1
|
Armstrong DA, Soucy SM, Muse ME, Kolling FW, Trask HW, Howell AL, Laue HE, Hoen AG, Gui J, Christensen BC, Madan JC, Karagas MR, Howe CG. Optimizing Protocols for MicroRNA Profiling of Infant and Toddler Stool. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646630. [PMID: 40236248 PMCID: PMC11996525 DOI: 10.1101/2025.04.01.646630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background MicroRNAs (miRNAs) are increasingly being investigated as potential biomarkers for child development and disease. Although a growing number of studies are utilizing infant and toddler stool for transcriptomic analyses, no studies have compared protocols for preserving and extracting miRNAs from this specimen type, despite unique challenges, including abundant levels of RNAses and microbial RNA. Methods To address this, we first compared three commercially available kits and four preservation methods for their ability to yield high quality RNA from infant and toddler stool (Phase 1). RNA quality was determined by fragment analyzer. Results Of the three RNA extraction kits compared, Zymo BIOMICs yielded the highest overall RNA Quality Number (RQN) (median (range) RQN 9.4 (5.7-10.0)). Of the four preservation methods tested, stool collected in RNAlater and Zymo DNA/RNA Shield Fecal Collection Tubes yielded the highest two RQNs (median (range) RQN 9.8 (5.7-10.0) and 9.4 (5.4-10.0), respectively), which did not differ significantly from each other ( p = 0.47). Second, using miRNA-seq we directly compared miRNA profiles for RNA extracted using the Zymo BIOMICs kit from paired aliquots of the same stool sample from four infants collected into RNAlater and Zymo DNA/RNA Shield Fecal Collection Tubes (Phase 2). Given that microbial sequences greatly outnumber human miRNAs in stool, reads were first classified as human versus microbial prior to aligning human-classified reads to miRBase v22.1. The percentage of reads classified as human and the percentage of human reads aligning to miRBase did not differ for samples collected in RNAlater versus Zymo Shield ( p = 0.12 and p = 0.86, respectively). Furthermore, after multiple testing correction, normalized miRNA counts did not differ significantly between the two preservatives for any of the 42 human miRNAs detected across the eight samples. Conclusions Collecting infant and toddler stool in either RNAlater or Zymo DNA/RNA Shield Fecal Collection Tubes, when paired with RNA extraction using the Zymo BIOMICs extraction kit, yielded high-quality RNA with similar human miRNA profiles. Moreover, of the 42 miRNAs that were detected, several (i.e., miR-194a-3p, miR-200c-3p, miR-26a-5p) are thought to contribute to overall gut homeostasis. These findings may inform protocols for future studies that aim to profile miRNAs in infant and toddler stool to evaluate their potential utility as biomarkers for children's health.
Collapse
|
2
|
Murugesan S, Addis DR, Hussey H, Powell MF, Saravanakumar L, Sturdivant AB, Sinkey RG, Tubinis MD, Massey ZR, Patton C, Mobley JA, Tita AN, Jilling T, Berkowitz DE. Decreased Extracellular Vesicle Vasorin in Severe Preeclampsia Plasma Mediates Endothelial Dysfunction. J Am Heart Assoc 2025; 14:e037242. [PMID: 40118804 DOI: 10.1161/jaha.124.037242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/30/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Preeclampsia is a serious pregnancy complication affecting 5% to 8% of pregnancies globally. preeclampsia is a leading cause of maternal and neonatal morbidity and death. Despite its prevalence, the underlying mechanisms of preeclampsia remain unclear. This study investigated the role of vasorin in preeclampsia pathogenesis by examining its levels in extracellular vesicles (EVs) and effects on vascular function. METHODS AND RESULTS We conducted unbiased proteomics on urine-derived EVs from women with severe preeclampsia and normotensive pregnancies, identifying differentially abundant proteins. Vasorin expression levels were measured in urinary EVs, plasma EVs, and placental tissue. EVs were generated from human and murine placental explants. Vascular functions were assessed using murine aortic rings and human aortic endothelial cells. Vasorin expression was manipulated in human aortic endothelial cells via overexpression and knockdown followed by RNA sequencing. One hundred twenty proteins showed ≥±1.5-fold regulation (P<0.05) between severe preeclampsia and NTP. Vasorin levels decreased in severe preeclampsia in urinary EVs, plasma EVs, and placental tissue. Vasorin levels increased with gestational age in murine pregnancy and were diminished in a murine model of preeclampsia. Severe preeclampsia and murine preeclampsia EVs impaired human aortic endothelial cell migration and inhibited murine aortic ring vasorelaxation. Vasorin overexpression counteracted these effects. RNA sequencing showed that vasorin manipulation in human aortic endothelial cells differentially regulated hundreds of genes linked to vasculogenesis, proliferation, migration, and apoptosis. CONCLUSIONS The data suggest that vasorin, delivered to the endothelium via EVs, regulates vascular function and that the loss of EV vasorin may be one of the mechanistic drivers of preeclampsia.
Collapse
Affiliation(s)
- Saravanakumar Murugesan
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Hanna Hussey
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Mark F Powell
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Lakshmi Saravanakumar
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Adam B Sturdivant
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Rachel G Sinkey
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Michelle D Tubinis
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Zachary R Massey
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Chelsi Patton
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - James A Mobley
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Alan N Tita
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Tamas Jilling
- Department of Pediatrics, Division of Neonatology University of Alabama at Birmingham Birmingham AL USA
| | - Dan E Berkowitz
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine University of Alabama at Birmingham Birmingham AL USA
| |
Collapse
|
3
|
Muse ME, Wang Y, Gilbert-Diamond D, Armstrong DA, Hoen AG, Romano ME, Gui J, Palys TJ, Kolling FW, Christensen BC, Karagas MR, Howe CG. Maternal diet quality and circulating extracellular vesicle and particle miRNA during pregnancy. Eur J Nutr 2025; 64:75. [PMID: 39891736 PMCID: PMC11787256 DOI: 10.1007/s00394-025-03589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
PURPOSE During pregnancy, extracellular vesicle and particle microRNAs (EVP miRNA) in maternal circulation have the capacity to cross the placenta and facilitate maternal-fetal communication. Both dysregulation of circulating EVP miRNA during pregnancy and maternal diet quality have been previously associated with pregnancy complications and adverse birth outcomes. However, little is known about how maternal diet influences circulating EVP miRNA during pregnancy. This study assesses associations between maternal diet quality, as measured by the Alternative Healthy Eating Index (2010; AHEI-2010), and EVP miRNA levels in maternal circulation during pregnancy. METHODS In a pilot study of 53 pregnant participants in the New Hampshire Birth Cohort Study, maternal diet quality was assessed using AHEI-2010 and plasma (mean gestational age at blood collection: 28.8 weeks) EVP miRNA were profiled using the NanoString nCounter platform which interrogates 798 miRNA transcripts. RESULTS In covariate-adjusted models, the AHEI-2010 adherence score was negatively associated (P < 0.05) with the number of unique miRNA transcripts detectable in each sample. In post hoc analyses, greater consumption of red and processed meats was positively associated with levels of 7 miRNA (Q < 0.05), including hsa-miR-512-5p (PBonf < 0.01), a member of the placenta-specific chromosome 19 miRNA cluster. CONCLUSION We identified associations between the consumption of red and processed meat and levels of circulating select EVP miRNA during pregnancy, including placenta-specific miRNA and miRNA with target genes overrepresented in pathways involved in placental development. Additional research is needed to assess whether alterations in maternal circulating EVP miRNA may mediate maternal diet quality's impacts on pregnancy and birth outcomes.
Collapse
Affiliation(s)
- Meghan E Muse
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA.
| | - Yuting Wang
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - David A Armstrong
- Research Service, V.A. Medical Center, White River Junction, VT, USA
- Department of Dermatology, Dartmouth Health, Lebanon, NH, USA
| | - Anne G Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Thomas J Palys
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Frederick W Kolling
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| |
Collapse
|
4
|
Anderson EC, Foley HB, Levy JJ, Romano ME, Gui J, Bentz JL, Maldonado LE, Farzan SF, Bastain TM, Marsit CJ, Breton CV, Howe CG. Maternal glucose levels and late pregnancy circulating extracellular vesicle and particle miRNAs in the MADRES pregnancy cohort. Epigenetics 2024; 19:2404198. [PMID: 39292753 PMCID: PMC11734885 DOI: 10.1080/15592294.2024.2404198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Abstract
Maternal hyperglycemia during pregnancy adversely affects maternal and child outcomes. While mechanisms are not fully understood, maternal circulating miRNAs may play a role. We examined whether continuous glucose levels and hyperglycemia subtypes (gestational diabetes, type 2 diabetes, and glucose intolerance) were associated with circulating miRNAs during late pregnancy. Seven miRNAs (hsa-miR-107, hsa-let-7b-5p, hsa-miR-126-3p, hsa-miR-181a-5p, hsa-miR-374a-5p, hsa-miR-382-5p, and hsa-miR-337-5p) were associated (p < 0.05) with either hyperglycemia or continuous glucose levels prior to multiple testing correction. These miRNAs target genes involved in pathways relevant to maternal and child health, including insulin signaling, placental development, energy balance, and appetite regulation.
Collapse
Affiliation(s)
- Elizabeth C. Anderson
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Helen B. Foley
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua J. Levy
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
- Department of Pathology and Laboratory Medicine and the Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Megan E. Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jessica L. Bentz
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Luis E. Maldonado
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shohreh F. Farzan
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa M. Bastain
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Carrie V. Breton
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Caitlin G. Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
5
|
Wagner N, Karere G. Micro-RNA 7975 directly regulates MDTH expression and mediates endothelial cell proliferation and migration in the development of early atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618502. [PMID: 39464092 PMCID: PMC11507736 DOI: 10.1101/2024.10.15.618502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cardiovascular disease (CVD) is commonly due to the development of atherosclerosis. Endothelial integrity is critical in the prevention of pathogenesis of atherosclerosis. The key to prevention of CVD is understanding the molecular mechanisms responsible for initiation of early atherosclerosis. MiRNAs are mediators of endothelial homeostasis, and their dysregulation could lead to early atherosclerotic disorder. We previously revealed the expression of miR-7975 in early atherosclerotic lesions. The aim of this study was to investigate the novel roles of miR-7975 on endothelial cell proliferation and migration, and in the regulation of metadherin (MTDH) expression. We performed proliferation and migration assays coupled with luciferase assay. We show that miR-7975 promotes proliferation and migration of endothelial cells and that miR-7976 directly regulates (MTDH), previously associated with cancer pathogenesis. In conclusion our results show miR-7975 could be a potential mediator of endothelial homeostasis and that MTDH is a novel target of miR-7975.
Collapse
|
6
|
Naguib MM, Zaher YA, Ali HSM, Elnoury HA, Mohammed LA, Habashy OY, Mohammed DA. Deregulation of MicroRNA-146a and 155 expression levels might underlie complicated pregnancy in Toxoplasma Gondii seronegative women. BMC Womens Health 2024; 24:416. [PMID: 39039506 PMCID: PMC11265433 DOI: 10.1186/s12905-024-03233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/27/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND To evaluate the ability of the estimated plasma expression levels of genes of microRNA (MiR-) 146a and 155 to differentiate between samples of pregnant women suspected to be infected by T. gondii. 50 newly pregnant women who had at least one of the criteria of high risk for toxoplasma infection and 50 newly primigravida women free of these criteria gave blood samples for qualitative determination of serum toxoplasma antibodies and estimation of plasma expression levels of MiR-146a and 155 using the qRT-PCR. During the pregnancy course, the incidence of pregnancy complications was recorded. RESULTS Twenty-six women were IgM-/IgG-, 17 women were IgM+/IgG- and 7 women were IgM+/IgG+. Thirty-two women had pregnancy complications with significantly lower incidence in IgM-/IgG- women. Plasma expression levels of MiR-146a and 155 were significantly higher in total patients compared to control levels and were significantly higher in samples of IgM+/IgG+ patients than in other samples. Statistical analyses defined a high plasma level of MiR-155 as the highly significant predictor for oncoming pregnancy complications and high levels of both microRNAs as predictors for the presence of toxoplasmosis despite seronegativity. Kaplan-Meier regression analysis defined increasing cumulative risk of having toxoplasmosis despite seronegativity with plasma levels of MiR-146a and MiR-155 of 1.2 and 3, respectively. CONCLUSION The incidence of pregnancy complications is high, irrespective of the seronegativity of women at high risk of toxoplasmosis. Estimated plasma levels of MiR-155 might identify women liable to develop complications and differentiate seronegative women vulnerable to having T. gondii infection. TRIAL REGISTRATION The study protocol was approved preliminarily by the Local Ethical Committee at Benha Faculty of Medicine. Before enrollment, the study protocol was discussed in detail with the study participants, and those accepted to participate in the study signed written fully informed consents. The final approval of the study protocol was obtained after the end of case collection and registered by RC: 5-11-2022.
Collapse
Affiliation(s)
- Marwa M Naguib
- Department of Parasitology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Youssef Abdel Zaher
- Department of Obstetrics & Gynecology, Faculty of Medicine, Benha University, Benha, Egypt.
| | - Hemat Salah M Ali
- Department of Parasitology, Faculty of Medicine, Benha University, Benha, Egypt
| | | | | | | | | |
Collapse
|
7
|
Murugesan S, Addis DR, Hussey H, Powell MF, Saravanakumar L, Sturdivant AB, Sinkey RG, Tubinis MD, Massey ZR, Mobley JA, Tita AN, Jilling T, Berkowitz DE. Decreased Extracellular Vesicle Vasorin in Severe Preeclampsia Plasma Mediates Endothelial Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600441. [PMID: 38979275 PMCID: PMC11230191 DOI: 10.1101/2024.06.24.600441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Preeclampsia (PE) is a serious pregnancy complication affecting 5-8% of pregnancies globally. It is a leading cause of maternal and neonatal morbidity and mortality. Despite its prevalence, the underlying mechanisms of PE remain unclear. This study aimed to determine the potential role of vasorin (VASN) in PE pathogenesis by investigating its levels in extracellular vesicles (EV) and its effects on vascular function. Methods & Results We conducted unbiased proteomics on urine-derived EV from severe PE (sPE) and normotensive pregnant women (NTP), identifying differential protein abundances. Out of one hundred and twenty proteins with ≥ ±1.5-fold regulation at P<0.05 between sPE and NTP, we focused on Vasorin (VASN), which is downregulated in sPE in urinary EV, in plasma EV and in the placenta and is a known regulator of vascular function. We generated EV with high VASN content from both human and murine placenta explants (Plex EV), which recapitulated disease-state-dependent effects on vascular function observed when treating murine aorta rings (MAR) or human aortic endothelial cells (HAEC) with murine or human plasma-derived EV. In normal murine pregnancy, VASN increases with gestational age (GA), and VASN is decreased in plasma EV, in placenta tissue and in Plex EV after intravenous administration of adenovirus encoding short FMS-like tyrosine kinase 1 (sFLT-1), a murine model of PE (murine-PE). VASN is decreased in plasma EV, in placenta tissue and in EV isolated from conditioned media collected from placenta explants (Plex EV) in patients with sPE as compared to NTP. Human sPE and murine-PE plasma EV and Plex EV impair migration, tube formation, and induces apoptosis in human aortic endothelial cells (HAEC) and inhibit acetylcholine-induced vasorelaxation in murine vascular rings (MAR). VASN over-expression counteracts the effects of sPE EV treatment in HAEC and MAR. RNA sequencing revealed that over-expression or knock down of VASN in HAEC results in contrasting effects on transcript levels of hundreds of genes associated with vasculogenesis, endothelial cell proliferation, migration and apoptosis. Conclusions The data suggest that VASN, delivered to the endothelium via EV, regulates vascular function and that the loss of EV VASN may be one of the mechanistic drivers of PE. CLINICAL PERSPECTIVE What is NewVASN in circulating plasma EV in sPE is reduced compared with VASN content in plasma EV of gestational age-matched pregnant women.VASN is encapsulated and transported in EV and plays a pro-angiogenic role during pregnancy.VASN should be explored both for its pro-angiogenic mechanistic role and as a novel biomarker and potential predictive diagnostic marker for the onset and severity of PE.What Are the Clinical Implications?VASN plays a role in maintaining vascular health and the normal adaptive cardiovascular response in pregnancy. A decrease of VASN is observed in sPE patients contributing to cardiovascular maladaptation.Strategies to boost diminished VASN levels and/or to pharmacologically manipulate mechanisms downstream of VASN may be explored for potential therapeutic benefit in PE.The decrease in EV-associated VASN could potentially be used as a (predictive) biomarker for PE.
Collapse
|
8
|
Eaves LA, Harrington CE, Fry RC. Epigenetic Responses to Nonchemical Stressors: Potential Molecular Links to Perinatal Health Outcomes. Curr Environ Health Rep 2024; 11:145-157. [PMID: 38580766 DOI: 10.1007/s40572-024-00435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 04/07/2024]
Abstract
PURPOSE OF REVIEW We summarize the recent literature investigating exposure to four nonchemical stressors (financial stress, racism, psychosocial stress, and trauma) and DNA methylation, miRNA expression, and mRNA expression. We also highlight the relationships between these epigenetic changes and six critical perinatal outcomes (preterm birth, low birth weight, preeclampsia, gestational diabetes, childhood allergic disease, and childhood neurocognition). RECENT FINDINGS Multiple studies have found financial stress, psychosocial stress, and trauma to be associated with DNA methylation and/or miRNA and mRNA expression. Fewer studies have investigated the effects of racism. The majority of studies assessed epigenetic or genomic changes in maternal blood, cord blood, or placenta. Several studies included multi-OMIC assessments in which DNA methylation and/or miRNA expression were associated with gene expression. There is strong evidence for the role of epigenetics in driving the health outcomes considered. A total of 22 biomarkers, including numerous HPA axis genes, were identified to be epigenetically altered by both stressors and outcomes. Epigenetic changes related to inflammation, the immune and endocrine systems, and cell growth and survival were highlighted across numerous studies. Maternal exposure to nonchemical stressors is associated with epigenetic and/or genomic changes in a tissue-specific manner among inflammatory, immune, endocrine, and cell growth-related pathways, which may act as mediating pathways to perinatal health outcomes. Future research can test the mediating role of the specific biomarkers identified as linked with both stressors and outcomes. Understanding underlying epigenetic mechanisms altered by nonchemical stressors can provide a better understanding of how chemical and nonchemical exposures interact.
Collapse
Affiliation(s)
- Lauren A Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Cailee E Harrington
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Ozler S, Kebapcilar A, Ozdemir EM, Mert M, Arıkan MN, Celik C. Are Vascular Endothelium and Angiogenesis Effective MicroRNA Biomarkers Associated with the Prediction of Early-Onset Preeclampsia (EOPE) and Adverse Perinatal Outcomes? Reprod Sci 2024; 31:803-810. [PMID: 37848644 DOI: 10.1007/s43032-023-01367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
MicroRNA is associated with angiogenesis, invasion, proliferation, and vascular endothelial remodeling of various diseases. We aimed to investigate serum MicroRNA (miRNA) levels in preeclampsia (PE) and to determine whether any changes in miRNA levels are useful in predicting early onset preeclampsia (EOPE) and adverse perinatal outcomes. A total of 89 pregnant patients were enrolled in this prospective case-control study (55 PE and 34 healthy controls). miR-17, miR-20a, miR-20b, miR126, miR155, miR-200, miR-222, and miR-210 levels were studied in maternal serum in preeclamptic pregnant women. Multiple logistic regression analyses analyzed the risk factors which are associated with EOPE and adverse maternal outcomes. The Real-time RT-PCR method was used to determine maternal serum miRNA levels. Serum miR-17, miR-20a, miR-20b, miR126, and miR-210 levels were significantly higher in PE than the control group (p < .001, p < .001, p < .001, p < .001 and p = .047 respectively). Increased miR-17, miR-20a, and miR-20b levels were independently associated with PE (OR: 0.642, 95%Cl: 0.486-0.846, p = .002; OR: 0.899, 95%Cl: 0.811-0.996, p = .042 and OR: 0.817, 95%Cl: 0.689-0.970, p = .021). Increased miR-17 and miR-126 levels were negatively correlated with serum EOPE in PE (r = -.313, p = .020), and increased miR-210 levels were significantly positively correlated with EOPE in PE (r = .285, p = .005). Increased expression of serum miR-17, miR-20a, miR-20b, miR126, and miR-210 were found to be associated with PE, also increased expression of miR-17, miR-20a, and miR-20b were to be predicted with PE, also increased maternal serum miR-17 and miR-126 expressions were negatively correlated and increased miR-210 expression was positively correlated with EOPE in PE women.
Collapse
Affiliation(s)
- Sibel Ozler
- Department of Perinatology, KTO Karatay University Faculty of Medicine, Konya, Turkey.
| | - Aysegul Kebapcilar
- Obstetrics and Gynecology, Selcuk University Faculty of Medicine, Konya, Turkey
| | | | - Muhammed Mert
- Obstetrics and Gynecology, Health Ministry Of Turkish Republic, Dr. Ali Kemal Belviranlı Obstetrıcs And Gynecology Hospıtal, Konya, Turkey
| | | | - Cetin Celik
- Obstetrics and Gynecology, Selcuk University Faculty of Medicine, Konya, Turkey
| |
Collapse
|
10
|
Muse ME, Armstrong DA, Hoen AG, Gilbert-Diamond D, Gui J, Palys TJ, Kolling FW, Christensen BC, Karagas MR, Howe CG. Maternal-Infant Factors in Relation to Extracellular Vesicle and Particle miRNA in Prenatal Plasma and in Postpartum Human Milk. Int J Mol Sci 2024; 25:1538. [PMID: 38338815 PMCID: PMC10855220 DOI: 10.3390/ijms25031538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
MicroRNAs (miRNA) in extracellular vesicles and particles (EVPs) in maternal circulation during pregnancy and in human milk postpartum are hypothesized to facilitate maternal-offspring communication via epigenetic regulation. However, factors influencing maternal EVP miRNA profiles during these two critical developmental windows remain largely unknown. In a pilot study of 54 mother-child dyads in the New Hampshire Birth Cohort Study, we profiled 798 EVP miRNAs, using the NanoString nCounter platform, in paired maternal second-trimester plasma and mature (6-week) milk samples. In adjusted models, total EVP miRNA counts were lower for plasma samples collected in the afternoon compared with the morning (p = 0.024). Infant age at sample collection was inversely associated with total miRNA counts in human milk EVPs (p = 0.040). Milk EVP miRNA counts were also lower among participants who were multiparous after delivery (p = 0.047), had a pre-pregnancy BMI > 25 kg/m2 (p = 0.037), or delivered their baby via cesarean section (p = 0.021). In post hoc analyses, we also identified 22 specific EVP miRNA that were lower among participants who delivered their baby via cesarean section (Q < 0.05). Target genes of delivery mode-associated miRNAs were over-represented in pathways related to satiety signaling in infants (e.g., CCKR signaling) and mammary gland development and lactation (e.g., FGF signaling, EGF receptor signaling). In conclusion, we identified several key factors that may influence maternal EVP miRNA composition during two critical developmental windows, which should be considered in future studies investigating EVP miRNA roles in maternal and child health.
Collapse
Affiliation(s)
- Meghan E. Muse
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
| | - David A. Armstrong
- Research Service, V.A. Medical Center, Hartford, VT 05009, USA
- Department of Dermatology, Dartmouth Health, Lebanon, NH 03756, USA
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Thomas J. Palys
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
| | - Frederick W. Kolling
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
| | - Caitlin G. Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
| |
Collapse
|
11
|
Howe CG, Armstrong DA, Muse ME, Gilbert-Diamond D, Gui J, Hoen AG, Palys TJ, Barnaby RL, Stanton BA, Jackson BP, Christensen BC, Karagas MR. Periconceptional and Prenatal Exposure to Metals and Extracellular Vesicle and Particle miRNAs in Human Milk: A Pilot Study. EXPOSURE AND HEALTH 2023; 15:731-743. [PMID: 38074282 PMCID: PMC10707483 DOI: 10.1007/s12403-022-00520-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/30/2024]
Abstract
Human milk is a rich source of microRNAs (miRNAs), which can be transported by extracellular vesicles and particles (EVPs) and are hypothesized to contribute to maternal-offspring communication and child development. Environmental contaminant impacts on EVP miRNAs in human milk are largely unknown. In a pilot study of 54 mother-child pairs from the New Hampshire Birth Cohort Study, we examined relationships between five metals (arsenic, lead, manganese, mercury, and selenium) measured in maternal toenail clippings, reflecting exposures during the periconceptional and prenatal periods, and EVP miRNA levels in human milk. 798 miRNAs were profiled using the NanoString nCounter platform; 200 miRNAs were widely detectable and retained for downstream analyses. Metal-miRNA associations were evaluated using covariate-adjusted robust linear regression models. Arsenic exposure during the periconceptional and prenatal periods was associated with lower total miRNA content in human milk EVPs (PBonferroni < 0.05). When evaluating miRNAs individually, 13 miRNAs were inversely associated with arsenic exposure, two in the periconceptional period and 11 in the prenatal period (PBonferroni < 0.05). Other metal-miRNA associations were not statistically significant after multiple testing correction (PBonferroni ≥ 0.05). Many of the arsenic-associated miRNAs are involved in lactation and have anti-inflammatory properties in the intestine and tumor suppressive functions in breast cells. Our findings raise the possibility that periconceptional and prenatal arsenic exposure may reduce levels of multiple miRNAs in human milk EVPs. However, larger confirmatory studies, which can apply environmental mixture approaches, evaluate potential effect modifiers of these relationships, and examine possible downstream consequences for maternal and child health and breastfeeding outcomes, are needed.
Collapse
Affiliation(s)
- Caitlin G. Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - David A. Armstrong
- Department of Dermatology, Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, USA
- Research Service, VA Medical Center, 215 N Main St, White River Junction, VT, USA
| | - Meghan E. Muse
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Thomas J. Palys
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Roxanna L. Barnaby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 66 College St, Hanover, NH, USA
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 66 College St, Hanover, NH, USA
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, 6105 Sherman Fairchild Hall, Hanover, NH, USA
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| |
Collapse
|
12
|
Extracellular vesicles-encapsulated microRNA in mammalian reproduction: A review. Theriogenology 2023; 196:174-185. [PMID: 36423512 DOI: 10.1016/j.theriogenology.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale cell-derived lipid vesicles that participate in cell-cell communication by delivering cargo, including mRNAs, proteins and non-coding RNAs, to recipient cells. MicroRNA (miRNA), a non-coding RNA typically 22 nucleotides long, is crucial for nearly all developmental and pathophysiological processes in mammals by regulating recipient cells gene expression. Infertility is a worldwide health issue that affects 10-15% of couples during their reproductive years. Although assisted reproductive technology (ART) gives infertility couples hope, the failure of ART is mainly unknown. It is well accepted that EVs-encapsulated miRNAs have a role in different reproductive processes, implying that these EVs-encapsulated miRNAs could optimize ART, improve reproductive rate, and treat infertility. As a result, in this review, we describe the present understanding of EVs-encapsulated miRNAs in reproduction regulation.
Collapse
|
13
|
Lewis KA, Chang L, Cheung J, Aouizerat BE, Jelliffe-Pawlowski LL, McLemore MR, Piening B, Rand L, Ryckman KK, Flowers E. Systematic review of transcriptome and microRNAome associations with gestational diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:971354. [PMID: 36704034 PMCID: PMC9871895 DOI: 10.3389/fendo.2022.971354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Gestational diabetes (GDM) is associated with increased risk for preterm birth and related complications for both the pregnant person and newborn. Changes in gene expression have the potential to characterize complex interactions between genetic and behavioral/environmental risk factors for GDM. Our goal was to summarize the state of the science about changes in gene expression and GDM. DESIGN The systematic review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. METHODS PubMed articles about humans, in English, from any date were included if they described mRNA transcriptome or microRNA findings from blood samples in adults with GDM compared with adults without GDM. RESULTS Sixteen articles were found representing 1355 adults (n=674 with GDM, n=681 controls) from 12 countries. Three studies reported transcriptome results and thirteen reported microRNA findings. Identified pathways described various aspects of diabetes pathogenesis, including glucose and insulin signaling, regulation, and transport; natural killer cell mediated cytotoxicity; and fatty acid biosynthesis and metabolism. Studies described 135 unique miRNAs that were associated with GDM, of which eight (miR-16-5p, miR-17-5p, miR-20a-5p, miR-29a-3p, miR-195-5p, miR-222-3p, miR-210-3p, and miR-342-3p) were described in 2 or more studies. Findings suggest that miRNA levels vary based on the time in pregnancy when GDM develops, the time point at which they were measured, sex assigned at birth of the offspring, and both the pre-pregnancy and gestational body mass index of the pregnant person. CONCLUSIONS The mRNA, miRNA, gene targets, and pathways identified in this review contribute to our understanding of GDM pathogenesis; however, further research is warranted to validate previous findings. In particular, longitudinal repeated-measures designs are needed that control for participant characteristics (e.g., weight), use standardized data collection methods and analysis tools, and are sufficiently powered to detect differences between subgroups. Findings may be used to improve early diagnosis, prevention, medication choice and/or clinical treatment of patients with GDM.
Collapse
Affiliation(s)
- Kimberly A. Lewis
- School of Nursing, Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Kimberly A. Lewis,
| | - Lisa Chang
- School of Nursing, Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
| | - Julinna Cheung
- College of Biological Sciences, University of California at Davis, Davis, CA, United States
| | | | - Laura L. Jelliffe-Pawlowski
- Department of Epidemiology and Biostatistics, School of Medicine, University of California at San Francisco, San Francisco, CA, United States
| | - Monica R. McLemore
- School of Nursing, Department of Family Health Care Nursing, University of California, San Francisco, San Francisco, CA, United States
| | - Brian Piening
- Earle A. Chiles Research Institute, Providence St Joseph Health, Portland, OR, United States
| | - Larry Rand
- Obstetrics and Gynecology, Reproductive Sciences, School of Medicine, University of California at San Francisco, San Francisco, CA, United States
| | - Kelli K. Ryckman
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Elena Flowers
- School of Nursing, Department of Physiological Nursing, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
14
|
Flowers AE, Gonzalez TL, Joshi NV, Eisman LE, Clark EL, Buttle RA, Sauro E, DiPentino R, Lin Y, Wu D, Wang Y, Santiskulvong C, Tang J, Lee B, Sun T, Chan JL, Wang ET, Jefferies C, Lawrenson K, Zhu Y, Afshar Y, Tseng HR, Williams J, Pisarska MD. Sex differences in microRNA expression in first and third trimester human placenta†. Biol Reprod 2021; 106:551-567. [PMID: 35040930 DOI: 10.1093/biolre/ioab221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/09/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal and fetal pregnancy outcomes related to placental function vary based on fetal sex, which may be due to sexually dimorphic epigenetic regulation of RNA expression. We identified sexually dimorphic miRNA expression throughout gestation in human placentae. Next-generation sequencing identified miRNA expression profiles in first and third trimester uncomplicated pregnancies using tissue obtained at chorionic villous sampling (n = 113) and parturition (n = 47). Sequencing analysis identified 986 expressed mature miRNAs from female and male placentae at first and third trimester (baseMean>10). Of these, 11 sexually dimorphic (FDR < 0.05) miRNAs were identified in the first and 4 in the third trimester, all upregulated in females, including miR-361-5p, significant in both trimesters. Sex-specific analyses across gestation identified 677 differentially expressed (DE) miRNAs at FDR < 0.05 and baseMean>10, with 508 DE miRNAs in common between female-specific and male-specific analysis (269 upregulated in first trimester, 239 upregulated in third trimester). Of those, miR-4483 had the highest fold changes across gestation. There were 62.5% more female exclusive differences with fold change>2 across gestation than male exclusive (52 miRNAs vs 32 miRNAs), indicating miRNA expression across human gestation is sexually dimorphic. Pathway enrichment analysis identified significant pathways that were differentially regulated in first and third trimester as well as across gestation. This work provides the normative sex dimorphic miRNA atlas in first and third trimester, as well as the sex-independent and sex-specific placenta miRNA atlas across gestation, which may be used to identify biomarkers of placental function and direct functional studies investigating placental sex differences.
Collapse
Affiliation(s)
- Amy E Flowers
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tania L Gonzalez
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nikhil V Joshi
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Laura E Eisman
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ekaterina L Clark
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rae A Buttle
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erica Sauro
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rosemarie DiPentino
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yayu Lin
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Di Wu
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chintda Santiskulvong
- CS Cancer Applied Genomics Shared Resource, CS Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jie Tang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bora Lee
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tianyanxin Sun
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica L Chan
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Erica T Wang
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Caroline Jefferies
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yalda Afshar
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - John Williams
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Margareta D Pisarska
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
15
|
Alberro A, Iparraguirre L, Fernandes A, Otaegui D. Extracellular Vesicles in Blood: Sources, Effects, and Applications. Int J Mol Sci 2021; 22:ijms22158163. [PMID: 34360924 PMCID: PMC8347110 DOI: 10.3390/ijms22158163] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are important players for intercellular communication. EVs are secreted by almost all cell types; they can transfer information between nearby or distant cells, and they are highly abundant in body fluids. In this review, we describe the general characteristics of EVs, as well as isolation and characterization approaches. Then, we focus on one of the most relevant sources of EVs: the blood. Indeed, apart from EVs secreted by blood cells, EVs of diverse origins travel in the bloodstream. We present the numerous types of EVs that have been found in circulation. Besides, the implications of blood-derived EVs in both physiological and pathological processes are summarized, highlighting their potential as biomarkers for the diagnosis, treatment monitoring, and prognosis of several diseases, and also as indicators of physiological modifications. Finally, the applications of EVs introduced in the circulatory system are discussed. We describe the use of EVs from distinct origins, naturally produced or engineered, autologous, allogeneic, or even from different species and the effects they have when introduced in circulation. Therefore, the present work provides a comprehensive overview of the components, effects, and applications of EVs in blood.
Collapse
Affiliation(s)
- Ainhoa Alberro
- Multiple Sclerosis Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.A.); (L.I.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Leire Iparraguirre
- Multiple Sclerosis Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.A.); (L.I.)
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - David Otaegui
- Multiple Sclerosis Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.A.); (L.I.)
- Correspondence:
| |
Collapse
|
16
|
Gonzalez TL, Eisman LE, Joshi NV, Flowers AE, Wu D, Wang Y, Santiskulvong C, Tang J, Buttle RA, Sauro E, Clark EL, DiPentino R, Jefferies CA, Chan JL, Lin Y, Zhu Y, Afshar Y, Tseng HR, Taylor K, Williams J, Pisarska MD. High-throughput miRNA sequencing of the human placenta: expression throughout gestation. Epigenomics 2021; 13:995-1012. [PMID: 34030457 PMCID: PMC8244582 DOI: 10.2217/epi-2021-0055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Aim: To understand miRNA changes across gestation in healthy human placentae. This is essential before miRNAs can be used as biomarkers or prognostic indicators during pregnancy. Materials & methods: Using next-generation sequencing, we characterize the normative human placenta miRNome in first (n = 113) and third trimester (n = 47). Results & conclusion: There are 801 miRNAs expressed in both first and third trimester, including 182 with similar expression across gestation (p ≥ 0.05, fold change ≤2) and 180 significantly different (false discovery rate <0.05, fold change >2). Of placenta-specific miRNA clusters, chromosome 14 miRNA cluster decreases across gestation and chromosome 19 miRNA cluster is overall highly expressed. Chromosome 13 clusters are upregulated in first trimester. This work provides a rich atlas of healthy pregnancies to direct functional studies investigating the epigenetic differences in first and third trimester placentae.
Collapse
Affiliation(s)
- Tania L Gonzalez
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Laura E Eisman
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nikhil V Joshi
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy E Flowers
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Di Wu
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chintda Santiskulvong
- CS Cancer Applied Genomics Shared Resource, CS Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jie Tang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rae A Buttle
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Erica Sauro
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekaterina L Clark
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rosemarie DiPentino
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Caroline A Jefferies
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jessica L Chan
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yayu Lin
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular & Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Yalda Afshar
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular & Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Kent Taylor
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- The Institute for Translational Genomics & Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - John Williams
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Margareta D Pisarska
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|