1
|
Li Y, Xiao P, Boadu F, Goldkamp AK, Nirgude S, Cheng J, Hagen DE, Kalish JM, Rivera RM. Beckwith-Wiedemann syndrome and large offspring syndrome involve alterations in methylome, transcriptome, and chromatin configuration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2023.12.14.23299981. [PMID: 38168424 PMCID: PMC10760283 DOI: 10.1101/2023.12.14.23299981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Beckwith-Wiedemann Syndrome (BWS) is the most common epigenetic overgrowth syndrome, caused by epigenetic alterations on chromosome 11p15. In ∼50% of patients with BWS, the imprinted region KvDMR1 (IC2) is hypomethylated. Nearly all children with BWS develop organ overgrowth and up to 28% develop cancer during childhood. The global epigenetic alterations beyond the 11p15 region in BWS are not currently known. Uncovering these alterations at the methylome, transcriptome, and chromatin architecture levels are necessary steps to improve the diagnosis and understanding of patients with BWS. Here we characterized the complete epigenetic profiles of BWS IC2 individuals together with the animal model of BWS, bovine large offspring syndrome (LOS). A novel finding of this research is the identification of two molecular subgroups of BWS IC2 individuals. Genome-wide alternations were detected for DNA methylation, transcript abundance, alternative splicing events of RNA, chromosome compartments, and topologically associating domains (TADs) in BWS and LOS, with shared alterations identified between species. Altered chromosome compartments and TADs were correlated with differentially expressed genes in BWS and LOS. Together, we highlight genes and genomic regions that have the potential to serve as targets for biomarker development to improve current molecular diagnostic methodologies for BWS.
Collapse
|
2
|
Capewell P, Lowe A, Athanasiadou S, Wilson D, Hanks E, Coultous R, Hutchings M, Palarea‐Albaladejo J. Towards a microRNA-based Johne's disease diagnostic predictive system: Preliminary results. Vet Rec 2024; 195:e4798. [PMID: 39562518 PMCID: PMC11605997 DOI: 10.1002/vetr.4798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Johne's disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP), is a chronic enteritis that adversely affects welfare and productivity in cattle. Screening and subsequent removal of affected animals is a common approach for disease management, but efforts are hindered by low diagnostic sensitivity. Expression levels of small non-coding RNA molecules involved in gene regulation (microRNAs), which may be altered during mycobacterial infection, may present an alternative diagnostic method. METHODS The expression levels of 24 microRNAs affected by mycobacterial infection were measured in sera from MAP-positive (n = 66) and MAP-negative cattle (n = 65). They were then used within a machine learning approach to build an optimal classifier for MAP diagnosis. RESULTS The method provided 72% accuracy, 73% sensitivity and 71% specificity on average, with an area under the curve of 78%. LIMITATIONS Although control samples were collected from farms nominally MAP-free, the low sensitivity of current diagnostics means some animals may have been misclassified. CONCLUSION MicroRNA profiling combined with advanced predictive modelling enables rapid and accurate diagnosis of Johne's disease in cattle.
Collapse
Affiliation(s)
- Paul Capewell
- School of Molecular Biosciences, College of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Sandovici I, Fernandez-Twinn DS, Campbell N, Cooper WN, Sekita Y, Zvetkova I, Ferland-McCollough D, Prosser HM, Oyama LM, Pantaleão LC, Cimadomo D, Barbosa de Queiroz K, Cheuk CSK, Smith NM, Kay RG, Antrobus R, Hoelle K, Ma MKL, Smith NH, Geyer SH, Reissig LF, Weninger WJ, Siddle K, Willis AE, Lam BYH, Bushell M, Ozanne SE, Constância M. Overexpression of Igf2-derived Mir483 inhibits Igf1 expression and leads to developmental growth restriction and metabolic dysfunction in mice. Cell Rep 2024; 43:114750. [PMID: 39283743 PMCID: PMC7617298 DOI: 10.1016/j.celrep.2024.114750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/04/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Mir483 is a conserved and highly expressed microRNA in placental mammals, embedded within the Igf2 gene. Its expression is dysregulated in a number of human diseases, including metabolic disorders and certain cancers. Here, we investigate the developmental regulation and function of Mir483 in vivo. We find that Mir483 expression is dependent on Igf2 transcription and the regulation of the Igf2/H19 imprinting control region. Transgenic Mir483 overexpression in utero causes fetal, but not placental, growth restriction through insulin-like growth factor 1 (IGF1) and IGF2 and also causes cardiovascular defects leading to fetal death. Overexpression of Mir483 post-natally results in growth stunting through IGF1 repression, increased hepatic lipid production, and excessive adiposity. IGF1 infusion rescues the post-natal growth restriction. Our findings provide insights into the function of Mir483 as a growth suppressor and metabolic regulator and suggest that it evolved within the INS-IGF2-H19 transcriptional region to limit excessive tissue growth through repression of IGF signaling.
Collapse
Affiliation(s)
- Ionel Sandovici
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Niamh Campbell
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Wendy N Cooper
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Yoichi Sekita
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ilona Zvetkova
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | | | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Lila M Oyama
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Departmento de Fisiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Lucas C Pantaleão
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Danilo Cimadomo
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Karina Barbosa de Queiroz
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Cecilia S K Cheuk
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Nicola M Smith
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Richard G Kay
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Katharina Hoelle
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Marcella K L Ma
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Noel H Smith
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Stefan H Geyer
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Lukas F Reissig
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang J Weninger
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Kenneth Siddle
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Anne E Willis
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | - Brian Y H Lam
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | - Susan E Ozanne
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Miguel Constância
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Dai M, Hong L, Yin T, Liu S. Disturbed Follicular Microenvironment in Polycystic Ovary Syndrome: Relationship to Oocyte Quality and Infertility. Endocrinology 2024; 165:bqae023. [PMID: 38375912 DOI: 10.1210/endocr/bqae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with infertility and poor reproductive outcomes. The follicular fluid (FF) microenvironment plays a crucial role in oocyte development. This review summarizes evidence elucidating the alterations in FF composition in PCOS. Various studies demonstrated a pronounced proinflammatory milieu in PCOS FF, characterized by increased levels of cytokines, including but not limited to interleukin-6 (IL-6), tumor necrosis factor α, C-reactive protein, and IL-1β, concomitant with a reduction in anti-inflammatory IL-10. T lymphocytes and antigen-presenting cells are dysregulated in PCOS FF. PCOS FF exhibit heightened reactive oxygen species production and the accumulation of lipid peroxidation byproducts, and impaired antioxidant defenses. Multiple microRNAs are dysregulated in PCOS FF, disrupting signaling critical to granulosa cell function. Proteomic analysis reveals changes in pathways related to immune responses, metabolic perturbations, angiogenesis, and hormone regulation. Metabolomics identify disturbances in glucose metabolism, amino acids, lipid profiles, and steroid levels with PCOS FF. Collectively, these pathological alterations may adversely affect oocyte quality, embryo development, and fertility outcomes. Further research on larger cohorts is needed to validate these findings and to forge the development of prognostic biomarkers of oocyte developmental competence within FF. Characterizing the follicular environment in PCOS is key to elucidating the mechanisms underlying subfertility in this challenging disorder.
Collapse
Affiliation(s)
- Mengyang Dai
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430061, China
| | - Ling Hong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518000, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen 518000, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430061, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518000, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen 518000, China
| |
Collapse
|
5
|
Hubert JN, Perret M, Riquet J, Demars J. Livestock species as emerging models for genomic imprinting. Front Cell Dev Biol 2024; 12:1348036. [PMID: 38500688 PMCID: PMC10945557 DOI: 10.3389/fcell.2024.1348036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 03/20/2024] Open
Abstract
Genomic imprinting is an epigenetically-regulated process of central importance in mammalian development and evolution. It involves multiple levels of regulation, with spatio-temporal heterogeneity, leading to the context-dependent and parent-of-origin specific expression of a small fraction of the genome. Genomic imprinting studies have therefore been essential to increase basic knowledge in functional genomics, evolution biology and developmental biology, as well as with regard to potential clinical and agrigenomic perspectives. Here we offer an overview on the contribution of livestock research, which features attractive resources in several respects, for better understanding genomic imprinting and its functional impacts. Given the related broad implications and complexity, we promote the use of such resources for studying genomic imprinting in a holistic and integrative view. We hope this mini-review will draw attention to the relevance of livestock genomic imprinting studies and stimulate research in this area.
Collapse
Affiliation(s)
| | | | | | - Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| |
Collapse
|
6
|
Matsuo S, Ushida T, Tano S, Imai K, Yoshida S, Yamashita M, Kajiyama H, Kotani T. Sex-specific differences in head circumference of term singletons after assisted reproductive technology: a multicentre study in Japan. Reprod Biomed Online 2023; 47:103331. [PMID: 37820465 DOI: 10.1016/j.rbmo.2023.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 10/13/2023]
Abstract
RESEARCH QUESTION Does fertility treatment, specifically assisted reproductive technology (ART), affect head circumference in term singletons? DESIGN A total of 32,651 women who delivered at term at 12 maternity hospitals in Japan between 2010 and 2018 were included in the analysis; of these, 1941 (5.9%) and 2984 (9.1%) women conceived through ART and non-ART fertility treatments (timed intercourse, ovulation induction or artificial insemination), respectively. The study evaluated the adjusted odds ratios of head circumference ≥90th percentile stratified by infant sex and type of ART procedure after adjusting for covariates, with natural conception as the reference group. RESULTS ART significantly increased the risk of head circumference ≥90th percentile (adjusted odds ratio 1.56 [95% confidence interval 1.25-1.96]), whereas non-ART fertility treatment did not increase the risk (1.14 [0.92-1.42]). This increased risk of head circumference ≥90th percentile was observed exclusively in male neonates (1.73 [1.33-2.26]) and not in female neonates (1.18 [0.76-1.85]) in the ART group. Frozen embryo transfer (FET), FET in a hormone replacement cycle (HRC-FET) and blastocyst-stage embryo transfer were significantly associated with head circumference ≥90th percentile (1.60 [1.26-2.02], 1.70 [1.30-2.22] and 1.72 [1.33-2.24], respectively). CONCLUSIONS The use of ART, particularly FET, HRC-FET or blastocyst-stage embryo transfer, was linked with a heightened risk of head circumference ≥90th percentile compared with non-ART fertility treatment or natural conception. The increased risk was observed only in male neonates.
Collapse
Affiliation(s)
- Seiko Matsuo
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan; Division of Reproduction and Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Showa-ku, Nagoya, Japan.
| | - Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Shigeru Yoshida
- Kishokai Medical Corporation, Nishiki, Naka Ward, Nagoya, Japan
| | | | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan; Division of Reproduction and Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Showa-ku, Nagoya, Japan
| |
Collapse
|
7
|
Nava-Trujillo H, Rivera RM. Review: Large offspring syndrome in ruminants: current status and prediction during pregnancy. Animal 2023; 17 Suppl 1:100740. [PMID: 37567678 DOI: 10.1016/j.animal.2023.100740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 08/13/2023] Open
Abstract
Large/abnormal Offspring Syndrome (LOS/AOS) is a congenital overgrowth condition of cattle and sheep, characterized by macrosomia, abdominal wall defects, organomegaly, difficulty to stand and suckle at parturition. The condition was first described as an exclusive consequence of assisted reproductive technologies, such as in vitro production and somatic cell nuclear transfer (cloning). However, we recently reported the spontaneous occurrence of this syndrome in cattle. The etiology of LOS is unclear, although the syndrome is an epigenetic condition characterized by multi-locus loss-of-imprinting, global dysregulation of small and long RNAs, changes in DNA methylation, and altered chromosomal architecture. These molecular and epigenetic changes affect biological pathways implicated in organ size, cell proliferation, cell survival, resulting in the phenotypes which characterize LOS. The lack of accurate tools for the prediction and diagnosis of LOS and the prevention of dystocia resulting from fetal overgrowth is a major concern for the dairy and beef industries. Furthermore, death of the calf and/or dam during calving adds animal welfare issues and affects the net income of the industry. An early diagnosis of LOS/AOS during gestation is critical to facilitate the decision-making process on whether to allow the pregnancy to continue or not in order to prevent harm to the dam as well as to provide producers with the timely necessary information to prepare for a difficult birth. The present review summarizes the definition, traits, incidence, and molecular characteristics of LOS to provide information and serve as a guide for future investigations regarding the early identification of LOS during pregnancy in cattle.
Collapse
|
8
|
Cimini C, Ramal-Sanchez M, Taraschi A, Della Pelle F, Scroccarello A, Belda-Perez R, Valbonetti L, Lanuti P, Marchisio M, D’Atri M, Ortolani C, Papa S, Capacchietti G, Bernabò N, Compagnone D, Barboni B. Catechin versus MoS 2 Nanoflakes Functionalized with Catechin: Improving the Sperm Fertilizing Ability-An In Vitro Study in a Swine Model. Int J Mol Sci 2023; 24:ijms24054788. [PMID: 36902221 PMCID: PMC10003105 DOI: 10.3390/ijms24054788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Nowadays, the adoption of In Vitro Fertilization (IVF) techniques is undergoing an impressive increase. In light of this, one of the most promising strategies is the novel use of non-physiological materials and naturally derived compounds for advanced sperm preparation methods. Here, sperm cells were exposed during capacitation to MoS2/Catechin nanoflakes and catechin (CT), a flavonoid with antioxidant properties, at concentrations of 10, 1, 0.1 ppm. The results showed no significant differences in terms of sperm membrane modifications or biochemical pathways among the groups, allowing the hypothesis that MoS2/CT nanoflakes do not induce any negative effect on the parameters evaluated related to sperm capacitation. Moreover, the addition of CT alone at a specific concentration (0.1 ppm) increased the spermatozoa fertilizing ability in an IVF assay by increasing the number of fertilized oocytes with respect to the control group. Our findings open interesting new perspectives regarding the use of catechins and new materials obtained using natural or bio compounds, which could be used to implement the current strategies for sperm capacitation.
Collapse
Affiliation(s)
- Costanza Cimini
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Marina Ramal-Sanchez
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Angela Taraschi
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Flavio Della Pelle
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annalisa Scroccarello
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Ramses Belda-Perez
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Luca Valbonetti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, 00015 Rome, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Mario D’Atri
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
- Sharp Solutions Software di D’Atri Mario, Via Udine, 2, Buttrio, 33042 Udine, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Giulia Capacchietti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nicola Bernabò
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, 00015 Rome, Italy
- Correspondence:
| | - Dario Compagnone
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
9
|
Wu X, Liu Y, Wang W, Crimmings K, Williams A, Mager J, Cui W. Early embryonic lethality of mice lacking POLD2. Mol Reprod Dev 2023; 90:98-108. [PMID: 36528861 PMCID: PMC9974775 DOI: 10.1002/mrd.23663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/09/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
As a highly conserved DNA polymerase (Pol), Pol δ plays crucial roles in chromosomal DNA synthesis and various DNA repair pathways. However, the function of POLD2, the second small subunit of DNA Pol δ (p50 subunit), has not been characterized in vivo during mammalian development. Here, we report for the first time, the essential role of subunit POLD2 during early murine embryogenesis. Although Pold2 mutant mouse embryos exhibit normal morphology at E3.5 blastocyst stage, they cannot be recovered at gastrulation stages. Outgrowth assays reveal that mutant blastocysts cannot hatch from the zona pellucida, indicating impaired blastocyst function. Notably, these phenotypes can be recapitulated by small interfering RNA (siRNA)-mediated knockdown, which also exhibit slowed cellular proliferation together with skewed primitive endoderm and epiblast allocation during the second cell lineage specification. In summary, our study demonstrates that POLD2 is essential for the earliest steps of mammalian development, and the retarded proliferation and embryogenesis may also alter the following cell lineage specifications in the mouse blastocyst embryos.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, Anhui, China
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, Anhui, China
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Wenying Wang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, Anhui, China
| | - Kate Crimmings
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Andrea Williams
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
10
|
Vargas LN, Silveira MM, Franco MM. Epigenetic Reprogramming and Somatic Cell Nuclear Transfer. Methods Mol Biol 2023; 2647:37-58. [PMID: 37041328 DOI: 10.1007/978-1-0716-3064-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Epigenetics is an area of genetics that studies the heritable modifications in gene expression and phenotype that are not controlled by the primary sequence of DNA. The main epigenetic mechanisms are DNA methylation, post-translational covalent modifications in histone tails, and non-coding RNAs. During mammalian development, there are two global waves of epigenetic reprogramming. The first one occurs during gametogenesis and the second one begins immediately after fertilization. Environmental factors such as exposure to pollutants, unbalanced nutrition, behavioral factors, stress, in vitro culture conditions can negatively affect epigenetic reprogramming events. In this review, we describe the main epigenetic mechanisms found during mammalian preimplantation development (e.g., genomic imprinting, X chromosome inactivation). Moreover, we discuss the detrimental effects of cloning by somatic cell nuclear transfer on the reprogramming of epigenetic patterns and some molecular alternatives to minimize these negative impacts.
Collapse
Affiliation(s)
- Luna N Vargas
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Márcia M Silveira
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Maurício M Franco
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil.
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Goldkamp AK, Li Y, Rivera RM, Hagen DE. Differentially expressed tRNA-derived fragments in bovine fetuses with assisted reproduction induced congenital overgrowth syndrome. Front Genet 2022; 13:1055343. [PMID: 36457750 PMCID: PMC9705782 DOI: 10.3389/fgene.2022.1055343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2023] Open
Abstract
Background: As couples struggle with infertility and livestock producers wish to rapidly improve genetic merit in their herd, assisted reproductive technologies (ART) have become increasingly popular in human medicine as well as the livestock industry. Utilizing ART can cause an increased risk of congenital overgrowth syndromes, such as Large Offspring Syndrome (LOS) in ruminants. A dysregulation of transcripts has been observed in bovine fetuses with LOS, which is suggested to be a cause of the phenotype. Our recent study identified variations in tRNA expression in LOS individuals, leading us to hypothesize that variations in tRNA expression can influence the availability of their processed regulatory products, tRNA-derived fragments (tRFs). Due to their resemblance in size to microRNAs, studies suggest that tRFs target mRNA transcripts and regulate gene expression. Thus, we have sequenced small RNA isolated from skeletal muscle and liver of day 105 bovine fetuses to elucidate the mechanisms contributing to LOS. Moreover, we have utilized our previously generated tRNA sequencing data to analyze the contribution of tRNA availability to tRF abundance. Results: 22,289 and 7,737 unique tRFs were predicted in the liver and muscle tissue respectively. The greatest number of reads originated from 5' tRFs in muscle and 5' halves in liver. In addition, mitochondrial (MT) and nuclear derived tRF expression was tissue-specific with most MT-tRFs and nuclear tRFs derived from LysUUU and iMetCAU in muscle, and AsnGUU and GlyGCC in liver. Despite variation in tRF abundance within treatment groups, we identified differentially expressed (DE) tRFs across Control-AI, ART-Normal, and ART-LOS groups with the most DE tRFs between ART-Normal and ART-LOS groups. Many DE tRFs target transcripts enriched in pathways related to growth and development in the muscle and tumor development in the liver. Finally, we found positive correlation coefficients between tRNA availability and tRF expression in muscle (R = 0.47) and liver (0.6). Conclusion: Our results highlight the dysregulation of tRF expression and its regulatory roles in LOS. These tRFs were found to target both imprinted and non-imprinted genes in muscle as well as genes linked to tumor development in the liver. Furthermore, we found that tRNA transcription is a highly modulated event that plays a part in the biogenesis of tRFs. This study is the first to investigate the relationship between tRNA and tRF expression in combination with ART-induced LOS.
Collapse
Affiliation(s)
- Anna K. Goldkamp
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Yahan Li
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Rocio M. Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Darren E. Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
12
|
Carli D, Operti M, Russo S, Cocchi G, Milani D, Leoni C, Prada E, Melis D, Falco M, Spina J, Uliana V, Sara O, Sirchia F, Tarani L, Macchiaiolo M, Cerrato F, Sparago A, Pignata L, Tannorella P, Cardaropoli S, Bartuli A, Riccio A, Ferrero GB, Mussa A. Clinical and molecular characterization of patients affected by Beckwith-Wiedemann spectrum conceived through assisted reproduction techniques. Clin Genet 2022; 102:314-323. [PMID: 35842840 PMCID: PMC9545072 DOI: 10.1111/cge.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022]
Abstract
The prevalence of Beckwith–Wiedemann spectrum (BWSp) is tenfold increased in children conceived through assisted reproductive techniques (ART). More than 90% of ART‐BWSp patients reported so far display imprinting center 2 loss‐of‐methylations (IC2‐LoM), versus 50% of naturally conceived BWSp patients. We describe a cohort of 74 ART‐BWSp patients comparing their features with a cohort of naturally conceived BWSp patients, with the ART‐BWSp patients previously described in literature, and with the general population of children born from ART. We found that the distribution of UPD(11)pat was not significantly different in ART and naturally conceived patients. We observed 68.9% of IC2‐LoM and 16.2% of mosaic UPD(11)pat in our ART cohort, that strongly differ from the figure reported in other cohorts so far. Since UPD(11)pat likely results from post‐fertilization recombination events, our findings allows to hypothesize that more complex molecular mechanisms, besides methylation disturbances, may underlie BWSp increased risk in ART pregnancies. Moreover, comparing the clinical features of ART and non‐ART BWSp patients, we found that ART‐BWSp patients might have a milder phenotype. Finally, our data show a progressive increase in the prevalence of BWSp over time, paralleling that of ART usage in the last decades.
Collapse
Affiliation(s)
- Diana Carli
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Matteo Operti
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Silvia Russo
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Guido Cocchi
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, Bologna, BO, Italy
| | - Donatella Milani
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Elisabetta Prada
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Fisciano, Italy
| | - Mariateresa Falco
- Pediatric Unit, San Giovanni di Dio e Ruggi D'Aragona University Hospital, Salerno, Italy
| | - Jennifer Spina
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Vera Uliana
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
| | - Osimani Sara
- Department of Pediatrics, Scientific Institute San Raffaele, Milano, Italy
| | - Fabio Sirchia
- Unit of Medical Genetics, Department of Diagnostic Medicine, Fondazione IRCCS Policlinico San Matteo, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Luigi Tarani
- Department of Pediatrics, Medical Faculty, "Sapienza" University of Rome, Italy
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics, Department of Pediatric Medicine, Bambino Gesù Children's Hospital, IRCCS
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Angela Sparago
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Pierpaola Tannorella
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Andrea Bartuli
- Rare Diseases and Medical Genetics, Department of Pediatric Medicine, Bambino Gesù Children's Hospital, IRCCS
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy.,Institute of Genetics and Biophysics A. Buzzati-Traverso, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | | | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy.,Pediatric Clinical Genetics Unit, Regina Margherita Childrens Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
13
|
Allele-specific aberration of imprinted domain chromosome architecture associates with large offspring syndrome. iScience 2022; 25:104269. [PMID: 35542046 PMCID: PMC9079005 DOI: 10.1016/j.isci.2022.104269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 03/12/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Large offspring syndrome (LOS) and Beckwith-Wiedemann syndrome are similar epigenetic congenital overgrowth conditions in ruminants and humans, respectively. We have reported global loss-of-imprinting, methylome epimutations, and gene misregulation in LOS. However, less than 4% of gene misregulation can be explained with short range (<20kb) alterations in DNA methylation. Therefore, we hypothesized that methylome epimutations in LOS affect chromosome architecture which results in misregulation of genes located at distances >20kb in cis and in trans (other chromosomes). Our analyses focused on two imprinted domains that frequently reveal misregulation in these syndromes, namely KvDMR1 and IGF2R. Using bovine fetal fibroblasts, we identified CTCF binding at IGF2R imprinting control region but not KvDMR1, and allele-specific chromosome architecture of these domains in controls. In LOS, analyses identified erroneous long-range contacts and clustering tendency in the direction of expression of misregulated genes. In conclusion, altered chromosome architecture is associated with LOS. IGF2R imprinted domain has allele-specific chromosome architecture in bovines In bovines, CTCF binds at IGF2R imprinting control region but not at KvDMR1 Bovine large offspring syndrome (LOS) shows altered chromosome architecture at IGF2R Misregulated genes in LOS exhibit genomic location-based clustering tendency
Collapse
|
14
|
Amaral TF, de Grazia JGV, Martinhao LAG, De Col F, Siqueira LGB, Viana JHM, Hansen PJ. Actions of CSF2 and DKK1 on bovine embryo development and pregnancy outcomes are affected by composition of embryo culture medium. Sci Rep 2022; 12:7503. [PMID: 35525843 PMCID: PMC9079070 DOI: 10.1038/s41598-022-11447-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/25/2022] [Indexed: 12/29/2022] Open
Abstract
Procedures for in vitro embryo production in cattle have not been optimized. In the current experiment, we utilized a 3 × 3 factorial design to test whether the proportion of embryos becoming blastocysts in culture and the pregnancy rate after embryo transfer are affected by type of serum in the medium [no serum; 3% (v/v) KnockOut Serum Replacement (SR); 3% (v/v) fetal bovine serum (FBS)] and addition of specific embryokines [vehicle; 10 ng/mL colony stimulating factor 2 (CSF2); 100 ng/mL dickkopf related protein 1 (DKK1)] at day 5 of culture. Embryos were produced using abattoir-derived ovaries and Y-sorted semen from two Angus sires. The percent of putative zygotes and cleaved embryos becoming blastocysts was improved by SR and FBS. Pregnancy rate at day 30 was determined for 1426 Nelore recipients and calving rate for 266 recipients. In the absence of CSF2 or DKK1, pregnancy rates were lower for embryos cultured with SR or FBS. CSF2 and DKK1 reduced pregnancy rate for embryos cultured without serum but had no detrimental effect in the SR or FBS groups. Indeed, CSF2 blocked the negative effect of FBS on pregnancy rate. Data on birth weights were available for 67 bull calves. There were no effects of treatment. The sire used to produce embryos had significant and large effects on development to the blastocyst stage, pregnancy rate at day 30, calving rate and pregnancy loss between day 30 and calving. Results indicate that (1) SR and FBS can improve embryonic development in vitro while also compromising competence of embryos to survive after transfer, (2) actions of CSF2 and DKK1 depend upon other characteristics of the embryo production system, and (3) sire can have a large effect on embryonic development before and after transfer.
Collapse
Affiliation(s)
- Thiago F Amaral
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA
- Zoetis, Kalamazoo, MI, 49007, USA
| | | | - Luany Alves Galvao Martinhao
- FIVX Apoyar Biotech LTDA, Juiz de Fora, MG, Brazil
- Biological Science Institute, University of Brasilia, Brasilia, DF, Brazil
| | | | | | | | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA.
| |
Collapse
|
15
|
Cimini C, Moussa F, Taraschi A, Ramal-Sanchez M, Colosimo A, Capacchietti G, Mokh S, Valbonetti L, Tagaram I, Bernabò N, Barboni B. Pre-Treatment of Swine Oviductal Epithelial Cells with Progesterone Increases the Sperm Fertilizing Ability in an IVF Model. Animals (Basel) 2022; 12:ani12091191. [PMID: 35565617 PMCID: PMC9103098 DOI: 10.3390/ani12091191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/21/2022] Open
Abstract
Mammalian spermatozoa are infertile immediately after ejaculation and need to undergo a functional modification, called capacitation, in order to acquire their fertilizing ability. Since oviductal epithelial cells (SOECs) and progesterone (P4) are two major modulators of capacitation, here we investigated their impact on sperm functionality by using an IVF swine model. To that, we treated SOECs with P4 at 10, 100, and 1000 ng/mL before the coincubation with spermatozoa, thus finding that P4 at 100 ng/mL does not interfere with the cytoskeleton dynamics nor the cells’ doubling time, but it promotes the sperm capacitation by increasing the number of spermatozoa per polyspermic oocyte (p < 0.05). Moreover, we found that SOECs pre-treatment with P4 100 ng/mL is able to promote an increase in the sperm fertilizing ability, without needing the hormone addition at the time of fertilization. Our results are probably due to the downregulation in the expression of OVGP1, SPP1 and DMBT1 genes, confirming an increase in the dynamism of our system compared to the classic IVF protocols. The results obtained are intended to contribute to the development of more physiological and efficient IVF systems.
Collapse
Affiliation(s)
- Costanza Cimini
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Fadl Moussa
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
- Doctoral School of Science, Technology Lebanese University, Beirut 1107, Lebanon
| | - Angela Taraschi
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
- Istituto Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy
| | - Marina Ramal-Sanchez
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Alessia Colosimo
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Giulia Capacchietti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Samia Mokh
- National Council for Scientific Research (CNRS), Lebanese Atomic Energy Commission (LAEC), Laboratory for Analysis of Organic Compound (LACO), Beirut 8281, Lebanon;
| | - Luca Valbonetti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, 00015 Rome, Italy
| | - Israiel Tagaram
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Nicola Bernabò
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, 00015 Rome, Italy
- Correspondence:
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| |
Collapse
|
16
|
Li Y, Sena Lopes J, Fuster PC, Rivera RM. Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome. Epigenetics 2022; 17:1477-1496. [PMID: 35466858 PMCID: PMC9586674 DOI: 10.1080/15592294.2022.2067938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Large/abnormal offspring syndrome (LOS/AOS) is a congenital overgrowth syndrome reported in ruminants produced by assisted reproduction (ART-LOS) which exhibit global disruption of the epigenome and transcriptome. LOS/AOS shares phenotypes and epigenotypes with the human congenital overgrowth condition Beckwith-Wiedemann syndrome. We have reported that LOS occurs spontaneously (SLOS); however, to date, no study has been conducted to determine if SLOS has the same methylome epimutations as ART-LOS. In this study, we performed whole-genome bisulphite sequencing to examine global DNA methylation in bovine SLOS and ART-LOS tissues. We observed unique patterns of global distribution of differentially methylated regions (DMRs) over different genomic contexts, such as promoters, CpG Islands, shores and shelves, as well as at repetitive sequences. In addition, we included data from two previous LOS studies to identify shared vulnerable genomic loci in LOS. Overall, we identified 320 genomic loci in LOS that have alterations in DNA methylation when compared to controls. Specifically, there are 25 highly vulnerable loci that could potentially serve as molecular markers for the diagnosis of LOS, including at the promoters of DMRT2 and TBX18, at the imprinted gene bodies of IGF2R, PRDM8, and BLCAP/NNAT, and at multiple CpG Islands. We also observed tissue-specific DNA methylation patterns between muscle and blood, and conservation of ART-induced DNA methylation changes between muscle and blood. We conclude that as ART-LOS, SLOS is an epigenetic condition. In addition, SLOS and ART-LOS share similarities in methylome epimutations.
Collapse
Affiliation(s)
- Yahan Li
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jordana Sena Lopes
- Physiology Department. International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Universidad de Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain.,Mediterranean Institute for Agriculture, Environment and Development (MED), University of Évora, Portugal
| | - Pilar Coy Fuster
- Physiology Department. International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Universidad de Murcia, Murcia, Spain.,Institute for Biomedical Research of Murcia (IMIB), Murcia, Spain
| | | |
Collapse
|
17
|
Goldkamp AK, Li Y, Rivera RM, Hagen DE. Characterization of tRNA expression profiles in large offspring syndrome. BMC Genomics 2022; 23:273. [PMID: 35392796 PMCID: PMC8988405 DOI: 10.1186/s12864-022-08496-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Assisted Reproductive Technologies (ART) use can increase the risk of congenital overgrowth syndromes, such as large offspring syndrome (LOS) in ruminants. Epigenetic variations are known to influence gene expression and differentially methylated regions (DMRs) were previously determined to be associated with LOS in cattle. We observed DMRs overlapping tRNA clusters which could affect tRNA abundance and be associated with tissue specificity or overgrowth. Variations in tRNA expression have been identified in several disease pathways suggesting an important role in the regulation of biological processes. Understanding the role of tRNA expression in cattle offers an opportunity to reveal mechanisms of regulation at the translational level. We analyzed tRNA expression in the skeletal muscle and liver tissues of day 105 artificial insemination-conceived, ART-conceived with a normal body weight, and ART-conceived bovine fetuses with a body weight above the 97th percentile compared to Control-AI. Results Despite the centrality of tRNAs to translation, in silico predictions have revealed dramatic differences in the number of tRNA genes between humans and cattle (597 vs 1,659). Consistent with reports in human, only a fraction of predicted tRNA genes are expressed. We detected the expression of 474 and 487 bovine tRNA genes in the muscle and liver with the remainder being unexpressed. 193 and 198 unique tRNA sequences were expressed in all treatment groups within muscle and liver respectively. In addition, an average of 193 tRNA sequences were expressed within the same treatment group in different tissues. Some tRNA isodecoders were differentially expressed between treatment groups. In the skeletal muscle and liver, we categorized 11 tRNA isoacceptors with undetected expression as well as an isodecoder that was unexpressed in the liver (SerGGA). Our results identified variation in the proportion of tRNA gene copies expressed between tissues and differences in the highest contributing tRNA anticodon within an amino acid family due to treatment and tissue type. Out of all amino acid families, roughly half of the most highly expressed tRNA isoacceptors correlated to their most frequent codon in the bovine genome. Conclusion Although the number of bovine tRNA genes is nearly triple of that of the tRNA genes in human, there is a shared occurrence of transcriptionally inactive tRNA genes in both species. We detected differential expression of tRNA genes as well as tissue- and treatment- specific tRNA transcripts with unique sequence variations that could modulate translation during protein homeostasis or cellular stress, and give rise to regulatory products targeting genes related to overgrowth in the skeletal muscle and/or tumor development in the liver of LOS individuals. While the absence of certain isodecoders may be relieved by wobble base pairing, missing tRNA species could increase the likelihood of mistranslation or mRNA degradation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08496-7.
Collapse
Affiliation(s)
- Anna K Goldkamp
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Yahan Li
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Rocio M Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Darren E Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
18
|
París-Oller E, Matás C, Romar R, Lopes JS, Gadea J, Cánovas S, Coy P. Growth analysis and blood profile in piglets born by embryo transfer. Res Vet Sci 2021; 142:43-53. [PMID: 34861454 DOI: 10.1016/j.rvsc.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Assisted reproductive technologies (ART), besides solving several reproductive problems, it has also been used as a tool to improve the animal productivity that is required for feeding the human population. One of these techniques, the embryo transfer (ET), has presented limitations in the porcine species, which could constrain its use in the porcine industry. To clarify the potential of this technique, we aimed to compare the impact of using ET or artificial insemination (AI) on the phenotype of the offspring during its first days of age, in terms of growth and blood parameters. At birth, the body weight was higher for ET-females than AI-females, but this difference was no longer observed at day 15. On day 3, it was observed a higher concentration of red blood cells, haemoglobin, and haematocrit in females-ET and a higher concentration of white blood cells in both ET-derived piglets (males and females) when compared to AI groups. On day 3, the biochemical analysis showed a higher level of albumin for ET-derived males, and a lower level of bilirubin for ET-females than AI controls. However, all values were within the normal ranges. Our results indicate that piglets derived from ET seem to be phenotypically similar to those born by AI, which provides preliminary evidence that the ET procedure is a safe technique, but additional studies beyond 15 days of life are requested to conclude its global impact. Furthermore, the presented reference values of blood parameters in this species are interesting data for the pig industry.
Collapse
Affiliation(s)
- Evelyne París-Oller
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Carmen Matás
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain; Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Raquel Romar
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain; Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Jordana S Lopes
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain; Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Sebastián Cánovas
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain; Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain; Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
19
|
Cuthbert JM, Russell SJ, Polejaeva IA, Meng Q, White KL, Benninghoff AD. Dynamics of small non-coding RNAs in bovine scNT embryos through the maternal-to-embryonic transition. Biol Reprod 2021; 105:918-933. [PMID: 34086842 DOI: 10.1093/biolre/ioab107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The efficiency of somatic cell nuclear transfer (scNT) for production of viable offspring is relatively low as compared to in vitro fertilization (IVF), presumably due to deficiencies in epigenetic reprogramming of the donor cell genome. Such defects may also involve the population of small non-coding RNAs (sncRNAs), which are important during early embryonic development. The objective of this study was to examine dynamic changes in relative abundance of sncRNAs during the maternal-to embryonic transition (MET) in bovine embryos produced by scNT as compared to IVF by using RNA sequencing. When comparing populations of miRNA in scNT versus IVF embryos, only miR-2340, miR-345, and miR34a were differentially expressed in morulae, though many more miRNAs were differentially expressed when comparing across developmental stages. Also of interest, distinct populations of piwi-interacting like RNAs (pilRNAs) were identified in bovine embryos prior to and during embryonic genome activation (EGA) as compared bovine embryos post EGA and differentiated cells. Overall, sncRNA sequencing analysis of preimplantation embryos revealed largely similar profiles of sncRNAs for IVF and scNT embryos at the 2-cell, 8-cell, morula and blastocyst stages of development. However, these sncRNA profiles, including miRNA, piRNA and tRNA fragments, were notably distinct prior to and after completion of the MET.
Collapse
Affiliation(s)
- Jocelyn M Cuthbert
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Stewart J Russell
- CReATe Fertility Centre, 790 Bay St. #1100, Toronto, M5G 1N8, Canada
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
20
|
Folic acid supplementation during oocytes maturation influences in vitro production and gene expression of bovine embryos. ZYGOTE 2021; 29:342-349. [PMID: 33685547 DOI: 10.1017/s0967199421000022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Embryos that are produced in vitro frequently present epigenetic modifications. However, maternal supplementation with folic acid (FA) may improve oocyte maturation and embryo development, preventing epigenetic errors in the offspring. We sought to evaluate the influence of FA supplementation during in vitro maturation of grade I (GI) and grade III (GIII) bovine oocytes on embryo production rate and the expression of IGF2 and KCNQ1OT1 genes. The oocytes were matured in vitro with different concentrations of FA (0, 10, 30 and 100 μM), followed by in vitro fertilization and embryo culture. On the seventh day (D7) of culture, embryo production was evaluated and gene expression was measured using real-time qPCR. Supplementation with 10 μM of FA did not affect embryo production for GI and GIII oocytes. Moderate supplementation (30 μM) seemed to be a positive influence, increasing embryo production for GIII (P = 0.012), while the highest dose (100 μM) reduced embryo production (P = 0.010) for GI, and IGF2 expression was not detected. In GIII, only embryos whose oocyte maturation was not supplemented with FA demonstrated detected IGF2 expression. The lowest concentration of FA (10 μM) reduced KCNQ1OT1 expression (P = 0.05) on embryos from GIII oocytes. Different FA concentrations induced different effects on bovine embryo production and gene expression that was related to oocyte quality. Despite the epigenetic effects of FA, supplementation seems to be a promising factor to improve bovine embryo production if used carefully, as concentration is an important factor, especially in oocytes with impaired quality.
Collapse
|
21
|
París-Oller E, Navarro-Serna S, Soriano-Úbeda C, Lopes JS, Matás C, Ruiz S, Latorre R, López-Albors O, Romar R, Cánovas S, Coy P. Reproductive fluids, used for the in vitro production of pig embryos, result in healthy offspring and avoid aberrant placental expression of PEG3 and LUM. J Anim Sci Biotechnol 2021; 12:32. [PMID: 33583428 PMCID: PMC7883450 DOI: 10.1186/s40104-020-00544-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Background In vitro embryo production (IVP) and embryo transfer (ET) are two very common assisted reproductive technologies (ART) in human and cattle. However, in pig, the combination of either procedures, or even their use separately, is still considered suboptimal due to the low efficiency of IVP plus the difficulty of performing ET in the long and contorted uterus of the sow. In addition, the potential impact of these two ART on the health of the offspring is unknown. We investigated here if the use of a modified IVP system, with natural reproductive fluids (RF) as supplements to the culture media, combined with a minimally invasive surgery to perform ET, affects the output of the own IVP system as well as the reproductive performance of the mother and placental molecular traits. Results The blastocyst rates obtained by both in vitro systems, conventional (C-IVP) and modified (RF-IVP), were similar. Pregnancy and farrowing rates were also similar. However, when compared to in vivo control (artificial insemination, AI), litter sizes of both IVP groups were lower, while placental efficiency was higher in AI than in RF-IVP. Gene expression studies revealed aberrant expression levels for PEG3 and LUM in placental tissue for C-IVP group when compared to AI, but not for RF-IVP group. Conclusions The use of reproductive fluids as additives for the culture media in pig IVP does not improve reproductive performance of recipient mothers but could mitigate the impact of artificial procedures in the offspring. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-020-00544-0.
Collapse
Affiliation(s)
- E París-Oller
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - S Navarro-Serna
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - C Soriano-Úbeda
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - J S Lopes
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - C Matás
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - S Ruiz
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - R Latorre
- Department of Anatomy and Comparartive Pathology, Faculty of Veterinary Medicine, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain
| | - O López-Albors
- Department of Anatomy and Comparartive Pathology, Faculty of Veterinary Medicine, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain
| | - R Romar
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain.,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - S Cánovas
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain. .,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain.
| | - P Coy
- Department of Physiology- Faculty of Veterinary, University of Murcia - Campus Mare Nostrum, 30100, Murcia, Spain. .,Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
22
|
Van Gronigen Case G, Storey KM, Parmeley LE, Schulz LC. Effects of maternal nutrient restriction during the periconceptional period on placental development in the mouse. PLoS One 2021; 16:e0244971. [PMID: 33444393 PMCID: PMC7808591 DOI: 10.1371/journal.pone.0244971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/20/2020] [Indexed: 01/13/2023] Open
Abstract
Maternal undernutrition has detrimental effects on fetal development and adult health. Total caloric restriction during early pregnancy followed by adequate nutrition for the remainder of gestation, is particularly linked to cardiovascular and metabolic disease risks during adulthood. The placenta is responsible for transport of nutrients from the maternal to fetal circulation, and the efficiency with which it does so can be adjusted to the maternal nutrient supply. There is evidence that placental adaptations to nutrient restriction in early pregnancy may be retained even when adequate nutrition is restored later in pregnancy, leading to a potential mismatch between placental efficiency and maternal nutrient supplies. However, in the mouse, 50% caloric restriction from days 1.5-11.5 of gestation, while temporarily altering placental structure and gene expression, had no significant effect on day 18.5. The periconceptional period, during which oocyte maturation, fertilization, and preimplantation development occur may be especially critical in creating lasting impact on the placenta. Here, mice were subjected to 50% caloric restriction from 3 weeks prior to pregnancy through d11.5, and then placental structure, the expression of key nutrient transporters, and global DNA methylation levels were examined at gestation d18.5. Prior exposure to caloric restriction increased maternal blood space area, but decreased expression of the key System A amino acid transporter Slc38a4 at d18.5. Neither placental and fetal weights, nor placental DNA methylation levels were affected. Thus, total caloric restriction beginning in the periconceptional period does have a lasting impact on placental development in the mouse, but without changing placental efficiency.
Collapse
Affiliation(s)
- Gerialisa Van Gronigen Case
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States of America
| | - Kathryn M. Storey
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States of America
| | - Lauren E. Parmeley
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States of America
| | - Laura C. Schulz
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
23
|
Su J, Miao X, Archambault D, Mager J, Cui W. ZC3H4-a novel Cys-Cys-Cys-His-type zinc finger protein-is essential for early embryogenesis in mice†. Biol Reprod 2020; 104:325-335. [PMID: 33246328 DOI: 10.1093/biolre/ioaa215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/10/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Zinc finger domains of the Cys-Cys-Cys-His (CCCH) class are evolutionarily conserved proteins that bind nucleic acids and are involved in various biological processes. Nearly 60 CCCH-type zinc finger proteins have been identified in humans and mice, most have not been functionally characterized. Here, we provide the first in vivo functional characterization of ZC3H4-a novel CCCH-type zinc finger protein. Our results show that although Zc3h4 mutant embryos exhibit normal morphology at E3.5 blastocyst stage, they cannot be recovered at E7.5 early post-gastrulation stage, suggesting implantation failure. Outgrowth assays reveal that mutant blastocysts either fail to hatch from the zona pellucida, or can hatch but do not form a typical inner cell mass colony, the source of embryonic stem cells (ESCs). Although there is no change in levels of reactive oxygen species, Zc3h4 mutants display severe DNA breaks and reduced cell proliferation. Analysis of lineage specification reveals that both epiblast and primitive endoderm lineages are compromised with severe reductions in cell number and/or specification in the mutant blastocysts. In summary, these findings demonstrate the essential role of ZC3H4 during early mammalian embryogenesis.
Collapse
Affiliation(s)
- Jianmin Su
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiaosu Miao
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Danielle Archambault
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA.,Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
24
|
Papulino C, Chianese U, Nicoletti MM, Benedetti R, Altucci L. Preclinical and Clinical Epigenetic-Based Reconsideration of Beckwith-Wiedemann Syndrome. Front Genet 2020; 11:563718. [PMID: 33101381 PMCID: PMC7522569 DOI: 10.3389/fgene.2020.563718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
Epigenetics has achieved a profound impact in the biomedical field, providing new experimental opportunities and innovative therapeutic strategies to face a plethora of diseases. In the rare diseases scenario, Beckwith-Wiedemann syndrome (BWS) is a pediatric pathological condition characterized by a complex molecular basis, showing alterations in the expression of different growth-regulating genes. The molecular origin of BWS is associated with impairments in the genomic imprinting of two domains at the 11p15.5 chromosomal region. The first domain contains three different regions: insulin growth like factor gene (IGF2), H19, and abnormally methylated DMR1 region. The second domain consists of cell proliferation and regulating-genes such as CDKN1C gene encoding for cyclin kinase inhibitor its role is to block cell proliferation. Although most cases are sporadic, about 5-10% of BWS patients have inheritance characteristics. In the 11p15.5 region, some of the patients have maternal chromosomal rearrangements while others have Uniparental Paternal Disomy UPD(11)pat. Defects in DNA methylation cause alteration of genes and the genomic structure equilibrium leading uncontrolled cell proliferation, which is a typical tumorigenesis event. Indeed, in BWS patients an increased childhood tumor predisposition is observed. Here, we summarize the latest knowledge on BWS and focus on the impact of epigenetic alterations to an increased cancer risk development and to metabolic disorders. Moreover, we highlight the correlation between assisted reproductive technologies and this rare disease. We also discuss intriguing aspects of BWS in twinning. Epigenetic therapies in clinical trials have already demonstrated effectiveness in oncological and non-oncological diseases. In this review, we propose a potential "epigenetic-based" approaches may unveil new therapeutic options for BWS patients. Although the complexity of the syndrome is high, patients can be able to lead a normal life but tumor predispositions might impair life expectancy. In this sense epigenetic therapies should have a supporting role in order to guarantee a good prognosis.
Collapse
Affiliation(s)
- Chiara Papulino
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Nicoletti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
25
|
Rivera RM. Consequences of assisted reproductive techniques on the embryonic epigenome in cattle. Reprod Fertil Dev 2020; 32:65-81. [PMID: 32188559 DOI: 10.1071/rd19276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Procedures used in assisted reproduction have been under constant scrutiny since their inception with the goal of improving the number and quality of embryos produced. However, invitro production of embryos is not without complications because many fertilised oocytes fail to become blastocysts, and even those that do often differ in the genetic output compared with their invivo counterparts. Thus only a portion of those transferred complete normal fetal development. An unwanted consequence of bovine assisted reproductive technology (ART) is the induction of a syndrome characterised by fetal overgrowth and placental abnormalities, namely large offspring syndrome; a condition associated with inappropriate control of the epigenome. Epigenetics is the study of chromatin and its effects on genetic output. Establishment and maintenance of epigenetic marks during gametogenesis and embryogenesis is imperative for the maintenance of cell identity and function. ARTs are implemented during times of vast epigenetic reprogramming; as a result, many studies have identified ART-induced deviations in epigenetic regulation in mammalian gametes and embryos. This review describes the various layers of epigenetic regulation and discusses findings pertaining to the effects of ART on the epigenome of bovine gametes and the preimplantation embryo.
Collapse
Affiliation(s)
- Rocío Melissa Rivera
- Division of Animal Science University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|
26
|
Seasonal effects on miRNA and transcriptomic profile of oocytes and follicular cells in buffalo (Bubalus bubalis). Sci Rep 2020; 10:13557. [PMID: 32782284 PMCID: PMC7419291 DOI: 10.1038/s41598-020-70546-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Season clearly influences oocyte competence in buffalo (Bubalus bubalis); however, changes in the oocyte molecular status in relation to season are poorly understood. This study characterizes the microRNA (miRNA) and transcriptomic profiles of oocytes (OOs) and corresponding follicular cells (FCs) from buffalo ovaries collected in the breeding (BS) and non-breeding (NBS) seasons. In the BS, cleavage and blastocyst rates are significantly higher compared to NBS. Thirteen miRNAs and two mRNAs showed differential expression (DE) in FCs between BS and NBS. DE-miRNAs target gene analysis uncovered pathways associated with transforming growth factor β (TGFβ) and circadian clock photoperiod. Oocytes cluster in function of season for their miRNA content, showing 13 DE-miRNAs between BS and NBS. Between the two seasons, 22 differentially expressed genes were also observed. Gene Ontology (GO) analysis of miRNA target genes and differentially expressed genes (DEGs) in OOs highlights pathways related to triglyceride and sterol biosynthesis and storage. Co-expression analysis of miRNAs and mRNAs revealed a positive correlation between miR-296-3p and genes related to metabolism and hormone regulation. In conclusion, season significantly affects female fertility in buffalo and impacts on oocyte transcriptomic of genes related to folliculogenesis and acquisition of oocyte competence.
Collapse
|
27
|
Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Res Vet Sci 2020; 132:342-350. [PMID: 32738731 DOI: 10.1016/j.rvsc.2020.07.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
Producing high-competent oocytes during the in vitro maturation (IVM) is considered a key step for the success of the in vitro production (IVP) of embryos. One of the known disruptors of oocyte developmental competence on IVP is oxidative stress (OS), which appears due to the imbalance between the production and neutralization of reactive oxygen species (ROS). The in vitro conditions induce supraphysiological ROS levels due to the exposure to an oxidative environment and the isolation of the oocyte from the follicle protective antioxidant milieu. In juvenile in vitro embryo transfer (JIVET), which aims to produce embryos from prepubertal females, the oocytes are more sensitive to OS as they have inherent lower quality. Therefore, the IVM strategies that aim to prevent OS have great interest for both IVP and JIVET programs. The focus of this review is on the effects of ROS on oocyte IVM and the main antioxidants that have been tested for protecting the oocyte from OS. Considering the importance that OS has on oocyte competence, it is crucial to create standardized antioxidant IVM systems for improving the overall IVP success.
Collapse
|
28
|
Nemoto T, Kakinuma Y. Fetal malnutrition-induced catch up failure is caused by elevated levels of miR-322 in rats. Sci Rep 2020; 10:1339. [PMID: 31992823 PMCID: PMC6987214 DOI: 10.1038/s41598-020-58392-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/15/2020] [Indexed: 12/30/2022] Open
Abstract
If sufficient nutrition is not obtained during pregnancy, the fetus changes its endocrine system and metabolism to protect the brain, resulting in a loss of body size. The detailed mechanisms that determine the success or failure of growth catch-up are still unknown. Therefore, we investigated the mechanism by which catch-up growth failure occurs. The body weights of rat pups at birth from dams whose calorie intake during pregnancy was reduced by 40% were significantly lower than those of controls, and some offspring failed to catch up. Short-body-length and low-bodyweight rats showed blood IGF-1 levels and mRNA expression levels of IGF-1 and growth hormone receptor (GHR) in the liver that were lower than those in controls. The next generation offspring from low-bodyweight non-catch-up (LBW-NCG) rats had high expression of miR-322 and low expression of GHR and IGF-1. The expression of miR-322 showed a significant negative correlation with GHR expression and body length, and overexpression of miR-322 suppressed GHR expression. We found that insufficient intake of calories during pregnancy causes catch-up growth failure due to increased expression of miR-322 and decreased expression of GHR in the livers of offspring, and this effect is inherited by the next generation.
Collapse
Affiliation(s)
- Takahiro Nemoto
- Department of Physiology, Nippon Medical School 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Yoshihiko Kakinuma
- Department of Physiology, Nippon Medical School 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| |
Collapse
|
29
|
Conditions of embryo culture from days 5 to 7 of development alter the DNA methylome of the bovine fetus at day 86 of gestation. J Assist Reprod Genet 2019; 37:417-426. [PMID: 31838628 DOI: 10.1007/s10815-019-01652-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/03/2019] [Indexed: 01/30/2023] Open
Abstract
PURPOSE We tested whether in vitro production (IVP) causes changes in DNA methylation in fetal liver and skeletal muscle and if exposure of cultured embryos to colony-stimulating factor 2 (CSF2) alters DNA methylation. METHODS Female fetuses were produced by artificial insemination or transfer of an IVP embryo. Embryos were treated from days 5 to 7 after fertilization with CSF2 or vehicle. DNA methylation in fetal liver and skeletal muscle was determined by post-bisulfite adaptor tagging-based sequencing. The degree of DNA methylation for CpG sites in 50-bp windows of the promoter region 500 bp upstream of the transcriptional start site was compared between treatments. RESULTS For liver, there were 12 genes (6% of those analyzed) in which DNA methylation was affected by treatment, with one 50-bp window per gene affected by treatment. For muscle, the degree of DNA methylation was affected by treatment for 32 windows (19% of the total windows analyzed) representing 28 distinct genes (23% of analyzed genes). For 19 of the 28 genes in muscle, the greatest deviation in DNA methylation was for the CSF2 group. CONCLUSION Results are consistent with alterations in the methylome being one of the mechanisms by which IVP can result in altered fetal development and postnatal function in the resultant offspring. In addition, results indicate that maternally derived cell-signaling molecules can regulate the pattern of DNA methylation.
Collapse
|