1
|
Schkoda S, Horman B, Witchey S, St Armour G, Nelson M, Gaeta E, Scott M, Patisaul HB. Sex-specific effects on elements of the social brain neural network in Wistar rats from perinatal exposure to FireMaster 550 or its components. Neurotoxicology 2024; 105:111-120. [PMID: 39241866 DOI: 10.1016/j.neuro.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Developmental exposure to chemical flame retardants (FRs) has been linked to a variety of neurodevelopmental disorders and abnormal socioemotional behaviors in human and laboratory animal studies. We have previously shown in Wistar rats that gestational and lactational exposure to the FR mixture Firemaster 550 (FM 550) or its brominated or organophosphate ester (OPFR) components (at 2000 µg, 1000 µg, and 1000 µg oral to the dam respectively (absolute and not by bodyweight)) results in increased anxiety-like behaviors in females and decreased sociality in both sexes. Using their siblings, this study characterized sex and chemical specific targets of disruption in brain regions underlying each behavioral phenotype. Offspring were exposed across gestation and lactation then prepared for either immunohistochemistry or autoradiography at postnatal day 90 to quantify expression of serotonin, estrogen receptor α (ERα), and oxytocin receptor (OTR) in multiple brain regions. No effect of exposure was found in males for any biological target. In females, serotonin innervation was increased in the medial amygdala of FM 550 exposed animals while ERα expression in the bed nucleus of the stria terminalis (BNST) was reduced by FM 550 and OPFR. Evidence of disrupted OTR was observed in males, particularly the BNST but considered an exploratory finding given the small sample size. These results begin to shed light on the mechanisms by which developmental FR exposure alters socioemotional behaviors of relevance to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Stacy Schkoda
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Shannah Witchey
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Genevieve St Armour
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States
| | - Mason Nelson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Emily Gaeta
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Madeline Scott
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
2
|
Hilz EN, Gillette R, Thompson LM, Ton L, Pham T, Kunkel MN, Crews D, Gore AC. Two Hits of EDCs Three Generations Apart: Evaluating Multigenerational Anxiety-Like Behavioral Phenotypes in Female Rats Exposed to Aroclor 1221 and Vinclozolin. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:127005. [PMID: 39739409 DOI: 10.1289/ehp15621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
BACKGROUND Endocrine-disrupting chemicals (EDCs) are exogenous chemical compounds that interfere with the normal function of the endocrine system and are linked to direct and inherited adverse effects in both humans and wildlife. Legacy EDCs such as polychlorinated biphenyls (PCBs) are no longer used yet remain detectable in biological specimens around the world; concurrently, we are exposed to newer EDCs like the fungicide vinclozolin (VIN). This combination of individuals' direct environmental chemical exposures and any heritable changes caused by their ancestors' chemical exposures leads to a layered pattern of both direct and ancestrally inherited exposures that might have cumulative effects over generations. OBJECTIVES We assessed consequences of both direct and ancestral exposure to EDCs over six generations, examining anxiety-like behaviors in maternal and paternal lines of female rats. We used the "two hits, three generations apart" multigenerational exposure model to explore how two distinct EDCs-the weakly estrogenic PCB mixture Aroclor 1221 (A1221) and the antiandrogenic VIN-interact on behavior across generations. We also explored serum hormones as a potential mechanism. METHODS Rats were prenatally exposed to A1221, VIN, or vehicle (DMSO) in the F1 generation, and a second exposure (same or different) was administered to the F4 generation. Anxiety-like behavior was measured in the Open Field test, Light:Dark box, and Elevated Plus Maze in the F1, F3, F4, and F6 generations. Serum concentrations of estradiol and corticosterone were analyzed. RESULTS Behavioral effects were not detectable in the F1 generation but emerged and became more robust across generations. Rats with ancestral VIN exposure demonstrated less anxiety-like behavior in the F3 paternal line in comparison with controls. Rats exposed to ancestral then prenatal A1221/VIN and VIN/A1221 had more anxiety-like behavior in the F4 maternal line, and those with two ancestral hits of VIN/VIN had more anxiety in the F6 paternal line, in comparison with controls. DISCUSSION Our findings suggest that anxiety-like behavioral phenotypes can manifest in rats following germline exposure to EDCs and that subsequent exposures across generations can intensify these effects in a lineage-dependent manner. https://doi.org/10.1289/EHP15621.
Collapse
Affiliation(s)
- Emily N Hilz
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Ross Gillette
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Lindsay M Thompson
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Lexi Ton
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Timothy Pham
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - M Nicole Kunkel
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - David Crews
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Andrea C Gore
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Hilz EN, Gillette R, Thompson LM, Crews D, Gore AC. Two Hits of EDCs Three Generations Apart: Evaluating Multigenerational Anxiety-Like Behavioral Phenotypes in Male Rats Exposed to Aroclor 1221 and Vinclozolin. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:127006. [PMID: 39739410 DOI: 10.1289/ehp15684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
BACKGROUND Increasing evidence supports an association of endocrine-disrupting chemical (EDC) exposures with adverse biological effects in humans and wildlife. Recent studies reveal that health consequences of environmental exposures may persist or emerge across generations. This creates a dual conundrum: that we are exposed to contemporary environmental chemicals overlaid upon the inheritance of our ancestors' exposure profiles. Even when legacy EDCs are phased out, they may remain relevant due to persistence in the environment together with intergenerational inheritance of their adverse biological effects. Thus, we all possess a body burden of legacy contaminants, and we are also increasingly exposed to new generations of EDCs. OBJECTIVES We assessed the effects of direct and ancestral exposures to EDCs across six generations on anxiety-like behaviors in male rats using our "two hits, three generations apart" multigenerational EDC exposure experimental model. We investigated two classes of EDCs with distinct hormonal actions and historical use-the weakly estrogenic polychlorinated biphenyl (PCB) mixture Aroclor 1221 (A1221) and the anti-androgenic fungicide vinclozolin (VIN)-in both the maternal and paternal line. We also determined if a hormonal mechanism drives these effects across generations. METHODS Rats were gestationally exposed to A1221, VIN, or vehicle [dimethyl sulfoxide (DMSO)] in the F1 generation. Three generations later, the F4 generation was given the same or a different exposure. Anxiety-like behavior was measured in the open field test, light:dark box, and elevated plus maze across generations. Serum was collected at the end of the experiment, and concentrations of estradiol and corticosterone were analyzed. RESULTS Although direct exposure did not affect behavior in F1 males, ancestral exposure to VIN decreased anxiety-like behavior in the F3 paternal line compared to vehicle. In the F4 paternal line, ancestral A1221 followed by direct exposure to VIN increased anxiety-like behavior compared to controls. In the F6 maternal line, relative to vehicle, the double ancestral hits of A1221/VIN decreased anxiety-like behavior. Serum hormones weakly predicted behavioral changes in the F4 paternal line and were modestly affected in the F4 and F6 maternal lines. DISCUSSION Our data suggest that anxiety-like behavioral phenotypes emerge transgenerationally in male rats in response to EDC exposure and that multiple hits of either the same or a different EDC can increase the impact in a lineage-specific manner. https://doi.org/10.1289/EHP15684.
Collapse
Affiliation(s)
- Emily N Hilz
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Ross Gillette
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Lindsay M Thompson
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - David Crews
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Andrea C Gore
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
4
|
Zhang Y, Wang B, Sun W, Wang G, Liu Z, Zhang X, Ding J, Han Y, Zhang H. Paternal exposures to endocrine-disrupting chemicals induce intergenerational epigenetic influences on offspring: A review. ENVIRONMENT INTERNATIONAL 2024; 187:108689. [PMID: 38688236 DOI: 10.1016/j.envint.2024.108689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are ubiquitous in ecological environments and have become a great issue of public health concern since the 1990 s. There is a deep scientific understanding of the toxicity of EDCs. However, recent studies have found that the abnormal physiological functions of the parents caused by EDCs could be transmitted to their unexposed offspring, leading to intergenerational toxicity. We questioned whether sustained epigenetic changes occur through the male germline. In this review, we (1) systematically searched the available research on the intergenerational impacts of EDCs in aquatic and mammal organisms, including 42 articles, (2) summarized the intergenerational genetic effects, such as decreased offspring survival, abnormal reproductive dysfunction, metabolic disorders, and behavioral abnormalities, (3) summarized the mechanisms of intergenerational toxicity through paternal interactions, and (4) propose suggestions on future research directions to develop a deeper understanding of the ecological risk of EDCs.
Collapse
Affiliation(s)
- Yinan Zhang
- Hangzhou Normal University, Hangzhou 310018, China
| | - Bingyi Wang
- Hangzhou Normal University, Hangzhou 310018, China
| | - Wenhui Sun
- Hangzhou Normal University, Hangzhou 310018, China
| | | | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou 310018, China; Hangzhou International Urbanology Research Center, Hangzhou 311121, China
| | | | - Jiafeng Ding
- Hangzhou Normal University, Hangzhou 310018, China
| | - Yu Han
- Hangzhou Normal University, Hangzhou 310018, China
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou 310018, China; Hangzhou International Urbanology Research Center, Hangzhou 311121, China.
| |
Collapse
|
5
|
Neyroud AS, Rolland AD, Lecuyer G, Evrard B, Alary N, Dejucq-Rainsford N, Bujan L, Ravel C, Chalmel F. Sperm DNA methylation dynamics after chemotherapy: a longitudinal study of a patient with testicular germ cell tumor treatment. Andrology 2024; 12:396-409. [PMID: 37354024 DOI: 10.1111/andr.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/26/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND An important issue for young men affected by testicular germ cell tumor (TGCT) is how TGCT and its treatment will affect, transiently or permanently, their future reproductive health. Previous studies have reported that xenobiotics can induce changes on human sperm epigenome and have the potential to promote epigenetic alterations in the offspring. OBJECTIVES Here, we report the first longitudinal DNA methylation profiling of frozen sperm from a TGCT patient before and up to 2 years after a bleomycin, etoposide, and cisplatin (BEP) chemotherapy. MATERIALS AND METHODS A TGCT was diagnosed in a 30-year-old patient. A cryopreservation of spermatozoa was proposed before adjuvant BEP treatment. Semen samples were collected before and after chemotherapy at 6, 9, 12, and 24 months. The DNA methylation status was determined by RRBS to detect DNA differentially methylated regions (DMRs). RESULTS The analysis revealed that among the 74 DMRs showing modified methylation status 6 months after therapy, 17 remained altered 24 months after treatment. We next associated DMRs with differentially methylated genes (DMGs), which were subsequently intersected with loci known to be important or expressed during early development. DISCUSSION AND CONCLUSION The consequences of the cancer treatment on the sperm epigenome during the recovery periods are topical issues of increasing significance as epigenetic modifications to the paternal genome may have deleterious effects on the offspring. The altered methylated status of these DMGs important for early development might modify their expression pattern and thus affect their function during key stages of embryogenesis, potentially leading to developmental disorders or miscarriages.
Collapse
Affiliation(s)
- Anne-Sophie Neyroud
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- CHU de Rennes, Département de Gynécologie Obstétrique Reproduction-CECOS, Rennes, France
| | - Antoine Dominique Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Gwendoline Lecuyer
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Nathan Alary
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Louis Bujan
- Développement Embryonnaire, Fertilité, Environnement (DEFE), UMR Inserm 1203 Université Toulouse 3 et Montpellier, Toulouse, France
- CECOS, Groupe d'activité de médecine de la reproduction, Hôpital Paule de Viguier, CHU Toulouse, Toulouse, France
| | - Célia Ravel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- CHU de Rennes, Département de Gynécologie Obstétrique Reproduction-CECOS, Rennes, France
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
6
|
Dias BG. Legacies of salient environmental experiences-insights from chemosensation. Chem Senses 2024; 49:bjae002. [PMID: 38219073 PMCID: PMC10825851 DOI: 10.1093/chemse/bjae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 01/15/2024] Open
Abstract
Evidence for parental environments profoundly influencing the physiology, biology, and neurobiology of future generations has been accumulating in the literature. Recent efforts to understand this phenomenon and its underlying mechanisms have sought to use species like rodents and insects to model multi-generational legacies of parental experiences like stress and nutritional exposures. From these studies, we have come to appreciate that parental exposure to salient environmental experiences impacts the cadence of brain development, hormonal responses to stress, and the expression of genes that govern cellular responses to stress in offspring. Recent studies using chemosensory exposure have emerged as a powerful tool to shed new light on how future generations come to be influenced by environments to which parents are exposed. With a specific focus on studies that have leveraged such use of salient chemosensory experiences, this review synthesizes our current understanding of the concept, causes, and consequences of the inheritance of chemosensory legacies by future generations and how this field of inquiry informs the larger picture of how parental experiences can influence offspring biology.
Collapse
Affiliation(s)
- Brian G Dias
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, CA, United States
- Division of Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
7
|
Braz CU, Passamonti MM, Khatib H. Characterization of genomic regions escaping epigenetic reprogramming in sheep. ENVIRONMENTAL EPIGENETICS 2023; 10:dvad010. [PMID: 38496251 PMCID: PMC10944287 DOI: 10.1093/eep/dvad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 03/19/2024]
Abstract
The mammalian genome undergoes two global epigenetic reprogramming events during the establishment of primordial germ cells and in the pre-implantation embryo after fertilization. These events involve the erasure and re-establishment of DNA methylation marks. However, imprinted genes and transposable elements (TEs) maintain their DNA methylation signatures to ensure normal embryonic development and genome stability. Despite extensive research in mice and humans, there is limited knowledge regarding environmentally induced epigenetic marks that escape epigenetic reprogramming in other species. Therefore, the objective of this study was to examine the characteristics and locations of genomic regions that evade epigenetic reprogramming in sheep, as well as to explore the biological functions of the genes within these regions. In a previous study, we identified 107 transgenerationally inherited differentially methylated cytosines (DMCs) in the F1 and F2 generations in response to a paternal methionine-supplemented diet. These DMCs were found in TEs, non-repetitive regions, and imprinted and non-imprinted genes. Our findings suggest that genomic regions, rather than TEs and imprinted genes, have the propensity to escape reprogramming and serve as potential candidates for transgenerational epigenetic inheritance. Notably, 34 transgenerational methylated genes influenced by paternal nutrition escaped reprogramming, impacting growth, development, male fertility, cardiac disorders, and neurodevelopment. Intriguingly, among these genes, 21 have been associated with neural development and brain disorders, such as autism, schizophrenia, bipolar disease, and intellectual disability. This suggests a potential genetic overlap between brain and infertility disorders. Overall, our study supports the concept of transgenerational epigenetic inheritance of environmentally induced marks in mammals.
Collapse
Affiliation(s)
- Camila U Braz
- Department of Animal Sciences, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Matilde Maria Passamonti
- Department of Animal Science, Food and Nutrition, Universit’a Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Crisóstomo L, Oliveira PF, Alves MG. A systematic scientometric review of paternal inheritance of acquired metabolic traits. BMC Biol 2023; 21:255. [PMID: 37953286 PMCID: PMC10641967 DOI: 10.1186/s12915-023-01744-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND The concept of the inheritance of acquired traits, a foundational principle of Lamarck's evolutionary theory, has garnered renewed attention in recent years. Evidence for this phenomenon remained limited for decades but gained prominence with the Överkalix cohort study in 2002. This study revealed a link between cardiovascular disease incidence and the food availability experienced by individuals' grandparents during their slow growth periods, reigniting interest in the inheritance of acquired traits, particularly in the context of non-communicable diseases. This scientometric analysis and systematic review comprehensively explores the current landscape of paternally transmitted acquired metabolic traits. RESULTS Utilizing Scopus Advanced search and meticulous screening, we included mammalian studies that document the inheritance or modification of metabolic traits in subsequent generations of unexposed descendants. Our inclusive criteria encompass intergenerational and transgenerational studies, as well as multigenerational exposures. Predominantly, this field has been driven by a select group of researchers, potentially shaping the design and focus of existing studies. Consequently, the literature primarily comprises transgenerational rodent investigations into the effects of ancestral exposure to environmental pollutants on sperm DNA methylation. The complexity and volume of data often lead to multiple or redundant publications. This practice, while understandable, may obscure the true extent of the impact of ancestral exposures on the health of non-exposed descendants. In addition to DNA methylation, studies have illuminated the role of sperm RNAs and histone marks in paternally acquired metabolic disorders, expanding our understanding of the mechanisms underlying epigenetic inheritance. CONCLUSIONS This review serves as a comprehensive resource, shedding light on the current state of research in this critical area of science, and underscores the need for continued exploration to uncover the full spectrum of paternally mediated metabolic inheritance.
Collapse
Affiliation(s)
- Luís Crisóstomo
- Departmento de Anatomia, UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Marco G Alves
- Departmento de Anatomia, UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal.
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.
- Institute of Biomedicine - iBiMED and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
9
|
Xu J, Zhang W, Zhong S, Xie X, Che H, Si W, Tuo X, Xu D, Zhao S. Microcystin-leucine-arginine affects brain gene expression programs and behaviors of offspring through paternal epigenetic information. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159032. [PMID: 36167133 DOI: 10.1016/j.scitotenv.2022.159032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Microcystin-leucine-arginine (MC-LR) adversely affects male reproduction and interferes with the development of the offspring. Here, we establish a zebrafish (Danio rerio) model to understand the cross-generational effects of MC-LR in a male-lineage transmission pattern. F0 embryos were reared in water containing MC-LR (0, 5, and 25 μg/L) for 90 days and the developmental indices of F1 and F2 embryos were then measured with no MC-LR treatment. The results show that paternal MC-LR exposure reduced the hatching rate, heart rate and body weight in F1 and F2 generations. Global DNA methylation significantly increased in sperm and testes with the elevation expressions of DNA methyltransferases. Meanwhile, DNA methylation of brain-derived neurotrophic factor (bdnf) promoter was increased in sperm after paternal MC-LR exposure. Subsequently, increased DNA methylation of bdnf promoter and decreased gene expression of bdnf in the brain of F1 male zebrafish were detected. F1 offspring born to F0 males exhibit the depression of BDNF/AKT/CREB pathway and recapitulate these paternal neurodevelopment phenotypes in F2 offspring. In addition, the DNA methylations of dio3b and gad1b promoters were decreased and gene expressions of gad1b and dio3b were increased, accompanied with neurotransmitter disturbances in the brain of F1 male zebrafish after paternal MC-LR exposure. These data revealed that MC-LR displays a potential epigenetic impact on the germ line, reprogramming the epigenetic and transcriptional regulation of brain development, and contributing to aberrant expression of neurodevelopment-related genes and behavior disorders.
Collapse
Affiliation(s)
- Jiayi Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Weiyun Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Shengzheng Zhong
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Xinxin Xie
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Huimin Che
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Weirong Si
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Dexiang Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
10
|
Rebuzzini P, Fabozzi G, Cimadomo D, Ubaldi FM, Rienzi L, Zuccotti M, Garagna S. Multi- and Transgenerational Effects of Environmental Toxicants on Mammalian Reproduction. Cells 2022; 11:cells11193163. [PMID: 36231124 PMCID: PMC9563050 DOI: 10.3390/cells11193163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
Environmental toxicants (ETs) are an exogenous chemical group diffused in the environment that contaminate food, water, air and soil, and through the food chain, they bioaccumulate into the organisms. In mammals, the exposure to ETs can affect both male and female fertility and their reproductive health through complex alterations that impact both gametogeneses, among other processes. In humans, direct exposure to ETs concurs to the declining of fertility, and its transmission across generations has been recently proposed. However, multi- and transgenerational inheritances of ET reprotoxicity have only been demonstrated in animals. Here, we review recent studies performed on laboratory model animals investigating the effects of ETs, such as BPA, phthalates, pesticides and persistent contaminants, on the reproductive system transmitted through generations. This includes multigenerational effects, where exposure to the compounds cannot be excluded, and transgenerational effects in unexposed animals. Additionally, we report on epigenetic mechanisms, such as DNA methylation, histone tails and noncoding RNAs, which may play a mechanistic role in a nongenetic transmission of environmental information exposure through the germline across generations.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, Via Ferrata 9, University of Pavia, 27100 Pavia, Italy
- Correspondence: (P.R.); (M.Z.); (S.G.); Tel.: +39-0382-986323 (P.R. & M.Z. & S.G.)
| | - Gemma Fabozzi
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
| | - Danilo Cimadomo
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
| | | | - Laura Rienzi
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via Sant’Andrea 34, 61029 Urbino, Italy
| | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, Via Ferrata 9, University of Pavia, 27100 Pavia, Italy
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
- Correspondence: (P.R.); (M.Z.); (S.G.); Tel.: +39-0382-986323 (P.R. & M.Z. & S.G.)
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, Via Ferrata 9, University of Pavia, 27100 Pavia, Italy
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
- Correspondence: (P.R.); (M.Z.); (S.G.); Tel.: +39-0382-986323 (P.R. & M.Z. & S.G.)
| |
Collapse
|
11
|
Montano L, Pironti C, Pinto G, Ricciardi M, Buono A, Brogna C, Venier M, Piscopo M, Amoresano A, Motta O. Polychlorinated Biphenyls (PCBs) in the Environment: Occupational and Exposure Events, Effects on Human Health and Fertility. TOXICS 2022; 10:365. [PMID: 35878270 PMCID: PMC9323099 DOI: 10.3390/toxics10070365] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
In the last decade or so, polychlorinated biphenyls (PCBs) garnered renewed attention in the scientific community due to new evidence pointing at their continued presence in the environment and workplaces and the potential human risks related to their presence. PCBs move from the environment to humans through different routes; the dominant pathway is the ingestion of contaminated foods (fish, seafood and dairy products), followed by inhalation (both indoor and outdoor air), and, to a lesser extent, dust ingestion and dermal contact. Numerous studies reported the environmental and occupational exposure to these pollutants, deriving from building materials (flame-retardants, plasticizers, paints, caulking compounds, sealants, fluorescent light ballasts, etc.) and electrical equipment. The highest PCBs contaminations were detected in e-waste recycling sites, suggesting the need for the implementation of remediation strategies of such polluted areas to safeguard the health of workers and local populations. Furthermore, a significant correlation between PCB exposure and increased blood PCB concentrations was observed in people working in PCB-contaminated workplaces. Several epidemiological studies suggest that environmental and occupational exposure to high concentrations of PCBs is associated with different health outcomes, such as neuropsychological and neurobehavioral deficits, dementia, immune system dysfunctions, cardiovascular diseases and cancer. In addition, recent studies indicate that PCBs bioaccumulation can reduce fertility, with harmful effects on the reproductive system that can be passed to offspring. In the near future, further studies are needed to assess the real effects of PCBs exposure at low concentrations for prolonged exposure in workplaces and specific indoor environments.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), S. Francesco di Assisi Hospital, Oliveto Citra, 84020 Salerno, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Concetta Pironti
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Maria Ricciardi
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Amalia Buono
- Research Laboratory Gentile, S.a.s., 80054 Gragnano, Italy;
| | - Carlo Brogna
- Craniomed Laboratory Group Srl, Viale degli Astronauti 45, 83038 Montemiletto, Italy;
| | - Marta Venier
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy;
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| |
Collapse
|
12
|
Wan T, Au DWT, Mo J, Chen L, Cheung KM, Kong RYC, Seemann F. Assessment of parental benzo[a]pyrene exposure-induced cross-generational neurotoxicity and changes in offspring sperm DNA methylome in medaka fish. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac013. [PMID: 35769199 PMCID: PMC9233418 DOI: 10.1093/eep/dvac013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 05/29/2023]
Abstract
Previous studies have revealed that DNA methylation changes could serve as potential genomic markers for environmental benzo[a]pyrene (BaP) exposure and intergenerational inheritance of various physiological impairments (e.g. obesity and reproductive pathologies). As a typical aromatic hydrocarbon pollutant, direct BaP exposure has been shown to induce neurotoxicity. To unravel the inheritance mechanisms of the BaP-induced bone phenotype in freshwater medaka, we conducted whole-genome bisulfite sequencing of F1 sperm and identified 776 differentially methylated genes (DMGs). Ingenuity pathway analysis revealed that DMGs were significantly enriched in pathways associated with neuronal development and function. Therefore, it was hypothesized that parental BaP exposure (1 μg/l, 21 days) causes offspring neurotoxicity. Furthermore, the possibility for sperm methylation as an indicator for a neurotoxic phenotype was investigated. The F0 adult brains and F1 larvae were analyzed for BaP-induced direct and inherited toxicity. Acetylcholinesterase activity was significantly reduced in the larvae, together with decreased swimming velocity. Molecular analysis revealed that the marker genes associated with neuron development and growth (alpha1-tubulin, mbp, syn2a, shh, and gap43) as well as brain development (dlx2, otx2, and krox-20) were universally downregulated in the F1 larvae (3 days post-hatching). While parental BaP exposure at an environmentally relevant concentration could induce neurotoxicity in the developing larvae, the brain function of the exposed F0 adults was unaffected. This indicates that developmental neurotoxicity in larvae may result from impaired neuronal development and differentiation, causing delayed brain growth. The present study demonstrates that the possible adverse health effects of BaP in the environment are more extensive than currently understood. Thus, the possibility of multigenerational BaP toxicity should be included in environmental risk assessments.
Collapse
Affiliation(s)
- Teng Wan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Doris Wai-Ting Au
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China
| | - Kwok-Ming Cheung
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Richard Yuen-Chong Kong
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- South Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Frauke Seemann
- *Correspondence address. Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA. Tel: +1-361-825-2683; Fax: +1 (361) 825-2742;
| |
Collapse
|
13
|
Zhang H, Li Y, Zhang X, Chen W, Liang Q, Li C, Knibbs LD, Huang C, Wang Q. Potential occupational exposure of parents to endocrine disrupting chemicals, adverse birth outcomes, and the modification effects of multi-vitamins supplement and infant sex. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113314. [PMID: 35189520 DOI: 10.1016/j.ecoenv.2022.113314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Maternal occupational exposure to endocrine disrupting chemicals (EDCs) may have adverse effect on birth outcomes. However, little is known about paternal EDCs exposure and the combined effect of parental exposure on birth outcomes. OBJECTIVES To assess the effects of both maternal and paternal occupational EDCs exposure on adverse birth outcomes, and further explore if multi-vitamins supplement and infant sex modify the association. METHODS We conducted a prospective cohort study of 5421 mother-father-newborn groups in Guangzhou, China. A questionnaire informed by a job exposure matrix (JEM) was applied to collect parental occupational EDCs exposure based on the type of work performed. We used logistic regression to estimate association between parental EDCs exposure and birth outcomes (including preterm birth (PTB), low birth weight (LBW), birth defects and congenital heart defects (CHD)). Stratified analyses and Cochran Q tests were performed to assess the modifying effect of maternal multi-vitamins supplement use and infant sex. RESULTS Compared with mothers unexposed, we found that mothers those exposed to EDCs were associated with increased odds of birth defects (aOR=1.70, 95% confidence interval (CI): 1.10-2.62), especially for those exposed for > 1.5 years (aOR= 3.00, 95% CIs: 1.78-5.03), or those with directly occupational exposed to EDCs (aOR= 2.94, 95% CIs: 1.72-5.04). Maternal exposure for > 1.5 years and direct exposure increased the risk of CHD, with aORs of 2.47 (1.21-5.02) and 2.79 (1.37-5.69), respectively. Stronger adverse effects were also observed when mothers and fathers were both exposed to EDCs. Paternal occupational EDCs exposure and exposure ≤ 1.5 years was associated with increased odds of LBW, with aORs of 2.14 (1.63-2.79) and 1.54 (1.10-2.15), respectively. When stratified by multi-vitamins supplement and infant sex, we observed slightly stronger effects for maternal exposure on birth defects/CHD as well as paternal EDCs exposure on PTB and LBW, among those without multi-vitamins supplement and among male babies, although the modification effects were not significant. CONCLUSION Maternal exposure to EDCs was associated with greater odds of birth defects and CHD, while paternal exposure was mainly associated with greater odds of LBW. These effects tend to be stronger among mothers without multi-vitamins supplement and among male babies.
Collapse
Affiliation(s)
- Huanhuan Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, China; School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yanqiu Li
- Guangzhou Panyu Maternal Child Health Hospital (Guangzhou Panyu District He Xian Memorial Hospital), Guangzhou, China
| | - Xiaoxin Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Weiyi Chen
- Guangzhou Panyu Maternal Child Health Hospital (Guangzhou Panyu District He Xian Memorial Hospital), Guangzhou, China
| | - Qianhong Liang
- Guangzhou Panyu Maternal Child Health Hospital (Guangzhou Panyu District He Xian Memorial Hospital), Guangzhou, China
| | - Changchang Li
- Department of Sexually Transmitted Disease Prevention and Control, Dermatology Hospital of Southern Medical University, Guangzhou, China; Institute for Global Health and Sexually Transmitted Infections, Southern Medical University, Guangzhou, China
| | - Luke D Knibbs
- School of Public Health, The University of Sydney, NSW 2006, Australia
| | - Cunrui Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Prenatal Exposure to an EDC Mixture, NeuroMix: Effects on Brain, Behavior, and Stress Responsiveness in Rats. TOXICS 2022; 10:toxics10030122. [PMID: 35324748 PMCID: PMC8954446 DOI: 10.3390/toxics10030122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 12/11/2022]
Abstract
Humans and wildlife are exposed to endocrine-disrupting chemicals (EDCs) throughout their lives. Environmental EDCs are implicated in a range of diseases/disorders with developmental origins, including neurodevelopment and behavior. EDCs are most often studied one by one; here, we assessed outcomes induced by a mixture designed to represent the real-world situation of multiple simultaneous exposures. The choice of EDCs, which we refer to as “NeuroMix,” was informed by evidence for neurobiological effects in single-compound studies and included bisphenols, phthalates, vinclozolin, and perfluorinated, polybrominated, and polychlorinated compounds. Pregnant Sprague Dawley rats were fed the NeuroMix or vehicle, and then offspring of both sexes were assessed for effects on postnatal development and behaviors and gene expression in the brain in adulthood. In order to determine whether early-life EDCs predisposed to subsequent vulnerability to postnatal life challenges, a subset of rats were also given a stress challenge in adolescence. Prenatal NeuroMix exposure decreased body weight and delayed puberty in males but not females. In adulthood, NeuroMix caused changes in anxiety-like, social, and mate preference behaviors only in females. Effects of stress were predominantly observed in males. Several interactions of NeuroMix and stress were found, especially for the mate preference behavior and gene expression in the brain. These findings provide novel insights into how two realistic environmental challenges lead to developmental and neurobehavioral deficits, both alone and in combination, in a sex-specific manner.
Collapse
|
15
|
Neuparth T, Alves N, Machado AM, Pinheiro M, Montes R, Rodil R, Barros S, Ruivo R, Castro LFC, Quintana JB, Santos MM. Neuroendocrine pathways at risk? Simvastatin induces inter and transgenerational disruption in the keystone amphipod Gammarus locusta. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106095. [PMID: 35121565 DOI: 10.1016/j.aquatox.2022.106095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The primary focus of environmental toxicological studies is to address the direct effects of chemicals on exposed organisms (parental generation - F0), mostly overlooking effects on subsequent non-exposed generations (F1 and F2 - intergenerational and F3 transgenerational, respectively). Here, we addressed the effects of simvastatin (SIM), one of the most widely prescribed human pharmaceuticals for the primary treatment of hypercholesterolemia, using the keystone crustacean Gammarus locusta. We demonstrate that SIM, at environmentally relevant concentrations, has significant inter and transgenerational (F1 and F3) effects in key signaling pathways involved in crustaceans' neuroendocrine regulation (Ecdysteroids, Catecholamines, NO/cGMP/PKG, GABAergic and Cholinergic signaling pathways), concomitantly with changes in apical endpoints, such as depressed reproduction and growth. These findings are an essential step to improve hazard and risk assessment of biological active compounds, such as SIM, and highlight the importance of studying the transgenerational effects of environmental chemicals in animals' neuroendocrine regulation.
Collapse
Affiliation(s)
- T Neuparth
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - N Alves
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - A M Machado
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - M Pinheiro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - R Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - R Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - S Barros
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Quinta de Prados - Ed. Blocos Laboratoriais C1.10, 5000-801, Vila Real, Portugal
| | - R Ruivo
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - L Filipe C Castro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - J B Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - M M Santos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
16
|
Varela RB, Cararo JH, Tye SJ, Carvalho AF, Valvassori SS, Fries GR, Quevedo J. Contributions of epigenetic inheritance to the predisposition of major psychiatric disorders: theoretical framework, evidence, and implications. Neurosci Biobehav Rev 2022; 135:104579. [DOI: 10.1016/j.neubiorev.2022.104579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 02/08/2023]
|
17
|
Transgenerational Effects of Prenatal Endocrine Disruption on Reproductive and Sociosexual Behaviors in Sprague Dawley Male and Female Rats. TOXICS 2022; 10:toxics10020047. [PMID: 35202233 PMCID: PMC8875130 DOI: 10.3390/toxics10020047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) lead to endocrine and neurobehavioral changes, particularly due to developmental exposures during gestation and early life. Moreover, intergenerational and transgenerational phenotypic changes may be induced by germline exposure (F2) and epigenetic germline transmission (F3) generation, respectively. Here, we assessed reproductive and sociosexual behavioral outcomes of prenatal Aroclor 1221 (A1221), a lightly chlorinated mix of PCBs known to have weakly estrogenic mechanisms of action; estradiol benzoate (EB), a positive control; or vehicle (3% DMSO in sesame oil) in F1-, F2-, and F3-generation male and female rats. Treatment with EDCs was given on embryonic day (E) 16 and 18, and F1 offspring monitored for development and adult behavior. F2 offspring were generated by breeding with untreated rats, phenotyping of F2s was performed in adulthood, and the F3 generation were similarly produced and phenotyped. Although no effects of treatment were found on F1 or F3 development and physiology, in the F2 generation, body weight in males and uterine weight in females were increased by A1221. Mating behavior results in F1 and F2 generations showed that F1 A1221 females had a longer latency to lordosis. In males, the F2 generation showed decreased mount frequency in the EB group. In the F3 generation, numbers of ultrasonic vocalizations were decreased by EB in males, and by EB and A1221 when the sexes were combined. Finally, partner preference tests in the F3 generation revealed that naïve females preferred F3-EB over untreated males, and that naïve males preferred untreated over F3-EB or F3-A1221 males. As a whole, these results show that each generation has a unique, sex-specific behavioral phenotype due to direct or ancestral EDC exposure.
Collapse
|
18
|
Gillette R, Dias M, Reilly MP, Thompson LM, Castillo NJ, Vasquez EL, Crews D, Gore AC. Two Hits of EDCs Three Generations Apart: Effects on Social Behaviors in Rats, and Analysis by Machine Learning. TOXICS 2022; 10:toxics10010030. [PMID: 35051072 PMCID: PMC8779176 DOI: 10.3390/toxics10010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/12/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
All individuals are directly exposed to extant environmental endocrine-disrupting chemicals (EDCs), and indirectly exposed through transgenerational inheritance from our ancestors. Although direct and ancestral exposures can each lead to deficits in behaviors, their interactions are not known. Here we focused on social behaviors based on evidence of their vulnerability to direct or ancestral exposures, together with their importance in reproduction and survival of a species. Using a novel "two hits, three generations apart" experimental rat model, we investigated interactions of two classes of EDCs across six generations. PCBs (a weakly estrogenic mixture Aroclor 1221, 1 mg/kg), Vinclozolin (antiandrogenic, 1 mg/kg) or vehicle (6% DMSO in sesame oil) were administered to pregnant rat dams (F0) to directly expose the F1 generation, with subsequent breeding through paternal or maternal lines. A second EDC hit was given to F3 dams, thereby exposing the F4 generation, with breeding through the F6 generation. Approximately 1200 male and female rats from F1, F3, F4 and F6 generations were run through tests of sociability and social novelty as indices of social preference. We leveraged machine learning using DeepLabCut to analyze nuanced social behaviors such as nose touching with accuracy similar to a human scorer. Surprisingly, social behaviors were affected in ancestrally exposed but not directly exposed individuals, particularly females from a paternally exposed breeding lineage. Effects varied by EDC: Vinclozolin affected aspects of behavior in the F3 generation while PCBs affected both the F3 and F6 generations. Taken together, our data suggest that specific aspects of behavior are particularly vulnerable to heritable ancestral exposure of EDC contamination, that there are sex differences, and that lineage is a key factor in transgenerational outcomes.
Collapse
Affiliation(s)
- Ross Gillette
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
| | - Michelle Dias
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
| | - Michael P. Reilly
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
| | - Lindsay M. Thompson
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
| | - Norma J. Castillo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
| | - Erin L. Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
| | - David Crews
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Andrea C. Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
- Correspondence:
| |
Collapse
|
19
|
Wang HD, Allard P. Challenging dogmas: How transgenerational epigenetics reshapes our views on life. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:70-74. [PMID: 33900057 PMCID: PMC8546026 DOI: 10.1002/jez.2465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 01/03/2023]
Abstract
The emergence of the field of transgenerational epigenetics inheritance (TEI) has profoundly reshaped our understanding of the relationships between environment, soma, and germ cells as well as of heredity. TEI refers to the changes in chromatin state, gene expression, and/or phenotypes that are transmitted across several generations without involving changes to the DNA sequences. TEI has direct connections with, and feeds from, the fields of molecular biology, genetics, developmental biology, and reproductive biology, among others. However, the expansion of TEI-related research, has profoundly reshaped boundaries within each field and often led to the erosion of theories and concepts considered as tenets of biology. We first explore how the molecularization of biology has shifted the definition of epigenetics to include the notion of heredity and how epigenetics has refined our understanding of the central dogma of biology. The demonstrated transfer of environmental information from soma to germ cell through extracellular vesicles and subsequent alteration of health outcomes in offspring has put a definite end to the long-held principle of the Weismann barrier. TEI has also simultaneously led to the revival of the inheritance of acquired characteristics while further eroding the concept of an epigenetic "blank slate" in mammals. Using an historical framework, and via the exploration of central studies in the field, in this perspective article, we will draw a compelling argument for the revolutionary aspect of TEI in biology.
Collapse
Affiliation(s)
- Harrison D. Wang
- The Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, California. USA
| | - Patrick Allard
- The Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, California. USA
- Molecular Biology Institute, University of Los Angeles, California. Los Angeles, California. USA
| |
Collapse
|
20
|
Galván I, Schwartz TS, Garland T. Evolutionary physiology at 30+: Has the promise been fulfilled?: Advances in Evolutionary Physiology: Advances in Evolutionary Physiology. Bioessays 2021; 44:e2100167. [PMID: 34802161 DOI: 10.1002/bies.202100167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022]
Abstract
Three decades ago, interactions between evolutionary biology and physiology gave rise to evolutionary physiology. This caused comparative physiologists to improve their research methods by incorporating evolutionary thinking. Simultaneously, evolutionary biologists began focusing more on physiological mechanisms that may help to explain constraints on and trade-offs during microevolutionary processes, as well as macroevolutionary patterns in physiological diversity. Here we argue that evolutionary physiology has yet to reach its full potential, and propose new avenues that may lead to unexpected advances. Viewing physiological adaptations in wild animals as potential solutions to human diseases offers enormous possibilities for biomedicine. New evidence of epigenetic modifications as mechanisms of phenotypic plasticity that regulate physiological traits may also arise in coming years, which may also represent an overlooked enhancer of adaptation via natural selection to explain physiological evolution. Synergistic interactions at these intersections and other areas will lead to a novel understanding of organismal biology.
Collapse
Affiliation(s)
- Ismael Galván
- Department of Evolutionary Ecology, National Museum of Natural Sciences, CSIC, Madrid, Spain
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| |
Collapse
|
21
|
Dos Santos Cavaleiro RM, da Silva Arouche T, Martins Tanoue PS, Sá Pereira TS, de Carvalho Junior RN, Paranhos Costa FL, de Andrade Filho TS, Dos Santos Borges R, de Jesus Chaves Neto AM. Hormones Nanofiltration in Carbon Nanotubes and Boron Nitride Nanotubes Using Uniform External Electric Field Through Molecular Dynamics. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5499-5509. [PMID: 33980360 DOI: 10.1166/jnn.2021.19467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hormones are a dangerous group of molecules that can cause harm to humans. This study based on classical molecular dynamics proposes the nanofiltration of wastewater contaminated by hormones from a computer simulation study, in which the water and the hormone were filtered in two single-walled nanotube compositions. The calculations were carried out by changing the intensities of the electric field that acted as a force exerting pressure on the filtration along the nanotube, in the simulation time of 100 ps. The hormones studied were estrone, estradiol, estriol, progesterone, ethinylestradiol, diethylbestrol, and levonorgestrel in carbon nanotubes (CNTs) and boron nitride (BNNTs). The most efficient nanofiltrations were for fields with low intensities in the order of 10-8 au and 10-7 au. The studied nanotubes can be used in membranes for nanofiltration in water treatment plants due to the evanescent field potential caused by the action of the electric field inside. Our data showed that the action of EF in conjunction with the van der Walls forces of the nanotubes is sufficient to generate the attractive potential. Evaluating the transport of water molecules in CNTs and BNNTs, under the influence of the electric field, a sequence of simulations with the same boundary conditions was carried out, seeking to know the percentage of water molecules filtered in the nanotubes.
Collapse
Affiliation(s)
| | - Tiago da Silva Arouche
- Laboratory for Preparation and Computing of Nanomaterials (LPCN), Federal University of Pará, 66075-110, Belém, PA, Brazil
| | - Phelipe Seiichi Martins Tanoue
- Laboratory for Preparation and Computing of Nanomaterials (LPCN), Federal University of Pará, 66075-110, Belém, PA, Brazil
| | - Tais Souza Sá Pereira
- Laboratory for Preparation and Computing of Nanomaterials (LPCN), Federal University of Pará, 66075-110, Belém, PA, Brazil
| | | | - Fabio Luiz Paranhos Costa
- Federal University of Goiás, Campus Jataí. Rodovia BR-364, Setor Francisco Antônio, 75801615 - Jataí, GO - Brazil
| | - Tarciso Silva de Andrade Filho
- Federal University of the South and Southeast of Pará, Campus de Marabá. FL 17, QD 04, LT Especial Nova Marabá 68505080 - Maraba, PA - Brazil
| | - Rosivaldo Dos Santos Borges
- Federal University of Pará, Department of Pharmacy. Rua Augusto Correa, SN Pharmaceutical Chemistry Laboratory Guarna 66075-110 - Belem, PA - Brazil
| | | |
Collapse
|
22
|
Zhao S, Xu J, Zhang W, Yan W, Li G. Paternal exposure to microcystin-LR triggers developmental neurotoxicity in zebrafish offspring via an epigenetic mechanism involving MAPK pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148437. [PMID: 34153754 DOI: 10.1016/j.scitotenv.2021.148437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-LR (MCLR) induced impairment to male reproductive system and revealed the effects of transgenerational toxicity on offspring. But very little is known about the inheritance of these effects to offspring and the mechanisms involved. Here, we used methylated DNA immunoprecipitation sequencing (MeDIP-Seq) and microarray to characterize whole-genome DNA methylation and mRNA expression patterns in zebrafish testis after 6-week exposure to 5 and 20 μg/L MCLR. Accompanied with these analyses it revealed that MAPK pathway and ER pathway significantly enriched in zebrafish testes. Apoptosis and testicular damage were also observed in testis. Next, we test the transmission of effects to compare control-father and MCLR exposure-father progenies. DNA methylation analyses (via reduced representation bisulfite sequencing) reveal that the enrichment of differentially methylated regions on neurodevelopment after paternal MCLR exposure. Meanwhile, several genes associated with neurodevelopment were markedly downregulated in zebrafish larvae, and swimming speed was also reduced in the larvae. Interestingly, paternal MCLR exposure also triggered activation the phosphorylation of mitogen-activated protein kinase (MAPK) pathway which is also associated with neurodevelopmental disorders. These results demonstrated the significant effect that paternal MCLR exposure may have on gene-specific DNA methylation patterns in testis. Inherited epigenetic alterations through the germline may be the mechanism leading to developmental neurotoxicity in the offspring.
Collapse
Affiliation(s)
- Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jiayi Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Weiyun Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Wei Yan
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Zhan F, Wang YC, Liu QM, Guo MJ, Zhu HM, Zhang C, Xu DX, Meng XH. Paternal fenvalerate exposure transgenerationally impairs cognition and hippocampus in female offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112565. [PMID: 34358930 DOI: 10.1016/j.ecoenv.2021.112565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/08/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
The impairments of maternal fenvalerate exposure have been well documented in previous study, but little was known about the effects of paternal fenvalerate exposure. The current study aimed to assess the effects of paternal fenvalerate exposure on spatial cognition and hippocampus across generations. Adult male mice (F0) were orally administered with fenvalerate (0, 2 or 20 mg/kg) for 5 weeks. F0 males were mated with untreated-females to generate F1 generation. F1 males were mated with F1 control females to generate F2 generation. For F1 and F2 adult offspring, spatial learning and memory were detected by Morris water maze. Results showed that spatial learning and memory were impaired in F1 females but not F1 males derived from F0 males exposed to 20 mg/kg FEN. Furthermore, significant impairment of spatial learning and memory were found in F2 females but not F2 males derived from F0 males exposed to 20 mg/kg FEN. As expected, histopathology showed that neural density in hippocampal CA3 region was reduced in F1 and F2 females but not F1 and F2 males derived from F0 males exposed to 20 mg/kg FEN. Mechanistically, hippocampal thyroid hormone receptor alpha1 (TRα1) was down-regulated in F1 and F2 females derived from F0 males exposed to 20 mg/kg FEN. Correspondingly, hippocampal brain-derived neurotrophic factor, tropomyosin receptor kinase B and p75 neurotrophin receptor, three downstream genes of TR signaling, were down-regulated in F1 and F2 females. Taken together, the present study firstly found that paternal fenvalerate exposure transgenerationally impaired spatial cognition in a gender-dependent manner. Hippocampal TR signaling may, at least partially, contribute to the process of cognitive impairment induced by paternal fenvalerate exposure. Further exploration in the mode of action of fenvalerate is critically important to promote human health and environmental safety.
Collapse
Affiliation(s)
- Feng Zhan
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, No 81 Meishan Road, Hefei, Anhui, China
| | - Ye-Cheng Wang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, No 81 Meishan Road, Hefei, Anhui, China
| | - Quan-Mei Liu
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - Meng-Juan Guo
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - Hui-Min Zhu
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - Chi Zhang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - De-Xiang Xu
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China.
| | - Xiu-Hong Meng
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
24
|
He QL, Zhang L, Liu SZ. Effects of Polychlorinated Biphenyls on Animal Reproductive Systems and Epigenetic Modifications. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:398-405. [PMID: 34110444 DOI: 10.1007/s00128-021-03285-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a group of highly toxic endocrine-disrupting chemicals comprising 209 homologs. PCBs are extensively found in the environment and can induce typical estrogenic and profound, long-lasting effects on animals. In this article, the introduction of PCB residues into the environment and the pathways of PCB enrichment in animals are described. PCBs are widely deposited and eventually accumulate in human tissues and body fluids through biomagnification. PCBs can significantly decrease animal fertility and interfere with endocrine processes, leading to the development of various diseases and even cancer. The effects of PCBs on the reproductive systems of animals can also be passed to their offspring, indicating that PCBs may affect the epigenetic modification process. There is currently no treatment to effectively inhibit the toxicity of PCBs in organisms; therefore, the severity of PCB toxicity needs to be widely recognized.
Collapse
Affiliation(s)
- Qi-Long He
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Lin Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Shu-Zhen Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
25
|
Klenov V, Flor S, Ganesan S, Adur M, Eti N, Iqbal K, Soares MJ, Ludewig G, Ross JW, Robertson LW, Keating AF. The Aryl hydrocarbon receptor mediates reproductive toxicity of polychlorinated biphenyl congener 126 in rats. Toxicol Appl Pharmacol 2021; 426:115639. [PMID: 34256052 PMCID: PMC8500329 DOI: 10.1016/j.taap.2021.115639] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/16/2022]
Abstract
Polychlorinated biphenyls (PCBs) are endocrine disrupting chemicals with documented, though mechanistically ill-defined, reproductive toxicity. The toxicity of dioxin-like PCBs, such as PCB126, is mediated via the aryl hydrocarbon receptor (AHR) in non-ovarian tissues. The goal of this study was to examine the uterine and ovarian effects of PCB126 and test the hypothesis that the AHR is required for PCB126-induced reproductive toxicity. Female Holzman-Sprague Dawley wild type (n = 14; WT) and Ahr knock out (n = 11; AHR-/-) rats received a single intraperitoneal injection of either corn oil vehicle (5 ml/kg: WT_O and AHR-/-_O) or PCB126 (1.63 mg/kg in corn oil: WT_PCB and AHR-/-_PCB) at four weeks of age. The estrous cycle was synchronized and ovary and uterus were collected 28 days after exposure. In WT rats, PCB126 exposure reduced (P < 0.05) body and ovary weight, uterine gland number, uterine area, progesterone, 17β-estradiol and anti-Müllerian hormone level, secondary and antral follicle and corpora lutea number but follicle stimulating hormone level increased (P < 0.05). In AHR-/- rats, PCB126 exposure increased (P ≤ 0.05) circulating luteinizing hormone level. Ovarian or uterine mRNA abundance of biotransformation, and inflammation genes were altered (P < 0.05) in WT rats due to PCB126 exposure. In AHR-/- rats, the transcriptional effects of PCB126 were restricted to reductions (P < 0.05) in three inflammatory genes. These findings support a functional role for AHR in the female reproductive tract, illustrate AHR's requirement in PCB126-induced reprotoxicity, and highlight the potential risk of dioxin-like compounds on female reproduction.
Collapse
Affiliation(s)
- Violet Klenov
- Dept of Ob/Gyn, University of Iowa, United States of America
| | - Susanne Flor
- Interdisciplinary Graduate Program in Human Toxicology and Dept of Occupational and Environmental Health, University of Iowa, United States of America
| | - Shanthi Ganesan
- Dept of Animal Science, Iowa State University, United States of America
| | - Malavika Adur
- Dept of Animal Science, Iowa State University, United States of America
| | - Nazmin Eti
- Interdisciplinary Graduate Program in Human Toxicology and Dept of Occupational and Environmental Health, University of Iowa, United States of America
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research and Department of Pathology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Michael J Soares
- Institute for Reproduction and Perinatal Research and Department of Pathology, University of Kansas Medical Center, Kansas City, KS, United States of America; Departments of Pediatrics and Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, United States of America; Center for Perinatal Research, Children's Research Institute, Children's Mercy, Kansas City, MO, United States of America
| | - Gabriele Ludewig
- Interdisciplinary Graduate Program in Human Toxicology and Dept of Occupational and Environmental Health, University of Iowa, United States of America
| | - Jason W Ross
- Dept of Animal Science, Iowa State University, United States of America
| | - Larry W Robertson
- Interdisciplinary Graduate Program in Human Toxicology and Dept of Occupational and Environmental Health, University of Iowa, United States of America
| | - Aileen F Keating
- Dept of Animal Science, Iowa State University, United States of America.
| |
Collapse
|
26
|
Bornman MS, Aneck-Hahn NH. EDCs and male urogenital cancers. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:521-553. [PMID: 34452696 DOI: 10.1016/bs.apha.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Male sex determination and sexual differentiation occur between 6-12 weeks of gestation. During the "male programming window" the fetal testes start to produce testosterone that initiates the development of the male reproductive tract. Exposure to endocrine disrupting chemicals (EDCs) able to mimic or disrupt steroid hormone actions may disrupt testicular development and adversely impact reproductive health at birth, during puberty and adulthood. The testicular dysgenesis syndrome (TDS) occurs as a result inhibition of androgen action on fetal development preceding Sertoli and Leydig cell dysfunction and may result from direct or epigenetic effects. Hypospadias, cryptorchidism and poor semen quality are elements of TDS, which may be considered a risk factor for testicular germ cell cancer (TGCC). Exposure to estrogen or estrogenic EDCs results in developmental estrogenization/estrogen imprinting in the rodent for prostate cancer (PCa). This can disrupt prostate histology by disorganization of the epithelium, prostatic intraepithelial neoplasia (PIN) lesions, in particular high-grade PIN (HGPIN) lesions which are precursors of prostatic adenocarcinoma. These defects persist throughout the lifespan of the animal and later in life estrogen exposure predispose development of cancer. Exposure of pregnant dams to vinclozolin, a competitive anti-androgen, and results in prominent, focal regions of inflammation in all exposed animals. The inflammation closely resembles human nonbacterial prostatitis that occurs in young men and evidence indicates that inflammation plays a central role in the development of PCa. In conclusion, in utero exposure to endocrine disrupters may predispose to the development of TDS, testicular cancer (TCa) and PCa and are illustrations of Developmental Origins of Health and Disease (DOHaD).
Collapse
Affiliation(s)
- M S Bornman
- Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
| | - N H Aneck-Hahn
- Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa; Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences, School of Medicine, Department of Urology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
27
|
Le Moal J, Goria S, Guillet A, Rigou A, Chesneau J. Time and spatial trends of operated cryptorchidism in France and environmental hypotheses: a nationwide study from 2002 to 2014. Hum Reprod 2021; 36:1383-1394. [PMID: 33728432 DOI: 10.1093/humrep/deaa378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/18/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Is there an evolution in the risk of operated cryptorchidism in France and does local geographical environment appear as an important trigger for this defect? SUMMARY ANSWER We observed an increase of the risk of operated cryptorchidism in boys under the age of 7 years during the period 2002-2014 and a strong spatial heterogeneity, with the detection of spatial clusters suggesting environmental factors. WHAT IS KNOWN ALREADY Epidemiologic data on cryptorchidism are scarce and its etiology is poorly understood. As part of the testicular dysgenesis syndrome, cryptorchidism is suspected to be a male genital developmental disorder caused by endocrine disruptor chemical (EDC) exposure during the prenatal period. STUDY DESIGN, SIZE, DURATION This was a retrospective and descriptive study using data from the French national hospital discharge database, in the 2002-2014 study period. We built an indicator to reflect incident cases of operated cryptorchidism in boys under the age of 7 years in metropolitan France, with an algorithm using specific codes for diseases (ICD-10 codes) and surgical acts (CCAM codes). PARTICIPANTS/MATERIALS, SETTING, METHODS The study population was composed of 89 382 new cases of operated cases of cryptorchidism in boys under the age of 7 years. We estimated the temporal evolution of the incidence rate. We fitted a spatial disease-mapping model to describe the risk of cryptorchidism at the postcode scale. We used Kulldorff's spatial scan statistic and Tango's flexibly shaped spatial scan statistic to identify spatial clusters. MAIN RESULTS AND THE ROLE OF CHANCE The estimated increase in the incidence of operated cryptorchidism from 2002 to 2014 was equal to 36.4% (30.8%; 42.1%). Cryptorchidism displayed spatial heterogeneity and 24 clusters (P < 0.0001) were detected. The main cluster was localized in a former coal mining and metallurgic area in northern France, currently an industrial area. The cluster analysis suggests the role of shared socio-economic and environmental factors that may be geographically determined and intertwined. The industrial activities identified in the clusters are potentially the source of persistent environmental pollution by metals, dioxins and polychlorinated biphenyls. LIMITATIONS, REASONS FOR CAUTION The indicator we used reflects operated cases of cryptorchidism, with an under-evaluation of the health problem. We cannot exclude a possible role of the evolution and local differences in surgical practices in the observed trends. Our inclusion of boys under 7 years of age minimized the biases related to differences in practices according to age. Regarding the environmental hypothesis, this is an exploratory study and should be considered as a hypothesis-generating process for future research studies. WIDER IMPLICATIONS OF THE FINDINGS To our knowledge, this is the first descriptive study to address nationwide trends of operated cryptorchidism with detection of spatial clusters, with a very large sample allowing great statistical power. Our results generate plausible environmental hypotheses, which need to be further tested. STUDY FUNDING/COMPETING INTEREST(S) This study was entirely funded by Santé publique France, the French National Public Health Agency. All authors declare they have no actual or potential competing financial interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- J Le Moal
- DATA Science Department, Santé publique France, Saint Maurice 94415, France
| | - S Goria
- DATA Science Department, Santé publique France, Saint Maurice 94415, France
| | - A Guillet
- DATA Science Department, Santé publique France, Saint Maurice 94415, France
| | - A Rigou
- Non-Transmissible Diseases and Injury Department, Santé publique France, Saint Maurice 94415, France
| | - J Chesneau
- DATA Science Department, Santé publique France, Saint Maurice 94415, France
| |
Collapse
|
28
|
Lombó M, Herráez P. The effects of endocrine disruptors on the male germline: an intergenerational health risk. Biol Rev Camb Philos Soc 2021; 96:1243-1262. [PMID: 33660399 DOI: 10.1111/brv.12701] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Environmental pollution is becoming one of the major concerns of society. Among the emerging contaminants, endocrine-disrupting chemicals (EDCs), a large group of toxicants, have been the subject of many scientific studies. Besides the capacity of these compounds to interfere with the endocrine system, they have also been reported to exert both genotoxic and epigenotoxic effects. Given that spermatogenesis is a coordinated process that requires the involvement of several steroid hormones and that entails deep changes in the chromatin, such as DNA compaction and epigenetic remodelling, it could be affected by male exposure to EDCs. A great deal of evidence highlights that these compounds have detrimental effects on male reproductive health, including alterations to sperm motility, sexual function, and gonad development. This review focuses on the consequences of paternal exposure to such chemicals for future generations, which still remain poorly known. Historically, spermatozoa have long been considered as mere vectors delivering the paternal haploid genome to the oocyte. Only recently have they been understood to harbour genetic and epigenetic information that plays a remarkable role during offspring early development and long-term health. This review examines the different modes of action by which the spermatozoa represent a key target for EDCs, and analyses the consequences of environmentally induced changes in sperm genetic and epigenetic information for subsequent generations.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Animal Reproduction, INIA, Puerta de Hierro 18, Madrid, 28040, Spain
| | - Paz Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| |
Collapse
|
29
|
Ham J, Park S, Lim W, Song G. The herbicide dinitramine affects the proliferation of murine testicular cells via endoplasmic reticulum stress-induced calcium dysregulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115982. [PMID: 33288293 DOI: 10.1016/j.envpol.2020.115982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
The hazardous effects of herbicides are well known; however, their effects on the reproductive system remain unclear. In this study, we demonstrated the anti-proliferative effects of dinitramine (DN) on immature murine testicular cell lines (Leydig and Sertoli cells) mediated via endoplasmic reticulum (ER) stress-induced calcium dysregulation in the cytosol and mitochondria. The results demonstrated that the viability and proliferation of DN-treated TM3 and TM4 cells decreased significantly, even in the spheroid state. DN induced the apoptosis of TM3 and TM4 cells and decreased the expression of genes related to cell cycle progression. Treatment with DN increased the cytosolic and intramitochondrial levels of calcium by activating ER stress signals. DN activated the Erk/P38/Jnk Mapk pathway and inactivated the Pi3k/Akt pathway in murine testicular cells. Co-treatment with 2-aminoethoxydiphenyl borate (2-APB) mitigated DN-induced calcium upregulation in both testicular cell lines. Although 2-APB did not antagonize the anti-proliferative effect of DN in TM3 cells, treatment with 2-APB and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid restored the proliferation of DN-treated TM4 cells.
Collapse
Affiliation(s)
- Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
30
|
De Serrano AR, Hughes KA, Rodd FH. Paternal exposure to a common pharmaceutical (Ritalin) has transgenerational effects on the behaviour of Trinidadian guppies. Sci Rep 2021; 11:3985. [PMID: 33597600 PMCID: PMC7889922 DOI: 10.1038/s41598-021-83448-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/02/2021] [Indexed: 01/04/2023] Open
Abstract
Evidence is emerging that paternal effects, the nongenetic influence of fathers on their offspring, can be transgenerational, spanning several generations. Methylphenidate hydrochloride (MPH; e.g. Ritalin) is a dopaminergic drug that is highly prescribed to adolescent males for the treatment of Attention-deficit/hyperactivity disorder. It has been suggested that MPH could cause transgenerational effects because MPH can affect the male germline in rodents and because paternal effects have been observed in individuals taking similar drugs (e.g. cocaine). Despite these concerns, the transgenerational effects of paternal MPH exposure are unknown. Therefore, we exposed male and female Trinidadian guppies (Poecilia reticulata) to a low, chronic dose of MPH and observed that MPH affected the anxiety/exploratory behaviour of males, but not females. Because of this male-specific effect, we investigated the transgenerational effects of MPH through the paternal line. We observed behavioural effects of paternal MPH exposure on offspring and great-grandoffspring that were not directly administered the drug, making this the first study to demonstrate that paternal MPH exposure can affect descendants. These effects were not due to differential mortality or fecundity between control and MPH lines. These results highlight the transgenerational potential of MPH.
Collapse
Affiliation(s)
- Alex R De Serrano
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada.
| | - Kimberly A Hughes
- Department of Biological Science, Florida State University, 319 Stadium Dr, Tallahassee, FL, 32304, USA
| | - F Helen Rodd
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
31
|
The Complex Interplay between Endocannabinoid System and the Estrogen System in Central Nervous System and Periphery. Int J Mol Sci 2021; 22:ijms22020972. [PMID: 33478092 PMCID: PMC7835826 DOI: 10.3390/ijms22020972] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid system (ECS) is a lipid cell signaling system involved in the physiology and homeostasis of the brain and peripheral tissues. Synaptic plasticity, neuroendocrine functions, reproduction, and immune response among others all require the activity of functional ECS, with the onset of disease in case of ECS impairment. Estrogens, classically considered as female steroid hormones, regulate growth, differentiation, and many other functions in a broad range of target tissues and both sexes through the activation of nuclear and membrane estrogen receptors (ERs), which leads to genomic and non-genomic cell responses. Since ECS function overlaps or integrates with many other cell signaling systems, this review aims at updating the knowledge about the possible crosstalk between ECS and estrogen system (ES) at both central and peripheral level, with focuses on the central nervous system, reproduction, and cancer.
Collapse
|
32
|
Brulport A, Lencina C, Chagnon MC, Le Corre L, Guzylack-Piriou L. Transgenerational effects on intestinal inflammation status in mice perinatally exposed to bisphenol S. CHEMOSPHERE 2021; 262:128009. [PMID: 33182144 DOI: 10.1016/j.chemosphere.2020.128009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Increasing evidence has highlighted the critical role of early life environment in shaping the future health outcomes of individuals in subsequent generations. Bisphenol S (BPS) has been widely used as a substitute for various plastic materials due to the limited application of Bisphenol A (BPA) which is an endocrine disruptor. However, the lack of efficient evaluation of BPS leaves doubts about the relevant substitute of BPA. Few studies of transgenerational inheritance have examined the effects of environmental exposures to endocrine disruptors on the immune system. In this study, we analyzed the transgenerational effects of BPS on intestinal inflammation and its consequence in metabolism. In this study, only F0 pregnant mice were exposed to BPS (1.5 μg/kg bw/day) from gestational day 0 until weaning of offspring. In this work, both F1 and F2 male offspring developed an inflammatory response in the ileum and colon at adulthood after F0 mothers were exposed to BPS; this phenomenon disappeared in F3. This inflammatory response in F1 male offspring is associated with a significant decrease of blood cholesterol without modification of metabolic status. Further, in F3 offspring male, the decrease of gut inflammatory response is associated with a decrease of fat weight and with an increase of blood glucose and cholesterol level. A sex-specific profile is observed in female offspring. We also observed that early life exposure to BPS was associated with strong abnormal intestinal immune status. The study presented here demonstrates that the immune system, like other organ systems, is vulnerable to transgenerational effects caused by environmental exposures.
Collapse
Affiliation(s)
- Axelle Brulport
- Université de Bourgogne Franche-Comté, LNC UMR1231, 21000, Dijon, France; AgroSup, LNC UMR1231, 21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, 21000, Dijon, France
| | - Corinne Lencina
- Toxalim, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Marie-Christine Chagnon
- Université de Bourgogne Franche-Comté, LNC UMR1231, 21000, Dijon, France; AgroSup, LNC UMR1231, 21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, 21000, Dijon, France
| | - Ludovic Le Corre
- Université de Bourgogne Franche-Comté, LNC UMR1231, 21000, Dijon, France; AgroSup, LNC UMR1231, 21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, 21000, Dijon, France
| | | |
Collapse
|
33
|
Thorson JLM, Beck D, Ben Maamar M, Nilsson EE, McBirney M, Skinner MK. Epigenome-wide association study for atrazine induced transgenerational DNA methylation and histone retention sperm epigenetic biomarkers for disease. PLoS One 2020; 15:e0239380. [PMID: 33326428 PMCID: PMC7743986 DOI: 10.1371/journal.pone.0239380] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Atrazine is a common agricultural herbicide previously shown to promote epigenetic transgenerational inheritance of disease to subsequent generations. The current study was designed as an epigenome-wide association study (EWAS) to identify transgenerational sperm disease associated differential DNA methylation regions (DMRs) and differential histone retention regions (DHRs). Gestating female F0 generation rats were transiently exposed to atrazine during the period of embryonic gonadal sex determination, and then subsequent F1, F2, and F3 generations obtained in the absence of any continued exposure. The transgenerational F3 generation males were assessed for disease and sperm collected for epigenetic analysis. Pathology was observed in pubertal onset and for testis disease, prostate disease, kidney disease, lean pathology, and multiple disease. For these pathologies, sufficient numbers of individual males with only a single specific disease were identified. The sperm DNA and chromatin were isolated from adult one-year animals with the specific diseases and analyzed for DMRs with methylated DNA immunoprecipitation (MeDIP) sequencing and DHRs with histone chromatin immunoprecipitation (ChIP) sequencing. Transgenerational F3 generation males with or without disease were compared to identify the disease specific epimutation biomarkers. All pathologies were found to have disease specific DMRs and DHRs which were found to predominantly be distinct for each disease. No common DMRs or DHRs were found among all the pathologies. Epimutation gene associations were identified and found to correlate to previously known disease linked genes. This is one of the first observations of potential sperm disease biomarkers for histone retention sites. Although further studies with expanded animal numbers are required, the current study provides evidence the EWAS analysis is effective for the identification of potential pathology epimutation biomarkers for disease susceptibility.
Collapse
Affiliation(s)
- Jennifer L. M. Thorson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Eric E. Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Margaux McBirney
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
34
|
Lehle JD, McCarrey JR. Differential susceptibility to endocrine disruptor-induced epimutagenesis. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa016. [PMID: 33324495 PMCID: PMC7722801 DOI: 10.1093/eep/dvaa016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 05/08/2023]
Abstract
There is now considerable evidence indicating the potential for endocrine disrupting chemicals to alter the epigenome and for subsets of these epigenomic changes or "epimutations" to be heritably transmitted to offspring in subsequent generations. While there have been many studies indicating how exposure to endocrine disrupting chemicals can disrupt various organs associated with the body's endocrine systems, there is relatively limited information regarding the relative susceptibility of different specific organs, tissues, or cell types to endocrine disrupting chemical-induced epimutagenesis. Here we review available information about different organs, tissues, cell types, and/or cell lines which have been shown to be susceptible to specific endocrine disrupting chemical-induced epimutations. In addition, we discuss possible mechanisms that may be involved, or impacted by this tissue- or cell type-specific, differential susceptibility to different endocrine disrupting chemicals. Finally, we summarize available information indicating that certain periods of development display elevated susceptibility to endocrine disrupting chemical exposure and we describe how this may affect the extent to which germline epimutations can be transmitted inter- or transgenerationally. We conclude that cell type-specific differential susceptibility to endocrine disrupting chemical-induced epimutagenesis is likely to directly impact the extent to, or manner in, which endocrine disrupting chemical exposure initially induces epigenetic changes to DNA methylation and/or histone modifications, and how these endocrine disrupting chemical-induced epimutations can then subsequently impact gene expression, potentially leading to the development of heritable disease states.
Collapse
Affiliation(s)
- Jake D Lehle
- Department of Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
35
|
Navarro-Martín L, Martyniuk CJ, Mennigen JA. Comparative epigenetics in animal physiology: An emerging frontier. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100745. [PMID: 33126028 DOI: 10.1016/j.cbd.2020.100745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022]
Abstract
The unprecedented access to annotated genomes now facilitates the investigation of the molecular basis of epigenetic phenomena in phenotypically diverse animals. In this critical review, we describe the roles of molecular epigenetic mechanisms in regulating mitotically and meiotically stable spatiotemporal gene expression, phenomena that provide the molecular foundation for the intra-, inter-, and trans-generational emergence of physiological phenotypes. By focusing principally on emerging comparative epigenetic roles of DNA-level and transcriptome-level epigenetic mark dynamics in the emergence of phenotypes, we highlight the relationship between evolutionary conservation and innovation of specific epigenetic pathways, and their interplay as a priority for future study. This comparative approach is expected to significantly advance our understanding of epigenetic phenomena, as animals show a diverse array of strategies to epigenetically modify physiological responses. Additionally, we review recent technological advances in the field of molecular epigenetics (single-cell epigenomics and transcriptomics and editing of epigenetic marks) in order to (1) investigate environmental and endogenous factor dependent epigenetic mark dynamics in an integrative manner; (2) functionally test the contribution of specific epigenetic marks for animal phenotypes via genome and transcript-editing tools. Finally, we describe advantages and limitations of emerging animal models, which under the Krogh principle, may be particularly useful in the advancement of comparative epigenomics and its potential translational applications in animal science, ecotoxicology, ecophysiology, climate change science and wild-life conservation, as well as organismal health.
Collapse
Affiliation(s)
- Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON K1N6N5, Canada
| |
Collapse
|
36
|
Raja GL, Lite C, Subhashree KD, Santosh W, Barathi S. Prenatal bisphenol-A exposure altered exploratory and anxiety-like behaviour and induced non-monotonic, sex-specific changes in the cortical expression of CYP19A1, BDNF and intracellular signaling proteins in F1 rats. Food Chem Toxicol 2020; 142:111442. [DOI: 10.1016/j.fct.2020.111442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022]
|
37
|
Biwer C, Kawam B, Chapelle V, Silvestre F. The Role of Stochasticity in the Origin of Epigenetic Variation in Animal Populations. Integr Comp Biol 2020; 60:1544-1557. [PMID: 32470118 DOI: 10.1093/icb/icaa047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms such as DNA methylation modulate gene expression in a complex fashion are consequently recognized as among the most important contributors to phenotypic variation in natural populations of plants, animals, and microorganisms. Interactions between genetics and epigenetics are multifaceted and epigenetic variation stands at the crossroad between genetic and environmental variance, which make these mechanisms prominent in the processes of adaptive evolution. DNA methylation patterns depend on the genotype and can be reshaped by environmental conditions, while transgenerational epigenetic inheritance has been reported in various species. On the other hand, DNA methylation can influence the genetic mutation rate and directly affect the evolutionary potential of a population. The origin of epigenetic variance can be attributed to genetic, environmental, or stochastic factors. Generally less investigated than the first two components, variation lacking any predictable order is nevertheless present in natural populations and stochastic epigenetic variation, also referred to spontaneous epimutations, can sustain phenotypic diversity. Here, potential sources of such stochastic epigenetic variability in animals are explored, with a focus on DNA methylation. To this day, quantifying the importance of stochasticity in epigenetic variability remains a challenge. However, comparisons between the mutation and the epimutation rates showed a high level of the latter, suggesting a significant role of spontaneous epimutations in adaptation. The implications of stochastic epigenetic variability are multifold: by affecting development and subsequently phenotype, random changes in epigenetic marks may provide additional phenotypic diversity, which can help natural populations when facing fluctuating environments. In isogenic lineages and asexually reproducing organisms, poor or absent genetic diversity can hence be tolerated. Further implication of stochastic epigenetic variability in adaptation is found in bottlenecked invasive species populations and populations using a bet-hedging strategy.
Collapse
Affiliation(s)
| | | | | | - F Silvestre
- Institute of Earth, Life and Environment (ILEE), University of Namur, 61 rue de Bruxelles, Namur, 5000, Belgium
| |
Collapse
|
38
|
Martynyuk AE, Ju LS, Morey TE, Zhang JQ. Neuroendocrine, epigenetic, and intergenerational effects of general anesthetics. World J Psychiatry 2020; 10:81-94. [PMID: 32477904 PMCID: PMC7243620 DOI: 10.5498/wjp.v10.i5.81] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 02/05/2023] Open
Abstract
The progress of modern medicine would be impossible without the use of general anesthetics (GAs). Despite advancements in refining anesthesia approaches, the effects of GAs are not fully reversible upon GA withdrawal. Neurocognitive deficiencies attributed to GA exposure may persist in neonates or endure for weeks to years in the elderly. Human studies on the mechanisms of the long-term adverse effects of GAs are needed to improve the safety of general anesthesia but they are hampered not only by ethical limitations specific to human research, but also by a lack of specific biological markers that can be used in human studies to safely and objectively study such effects. The latter can primarily be attributed to an insufficient understanding of the full range of the biological effects induced by GAs and the molecular mechanisms mediating such effects even in rodents, which are far more extensively studied than any other species. Our most recent experimental findings in rodents suggest that GAs may adversely affect many more people than is currently anticipated. Specifically, we have shown that anesthesia with the commonly used GA sevoflurane induces in exposed animals not only neuroendocrine abnormalities (somatic effects), but also epigenetic reprogramming of germ cells (germ cell effects). The latter may pass the neurobehavioral effects of parental sevoflurane exposure to the offspring, who may be affected even at levels of anesthesia that are not harmful to the exposed parents. The large number of patients who require general anesthesia, the even larger number of their future unexposed offspring whose health may be affected, and a growing number of neurodevelopmental disorders of unknown etiology underscore the translational importance of investigating the intergenerational effects of GAs. In this mini review, we discuss emerging experimental findings on neuroendocrine, epigenetic, and intergenerational effects of GAs.
Collapse
Affiliation(s)
- Anatoly E Martynyuk
- Department of Anesthesiology and the McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Ling-Sha Ju
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Timothy E Morey
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Jia-Qiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People’s Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China
| |
Collapse
|
39
|
Van Cauwenbergh O, Di Serafino A, Tytgat J, Soubry A. Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: a systematic review on research in mammals. Clin Epigenetics 2020; 12:65. [PMID: 32398147 PMCID: PMC7218615 DOI: 10.1186/s13148-020-00845-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Assessing long-term health effects from a potentially harmful environment is challenging. Endocrine-disrupting compounds (EDCs) have become omnipresent in our environment. Individuals may or may not experience clinical health issues from being exposed to the increasing environmental pollution in daily life, but an issue of high concern is that also the non-exposed progeny may encounter consequences of these ancestral exposures. Progress in understanding epigenetic mechanisms opens new perspectives to estimate the risk of man-made EDCs. However, the field of epigenetic toxicology is new and its application in public health or in the understanding of disease etiology is almost non-existent, especially if it concerns future generations. In this review, we investigate the literature on transgenerational inheritance of diseases, published in the past 10 years. We question whether persistent epigenetic changes occur in the male germ line after exposure to synthesized EDCs. Our systematic search led to an inclusion of 43 articles, exploring the effects of commonly used synthetic EDCs, such as plasticizers (phthalates and bisphenol A), pesticides (dichlorodiphenyltrichloroethane, atrazine, vinclozin, methoxychlor), dioxins, and polycyclic aromatic hydrocarbons (PAHs, such as benzo(a)pyrene). Most studies found transgenerational epigenetic effects, often linked to puberty- or adult-onset diseases, such as testicular or prostate abnormalities, metabolic disorders, behavioral anomalies, and tumor development. The affected epigenetic mechanisms included changes in DNA methylation patterns, transcriptome, and expression of DNA methyltransferases. Studies involved experiments in animal models and none were based on human data. In the future, human studies are needed to confirm animal findings. If not transgenerational, at least intergenerational human studies and studies on EDC-induced epigenetic effects on germ cells could help to understand early processes of inheritance. Next, toxicity tests of new chemicals need a more comprehensive approach before they are introduced on the market. We further point to the relevance of epigenetic toxicity tests in regard to public health of the current population but also of future generations. Finally, this review sheds a light on how the interplay of genetics and epigenetics may explain the current knowledge gap on transgenerational inheritance.
Collapse
Affiliation(s)
- Olivia Van Cauwenbergh
- Epidemiology Research Center, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven - University of Leuven, Leuven, Belgium
| | - Alessandra Di Serafino
- Epidemiology Research Center, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven - University of Leuven, Leuven, Belgium
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, University "G.d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Jan Tytgat
- Toxicology and Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Adelheid Soubry
- Epidemiology Research Center, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven - University of Leuven, Leuven, Belgium.
| |
Collapse
|
40
|
Martini M, Corces VG, Rissman EF. Mini-review: Epigenetic mechanisms that promote transgenerational actions of endocrine disrupting chemicals: Applications to behavioral neuroendocrinology. Horm Behav 2020; 119:104677. [PMID: 31927019 PMCID: PMC9942829 DOI: 10.1016/j.yhbeh.2020.104677] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/26/2022]
Abstract
It is our hope this mini-review will stimulate discussion and new research. Here we briefly examine the literature on transgenerational actions of endocrine disrupting chemicals (EDCs) on brain and behavior and their underlying epigenetic mechanisms including: DNA methylation, histone modifications, and non-coding RNAs. We stress that epigenetic modifications need to be examined in a synergistic manner, as they act together in situ on chromatin to change transcription. Next we highlight recent work from one of our laboratories (VGC). The data provide new evidence that the sperm genome is poised for transcription. In developing sperm, gene enhancers and promoters are accessible for transcription and these activating motifs are also found in preimplantation embryos. Thus, DNA modifications associated with transcription factors during fertilization, in primordial germ cells (PGCs), and/or during germ cell maturation may be passed to offspring. We discuss the implications of this model to EDC exposures and speculate on whether natural variation in hormone levels during fertilization and PGC migration may impart transgenerational effects on brain and behavior. Lastly we discuss how this mechanism could apply to neural sexual differentiation.
Collapse
Affiliation(s)
- Mariangela Martini
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Emilie F Rissman
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States of America.
| |
Collapse
|
41
|
Warner GR, Mourikes VE, Neff AM, Brehm E, Flaws JA. Mechanisms of action of agrochemicals acting as endocrine disrupting chemicals. Mol Cell Endocrinol 2020; 502:110680. [PMID: 31838026 PMCID: PMC6942667 DOI: 10.1016/j.mce.2019.110680] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Agrochemicals represent a significant class of endocrine disrupting chemicals that humans and animals around the world are exposed to constantly. Agrochemicals can act as endocrine disrupting chemicals through a variety of mechanisms. Recent studies have shown that several mechanisms of action involve the ability of agrochemicals to mimic the interaction of endogenous hormones with nuclear receptors such as estrogen receptors, androgen receptors, peroxisome proliferator activated receptors, the aryl hydrocarbon receptor, and thyroid hormone receptors. Further, studies indicate that agrochemicals can exert toxicity through non-nuclear receptor-mediated mechanisms of action. Such non-genomic mechanisms of action include interference with peptide, steroid, or amino acid hormone response, synthesis and degradation as well as epigenetic changes (DNA methylation and histone modifications). This review summarizes the major mechanisms of action by which agrochemicals target the endocrine system.
Collapse
Affiliation(s)
- Genoa R Warner
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Vasiliki E Mourikes
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Alison M Neff
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Emily Brehm
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States.
| |
Collapse
|
42
|
Post CM, Boule LA, Burke CG, O'Dell CT, Winans B, Lawrence BP. The Ancestral Environment Shapes Antiviral CD8 + T cell Responses across Generations. iScience 2019; 20:168-183. [PMID: 31569050 PMCID: PMC6817732 DOI: 10.1016/j.isci.2019.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/05/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022] Open
Abstract
Recent studies have linked health fates of children to environmental exposures of their great grandparents. However, few studies have considered whether ancestral exposures influence immune function across generations. Here, we report transgenerational inheritance of altered T cell responses resulting from maternal (F0) exposure to the aryl hydrocarbon receptor ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Since F0 exposure to TCDD has been linked to transgenerational transmission of reproductive problems, we asked whether maternal TCDD exposure also caused transgenerational changes in immune function. F0 exposure caused transgenerational effects on the CD8+ T cell response to influenza virus infection in females but not in males. Outcrosses showed changes were passed through both parental lineages. These data demonstrate that F0 exposure to an aryl hydrocarbon receptor (AHR) agonist causes durable changes to immune responses that can affect subsequent generations. This has broad implications for understanding how the environment of prior generations shapes susceptibility to pathogens and antiviral immunity in later generations.
Collapse
Affiliation(s)
- Christina M Post
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Lisbeth A Boule
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA; Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Catherine G Burke
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Colleen T O'Dell
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Bethany Winans
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA; Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
43
|
Transgenerational Self-Reconstruction of Disrupted Chromatin Organization After Exposure To An Environmental Stressor in Mice. Sci Rep 2019; 9:13057. [PMID: 31506492 PMCID: PMC6736928 DOI: 10.1038/s41598-019-49440-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Exposure to environmental stressors is known to increase disease susceptibility in unexposed descendants in the absence of detectable genetic mutations. The mechanisms mediating environmentally-induced transgenerational disease susceptibility are poorly understood. We showed that great-great-grandsons of female mice exposed to tributyltin (TBT) throughout pregnancy and lactation were predisposed to obesity due to altered chromatin organization that subsequently biased DNA methylation and gene expression. Here we analyzed DNA methylomes and transcriptomes from tissues of animals ancestrally exposed to TBT spanning generations, sexes, ontogeny, and cell differentiation state. We found that TBT elicited concerted alterations in the expression of “chromatin organization” genes and inferred that TBT-disrupted chromatin organization might be able to self-reconstruct transgenerationally. We also found that the location of “chromatin organization” and “metabolic” genes is biased similarly in mouse and human genomes, suggesting that exposure to environmental stressors in different species could elicit similar phenotypic effects via self-reconstruction of disrupted chromatin organization.
Collapse
|
44
|
Gulyas L, Powell JR. Predicting the Future: Parental Progeny Investment in Response to Environmental Stress Cues. Front Cell Dev Biol 2019; 7:115. [PMID: 31275936 PMCID: PMC6593227 DOI: 10.3389/fcell.2019.00115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/05/2019] [Indexed: 01/13/2023] Open
Abstract
Environmental stressors can severely limit the ability of an organism to reproduce as lifespan is decreased and resources are shifted away from reproduction to survival. Although this is often detrimental to the organism's reproductive fitness, certain other reproductive stress responses may mitigate this effect by increasing the likelihood of progeny survival in the F1 and subsequent generations. Here we review three means by which these progeny may be conferred a competitive edge as a result of stress encountered in the parental generation: heritable epigenetic modifications to nucleotides and histones, simple maternal investments of cytosolic components, and the partially overlapping phenomenon of terminal investment, which can entail extreme parental investment strategies in either cytosolic components or gamete production. We examine instances of these categories and their ability to subsequently impact offspring fitness and reproduction. Ultimately, without impacting nucleotide sequence, these more labile alterations may shape development, evolution, ecology and even human health, necessitating further understanding and research into the specific mechanisms by which environmental stressors are sensed and elicit a corresponding response in the parental germline.
Collapse
Affiliation(s)
- Leah Gulyas
- Department of Biology, Gettysburg College, Gettysburg, PA, United States
| | - Jennifer R Powell
- Department of Biology, Gettysburg College, Gettysburg, PA, United States
| |
Collapse
|
45
|
Krishnan K, Rahman S, Hasbum A, Morales D, Thompson LM, Crews D, Gore AC. Maternal care modulates transgenerational effects of endocrine-disrupting chemicals on offspring pup vocalizations and adult behaviors. Horm Behav 2019; 107:96-109. [PMID: 30576639 PMCID: PMC6366859 DOI: 10.1016/j.yhbeh.2018.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 01/08/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can act upon a developing organism to change its endocrine health and behavior in adulthood. Beyond actions on the exposed individuals, transgenerational effects of several EDCs have been reported. This study assessed the combinatorial impact of EDC-altered maternal care and transgenerational inheritance on F3 male and female offspring. Pregnant rats were exposed to EDCs with different modes of action: the weakly estrogenic polychlorinated biphenyl (PCB) mixture Aroclor 1221, the anti-androgenic fungicide vinclozolin (VIN), or the vehicle (6% dimethylsulfoxide in sesame oil; VEH) during embryonic development. The F1 male and female offspring were bred through the paternal- or maternal-lineage with untreated partners to generate F2 offspring. This process was repeated through both maternal and paternal lineages to create the F3 generation. Maternal care of F2 dams towards their F3 offspring was altered in a lineage-dependent manner, particularly in PCB paternal-lineage animals. When F3 pups were recorded for ultrasonic vocalizations (USVs) following separation from the mother, the rate of neonatal USVs in F3 offspring were decreased in PCB paternal-lineage pups. In adulthood, anxiety-like behaviors of the F3 rats were tested, with only small effects of EDCs detected. These interactions of maternal behaviors and EDC effects across generations, especially via the paternal lineage, has implications for health and environmental responses in wildlife and humans.
Collapse
Affiliation(s)
- Krittika Krishnan
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shafaqat Rahman
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Asbiel Hasbum
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel Morales
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lindsay M Thompson
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - David Crews
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Integrative Biology, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|