1
|
Saeed A, McKennan C, Duan J, Yang YN, Kip KE, Finegold D, Vu M, Swanson J, Lopez OL, Cohen A, Mapstone M, Yu B, Ballantyne CM, Reis SE. Mid-life anti-inflammatory metabolites are inversely associated with long-term cardiovascular disease events. EBioMedicine 2025; 112:105551. [PMID: 39793479 PMCID: PMC11764641 DOI: 10.1016/j.ebiom.2024.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Preclinical data have shown that low levels of metabolites with anti-inflammatory properties may impact metabolic disease processes. However, the association between mid-life levels of such metabolites and long-term ASCVD risk is not known. METHODS We characterised the plasma metabolomic profile (1228 metabolites) of 1852 participants (58.1 ± 7.5 years old, 69.6% female, 43.6% self-identified as Black) enrolled in the Heart Strategies Concentrating on Risk Evaluation (Heart SCORE) study. Logistic regression was used to assess the impact of metabolite levels on ASCVD risk (nonfatal MI, revascularisation, and cardiac mortality). We additionally explored the effect of genetic variants neighbouring ASCVD-related genes on the levels of metabolites predictive of ASCVD events. The Atherosclerosis Risk in Communities (ARIC) study (n = 4790; 75.5 ± 5.1 years old, 57.4% female, 19.5% self-identified as Black) was used as an independent validation cohort. FINDINGS In fully adjusted models, alpha-ketobutyrate [AKB] (OR 0.62 [95% CI, 0.49-0.80]; p < 0.001), and 1-palmitoyl-2-linoleoyl-GPI [OR, 0.62, 95% CI, 0.47-0.83; p < 0.001], two metabolites in amino acid and phosphatidylinositol lipid pathways, respectively, showed a significant protective association with incident ASCVD risk in both Heart SCORE and ARIC cohorts. Three plasmalogens and a bilirubin derivative, whose levels were regulated by genetic variants neighbouring FADS1 and UGT1A1, respectively, exhibited a significant protective association with ASCVD risk in the Heart SCORE only. INTERPRETATION Higher mid-life levels of AKB and 1-palmitoyl-2-linoleoyl-GPI metabolites may be associated with lower risk late-life ASCVD events. Further research can determine the causality and therapeutic potential of these metabolites in ASCVD. FUNDING This study was funded by the Pennsylvania Department of Health (ME-02-384). The department specifically disclaims responsibility for any analyses, interpretations, or conclusions. Additional funding was provided by National Institutes of Health (NIH) grant R01HL089292 and UL1 TR001857 (Steven Reis). Further, NIH funded R01HL141824 and R01HL168683 were used for the ARIC study validation (Bing Yu).
Collapse
Affiliation(s)
- Anum Saeed
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Heart and Vascular Institute, UPMC, Pittsburgh, PA, USA.
| | - Chris McKennan
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiaxuan Duan
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kevin E Kip
- Clinical Analytics, UPMC Health Services Division, Pittsburgh, PA, USA
| | - David Finegold
- University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Michael Vu
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | | | - Oscar L Lopez
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cognitive and Behavioral and Neurology Division, UPMC, Pittsburgh, PA, USA
| | - Ann Cohen
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Bing Yu
- University of Texas Health Sciences, Houston, TX, USA
| | | | - Steven E Reis
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Heart and Vascular Institute, UPMC, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Yusipov I, Kalyakulina A, Trukhanov A, Franceschi C, Ivanchenko M. Map of epigenetic age acceleration: A worldwide analysis. Ageing Res Rev 2024; 100:102418. [PMID: 39002646 DOI: 10.1016/j.arr.2024.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
We present a systematic analysis of epigenetic age acceleration based on by far the largest collection of publicly available DNA methylation data for healthy samples (93 datasets, 23 K samples), focusing on the geographic (25 countries) and ethnic (31 ethnicities) aspects around the world. We employed the most popular epigenetic tools for assessing age acceleration and examined their quality metrics and ability to extrapolate to epigenetic data from different tissue types and age ranges different from the training data of these models. In most cases, the models proved to be inconsistent with each other and showed different signs of age acceleration, with the PhenoAge model tending to systematically underestimate and different versions of the GrimAge model tending to systematically overestimate the age prediction of healthy subjects. Referring to data availability and consistency, most countries and populations are still not represented in GEO, moreover, different datasets use different criteria for determining healthy controls. Because of this, it is difficult to fully isolate the contribution of "geography/environment", "ethnicity" and "healthiness" to epigenetic age acceleration. Among the explored metrics, only the DunedinPACE, which measures aging rate, appears to adequately reflect the standard of living and socioeconomic indicators in countries, although it has a limited application to blood methylation data only. Invariably, by epigenetic age acceleration, males age faster than females in most of the studied countries and populations.
Collapse
Affiliation(s)
- Igor Yusipov
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Alena Kalyakulina
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Arseniy Trukhanov
- Mriya Life Institute, National Academy of Active Longevity, Moscow 124489, Russia.
| | - Claudio Franceschi
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Mikhail Ivanchenko
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| |
Collapse
|
3
|
Bell CG. Epigenomic insights into common human disease pathology. Cell Mol Life Sci 2024; 81:178. [PMID: 38602535 PMCID: PMC11008083 DOI: 10.1007/s00018-024-05206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The epigenome-the chemical modifications and chromatin-related packaging of the genome-enables the same genetic template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput DNA methylome association studies, as well as insights into ageing-related diseases from biological 'clocks' constructed by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
4
|
Hecker J, Lee S, Kachroo P, Prokopenko D, Maaser-Hecker A, Lutz SM, Hahn G, Irizarry R, Weiss ST, DeMeo DL, Lange C. A consistent pattern of slide effects in Illumina DNA methylation BeadChip array data. Epigenetics 2023; 18:2257437. [PMID: 37731367 PMCID: PMC11062373 DOI: 10.1080/15592294.2023.2257437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
Background: Recent studies have identified thousands of associations between DNA methylation CpGs and complex diseases/traits, emphasizing the critical role of epigenetics in understanding disease aetiology and identifying biomarkers. However, association analyses based on methylation array data are susceptible to batch/slide effects, which can lead to inflated false positive rates or reduced statistical powerResults: We use multiple DNA methylation datasets based on the popular Illumina Infinium MethylationEPIC BeadChip array to describe consistent patterns and the joint distribution of slide effects across CpGs, confirming and extending previous results. The susceptible CpGs overlap with the Illumina Infinium HumanMethylation450 BeadChip array content.Conclusions: Our findings reveal systematic patterns in slide effects. The observations provide further insights into the characteristics of these effects and can improve existing adjustment approaches.
Collapse
Affiliation(s)
- Julian Hecker
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sanghun Lee
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medical Consilience, Division of Medicine, Graduate School, Dankook University, Yongin-si, South Korea
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Dmitry Prokopenko
- Genetics and Aging Unit and McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anna Maaser-Hecker
- Genetics and Aging Unit and McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sharon M. Lutz
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Population Medicine, PRecisiOn Medicine Translational Research (PROMoTeR) Center, Harvard Pilgrim Health Care and Harvard Medical School, Boston, MA, USA
| | - Georg Hahn
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rafael Irizarry
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Christoph Lange
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
5
|
Khan SS, Petito LC, Huang X, Harrington K, McNeil RB, Bello NA, Merz CNB, Miller EC, Ravi R, Scifres C, Catov J, Pemberton V, Varagic J, Zee PC, Yee LM, Ray M, Kim JK, Lane-Cordova A, Lewey J, Theilen LH, Saade GR, Greenland P, Grobman WA. Body Mass Index, Adverse Pregnancy Outcomes, and Cardiovascular Disease Risk. Circ Res 2023; 133:725-735. [PMID: 37814889 PMCID: PMC10578703 DOI: 10.1161/circresaha.123.322762] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/08/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Obesity is a well-established risk factor for both adverse pregnancy outcomes (APOs) and cardiovascular disease (CVD). However, it is not known whether APOs are mediators or markers of the obesity-CVD relationship. This study examined the association between body mass index, APOs, and postpartum CVD risk factors. METHODS The sample included adults from the nuMoM2b (Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-To-Be) Heart Health Study who were enrolled in their first trimester (6 weeks-13 weeks 6 days gestation) from 8 United States sites. Participants had a follow-up visit at 3.7 years postpartum. APOs, which included hypertensive disorders of pregnancy, preterm birth, small-for-gestational-age birth, and gestational diabetes, were centrally adjudicated. Mediation analyses estimated the association between early pregnancy body mass index and postpartum CVD risk factors (hypertension, hyperlipidemia, and diabetes) and the proportion mediated by each APO adjusted for demographics and baseline health behaviors, psychosocial stressors, and CVD risk factor levels. RESULTS Among 4216 participants enrolled, mean±SD maternal age was 27±6 years. Early pregnancy prevalence of overweight was 25%, and obesity was 22%. Hypertensive disorders of pregnancy occurred in 15%, preterm birth in 8%, small-for-gestational-age birth in 11%, and gestational diabetes in 4%. Early pregnancy obesity, compared with normal body mass index, was associated with significantly higher incidence of postpartum hypertension (adjusted odds ratio, 1.14 [95% CI, 1.10-1.18]), hyperlipidemia (1.11 [95% CI, 1.08-1.14]), and diabetes (1.03 [95% CI, 1.01-1.04]) even after adjustment for baseline CVD risk factor levels. APOs were associated with higher incidence of postpartum hypertension (1.97 [95% CI, 1.61-2.40]) and hyperlipidemia (1.31 [95% CI, 1.03-1.67]). Hypertensive disorders of pregnancy mediated a small proportion of the association between obesity and incident hypertension (13% [11%-15%]) and did not mediate associations with incident hyperlipidemia or diabetes. There was no significant mediation by preterm birth or small-for-gestational-age birth. CONCLUSIONS There was heterogeneity across APO subtypes in their association with postpartum CVD risk factors and mediation of the association between early pregnancy obesity and postpartum CVD risk factors. However, only a small or nonsignificant proportion of the association between obesity and CVD risk factors was mediated by any of the APOs, suggesting APOs are a marker of prepregnancy CVD risk and not a predominant cause of postpartum CVD risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rupa Ravi
- Columbia University Irving Medical Center
| | | | | | | | | | | | - Lynn M Yee
- Northwestern University Feinberg School of Medicine
| | - Mitali Ray
- University of Pittsburgh School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chan MHM, Merrill SM, Konwar C, Kobor MS. An integrative framework and recommendations for the study of DNA methylation in the context of race and ethnicity. DISCOVER SOCIAL SCIENCE AND HEALTH 2023; 3:9. [PMID: 37122633 PMCID: PMC10118232 DOI: 10.1007/s44155-023-00039-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023]
Abstract
Human social epigenomics research is critical to elucidate the intersection of social and genetic influences underlying racial and ethnic differences in health and development. However, this field faces major challenges in both methodology and interpretation with regard to disentangling confounded social and biological aspects of race and ethnicity. To address these challenges, we discuss how these constructs have been approached in the past and how to move forward in studying DNA methylation (DNAm), one of the best-characterized epigenetic marks in humans, in a responsible and appropriately nuanced manner. We highlight self-reported racial and ethnic identity as the primary measure in this field, and discuss its implications in DNAm research. Racial and ethnic identity reflects the biological embedding of an individual's sociocultural experience and environmental exposures in combination with the underlying genetic architecture of the human population (i.e., genetic ancestry). Our integrative framework demonstrates how to examine DNAm in the context of race and ethnicity, while considering both intrinsic factors-including genetic ancestry-and extrinsic factors-including structural and sociocultural environment and developmental niches-when focusing on early-life experience. We reviewed DNAm research in relation to health disparities given its relevance to race and ethnicity as social constructs. Here, we provide recommendations for the study of DNAm addressing racial and ethnic differences, such as explicitly acknowledging the self-reported nature of racial and ethnic identity, empirically examining the effects of genetic variants and accounting for genetic ancestry, and investigating race-related and culturally regulated environmental exposures and experiences. Supplementary Information The online version contains supplementary material available at 10.1007/s44155-023-00039-z.
Collapse
Affiliation(s)
- Meingold Hiu-ming Chan
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC Canada
- British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC Canada
| | - Sarah M. Merrill
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC Canada
- British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC Canada
| | - Chaini Konwar
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC Canada
- British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC Canada
| | - Michael S. Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC Canada
- British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC Canada
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
7
|
Liu S, Fu H, Ray M, Heinsberg LW, Conley YP, Anderson CM, Hubel CA, Roberts JM, Jeyabalan A, Weeks DE, Schmella MJ. A longitudinal epigenome-wide association study of preeclamptic and normotensive pregnancy. EPIGENETICS COMMUNICATIONS 2023; 3:1. [PMID: 37063698 PMCID: PMC10101051 DOI: 10.1186/s43682-022-00014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/31/2022] [Indexed: 01/28/2023]
Abstract
Background While preeclampsia (PE) is a leading cause of pregnancy-related morbidity/mortality, its underlying mechanisms are not fully understood. DNA methylation (DNAm) is a dynamic regulator of gene expression that may offer insight into PE pathophysiology and/or serve as a biomarker (e.g., risk, subtype, a therapeutic response). This study's purpose was to evaluate for differences in blood-based DNAm across all trimesters between individuals eventually diagnosed with PE (cases) and individuals who remained normotensive throughout pregnancy, did not develop proteinuria, and birthed a normally grown infant (controls). Results In the discovery phase, longitudinal, genome-wide DNAm data were generated across three trimesters of pregnancy in 56 participants (n=28 cases, n=28 controls) individually matched on self-identified race, pre-pregnancy body mass index, smoking, and gestational age at sample collection. An epigenome-wide association study (EWAS) was conducted, using surrogate variable analysis to account for unwanted sources of variation. No CpGs met the genome-wide significance p value threshold of 9×10-8, but 16 CpGs (trimester 1: 5; trimester 2: 1; trimester 3: 10) met the suggestive significance threshold of 1×10-5. DNAm data were also evaluated for differentially methylated regions (DMRs) by PE status. Three DMRs in each trimester were significant after Bonferonni-adjustment. Since only third-trimester samples were available from an independent replication sample (n=64 cases, n=50 controls), the top suggestive hits from trimester 3 (cg16155413 and cg21882990 associated with TRAF3IP2-AS1/TRAF3IP2 genes, which also made up the top DMR) were carried forward for replication. During replication, DNAm data were also generated for validation purposes from discovery phase third trimester samples. While significant associations between DNAm and PE status were observed at both sites in the validation sample, no associations between DNAm and PE status were observed in the independent replication sample. Conclusions The discovery phase findings for cg16155413/cg21882990 (TRAF3IP2-AS1/TRAF3IP2) were validated with a new platform but were not replicated in an independent sample. Given the differences in participant characteristics between the discovery and replication samples, we cannot rule out important signals for these CpGs. Additional research is warranted for cg16155413/cg21882990, as well as top hits in trimesters 1-2 and significant DMRs that were not examined in the replication phase.
Collapse
Affiliation(s)
- Shuwei Liu
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haoyi Fu
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mitali Ray
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, 440 Victoria Building, 3500 Victoria Street, Pittsburgh, PA 15261, USA
| | - Lacey W. Heinsberg
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yvette P. Conley
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, 440 Victoria Building, 3500 Victoria Street, Pittsburgh, PA 15261, USA
| | - Cindy M. Anderson
- Martha S. Pitzer Center for Women, Children and Youth, College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Carl A. Hubel
- Magee-Womens Research Institute and Foundation, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - James M. Roberts
- Magee-Womens Research Institute and Foundation, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arun Jeyabalan
- Magee-Womens Research Institute and Foundation, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel E. Weeks
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mandy J. Schmella
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, 440 Victoria Building, 3500 Victoria Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
8
|
Dapas M, Thompson EE, Wentworth-Sheilds W, Clay S, Visness CM, Calatroni A, Sordillo JE, Gold DR, Wood RA, Makhija M, Khurana Hershey GK, Sherenian MG, Gruchalla RS, Gill MA, Liu AH, Kim H, Kattan M, Bacharier LB, Rastogi D, Altman MC, Busse WW, Becker PM, Nicolae D, O’Connor GT, Gern JE, Jackson DJ, Ober C. Multi-omic association study identifies DNA methylation-mediated genotype and smoking exposure effects on lung function in children living in urban settings. PLoS Genet 2023; 19:e1010594. [PMID: 36638096 PMCID: PMC9879483 DOI: 10.1371/journal.pgen.1010594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 01/26/2023] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Impaired lung function in early life is associated with the subsequent development of chronic respiratory disease. Most genetic associations with lung function have been identified in adults of European descent and therefore may not represent those most relevant to pediatric populations and populations of different ancestries. In this study, we performed genome-wide association analyses of lung function in a multiethnic cohort of children (n = 1,035) living in low-income urban neighborhoods. We identified one novel locus at the TDRD9 gene in chromosome 14q32.33 associated with percent predicted forced expiratory volume in one second (FEV1) (p = 2.4x10-9; βz = -0.31, 95% CI = -0.41- -0.21). Mendelian randomization and mediation analyses revealed that this genetic effect on FEV1 was partially mediated by DNA methylation levels at this locus in airway epithelial cells, which were also associated with environmental tobacco smoke exposure (p = 0.015). Promoter-enhancer interactions in airway epithelial cells revealed chromatin interaction loops between FEV1-associated variants in TDRD9 and the promoter region of the PPP1R13B gene, a stimulator of p53-mediated apoptosis. Expression of PPP1R13B in airway epithelial cells was significantly associated the FEV1 risk alleles (p = 1.3x10-5; β = 0.12, 95% CI = 0.06-0.17). These combined results highlight a potential novel mechanism for reduced lung function in urban youth resulting from both genetics and smoking exposure.
Collapse
Affiliation(s)
- Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | - Emma E. Thompson
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | | | - Selene Clay
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | | | | | - Joanne E. Sordillo
- Department of Population Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert A. Wood
- Department of Pediatrics, Johns Hopkins University Medical Center, Baltimore, Maryland, United States of America
| | - Melanie Makhija
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children’s Hospital, Chicago, Illinois, United States of America
| | - Gurjit K. Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Michael G. Sherenian
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Rebecca S. Gruchalla
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michelle A. Gill
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew H. Liu
- Department of Allergy and Immunology, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Haejin Kim
- Department of Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Meyer Kattan
- Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Leonard B. Bacharier
- Monroe Carell Jr. Children’s Hospital at Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Deepa Rastogi
- Children’s National Health System, Washington, District of Columbia, United States of America
| | - Matthew C. Altman
- Department of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - William W. Busse
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Patrice M. Becker
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Dan Nicolae
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
| | - George T. O’Connor
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - James E. Gern
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Daniel J. Jackson
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| |
Collapse
|
9
|
Bolognesi G, Bacalini MG, Pirazzini C, Garagnani P, Giuliani C. Evolutionary Implications of Environmental Toxicant Exposure. Biomedicines 2022; 10:3090. [PMID: 36551846 PMCID: PMC9775150 DOI: 10.3390/biomedicines10123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Homo sapiens have been exposed to various toxins and harmful compounds that change according to various phases of human evolution. Population genetics studies showed that such exposures lead to adaptive genetic changes; while observing present exposures to different toxicants, the first molecular mechanism that confers plasticity is epigenetic remodeling and, in particular, DNA methylation variation, a molecular mechanism proposed for medium-term adaptation. A large amount of scientific literature from clinical and medical studies revealed the high impact of such exposure on human biology; thus, in this review, we examine and infer the impact that different environmental toxicants may have in shaping human evolution. We first describe how environmental toxicants shape natural human variation in terms of genetic and epigenetic diversity, and then we describe how DNA methylation may influence mutation rate and, thus, genetic variability. We describe the impact of these substances on biological fitness in terms of reproduction and survival, and in conclusion, we focus on their effect on brain evolution and physiology.
Collapse
Affiliation(s)
- Giorgia Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via San Giacomo 12, 40126 Bologna, Italy
- Laboratory of Molecular Anthropology, Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Francesco Selmi 3, 40126 Bologna, Italy
| | - Maria Giulia Bacalini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, via Altura 3, 40139 Bologna, Italy
| | - Chiara Pirazzini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, via Altura 3, 40139 Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via San Giacomo 12, 40126 Bologna, Italy
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology, Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Francesco Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
10
|
Chamberlain JD, Nusslé S, Chapatte L, Kinnaer C, Petrovic D, Pradervand S, Bochud M, Harris SE, Corley J, Cox SR, Gonseth Nusslé S. Blood DNA methylation signatures of lifestyle exposures: tobacco and alcohol consumption. Clin Epigenetics 2022; 14:155. [PMID: 36443762 PMCID: PMC9706852 DOI: 10.1186/s13148-022-01376-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Smoking and alcohol consumption may compromise health by way of epigenetic modifications. Epigenetic signatures of alcohol and tobacco consumption could provide insights into the reversibility of phenotypic changes incurred with differing levels of lifestyle exposures. This study describes and validates two novel epigenetic signatures of tobacco (EpiTob) and alcohol (EpiAlc) consumption and investigates their association with disease outcomes. METHODS The epigenetic signatures, EpiTob and EpiAlc, were developed using data from the Swiss Kidney Project on Genes in Hypertension (SKIPOGH) (N = 689). Epigenetic and phenotypic data available from the 1921 (N = 550) and 1936 (N = 1091) Lothian Birth Cohort (LBC) studies, and two publicly available datasets on GEO Accession (GSE50660, N = 464; and GSE110043, N = 94) were used to validate the signatures. A multivariable logistic regression model, adjusting for age and sex, was used to assess the association between self-reported tobacco or alcohol consumption and the respective epigenetic signature, as well as to estimate the association between CVD and epigenetic signatures. A Cox proportional hazard model was used to estimate the risk of mortality in association with the EpiTob and EpiAlc signatures. RESULTS The EpiTob signature was positively associated with self-reported tobacco consumption for current or never smokers with explained variance ranging from 0.49 (LBC1921) to 0.72 (LBC1936) (pseudo-R2). In the SKIPOGH, LBC1921 and LBC1936 cohorts, the epigenetic signature for alcohol consumption explained limited variance in association with self-reported alcohol status [i.e., non-drinker, moderate drinker, and heavy drinker] (pseudo-R2 = 0.05, 0.03 and 0.03, respectively), although this improved considerably when measuring self-reported alcohol consumption with standardized units consumed per week (SKIPOGH R2 = 0.21; LBC1921 R2 = 0.31; LBC1936 R2 = 0.41). Both signatures were associated with history of CVD in SKIPOGH and LBC1936, but not in LBC1921. The EpiTob signature was associated with increased risk of all-cause and lung-cancer specific mortality in the 1936 and 1921 LBC cohorts. CONCLUSIONS This study found the EpiTob and EpiAlc signatures to be well-correlated with self-reported exposure status and associated with long-term health outcomes. Epigenetic signatures of lifestyle exposures may reduce measurement issues and biases and could aid in risk stratification for informing early-stage targeted interventions.
Collapse
Affiliation(s)
- Jonviea D Chamberlain
- Department of Epidemiology and Health Systems (DESS), University Center for General Medicine and Public Health (Unisanté), Route de la Corniche 10, 1010, Lausanne, Switzerland.
| | | | | | | | - Dusan Petrovic
- Department of Epidemiology and Health Systems (DESS), University Center for General Medicine and Public Health (Unisanté), Route de la Corniche 10, 1010, Lausanne, Switzerland
| | - Sylvain Pradervand
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland
| | - Murielle Bochud
- Department of Epidemiology and Health Systems (DESS), University Center for General Medicine and Public Health (Unisanté), Route de la Corniche 10, 1010, Lausanne, Switzerland
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Semira Gonseth Nusslé
- Department of Epidemiology and Health Systems (DESS), University Center for General Medicine and Public Health (Unisanté), Route de la Corniche 10, 1010, Lausanne, Switzerland
- Genknowme, Epalinges, Switzerland
| |
Collapse
|
11
|
Lanata CM, Nititham J, Taylor KE, Solomon O, Chung SA, Blazer A, Trupin L, Katz P, Dall'Era M, Yazdany J, Sirota M, Barcellos LF, Criswell LA. Dynamics of Methylation of CpG Sites Associated With Systemic Lupus Erythematosus Subtypes in a Longitudinal Cohort. Arthritis Rheumatol 2022; 74:1676-1686. [PMID: 35635730 PMCID: PMC9529797 DOI: 10.1002/art.42237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Findings from cross-sectional studies have revealed associations between DNA methylation and systemic lupus erythematosus (SLE) outcomes. This study was undertaken to investigate the dynamics of DNA methylation by examining participants from an SLE longitudinal cohort using samples collected at 2 time points. METHODS A total of 101 participants from the California Lupus Epidemiology Study were included in our analysis. DNA was extracted from blood samples collected at the time of enrolment in the cohort and samples collected after 2 years and was analyzed using Illumina EPIC BeadChip kit. Paired t-tests were used to identify genome-wide changes which included 256 CpG sites previously found to be associated with SLE subtypes. Linear mixed models were developed to understand the relationship between DNA methylation and disease activity, medication use, and sample cell-type proportions, adjusted for age, sex, and genetic principal components. RESULTS The majority of CpGs that were previously determined to be associated with SLE subtypes remained stable over 2 years (185 CpGs [72.3%]; t-test false discovery rate >0.05). Compared to background genome-wide methylation, there was an enrichment of SLE subtype-associated CpGs that changed over time (27.7% versus 0.34%). Changes in cell-type proportions were associated with changes at 67 CpGs (P < 2.70 × 10-5 ), and 15 CpGs had at least 1 significant association with immunosuppressant use. CONCLUSION In this longitudinal SLE cohort, we identified a subset of SLE subtype-associated CpGs that remained stable over time and may be useful as biomarkers of disease subtypes. Another subset of SLE subtype-associated CpGs changed at a higher proportion compared to the genome-wide methylome. Additional studies are needed to understand the etiology and impact of these changes on methylation of SLE-associated CpGs.
Collapse
Affiliation(s)
| | - Joanne Nititham
- National Human Genome Research Institute, NIHBethesdaMaryland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Somoza ML, Pérez-Sánchez N, Torres-Rojas I, Martín-Pedraza L, Blanca-López N, Victorio Puche L, Abel Fernández González E, López Sánchez JD, Fernández-Sánchez J, Fernández-Caldas E, Villalba M, Ruano FJ, Cornejo-García JA, Canto G, Blanca M. Sensitisation to Pollen Allergens in Children and Adolescents of Different Ancestry Born and Living in the Same Area. J Asthma Allergy 2022; 15:1359-1367. [PMID: 36189188 PMCID: PMC9525024 DOI: 10.2147/jaa.s370279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background Allergy can start at early ages, with genetic and environmental factors contributing to its development. Aim The study aimed to describe the pattern of sensitisation and allergy in children and adolescents of Spanish versus Moroccan ancestry but born in the same rural area of Spain. Methods Participants were children and adolescents (3–19 years) of Spanish or Moroccan descent, born in Blanca, Murcia (Spain). A detailed questionnaire was completed, and skin prick tests were performed to assess reactions to the most prevalent pollen allergens (O. europaea, P. pratense, S. kali, C. arizonica, P. acerifolia, A. vulgaris and P. judaica) plus molecular components Ole e 1 and Ole e 7. The association with ancestry was verified by studying participants’ parents. Results The study included 693 participants: 48% were aged 3–9 years and 52%, 10–19 years; 80% were of Spanish descent and 20% of Moroccan descent. Sensitisation to Olea europaea, Phleum pratense, Salsola kali and Cupressus arizonica were slightly higher in the Spanish group. The only significant differences were observed in sensitisation to Ole e 1 (p=0.02). Rhinitis, conjunctivitis, and rhinitis plus asthma were significantly higher in the Spanish group (p=0.03, p=0.02, p=0.007, respectively). The sensitisation pattern differed between Spanish and Moroccan parents, and between Moroccan parents and their children, but not between Spanish parents and their children. Conclusion Both environment and ancestry may influence sensitisation and symptoms. Although the environment seems to have a stronger influence, other factors may contribute to the differences in prevalence and in the clinical entities in people of Spanish versus Moroccan descent.
Collapse
Affiliation(s)
- Maria Luisa Somoza
- Allergy Department, Infanta Leonor University Hospital, Madrid, Spain
- Correspondence: Maria Luisa Somoza, Email
| | - Natalia Pérez-Sánchez
- Allergy Department, Hospital Regional Universitario de Málaga, Málaga-IBIMA (FIMABIS), Málaga, Spain
| | | | - Laura Martín-Pedraza
- Allergy Department, Fundación para la Investigación e Innovación Biomédica (FIIB) de los Hospitales Universitarios Infanta Leonor y Sureste, Madrid, Spain
| | | | | | | | | | - Javier Fernández-Sánchez
- Allergy Department, General University Hospital of Alicante- ISABIAL, Alicante, Spain
- Clinical Medicine Department, Miguel Hernandez University, Alicante, Spain
| | - Enrique Fernández-Caldas
- R&D Department, Inmunotek Laboratories, Madrid, Spain
- Division of Allergy and Immunology, University of South Florida College of Medicine, Tampa, FL, USA
| | - Mayte Villalba
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | - Gabriela Canto
- Allergy Department, Infanta Leonor University Hospital, Madrid, Spain
- School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Miguel Blanca
- Allergy Department, Fundación para la Investigación e Innovación Biomédica (FIIB) de los Hospitales Universitarios Infanta Leonor y Sureste, Madrid, Spain
| |
Collapse
|
13
|
Meloni M, Moll T, Issaka A, Kuzawa CW. A biosocial return to race? A cautionary view for the postgenomic era. Am J Hum Biol 2022; 34:e23742. [PMID: 35275433 PMCID: PMC9286859 DOI: 10.1002/ajhb.23742] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/20/2022] [Indexed: 12/21/2022] Open
Abstract
Recent studies demonstrating epigenetic and developmental sensitivity to early environments, as exemplified by fields like the Developmental Origins of Health and Disease (DOHaD) and environmental epigenetics, are bringing new data and models to bear on debates about race, genetics, and society. Here, we first survey the historical prominence of models of environmental determinism in early formulations of racial thinking to illustrate how notions of direct environmental effects on bodies have been used to naturalize racial hierarchy and inequalities in the past. Next, we conduct a scoping review of postgenomic work in environmental epigenetics and DOHaD that looks at the role of race/ethnicity in human health (2000-2021). Although there is substantial heterogeneity in how race is conceptualized and interpreted across studies, we observe practices that may unwittingly encourage typological thinking, including: using DNA methylation as a novel marker of racial classification; neglect of variation and reversibility within supposedly homogenous racial groups; and a tendency to label and reify whole groups as pathologized or impaired. Even in the very different politico-economic and epistemic context of contemporary postgenomic science, these trends echo deeply held beliefs in Western thinking which claimed that different environments shape different bodies and then used this logic to argue for essential differences between Europeans and non-Europeans. We conclude with a series of suggestions on interpreting and reporting findings in these fields that we feel will help researchers harness this work to benefit disadvantaged groups while avoiding the inadvertent dissemination of new and old forms of stigma or prejudice.
Collapse
Affiliation(s)
- Maurizio Meloni
- Alfred Deakin Institute for Citizenship and GlobalisationDeakin University, Geelong Waurn Ponds CampusWaurn PondsVictoriaAustralia
| | - Tessa Moll
- Alfred Deakin Institute for Citizenship and GlobalisationDeakin University, Geelong Waurn Ponds CampusWaurn PondsVictoriaAustralia
- School of Public Health, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Ayuba Issaka
- School of Health and Social Development, Faculty of HealthDeakin University, Geelong Waurn Ponds CampusWaurn PondsVictoriaAustralia
| | - Christopher W. Kuzawa
- Department of Anthropology and Institute for Policy ResearchNorthwestern UniversityEvanstonIllinoisUSA
| |
Collapse
|
14
|
Vo TTL, Nguyen TN, Nguyen TT, Pham ATD, Vuong DL, Ta VT, Ho VS. SHOX2 methylation in Vietnamese patients with lung cancer. Mol Biol Rep 2022; 49:3413-3421. [PMID: 35088378 DOI: 10.1007/s11033-022-07172-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND DNA methylation on cytosine in the CpG dinucleotides is one of the most common epigenetic perturbations taking place during cancer initiation, progression, occurrence and resistance therapy. DNA methylation seems to be sufficiently stable epigenetic modification to be utilized as a cancer biomarker in in vitro diagnostic (IVD) settings. Nowadays, the SHOX2 methylation (mSHOX2) is one of the most valuable DNA methylation biomarkers of lung cancer that is the leading cause of cancer death. It is being continuously validated across ethnicities, lifestyles and lifespan. This study focused on characteristics of mSHOX2 in Vietnamese patients with lung cancer since a lack of investigation and evidence of its utility in this country. METHODS The probe and primer sets were designed according to the MethyLight method for quantitative assessment of the mSHOX2 in 214 formalin-fixed paraffin-embedded (FFPE) lung tissues and 57 plasma samples. RESULTS mSHOX2 in FFPE tissues allowed discriminating benign and malignant lung diseases with 60% (95% CI 50.7-68.8%) sensitivity and 90.4% (95% CI 82.6-95.5%) specificity. Importantly, based on mSHOX2 in plasma, lung cancer could be detected with 83.3% (95% CI 65.3-94.4%) sensitivity and 92.6% (95% CI 75.7-99.1%) specificity, respectively. There were insignificant associations between mSHOX2 with age, cancer stage, EGFR mutation and serum CEA, CYFRA21-1 concentrations except for that gender. CONCLUSION Our study indicated that mSHOX2 was satisfactory for distinguishing malignant from benign lung tissue and noninvasively detecting lung cancer.
Collapse
Affiliation(s)
- Thi Thuong Lan Vo
- Faculty of Biology, University of Science, Vietnam National University, Hanoi, Vietnam.
| | - Thuy Ngan Nguyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi, Vietnam
| | - Thu Trang Nguyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi, Vietnam
| | - Anh Thuy Duong Pham
- Faculty of Biology, University of Science, Vietnam National University, Hanoi, Vietnam
| | - Dieu Linh Vuong
- Pathology and Molecular Biology Center, Vietnam National Cancer Hospital, Hanoi, Vietnam
| | - Van To Ta
- Pathology and Molecular Biology Center, Vietnam National Cancer Hospital, Hanoi, Vietnam
| | - Van Son Ho
- Department of Chemistry, 175 Hospital, Ho Chi Minh City, Vietnam
| |
Collapse
|
15
|
Levy MA, McConkey H, Kerkhof J, Barat-Houari M, Bargiacchi S, Biamino E, Bralo MP, Cappuccio G, Ciolfi A, Clarke A, DuPont BR, Elting MW, Faivre L, Fee T, Fletcher RS, Cherik F, Foroutan A, Friez MJ, Gervasini C, Haghshenas S, Hilton BA, Jenkins Z, Kaur S, Lewis S, Louie RJ, Maitz S, Milani D, Morgan AT, Oegema R, Østergaard E, Pallares NR, Piccione M, Pizzi S, Plomp AS, Poulton C, Reilly J, Relator R, Rius R, Robertson S, Rooney K, Rousseau J, Santen GWE, Santos-Simarro F, Schijns J, Squeo GM, St John M, Thauvin-Robinet C, Traficante G, van der Sluijs PJ, Vergano SA, Vos N, Walden KK, Azmanov D, Balci T, Banka S, Gecz J, Henneman P, Lee JA, Mannens MMAM, Roscioli T, Siu V, Amor DJ, Baynam G, Bend EG, Boycott K, Brunetti-Pierri N, Campeau PM, Christodoulou J, Dyment D, Esber N, Fahrner JA, Fleming MD, Genevieve D, Kerrnohan KD, McNeill A, Menke LA, Merla G, Prontera P, Rockman-Greenberg C, Schwartz C, Skinner SA, Stevenson RE, Vitobello A, Tartaglia M, Alders M, Tedder ML, Sadikovic B. Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. HGG ADVANCES 2022; 3:100075. [PMID: 35047860 PMCID: PMC8756545 DOI: 10.1016/j.xhgg.2021.100075] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Overlapping clinical phenotypes and an expanding breadth and complexity of genomic associations are a growing challenge in the diagnosis and clinical management of Mendelian disorders. The functional consequences and clinical impacts of genomic variation may involve unique, disorder-specific, genomic DNA methylation episignatures. In this study, we describe 19 novel episignature disorders and compare the findings alongside 38 previously established episignatures for a total of 57 episignatures associated with 65 genetic syndromes. We demonstrate increasing resolution and specificity ranging from protein complex, gene, sub-gene, protein domain, and even single nucleotide-level Mendelian episignatures. We show the power of multiclass modeling to develop highly accurate and disease-specific diagnostic classifiers. This study significantly expands the number and spectrum of disorders with detectable DNA methylation episignatures, improves the clinical diagnostic capabilities through the resolution of unsolved cases and the reclassification of variants of unknown clinical significance, and provides further insight into the molecular etiology of Mendelian conditions.
Collapse
Affiliation(s)
- Michael A Levy
- Verspeeten Clinical Genome Centre; London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre; London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre; London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Mouna Barat-Houari
- Autoinflammatory and Rare Diseases Unit, Medical Genetic Department for Rare Diseases and Personalized Medicine, CHU Montpellier, Montpellier, France
| | - Sara Bargiacchi
- Medical Genetics Unit, "A. Meyer" Children's Hospital of Florence, Florence, Italy
| | - Elisa Biamino
- Department of Pediatrics, University of Turin, Turin, Italy
| | - María Palomares Bralo
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Angus Clarke
- Cardiff University School of Medicine, Cardiff, UK
| | | | - Mariet W Elting
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Laurence Faivre
- INSERM-Université de Bourgogne UMR1231 GAD « Génétique Des Anomalies du Développement », FHU-TRANSLAD, UFR Des Sciences de Santé, Dijon, France.,Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Timothy Fee
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | - Florian Cherik
- Genetic medical center, CHU Clermont Ferrand, France.,Montpellier University, Reference Center for Rare Disease, Medical Genetic Department for Rare Disease and Personalize Medicine, Inserm Unit 1183, CHU Montpellier, Montpellier, France
| | - Aidin Foroutan
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | | | - Cristina Gervasini
- Division of Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sadegheh Haghshenas
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | | | - Zandra Jenkins
- Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Simranpreet Kaur
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Suzanne Lewis
- BC Children's and Women's Hospital and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | - Silvia Maitz
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, Hospital San Gerardo, Monza, Italy
| | - Donatella Milani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela T Morgan
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Elsebet Østergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nathalie Ruiz Pallares
- Autoinflammatory and Rare Diseases Unit, Medical Genetic Department for Rare Diseases and Personalized Medicine, CHU Montpellier, Montpellier, France
| | - Maria Piccione
- Medical Genetics Unit Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Astrid S Plomp
- Amsterdam UMC, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Cathryn Poulton
- Undiagnosed Diseases Program, Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Australia
| | - Jack Reilly
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre; London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Rocio Rius
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Stephen Robertson
- Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre; London Health Sciences Centre, London, ON N6A 5W9, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Justine Rousseau
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Gijs W E Santen
- Department of Clinical Genetics, LUMC, Leiden, the Netherlands
| | - Fernando Santos-Simarro
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | - Josephine Schijns
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Gabriella Maria Squeo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Miya St John
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Christel Thauvin-Robinet
- INSERM-Université de Bourgogne UMR1231 GAD « Génétique Des Anomalies du Développement », FHU-TRANSLAD, UFR Des Sciences de Santé, Dijon, France.,Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Unité Fonctionnelle d'Innovation Diagnostique des Maladies Rares, FHU-TRANSLAD, France Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon Bourgogne, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital D'Enfants, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Giovanna Traficante
- Medical Genetics Unit, "A. Meyer" Children's Hospital of Florence, Florence, Italy
| | | | - Samantha A Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, VA, USA.,Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Niels Vos
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, Amsterdam, the Netherlands
| | | | - Dimitar Azmanov
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Perth, Australia
| | - Tugce Balci
- Department of Pediatrics, Division of Medical Genetics, Western University, London, ON N6A 3K7, Canada.,Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre and Children's Health Research Institute, London, ON N6A5W9, Canada
| | - Siddharth Banka
- Division of Evolution, Infection & Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Jozef Gecz
- School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia
| | - Peter Henneman
- Amsterdam UMC, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | | | - Marcel M A M Mannens
- Amsterdam UMC, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), Sydney, Australia.,Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, Australia
| | - Victoria Siu
- Department of Pediatrics, Division of Medical Genetics, Western University, London, ON N6A 3K7, Canada.,Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre and Children's Health Research Institute, London, ON N6A5W9, Canada
| | - David J Amor
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Gareth Baynam
- Undiagnosed Diseases Program, Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Australia.,Undiagnosed Diseases Program, Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Australia.,Division of Paediatrics and Telethon Kids Institute, Faculty of Health and Medical Sciences, Perth, Australia
| | | | - Kym Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Philippe M Campeau
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - David Dyment
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | - Jill A Fahrner
- Departments of Genetic Medicine and Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - David Genevieve
- Montpellier University, Reference Center for Rare Disease, Medical Genetic Department for Rare Disease and Personalize Medicine, Inserm Unit 1183, CHU Montpellier, Montpellier, France
| | - Kristin D Kerrnohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Alisdair McNeill
- Department of Neuroscience, University of Sheffield, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Leonie A Menke
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Giuseppe Merla
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.,Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (Foggia), Italy
| | - Paolo Prontera
- Medical Genetics Unit, University of Perugia Hospital SM della Misericordia, Perugia, Italy
| | - Cheryl Rockman-Greenberg
- Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba and Program in Genetics and Metabolism, Shared Health MB, Winnipeg, MB, Canada
| | | | | | | | - Antonio Vitobello
- INSERM-Université de Bourgogne UMR1231 GAD « Génétique Des Anomalies du Développement », FHU-TRANSLAD, UFR Des Sciences de Santé, Dijon, France.,Unité Fonctionnelle d'Innovation Diagnostique des Maladies Rares, FHU-TRANSLAD, France Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon Bourgogne, CHU Dijon Bourgogne, Dijon, France
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Marielle Alders
- Amsterdam UMC, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | | | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre; London Health Sciences Centre, London, ON N6A 5W9, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
16
|
Goodrich JM, Furlong MA, Caban-Martinez AJ, Jung AM, Batai K, Jenkins T, Beitel S, Littau S, Gulotta J, Wallentine D, Hughes J, Popp C, Calkins MM, Burgess JL. Differential DNA Methylation by Hispanic Ethnicity Among Firefighters in the United States. Epigenet Insights 2021; 14:25168657211006159. [PMID: 35036834 PMCID: PMC8756104 DOI: 10.1177/25168657211006159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Firefighters are exposed to a variety of environmental hazards and are at increased risk for multiple cancers. There is evidence that risks differ by ethnicity, yet the biological or environmental differences underlying these differences are not known. DNA methylation is one type of epigenetic regulation that is altered in cancers. In this pilot study, we profiled DNA methylation with the Infinium MethylationEPIC in blood leukocytes from 31 Hispanic white and 163 non-Hispanic white firefighters. We compared DNA methylation (1) at 12 xenobiotic metabolizing genes and (2) at all loci on the array (>740 000), adjusting for confounders. Five of the xenobiotic metabolizing genes were differentially methylated at a raw P-value <.05 when comparing the 2 ethnic groups, yet were not statistically significant at a 5% false discovery rate (q-value <.05). In the epigenome-wide analysis, 76 loci exhibited DNA methylation differences at q < .05. Among these, 3 CpG sites in the promoter region of the biotransformation gene SULT1C2 had lower methylation in Hispanic compared to non-Hispanic firefighters. Other differentially methylated loci included genes that have been implicated in carcinogenesis in published studies (FOXK2, GYLTL1B, ZBTB16, ARHGEF10, and more). In this pilot study, we report differential DNA methylation between Hispanic and non-Hispanic firefighters in xenobiotic metabolism genes and other genes with functions related to cancer. Epigenetic susceptibility by ethnicity merits further study as this may alter risk for cancers linked to toxic exposures.
Collapse
Affiliation(s)
- Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA,Jaclyn M Goodrich, Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Melissa A Furlong
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Alberto J Caban-Martinez
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alesia M Jung
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Ken Batai
- Department of Urology, University of Arizona, Tucson, AZ, USA
| | - Timothy Jenkins
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Shawn Beitel
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Sally Littau
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | | | | | - Jeff Hughes
- Orange County Fire Authority, Irvine, CA, USA
| | | | - Miriam M Calkins
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Jefferey L Burgess
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| |
Collapse
|