract
Male reproductive health has been in decline for decades with dropping sperm counts and increasing infertility, which has created a significant societal and economic burden. Between the 1970s and now, a general decline of over 50% in sperm concentration has been observed in the population. Environmental toxicant-induced epigenetic transgenerational inheritance has been shown to affect testis pathology and sperm count. Sertoli cells have an essential role in spermatogenesis by providing physical and nutritional support for developing germ cells. The current study was designed to further investigate the transgenerational epigenetic changes in the rat Sertoli cell epigenome and transcriptome that are associated with the onset of testis disease. Gestating female F0 generation rats were transiently exposed during the period of fetal gonadal sex determination to the environmental toxicants, such as dichlorodiphenyltrichloroethane (DDT) or vinclozolin. The F1 generation offspring were bred (i.e. intercross within the lineage) to produce the F2 generation grand-offspring that were then bred to produce the transgenerational F3 generation (i.e. great-grand-offspring) with no sibling or cousin breeding used. The focus of the current study was to investigate the transgenerational testis disease etiology, so F3 generation rats were utilized. The DNA and RNA were obtained from purified Sertoli cells isolated from postnatal 20-day-old male testis of F3 generation rats. Transgenerational alterations in DNA methylation, noncoding RNA, and gene expression were observed in the Sertoli cells from vinclozolin and DDT lineages when compared to the control (vehicle exposed) lineage. Genes associated with abnormal Sertoli cell function and testis pathology were identified, and the transgenerational impacts of vinclozolin and DDT were determined. Alterations in critical gene pathways, such as the pyruvate metabolism pathway, were identified. Observations suggest that ancestral exposures to environmental toxicants promote the epigenetic transgenerational inheritance of Sertoli cell epigenetic and transcriptome alterations that associate with testis abnormalities. These epigenetic alterations appear to be critical factors in the developmental and generational origins of testis pathologies and male infertility.
Collapse
Affiliation(s)
- Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Rachel Klukovich
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
41
|
Hu J, Yu Y. Epigenetic response profiles into environmental epigenotoxicant screening and health risk assessment: A critical review. CHEMOSPHERE 2019; 226:259-272. [PMID: 30933735 DOI: 10.1016/j.chemosphere.2019.03.096] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The epigenome may be an important interface between exposure to environmental contaminants and adverse outcome on human health. Many environmental pollutants deregulate gene expression and promote diseases by modulating the epigenome. Adverse epigenetic responses have been widely used for risk assessment of chemical substances. Various pollutants, including trace elements and persistent organic pollutants, have been detected frequently in the environment. Epigenetic toxicity of environmental matrices including water, air, soil, and food cannot be ignored. This review provides a comprehensive overview of epigenetic effects of pollutants and environmental matrices. We start with an overview of the mechanisms of epigenetic regulation and the effects of several types of environmental pollutants (trace elements, persistent organic pollutants, endocrine disrupting chemicals, and volatile organic pollutants) on epigenetic modulation. We then discuss the epigenetic responses to environmental water, air, and soil based on in vivo and in vitro assays. Finally, we discuss recommendations to promote the incorporation of epigenotoxicity into contamination screening and health risk assessment.
Collapse
Affiliation(s)
- Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, PR China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
42
|
Brehm E, Flaws JA. Transgenerational Effects of Endocrine-Disrupting Chemicals on Male and Female Reproduction. Endocrinology 2019; 160:1421-1435. [PMID: 30998239 PMCID: PMC6525581 DOI: 10.1210/en.2019-00034] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
Abstract
Endocrine-disrupting chemicals are known to interfere with normal reproductive function and hormone signaling. Phthalates, bisphenol A, pesticides, and environmental contaminants such as polychlorinated biphenyls and dioxins are known endocrine-disrupting chemicals that have been shown to negatively affect both male and female reproduction. Exposure to these chemicals occurs on a daily basis owing to these compounds being found in plastics, personal care products, and pesticides. Recently, studies have shown that these chemicals may cause transgenerational effects on reproduction in both males and females. This is of concern because exposure to these chemicals prenatally or during adult life can negatively impact the reproductive health of future generations. This mini-review summarizes the endocrine-disrupting chemicals that humans are exposed to on a daily basis and what is known about the transgenerational effects that these chemicals may have on male and female reproduction.
Collapse
Affiliation(s)
- Emily Brehm
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
- Correspondence: Jodi A. Flaws, PhD, Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Room 3223, Urbana, Illinois 61802. E-mail: .
| |
Collapse
|
43
|
Kubsad D, Nilsson EE, King SE, Sadler-Riggleman I, Beck D, Skinner MK. Assessment of Glyphosate Induced Epigenetic Transgenerational Inheritance of Pathologies and Sperm Epimutations: Generational Toxicology. Sci Rep 2019; 9:6372. [PMID: 31011160 PMCID: PMC6476885 DOI: 10.1038/s41598-019-42860-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/09/2019] [Indexed: 12/28/2022] Open
Abstract
Ancestral environmental exposures to a variety of factors and toxicants have been shown to promote the epigenetic transgenerational inheritance of adult onset disease. One of the most widely used agricultural pesticides worldwide is the herbicide glyphosate (N-(phosphonomethyl)glycine), commonly known as Roundup. There are an increasing number of conflicting reports regarding the direct exposure toxicity (risk) of glyphosate, but no rigorous investigations on the generational actions. The current study using a transient exposure of gestating F0 generation female rats found negligible impacts of glyphosate on the directly exposed F0 generation, or F1 generation offspring pathology. In contrast, dramatic increases in pathologies in the F2 generation grand-offspring, and F3 transgenerational great-grand-offspring were observed. The transgenerational pathologies observed include prostate disease, obesity, kidney disease, ovarian disease, and parturition (birth) abnormalities. Epigenetic analysis of the F1, F2 and F3 generation sperm identified differential DNA methylation regions (DMRs). A number of DMR associated genes were identified and previously shown to be involved in pathologies. Therefore, we propose glyphosate can induce the transgenerational inheritance of disease and germline (e.g. sperm) epimutations. Observations suggest the generational toxicology of glyphosate needs to be considered in the disease etiology of future generations.
Collapse
Affiliation(s)
- Deepika Kubsad
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Stephanie E King
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | | | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
44
|
Perera BPU, Svoboda L, Dolinoy DC. Genomic Tools for Environmental Epigenetics and Implications for Public Health. CURRENT OPINION IN TOXICOLOGY 2019; 18:27-33. [PMID: 31763499 DOI: 10.1016/j.cotox.2019.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epigenetics refers to the study of mitotically heritable and potentially reversible changes in gene expression unrelated to the DNA sequence itself, influenced by epigenetic marks including chromatin modifications, non-coding RNA and alterations to DNA itself via methylation and hydroxymethylation. Epigenetics has taken center stage in the study of diseases such as cancer, diabetes, and neurodegeneration; however, its integration into the field of environmental health sciences and toxicology (e.g. Toxicoepigenetics) is in its infancy. This review highlights the need to evaluate surrogate and target tissues in the field of toxicoepigenetics as the National Institute of Environmental Health Sciences (NIEHS) multi-phased Toxicant Exposure and Response by Genomic and Epigenomic Regulators of Transcription (TaRGET) consortia make headway, and the emergence of non-coding RNA biomarkers. The review also discusses lead (Pb) as a potential toxicoepigenetic exposure, where pre- and post-natal Pb exposure is associated with reprogramming of DNA methylation, histone modifications, and microRNA expression, representing potential biomarkers or predictors for Pb-induced health outcomes. Finally, new advances in epigenome editing, highlighting the potential of small ncRNA, will be explored for environmental health sciences research.
Collapse
Affiliation(s)
- Bambarendage P U Perera
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI
| | - Laurie Svoboda
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI
| | - Dana C Dolinoy
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI
- University of Michigan School of Public Health, Department of Nutritional Sciences, Ann Arbor, MI
| |
Collapse
|
45
|
Klukovich R, Nilsson E, Sadler-Riggleman I, Beck D, Xie Y, Yan W, Skinner MK. Environmental Toxicant Induced Epigenetic Transgenerational Inheritance of Prostate Pathology and Stromal-Epithelial Cell Epigenome and Transcriptome Alterations: Ancestral Origins of Prostate Disease. Sci Rep 2019; 9:2209. [PMID: 30778168 PMCID: PMC6379561 DOI: 10.1038/s41598-019-38741-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/09/2019] [Indexed: 12/15/2022] Open
Abstract
Prostate diseases include prostate cancer, which is the second most common male neoplasia, and benign prostatic hyperplasia (BPH), which affects approximately 50% of men. The incidence of prostate disease is increasing, and some of this increase may be attributable to ancestral exposure to environmental toxicants and epigenetic transgenerational inheritance mechanisms. The goal of the current study was to determine the effects that exposure of gestating female rats to vinclozolin has on the epigenetic transgenerational inheritance of prostate disease, and to characterize by what molecular epigenetic mechanisms this has occurred. Gestating female rats (F0 generation) were exposed to vinclozolin during E8-E14 of gestation. F1 generation offspring were bred to produce the F2 generation, which were bred to produce the transgenerational F3 generation. The transgenerational F3 generation vinclozolin lineage males at 12 months of age had an increased incidence of prostate histopathology and abnormalities compared to the control lineage. Ventral prostate epithelial and stromal cells were isolated from F3 generation 20-day old rats, prior to the onset of pathology, and used to obtain DNA and RNA for analysis. Results indicate that there were transgenerational changes in gene expression, noncoding RNA expression, and DNA methylation in both cell types. Our results suggest that ancestral exposure to vinclozolin at a critical period of gestation induces the epigenetic transgenerational inheritance of prostate stromal and epithelial cell changes in both the epigenome and transcriptome that ultimately lead to prostate disease susceptibility and may serve as a source of the increased incidence of prostate pathology observed in recent years.
Collapse
Affiliation(s)
- Rachel Klukovich
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA.
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
46
|
Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA. Population Genomics: Advancing Understanding of Nature. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_60] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|