1
|
Wasim M, Bergonzi MC. From Waste to Value: Solubility and Dissolution Enhancement of Bioactive Extracts from Olive Leaves Using Poloxamers. Molecules 2025; 30:928. [PMID: 40005238 PMCID: PMC11858259 DOI: 10.3390/molecules30040928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
The European Union, producing over 2.5 billion tons of waste annually, has prompted the European Parliament to implement legal measures and encourage the shift towards a circular economy. Millions of tons of biowaste from olive plant leaves are generated annually, resulting in environmental and economic challenges. To address this, the biowaste of olive leaves was valorized, resulting in the extraction of valuable components, triterpenes and polyphenols, which hold potential pharmaceutical, food, or cosmetic applications. Our research involved the formulation of a triterpene extract (TTP70, 70% triterpenes) as a solid dispersion using Poloxamer-188 (P188) and Poloxamer-407 (P407). The solid dispersions were prepared using a kneading method and various extract-to-polymer weight ratios, including 1:1, 1:2, and 1:5. The influence of hydrophilic carriers on the solubility, dissolution profile, and in vitro passive permeability of TTP70 was evaluated. Both carriers and all considered weight ratios significantly improved the solubility of hydrophobic extract and the dissolution of triterpenes. PAMPA experiments demonstrated the efficacy of the formulation in improving the passive permeation of triterpenes. Subsequently, the solid dispersions were physically mixed with a polyphenol-enriched extract (OPA40, 49% of polyphenols) also obtained from olive leaves, and they were used to fill hard gelatin capsules and produce an oral dosage form. The composite formulations improved the dissolution of both classes of constituents.
Collapse
Affiliation(s)
| | - Maria Camilla Bergonzi
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
2
|
Zhang Y, Zhang Q, Li C, Zhou Z, Lei H, Liu M, Zhang D. Advances in cell membrane-based biomimetic nanodelivery systems for natural products. Drug Deliv 2024; 31:2361169. [PMID: 38828914 PMCID: PMC11149581 DOI: 10.1080/10717544.2024.2361169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Active components of natural products, which include paclitaxel, curcumin, gambogic acid, resveratrol, triptolide and celastrol, have promising anti-inflammatory, antitumor, anti-oxidant, and other pharmacological activities. However, their clinical application is limited due to low solubility, instability, low bioavailability, rapid metabolism, short half-life, and strong off-target toxicity. To overcome these drawbacks, cell membrane-based biomimetic nanosystems have emerged that avoid clearance by the immune system, enhance targeting, and prolong drug circulation, while also improving drug solubility and bioavailability, enhancing drug efficacy, and reducing side effects. This review summarizes recent advances in the preparation and coating of cell membrane-coated biomimetic nanosystems and in their applications to disease for targeted natural products delivery. Current challenges, limitations, and prospects in this field are also discussed, providing a research basis for the development of multifunctional biomimetic nanosystems for natural products.
Collapse
Affiliation(s)
- Yifeng Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Qian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Chunhong Li
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Ziyun Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| |
Collapse
|
3
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
4
|
Jahanimoghadam F, Javidan A, Ranjbar M, Torabi M, Kakooei S, Sharififar F. The healing effect of nano emulsified Plantago major L extract on oral wounds in a wistar rat model. BMC Complement Med Ther 2024; 24:327. [PMID: 39227926 PMCID: PMC11370219 DOI: 10.1186/s12906-024-04621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/18/2024] [Indexed: 09/05/2024] Open
Abstract
INTRODUCTION Oral lesions are a common clinical symptom arising from various etiologies and disrupt the patient's quality of life. However, no definite treatment is not yet possible, due to the constantly changing environment of the mouth. In recent years, herbal treatments have gained popularity among patients and physicians due to their availability, safety, affordability, and antimicrobial properties. This research aims to investigate the therapeutic effects of a nano-emulsion of Plantago major standardized extract (PMSE) on oral ulcers in a Wistar rat model using histomorphometry and stereological parameters. MATERIALS AND METHODS The study involved 72 Wistar rats divided randomly into 24 groups of 3 each: groups A1 to A4 received one dose to 4 doses of 5% PMSE nano emulsion, groups B1 to B4 received one dose to 4 doses of 10% PMSE nano emulsion, and groups C1 to C4 received one dose to 4 doses of 20% PMSE nano emulsion, groups D1 to D4 received one dose to 4 doses of nano-emulsion without PMSE, groups E1 to E4 received one dose to 4 doses of PMSE, and group F served as the control group. An incision measuring 2 mm in diameter was made in the animals' hard palate using a biopsy punch. A swab containing the necessary material was used to administer the medication orally to the wound. Histological samples were collected on days 2, 4, 6, and 8 and sent to the pathology laboratory for examination. Data analysis was performed using SPSS 26 and setting statistical significance at p < 0.05. RESULTS Group A showed a high rate of complete and normal re-epithelialization of the wound at 66.7%, compared to the other groups. Group D had a re-epithelialization rate of 50%, while groups C, E, and F had rates of 7.41% and group B had 7.16%. In terms of inflammation reduction, 23.88% of group A had no inflammation, a higher percentage compared to the other groups. Group B and D had no inflammation in 3.33% of cases, lower than the other groups. The study evaluated frequency of re-epithelialization and inflammation levels in different groups on days 2, 4, 6, and 8 after four doses of the drug with no significant differences found among the groups. CONCLUSION None of the nano emulsions or PMSE enhanced the healing rate of oral ulcers. However, a 5% PMSE nano emulsion displayed an increase in lesion re-epithelialization.
Collapse
Affiliation(s)
- Fatemeh Jahanimoghadam
- Social Determinants on Oral Health Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Molook Torabi
- Kerman Social Determinants on Oral Health Research Center, Department of Oral Pathology, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Sina Kakooei
- Dental and Oral Diseases Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Li J, Long Q, Ding H, Wang Y, Luo D, Li Z, Zhang W. Progress in the Treatment of Central Nervous System Diseases Based on Nanosized Traditional Chinese Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308677. [PMID: 38419366 PMCID: PMC11040388 DOI: 10.1002/advs.202308677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical practice to treat diseases related to central nervous system (CNS) damage. However, the blood-brain barrier (BBB) constitutes a significant impediment to the effective delivery of TCM, thus substantially diminishing its efficacy. Advances in nanotechnology and its applications in TCM (also known as nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain region. This review provides an overview of the physiological and pathological mechanisms of the BBB and systematically classifies the common TCM used to treat CNS diseases and types of nanocarriers that effectively deliver TCM to the brain. Additionally, drug delivery strategies for nano-TCMs that utilize in vivo physiological properties or in vitro devices to bypass or cross the BBB are discussed. This review further focuses on the application of nano-TCMs in the treatment of various CNS diseases. Finally, this article anticipates a design strategy for nano-TCMs with higher delivery efficiency and probes their application potential in treating a wider range of CNS diseases.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Qingyin Long
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yang Wang
- Institute of Integrative MedicineDepartment of Integrated Traditional Chinese and Western MedicineXiangya HospitalCentral South University ChangshaChangsha410008China
| | - Dan Luo
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| |
Collapse
|
6
|
Jamroży M, Kudłacik-Kramarczyk S, Drabczyk A, Krzan M. Advanced Drug Carriers: A Review of Selected Protein, Polysaccharide, and Lipid Drug Delivery Platforms. Int J Mol Sci 2024; 25:786. [PMID: 38255859 PMCID: PMC10815656 DOI: 10.3390/ijms25020786] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Studies on bionanocomposite drug carriers are a key area in the field of active substance delivery, introducing innovative approaches to improve drug therapy. Such drug carriers play a crucial role in enhancing the bioavailability of active substances, affecting therapy efficiency and precision. The targeted delivery of drugs to the targeted sites of action and minimization of toxicity to the body is becoming possible through the use of these advanced carriers. Recent research has focused on bionanocomposite structures based on biopolymers, including lipids, polysaccharides, and proteins. This review paper is focused on the description of lipid-containing nanocomposite carriers (including liposomes, lipid emulsions, lipid nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers), polysaccharide-containing nanocomposite carriers (including alginate and cellulose), and protein-containing nanocomposite carriers (e.g., gelatin and albumin). It was demonstrated in many investigations that such carriers show the ability to load therapeutic substances efficiently and precisely control drug release. They also demonstrated desirable biocompatibility, which is a promising sign for their potential application in drug therapy. The development of bionanocomposite drug carriers indicates a novel approach to improving drug delivery processes, which has the potential to contribute to significant advances in the field of pharmacology, improving therapeutic efficacy while minimizing side effects.
Collapse
Affiliation(s)
- Mateusz Jamroży
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
| |
Collapse
|
7
|
Yang F, Shang S, Qi M, Xiang Y, Wang L, Wang X, Lin T, Hao D, Chen J, Liu J, Wu Q. Yeast glucan particles: An express train for oral targeted drug delivery systems. Int J Biol Macromol 2023; 253:127131. [PMID: 37776921 DOI: 10.1016/j.ijbiomac.2023.127131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
As an emerging drug delivery vehicle, yeast glucan particles (YGPs) derived from yeast cells could be specifically taken up by macrophages. Therefore, these vehicles could rely on the recruitment of macrophages at the site of inflammation and tumors to enable targeted imaging and drug delivery. This review summarizes recent advances in the application of YGPs in oral targeted delivery systems, covering the basic structure of yeast cells, methods for pre-preparation, drug encapsulation and characterization. The mechanism and validation of the target recognition interaction of YGPs with macrophages are highlighted, and some inspiring cases are presented to show that yeast cells have promising applications. The future chances and difficulties that YGPs will confront are also emphasized throughout this essay. YGPs are not only the "armor" but also the "compass" of drugs in the process of targeted drug transport. This system is expected to provide a new idea about the oral targeted delivery of anti-inflammatory and anti-tumor drugs, and furthermore offer an effective delivery strategy for targeted therapy of other macrophage-related diseases.
Collapse
Affiliation(s)
- Fan Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shang Shang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengfei Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yajinjing Xiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lingmin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinyi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tao Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Doudou Hao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiajia Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jia Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Qing Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
8
|
Wang B, Xiang J, He B, Tan S, Zhou W. Enhancing bioavailability of natural extracts for nutritional applications through dry powder inhalers (DPI) spray drying: technological advancements and future directions. Front Nutr 2023; 10:1190912. [PMID: 37476406 PMCID: PMC10354342 DOI: 10.3389/fnut.2023.1190912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Natural ingredients have many applications in modern medicine and pharmaceutical projects. However, they often have low solubility, poor chemical stability, and low bioavailability in vivo. Spray drying technology can overcome these challenges by enhancing the properties of natural ingredients. Moreover, drug delivery systems can be flexibly designed to optimize the performance of natural ingredients. Among the various drug delivery systems, dry powder inhalation (DPI) has attracted much attention in pharmaceutical research. Therefore, this review will focus on the spray drying of natural ingredients for DPI and discuss their synthesis and application.
Collapse
Affiliation(s)
- Bo Wang
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Jia Xiang
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Songwen Tan
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Wenhu Zhou
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Liu F, Li JY, Han CB, Wang JH, Tong SY, Wang XK, Li YT, Sun WJ. First cocrystal of esculetin: simultaneously optimized in vitro/vivo properties and antioxidant effect. Eur J Pharm Sci 2023; 187:106469. [PMID: 37209999 DOI: 10.1016/j.ejps.2023.106469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/22/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Esculetin (ELT) is one of the best-known and simplest coumarins with powerful natural antioxidant effects but insoluble and difficult to absorb. In order to overcome the problems, cocrystal engineering was first applied to ELT in this paper. Nicotinamide (NAM) was selected as the coformer for its excellent water solubility and potential synergistic antioxidant effect with ELT. The structure of the ELT-NAM cocrystal was successfully prepared and characterized by IR, SCXRD, PXRD, and DSC-TG. Furthermore, the in vitro/vivo properties and antioxidant effects of the cocrystal were adequately studied. The results highlight that the ELT obtained tremendous improvements in water solubility and bioavailability after cocrystal formation. Meanwhile, the synergistic enhancement of ELT with NAM in antioxidant effect was demonstrated by the DPPH assay. Ultimately, the simultaneously optimized in vitro/vivo properties and antioxidant activity of the cocrystal created an improved practical effect of hepatoprotective in rat experiments. The investigation is significant for developing coumarin drugs represented by ELT.
Collapse
Affiliation(s)
- Fang Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, PR China; Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma lucidum, Liaocheng University, Liaocheng, Shandong 252059, PR China.
| | - Jin-Yang Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Cai-Bei Han
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Jun-Hao Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Si-Yi Tong
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Xue-Kun Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Yan-Tuan Li
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 266003, PR China.
| | - Wen-Jun Sun
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, PR China.
| |
Collapse
|
10
|
Imtiaz F, Islam M, Saeed H, Ahmed A, Asghar M, Saleem B, Farooq MA, Khan DH, Peltonen L. Novel phytoniosomes formulation of Tradescantia pallida leaves attenuates diabetes more effectively than pure extract. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
11
|
Devan AR, Nair B, Nath L. Translational Phytomedicines against Cancer: Promise and Hurdles. Adv Pharm Bull 2023; 13:210-215. [PMID: 37342376 PMCID: PMC10278225 DOI: 10.34172/apb.2023.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/01/2022] [Accepted: 04/24/2022] [Indexed: 02/23/2024] Open
Affiliation(s)
| | | | - Lekshmi.R. Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| |
Collapse
|
12
|
Development of Solid Lipid Nanoparticles as Dry Powder: Characterization and Formulation Considerations. Molecules 2023; 28:molecules28041545. [PMID: 36838532 PMCID: PMC9967033 DOI: 10.3390/molecules28041545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Solid lipid nanoparticles (SLNs) are lipid-based colloidal systems used for the delivery of active compounds. Although SLNs have many benefits, they show important issues due to physical and chemical instability phenomena during storage. For these reasons, it is highly desirable to have a dried SLN formulation available. Therefore, the aim of the project was to identify suitable methods to obtain a dry powder formulation from an SLN suspension. The nanoparticle suspension was dried using both freeze- and spray-drying techniques. The suitability of these methods in obtaining SLN dry powders was evaluated from the analyses of nanotechnological parameters, system morphology and thermal behavior using differential scanning calorimetry. Results pointed out that both drying techniques, although at different yields, were able to produce an SLN dry powder suitable for pharmaceutical applications. Noteworthily, the freeze-drying of SLNs under optimized conditions led to a dry powder endowed with good reconstitution properties and technological parameters similar to the starting conditions. Moreover, freeze-thaw cycles were carried out as a pretest to study the protective effect of different cryoprotectants (e.g., glucose and mannitol with a concentration ranging from 1% to 10% w/v). Glucose proved to be the most effective in preventing particle growth during freezing, thawing, and freeze-drying processes; in particular, the optimum concentration of glucose was 1% w/v.
Collapse
|
13
|
Cardoso RV, Pereira PR, Freitas CS, Paschoalin VMF. Trends in Drug Delivery Systems for Natural Bioactive Molecules to Treat Health Disorders: The Importance of Nano-Liposomes. Pharmaceutics 2022; 14:2808. [PMID: 36559301 PMCID: PMC9785269 DOI: 10.3390/pharmaceutics14122808] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Drug delivery systems are believed to increase pharmaceutical efficacy and the therapeutic index by protecting and stabilizing bioactive molecules, such as protein and peptides, against body fluids' enzymes and/or unsuitable physicochemical conditions while preserving the surrounding healthy tissues from toxicity. Liposomes are biocompatible and biodegradable and do not cause immunogenicity following intravenous or topical administration. Still, their most important characteristic is the ability to load any drug or complex molecule uncommitted to its hydrophobic or hydrophilic character. Selecting lipid components, ratios and thermo-sensitivity is critical to achieve a suitable nano-liposomal formulation. Nano-liposomal surfaces can be tailored to interact successfully with target cells, avoiding undesirable associations with plasma proteins and enhancing their half-life in the bloodstream. Macropinocytosis-dynamin-independent, cell-membrane-cholesterol-dependent processes, clathrin, and caveolae-independent mechanisms are involved in liposome internalization and trafficking within target cells to deliver the loaded drugs to modulate cell function. A successful translation from animal studies to clinical trials is still an important challenge surrounding the approval of new nano-liposomal drugs that have been the focus of investigations. Precision medicine based on the design of functionalized nano-delivery systems bearing highly specific molecules to drive therapies is a promising strategy to treat degenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Vania Margaret Flosi Paschoalin
- Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Quimica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149-sala 545-Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
14
|
Multi-component pharmacokinetics assessment of Artemisia annua L. in rats based on LC-ESI-MS/MS quantification combined with molecular docking. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
15
|
Microemulsions Enhance the In Vitro Antioxidant Activity of Oleanolic Acid in RAW 264.7 Cells. Pharmaceutics 2022; 14:pharmaceutics14102232. [PMID: 36297667 PMCID: PMC9610975 DOI: 10.3390/pharmaceutics14102232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/10/2022] [Accepted: 10/16/2022] [Indexed: 12/08/2022] Open
Abstract
Oleanolic acid (OA) is the main triterpenic acid of olive leaves known for numerous pharmacological properties, including antioxidant activity. However, it is poorly soluble in water and consequently with low bioavailability, which limits its pharmacological application. Microemulsions (MEs) are dispersed systems consisting of two immiscible phases that promote rapid solubilization and absorption in the gastrointestinal tract. To improve both solubility and intestinal permeability of this molecule, OA has been formulated in two different microemulsions (ME-1 and ME-2). A solubility screening was carried out to select the ME components, and pseudoternary phase diagrams were constructed to evaluate the region of existence and select the appropriate amount of the constituents. ME-1 was prepared using Capmul PG-8/NF as the oily phase, and Transcutol and Tween 20 (7:3) as surfactants, while ME-2 contained Nigella oil and Isopropil myristate as the oily phase, and Transcutol HP and Cremophor EL (2:1) as surfactants. The OA solubility was increased by 1000-fold and 3000-fold in ME-1-OA and ME-2-OA, respectively. The MEs’ droplet size and the PdI were evaluated, and the stability was assessed for 8 weeks by monitoring chemical and physical parameters. The parallel artificial membrane permeability assay (PAMPA) also demonstrated an enhanced intestinal permeability of both OA formulations compared with free OA. The potential ability of both MEs to enhance the bioactivity of OA against LPS-induced oxidative stress in RAW 264.7 murine macrophages was also investigated. Overall, this study suggests that both MEs promote a bio-enhancement of the protective action of OA against the LPS-induced pro-oxidant stress in macrophages. Overall, this study suggests that MEs could be an interesting formulation to improve OA oral bioavailability with potential clinical applications.
Collapse
|
16
|
Ke G, Zhang J, Gao W, Chen J, Liu L, Wang S, Zhang H, Yan G. Application of advanced technology in traditional Chinese medicine for cancer therapy. Front Pharmacol 2022; 13:1038063. [PMID: 36313284 PMCID: PMC9606699 DOI: 10.3389/fphar.2022.1038063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Although cancer has seriously threatened people’s health, it is also identified by the World Health Organization as a controllable, treatable and even curable chronic disease. Traditional Chinese medicine (TCM) has been extensively used to treat cancer due to its multiple targets, minimum side effects and potent therapeutic effects, and thus plays an important role in all stages of tumor therapy. With the continuous progress in cancer treatment, the overall efficacy of cancer therapy has been significantly improved, and the survival time of patients has been dramatically prolonged. In recent years, a series of advanced technologies, including nanotechnology, gene editing technology, real-time cell-based assay (RTCA) technology, and flow cytometry analysis technology, have been developed and applied to study TCM for cancer therapy, which efficiently improve the medicinal value of TCM and accelerate the research progress of TCM in cancer therapy. Therefore, the applications of these advanced technologies in TCM for cancer therapy are summarized in this review. We hope this review will provide a good guidance for TCM in cancer therapy.
Collapse
Affiliation(s)
- Gaofeng Ke
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Jia Zhang
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wufeng Gao
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiayi Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Luotong Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Simiao Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
- *Correspondence: Huan Zhang, ; Guojun Yan,
| | - Guojun Yan
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Huan Zhang, ; Guojun Yan,
| |
Collapse
|
17
|
Mo C, Zhao J, Liang J, Wang H, Chen Y, Huang G. Exosomes: A novel insight into traditional Chinese medicine. Front Pharmacol 2022; 13:844782. [PMID: 36105201 PMCID: PMC9465299 DOI: 10.3389/fphar.2022.844782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Exosomes are small extracellular vesicles and play an essential role in the mediation of intercellular communication both in health and disease. Traditional Chinese medicine (TCM) has historically been used to maintain human health and treat various diseases up till today. The interplay between exosomes and TCM has attracted researchers’ growing attention. By integrating the available evidence, TCM formulas and compounds isolated from TCM as exosome modulators have beneficial effects on multiple disorders, such as tumors, kidney diseases, and hepatic disease, which may associate with inhibiting cells proliferation, anti-inflammation, anti-oxidation, and attenuating fibrosis. Exosomes, a natural delivery system, are essential in delivering compounds isolated from TCM to target cells or tissues. Moreover, exosomes may be the potential biomarkers for TCM syndromes, providing strategies for TCM treatment. These findings may provide a novel insight into TCM from exosomes and serve as evidence for better understanding and development of TCM.
Collapse
Affiliation(s)
- Chao Mo
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
- Department of Nephrology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jie Zhao
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Jingyan Liang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Huiling Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yu Chen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Guodong Huang
- Department of Nephrology, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Guodong Huang,
| |
Collapse
|
18
|
Kazantseva L, Becerra J, Santos-Ruiz L. Traditional Medicinal Plants as a Source of Inspiration for Osteosarcoma Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155008. [PMID: 35956961 PMCID: PMC9370649 DOI: 10.3390/molecules27155008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is one of the most common types of bone cancers among paediatric patients. Despite the advances made in surgery, chemo-, and radiotherapy, the mortality rate of metastatic osteosarcoma remains unchangeably high. The standard drug combination used to treat this bone cancer has remained the same for the last 20 years, and it produces many dangerous side effects. Through history, from ancient to modern times, nature has been a remarkable source of chemical diversity, used to alleviate human disease. The application of modern scientific technology to the study of natural products has identified many specific molecules with anti-cancer properties. This review describes the latest discovered anti-cancer compounds extracted from traditional medicinal plants, with a focus on osteosarcoma research, and on their cellular and molecular mechanisms of action. The presented compounds have proven to kill osteosarcoma cells by interfering with different pathways: apoptosis induction, stimulation of autophagy, generation of reactive oxygen species, etc. This wide variety of cellular targets confer natural products the potential to be used as chemotherapeutic drugs, and also the ability to act as sensitizers in drug combination treatments. The major hindrance for these molecules is low bioavailability. A problem that may be solved by chemical modification or nano-encapsulation.
Collapse
Affiliation(s)
- Liliya Kazantseva
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - José Becerra
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cell Biology, Genetics and Physiology, Universidad de Málaga, 29071 Málaga, Spain
| | - Leonor Santos-Ruiz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cell Biology, Genetics and Physiology, Universidad de Málaga, 29071 Málaga, Spain
- Correspondence:
| |
Collapse
|
19
|
Liu C, Chen B, Shi W, Huang W, Qian H. Ionic Liquids for Enhanced Drug Delivery: Recent Progress and Prevailing Challenges. Mol Pharm 2022; 19:1033-1046. [PMID: 35274963 DOI: 10.1021/acs.molpharmaceut.1c00960] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ionic liquids (ILs) are a class of nonmolecular compounds composed only of ions. Compared with traditional organic solvents, ILs have the advantages of wide chemical space, diverse and flexible structures, negligible vapor pressure, and high thermal stability, which make them widely used in many fields of modern science, such as chemical synthesis and catalytic decomposition, electrochemistry, biomass conversion, and biotransformation biotechnology. Because of their special characteristics, ILs have been favored in the pharmaceutical field recently, especially for the development of efficient drug delivery systems. So far, ILs have been successfully designed to promote the dissolution of poorly soluble drugs and the destruction of physiological barriers, such as the tight junction between the stratum corneum and the intestinal epithelium. In addition, ILs can also be combined with other drug strategies to stabilize the structure of small molecules. This Review mainly introduces the application of ILs in drug delivery, emphasizes the potential mechanism of ILs, and presents the key research directions of ILs in the future.
Collapse
Affiliation(s)
- Chunxia Liu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Bin Chen
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
20
|
Natural bioactive constituents from herbs and nutraceuticals promote browning of white adipose tissue. Pharmacol Res 2022; 178:106175. [DOI: 10.1016/j.phrs.2022.106175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022]
|
21
|
Datta S, Luthra R, Bharadvaja N. Medicinal Plants for Glioblastoma Treatment. Anticancer Agents Med Chem 2021; 22:2367-2384. [PMID: 34939551 DOI: 10.2174/1871520622666211221144739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
Glioblastoma, an aggressive brain cancer, demonstrates the least life expectancy among all brain cancers. Because of the regulation of diverse signaling pathways in cancers, the chemotherapeutic approaches used to suppress their multiplication and spreading are restricted. Sensitivity towards chemotherapeutic agents has developed because of the pathological and drug-evading abilities of these diverse mechanisms. As a result, the identification and exploration of strategies or treatments, which can overcome such refractory obstacles to improve glioblastoma response to treatment as well as recovery, is essential. Medicinal herbs contain a wide variety of bioactive compounds, which could trigger aggressive brain cancers, regulate their anti-cancer mechanisms and immune responses to assist in cancer elimination, and cause cell death. Numerous tumor-causing proteins, which facilitate invasion as well as metastasis of cancer, tolerance of chemotherapies, and angiogenesis, are also inhibited by these phytochemicals. Such herbs remain valuable for glioblastoma prevention and its incidence by effectively being used as anti-glioma therapies. This review thus presents the latest findings on medicinal plants using which the extracts or bioactive components are being used against glioblastoma, their mechanism of functioning, pharmacological description as well as recent clinical studies conducted on them.
Collapse
Affiliation(s)
- Shreeja Datta
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Ritika Luthra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| |
Collapse
|
22
|
The combination of nanotechnology and traditional Chinese medicine (TCM) inspires the modernization of TCM: review on nanotechnology in TCM-based drug delivery systems. Drug Deliv Transl Res 2021; 12:1306-1325. [PMID: 34260049 DOI: 10.1007/s13346-021-01029-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 01/12/2023]
Abstract
Fast development of combination of nanotechnology with traditional Chinese medicine (TCM) broadens the field of application of TCM. Besides, it increases the research ideas and contributes to TCM modernization. As expected, TCM will be developed into the nanodrug delivery system by nanotechnology with careful design, which will enhance the medicinal value of TCM to cure and prevent disease based on benefits brought by nanometer scale. Here, formulations, relevant preparations methods, and characteristics of nano-TCM were introduced. In addition, the main excellent performances of nano-TCM were clearly elaborated. What is more, the review was intended to address the studies committed to application of nanotechnology in TCM over the years, including development of Chinese medicine active ingredients, complete TCM, and Chinese herbal compounds based on nanotechnology. Finally, this review discussed the safety of nano-TCM and presented future development trends in the way to realize the modernization of TCM. Overall, using the emerging nanotechnology in TCM is promising to promote progress of TCM in international platform. Recent researches on modernization of traditional Chinese medicine (TCM) urged by nanotechnology are introduced, and formulations, advantages, and applications of nano-TCM are reviewed to provide strong proofs.
Collapse
|
23
|
Wang N, Yu H, Song Q, Mao P, Li K, Bao G. Sesamol-loaded stearic acid-chitosan nanomicelles mitigate the oxidative stress-stimulated apoptosis and induction of pro-inflammatory cytokines in motor neuronal of the spinal cord through NF-ĸB signaling pathway. Int J Biol Macromol 2021; 186:23-32. [PMID: 34214577 DOI: 10.1016/j.ijbiomac.2021.06.171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/15/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
Abstract
As natural potential antioxidants suffer from low cellular uptake, the development of drug-loaded nanoplatforms may provide useful information about the treatment of spinal cord injury (SCI). In the present study, sesamol (SM)-loaded stearic acid (SA) -chitosan (CS) nanomicelles were fabricated and well-characterized. Afterwards, the neuroprotective effects of SM@SA-CS nanomicelles against lipopolysaccharide (LPS)-induced oxidative stress in NSC-34 cells was assessed by different cellular and molecular pathways. It was deduced that the size of synthesized SM@SA-CS was in the range of 10-20 nm and the hydrodynamic radii of SA-CA and SM@SA-CA nanomicelles were 53.12 ± 6.21 nm and 59.12 ± 7.31 nm, respectively. Furthermore, SM@SA-CS nanomicelles displayed a sustained drug release at physiological pH, potential dissolution rate and stability even up to 15 days. Cellular assay showed that SM@SA-CS nanomicelles co-incubation with LPS for 24 h in comparison with free drug remarkably regulated cell survival, membrane leakage, generation of ROS, activity of non-enzymatic and enzymatic antioxidant systems, and apoptotic and inflammatory signaling pathway through NF-ĸB signaling pathway. These data indicated that SM@SA-CS nanomicelles can be developed as a promising platform for the mitigation of oxidative stress-mediated apoptosis in neural cells.
Collapse
Affiliation(s)
- Ning Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hai Yu
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qian Song
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ping Mao
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kuo Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Gang Bao
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
24
|
Plant-Derived Anticancer Compounds as New Perspectives in Drug Discovery and Alternative Therapy. Molecules 2021; 26:molecules26041109. [PMID: 33669817 PMCID: PMC7922180 DOI: 10.3390/molecules26041109] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/29/2022] Open
Abstract
Despite the recent advances in the field of chemically synthetized pharmaceutical agents, nature remains the main supplier of bioactive molecules. The research of natural products is a valuable approach for the discovery and development of novel biologically active compounds possessing unique structures and mechanisms of action. Although their use belongs to the traditional treatment regimes, plant-derived compounds still cover a large portion of the current-day pharmaceutical agents. Their medical importance is well recognized in the field of oncology, especially as an alternative to the limitations of conventional chemotherapy (severe side effects and inefficacy due to the occurrence of multi-drug resistance). This review offers a comprehensive perspective of the first blockbuster chemotherapeutic agents of natural origin’s (e.g. taxol, vincristine, doxorubicin) mechanism of action using 3D representation. In addition is portrayed the step-by-step evolution from preclinical to clinical evaluation of the most recently studied natural compounds with potent antitumor activity (e.g. resveratrol, curcumin, betulinic acid, etc.) in terms of anticancer mechanisms of action and the possible indications as chemotherapeutic or chemopreventive agents and sensitizers. Finally, this review describes several efficient platforms for the encapsulation and targeted delivery of natural compounds in cancer treatment
Collapse
|
25
|
Current Progress of Phytomedicine in Glioblastoma Therapy. Curr Med Sci 2021; 40:1067-1074. [PMID: 33428134 DOI: 10.1007/s11596-020-2288-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023]
Abstract
Glioblastoma multiforme, an intrusive brain cancer, has the lowest survival rate of all brain cancers. The chemotherapy utilized to prevent their proliferation and propagation is limited due to modulation of complex cancer signalling pathways. These complex pathways provide infiltrative and drug evading properties leading to the development of chemotherapy resistance. Therefore, the development and discovery of such interventions or therapies that can bypass all these resistive barriers to ameliorate glioma prognosis and survival is of profound importance. Medicinal plants are comprised of an exorbitant range of phytochemicals that have the broad-spectrum capability to target intrusive brain cancers, modulate anti-cancer pathways and immunological responses to facilitate their eradication, and induce apoptosis. These phytocompounds also interfere with several oncogenic proteins that promote cancer invasiveness and metastasis, chemotherapy resistance and angiogenesis. These plants are extremely vital for promising anti-glioma therapy to avert glioma proliferation and recurrence. In this review, we acquired recent literature on medicinal plants whose extracts/bioactive ingredients are newly exploited in glioma therapeutics, and also highlighted their mode of action and pharmacological profile.
Collapse
|
26
|
Incorporating natural anti-inflammatory compounds into yeast glucan particles increases their bioactivity in vitro. Int J Biol Macromol 2020; 169:443-451. [PMID: 33340625 DOI: 10.1016/j.ijbiomac.2020.12.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 11/23/2022]
Abstract
Yeast glucan particles (GPs) are promising agents for the delivery of biologically active compounds as drugs. GPs possess their own biological activities and can act synergistically with their cargo. This study aimed to determine how incorporating artemisinin, ellagic acid, (-)-epigallocatechin gallate, morusin, or trans-resveratrol into GPs affects their anti-inflammatory and antioxidant potential in vitro. Two different methods - slurry evaporation and spray drying - were used to prepare composites (GPs + bioactive compound) and the anti-inflammatory and antioxidative properties of the resultant products were compared. Several of the natural compounds showed the beneficial effects of being combined with GPs. The materials prepared by spray drying showed greater activity than those made using a rotary evaporator. Natural compounds incorporated into yeast GPs showed greater anti-inflammatory potential in vitro than simple suspensions of these compounds as demonstrated by their inhibition of the activity of transcription factors NF-κB/AP-1 and the secretion of the pro-inflammatory cytokine TNF-α.
Collapse
|
27
|
Fabrication linalool-functionalized hollow mesoporous silica spheres nanoparticles for efficiently enhance bactericidal activity. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Huguet-Casquero A, Moreno-Sastre M, López-Méndez TB, Gainza E, Pedraz JL. Encapsulation of Oleuropein in Nanostructured Lipid Carriers: Biocompatibility and Antioxidant Efficacy in Lung Epithelial Cells. Pharmaceutics 2020; 12:pharmaceutics12050429. [PMID: 32384817 PMCID: PMC7285197 DOI: 10.3390/pharmaceutics12050429] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Oxidative damage has been linked to a number of diseases. Oleuropein (OLE), a natural occurring polyphenol from olive leaves (Olea europaea L.), is known to be a potent antioxidant compound with inherent instability and compromised bioavailability. Therefore, in this work, nanostructured lipid carriers (NLCs) were proposed for OLE encapsulation to protect and improve its antioxidant efficacy. The lipid matrix, composed of olive oil and Precirol, was optimized prior to OLE encapsulation. The characterization of the optimized oleuropein-loaded NLCs (NLC-OLE) showed a mean size of 150 nm, a zeta potential of −21 mV, an encapsulation efficiency of 99.12%, sustained release profile, and improved radical scavenging activity. The cellular in vitro assays demonstrated the biocompatibility of the NLCs, which were found to improve and maintain OLE antioxidant efficacy in the A549 and CuFi-1 lung epithelial cell lines, respectively. Overall, these findings suggest a promising potential of NLC-OLE to further design a pulmonary formulation for OLE delivery in lung epithelia.
Collapse
Affiliation(s)
- Amaia Huguet-Casquero
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.H.-C.); (M.M.-S.); (T.B.L.-M.)
- Biosasun S.A., Iturralde 10, Etxabarri-Ibiña, 01006 Zigoitia, Spain;
| | - Maria Moreno-Sastre
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.H.-C.); (M.M.-S.); (T.B.L.-M.)
| | - Tania Belén López-Méndez
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.H.-C.); (M.M.-S.); (T.B.L.-M.)
| | - Eusebio Gainza
- Biosasun S.A., Iturralde 10, Etxabarri-Ibiña, 01006 Zigoitia, Spain;
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.H.-C.); (M.M.-S.); (T.B.L.-M.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Correspondence:
| |
Collapse
|
29
|
Chen LF, Xu PY, Fu CP, Kankala RK, Chen AZ, Wang SB. Fabrication of Supercritical Antisolvent (SAS) Process-Assisted Fisetin-Encapsulated Poly (Vinyl Pyrrolidone) (PVP) Nanocomposites for Improved Anticancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E322. [PMID: 32070047 PMCID: PMC7075186 DOI: 10.3390/nano10020322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 01/17/2023]
Abstract
Due to its hydrophobicity, fisetin (FIS) often suffers from several limitations in terms of its applicability during the fabrication of pharmaceutical formulations. To overcome this intrinsic limitation of hydrophobicity, we demonstrate here the generation of poly (vinyl pyrrolidone) (PVP)-encapsulated FIS nanoparticles (FIS-PVP NPs) utilizing a supercritical antisolvent (SAS) method to enhance its aqueous solubility and substantial therapeutic effects. In this context, the effects of various processing and formulation parameters, including the solvent/antisolvent ratio, drug/polymer (FIS/PVP) mass ratio, and solution flow rate, on the eventual particle size as well as on distribution were investigated using a 23 factorial experimental design. Notably, the FIS/PVP mass ratio significantly affected the morphological attributes of the resultant particles. Initially, the designed constructs were characterized systematically using various techniques (e.g., chemical functionalities were examined with Fourier-transform infrared (FTIR) spectroscopy, and physical states were examined with X-ray diffraction analysis (XRD) and differential scanning calorimetry (DSC) techniques). In addition, drug release as well as cytotoxicity evaluations in vitro indicated that the nanosized polymer-coated particles showed augmented performance efficiency compared to the free drug, which was attributable to the improvement in the dissolution rate of the FIS-PVP NPs due to their small size, facilitating a higher surface area over the raw form of FIS. Our findings show that the designed SAS process-assisted nanoconstructs with augmented bioavailability, have great potential for applications in pharmaceutics.
Collapse
Affiliation(s)
- Lin-Fei Chen
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (L.-F.C.); (P.-Y.X.); (R.K.K.)
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China;
| | - Pei-Yao Xu
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (L.-F.C.); (P.-Y.X.); (R.K.K.)
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China;
| | - Chao-Ping Fu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China;
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Ranjith Kumar Kankala
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (L.-F.C.); (P.-Y.X.); (R.K.K.)
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China;
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Ai-Zheng Chen
- Department of Chemical Engineering and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (L.-F.C.); (P.-Y.X.); (R.K.K.)
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China;
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China;
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
30
|
Puglia C, Pignatello R, Fuochi V, Furneri PM, Lauro MR, Santonocito D, Cortesi R, Esposito E. Lipid Nanoparticles and Active Natural Compounds: A Perfect Combination for Pharmaceutical Applications. Curr Med Chem 2019; 26:4681-4696. [PMID: 31203795 DOI: 10.2174/0929867326666190614123835] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
Phytochemicals represent an important class of bioactive compounds characterized by significant health benefits. Notwithstanding these important features, their potential therapeutic properties suffer from poor water solubility and membrane permeability limiting their approach to nutraceutical and pharmaceutical applications. Lipid nanoparticles are well known carrier systems endowed with high biodegradation and an extraordinary biocompatible chemical nature, successfully used as platform for advanced delivery of many active compounds, including the oral, topical and systemic routes. This article is aimed at reviewing the last ten years of studies about the application of lipid nanoparticles in active natural compounds reporting examples and advantages of these colloidal carrier systems.
Collapse
Affiliation(s)
- Carmelo Puglia
- Department of Drug Sciences, University of Catania, Catania, Italy
| | | | - Virginia Fuochi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pio Maria Furneri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | | | - Rita Cortesi
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| | - Elisabetta Esposito
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
31
|
Khanyile S, Masamba P, Oyinloye BE, Mbatha LS, Kappo AP. Current Biochemical Applications and Future Prospects of Chlorotoxin in Cancer Diagnostics and Therapeutics. Adv Pharm Bull 2019; 9:510-520. [PMID: 31857956 PMCID: PMC6912174 DOI: 10.15171/apb.2019.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/14/2019] [Accepted: 07/21/2019] [Indexed: 12/22/2022] Open
Abstract
Chlorotoxin (CTX) is a minute 4 kDa protein made up of 36 amino acid residues, commonly known for its binding affinity to chloride channels and matrix metalloproteinase-2 (MMP-2) of glioma tumors of the spine and brain. This property and the possibility of conjugating this peptide to nanoparticles have enabled its diverse use in various biotechnological and biomedical applications for cancer treatment, such as in tumor imaging and radiotherapy. Because of the fascinating biological properties CTX possesses, elucidating its mechanism of action may hold promise for the development of new and effective therapeutic drugs, as well as more sensitive and highly specific cancer-screening kits. This article therefore reviews the currently known applications of CTX and suggests diverse ways in which it can be applied for the design of improved drugs and diagnostic tools for cancer.
Collapse
Affiliation(s)
- Sbonelo Khanyile
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Priscilla Masamba
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Babatunji Emmanuel Oyinloye
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.,Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
| | - Londiwe Simphiwe Mbatha
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
32
|
Moshawih S, S.M.N. Mydin RB, Kalakotla S, Jarrar QB. Potential application of resveratrol in nanocarriers against cancer: Overview and future trends. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
33
|
Kumar Singh A, Cabral C, Kumar R, Ganguly R, Kumar Rana H, Gupta A, Rosaria Lauro M, Carbone C, Reis F, Pandey AK. Beneficial Effects of Dietary Polyphenols on Gut Microbiota and Strategies to Improve Delivery Efficiency. Nutrients 2019; 11:E2216. [PMID: 31540270 PMCID: PMC6770155 DOI: 10.3390/nu11092216] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
The human intestine contains an intricate ecological community of dwelling bacteria, referred as gut microbiota (GM), which plays a pivotal role in host homeostasis. Multiple factors could interfere with this delicate balance, including genetics, age, antibiotics, as well as environmental factors, particularly diet, thus causing a disruption of microbiota equilibrium (dysbiosis). Growing evidences support the involvement of GM dysbiosis in gastrointestinal (GI) and extra-intestinal cardiometabolic diseases, namely obesity and diabetes. This review firstly overviews the role of GM in health and disease, then critically reviews the evidences regarding the influence of dietary polyphenols in GM based on preclinical and clinical data, ending with strategies under development to improve efficiency of delivery. Although the precise mechanisms deserve further clarification, preclinical and clinical data suggest that dietary polyphenols present prebiotic properties and exert antimicrobial activities against pathogenic GM, having benefits in distinct disorders. Specifically, dietary polyphenols have been shown ability to modulate GM composition and function, interfering with bacterial quorum sensing, membrane permeability, as well as sensitizing bacteria to xenobiotics. In addition, can impact on gut metabolism and immunity and exert anti-inflammatory properties. In order to overcome the low bioavailability, several different approaches have been developed, aiming to improve solubility and transport of dietary polyphenols throughout the GI tract and deliver in the targeted intestinal regions. Although more research is still needed, particularly translational and clinical studies, the biotechnological progresses achieved during the last years open up good perspectives to, in a near future, be able to improve the use of dietary polyphenols modulating GM in a broad range of disorders characterized by a dysbiotic phenotype.
Collapse
Grants
- UID/NEU/04539/2013 Fundação para a Ciência e a Tecnologia
- UID/NEU/04539/2019 Fundação para a Ciência e a Tecnologia
- PTDC/SAU-NUT/31712/2017 Fundação para a Ciência e a Tecnologia
- POCI-01-0145-FEDER-007440 Programa Operacional Temático Factores de Competitividade
- POCI-01-0145-FEDER-031712 Programa Operacional Temático Factores de Competitividade
- CENTRO-01-0145-FEDER-000012-HealthyAging2020 Programa Operacional Temático Factores de Competitividade
- AKS, RK and RG Senior/Junior research fellowship Council of Scientific & Industrial Research, India
- AKS, RK, RG, HKR, AG and AKP acknowledgment Fund for Improvement of S&T Infrastructure (FIST) of the Department of Science & Technology (DST), India
- AKS, RK, RG, HKR, AG and AKP acknowledgment UGC-SAP, India
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| | - Célia Cabral
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine; & CIBB Consortium, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| | - Risha Ganguly
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| | - Harvesh Kumar Rana
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| | - Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| | - Maria Rosaria Lauro
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy.
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| | - Flávio Reis
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine; & CIBB Consortium, University of Coimbra, 3000-548 Coimbra, Portugal.
- Institute of Pharmacology & Experimental Therapeutics, Faculty of Medicine; University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
34
|
Evaluation of Carum-loaded Niosomes on Breast Cancer Cells:Physicochemical Properties, In Vitro Cytotoxicity, Flow Cytometric, DNA Fragmentation and Cell Migration Assay. Sci Rep 2019; 9:7139. [PMID: 31073144 PMCID: PMC6509162 DOI: 10.1038/s41598-019-43755-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 04/26/2019] [Indexed: 11/10/2022] Open
Abstract
Thymoquinone (TQ), a phytochemical compound found in Carum carvil seeds (C. carvil), has a lot of applications in medical especially cancer therapy. However, TQ has a hydrophobic nature, and because of that, its solubility, permeability and its bioavailability in biological mediums are poor. To diminish these drawbacks, we have designed a herbal carrier composed of Ergosterol (herbal lipid), Carum carvil extract (Carum) and nonionic surfactants for herbal cancer treatment. C. carvil was extracted and characterized by GC/Mass. Two different formulations containing TQ and Carum were encapsulated into niosomes (Nio/TQ and Nio/Carum, respectively) and their properties were compared together. Morphology, size, zeta potential, encapsulation efficiency (EE%), profile release rate, in vitro cytotoxicity, flow cytometric, DNA fragmentation and cell migration assay of formulations were evaluated. Results show that both loaded formulations have a spherical morphology, nanometric size and negative zeta potential. EE% of TQ and Carum loaded niosomes was about 92.32% ± 2.32 and 86.25% ± 1.85, respectively. Both loaded formulations provided a controlled release compared with free TQ. MTT assay showed that loaded niosomes have more anti-cancer activity compared with Free TQ and free Carum against MCF-7 cancer cell line and these results were confirmed by flow cytometric analysis. Cell cycle analysis showed G2/M arrest in TQ, Nio/TQ and Nio/Carum formulations. TQ, Nio/TQ and Nio/Carum decreased the migration of MCF7 cells remarkedly. These results show that the TQ and Carum loaded niosomes are novel carriers with high efficiency for encapsulation of low soluble phytochemicals and also would be favourable systems for breast cancer treatment.
Collapse
|
35
|
Safdar R, Omar AA, Arunagiri A, Regupathi I, Thanabalan M. Potential of Chitosan and its derivatives for controlled drug release applications – A review. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.10.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Li L, Feng Y, Hong Y, Lin X, Shen L. Recent Advances in Drug Delivery System for Bioactive Glycosides from Traditional Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1791-1824. [PMID: 30482025 DOI: 10.1142/s0192415x18500908] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Traditional Chinese Medicine (TCM) has been used in China for thousands of years for the prevention and treatment of various diseases. The materials that exert a therapeutic effect are called the active ingredients. The bioactive glycosides are important active ingredients from TCM that can make significant contributions to treating diseases. Because of the possibilities of various clinical applications, the properties and administration of these bioactive glycosides deserve further investigation. Their promising treatment effects, however, are hindered by their poor solubility, poor stability and rapid elimination. Therefore, it is necessary that we improve the therapeutic efficacy of bioactive glycosides by overcoming these problems. Meanwhile, some practical design strategies and novel drug delivery vehicles based on drug delivery systems provide favorable support in clinical practice for these active ingredients. This review summarizes diverse pharmacological activities of bioactive glycosides and focuses on recent advances in delivery system for these active constitutes; in particular, some glycol glycosides can effectively cure intractable diseases through targeted drug delivery. This review elucidates some design strategies for drug delivery system that are mainly based on two methods (avoiding physical barriers by changing dosage forms and enhancing the ability to bind to receptors or proteins after administration) and indicate the current challenges during the combination of delivery vehicles and these glycosides in hopes of promoting the process of receiving ideal therapeutic efficacy of them in future studies.
Collapse
Affiliation(s)
- Lei Li
- * School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yi Feng
- † Engineering Research Center of Modern Preparation, Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yanlong Hong
- ‡ Shanghai Innovation Center of Traditional Chinese, Medicine Health Service, Shanghai, P. R. China
| | - Xiao Lin
- * School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.,† Engineering Research Center of Modern Preparation, Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Lan Shen
- * School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China.,† Engineering Research Center of Modern Preparation, Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
37
|
Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surf B Biointerfaces 2018; 171:566-578. [DOI: 10.1016/j.colsurfb.2018.08.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023]
|
38
|
Karasawa MMG, Mohan C. Fruits as Prospective Reserves of bioactive Compounds: A Review. NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:335-346. [PMID: 30069678 PMCID: PMC6109443 DOI: 10.1007/s13659-018-0186-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/25/2018] [Indexed: 05/09/2023]
Abstract
Bioactive natural products have always played a significant role as novel therapeutical agents irrespective of their source of origin. They have a profound effect on human health by both direct and indirect means and also possess immense medicinal properties. Fruit species are largely appreciated and highly consumed throughout the world. Epidemiologic information supports the association between high intake of fruits and low risk of chronic diseases. There are several biological reasons why the consumption of fruits might reduce or prevent chronic diseases. Fruits are rich sources of nutrients and energy, have vitamins, minerals, fiber and numerous other classes of biologically active compounds. Moreover, parts of the fruit crops like fruit peels, leaves and barks also possess medicinal properties and have been included in this review. The most important activities discussed in this review include antidiabetic, anticancer, antihypertensive, neuroprotective, anti-inflammatory, antioxidant, antimicrobial, antiviral, stimulation of the immune system, cell detoxification, cholesterol synthesis, anticonvulsant and their ability to lower blood pressure. Several phytochemicals involved in this context are described with special emphasis on their structural properties and their relativity with human diseases.
Collapse
Affiliation(s)
| | - Chakravarthi Mohan
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
39
|
Rameshk M, Sharififar F, Mehrabani M, Pardakhty A, Farsinejad A, Mehrabani M. Proliferation and In Vitro Wound Healing Effects of the Microniosomes Containing Narcissus tazetta L. Bulb Extract on Primary Human Fibroblasts (HDFs). Daru 2018; 26:10.1007/s40199-018-0211-7. [PMID: 30209758 PMCID: PMC6154482 DOI: 10.1007/s40199-018-0211-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/09/2018] [Indexed: 01/30/2023] Open
Abstract
PURPOSE In Traditional Persian Medicine (TPM), different natural treatments have been suggested for skin damages such as Narcissus tazetta L. bulb application. New drug delivery systems such as niosomes have shown considerable increase transdermal drug delivery through stratum corneum, the main barrier against substances transport into skin. The aim of this study is preparation of niosomal formulations from N. tazetta bulb extract and evaluation of its in vitro wound healing effect. MATERIALS AND METHODS Non-ionic surfactant vesicles (NSVs or niosomes) were prepared by film hydration method from percolated extract of N. tazetta bulb. A number of 12 niosomal formulations (F1-F12) were prepared using different proportions of Span 60/Tween 60/cholesterol and 80% methanol-dissolved/aqueous PEN (percolation extract of N. tazetta) (30 and 50 mg/ml). Their morphology, particle size, physical and chemical stability and encapsulation efficiency was studied. In vitro wound healing effect of various concentrations of the best PEN niosomal formulation (F9) was evaluated in comparison to PEN on human dermal fibroblasts (HDFs). RESULTS Increasing the aqueous/methanolic PEN concentration from 3 to 5% resulted size reduction of NSVs with statistically significant difference (p < 0.05). F9 showed the most physicochemical stability and was chosen for in vitro wound healing effect. This formulation exhibited significantly effects (p < 0.05) on cell proliferation in HDF cells at 1.562 and 3.125 μg/ml compared with the untreated cells using neutral red assay. CONCLUSION Formulation of PEN in niosome carrier significantly decreased the gap width on human dermal fibroblasts. Graphical abstract Schematic processes of proliferation effect of narcisus tazetta bulb on fibroblast cells.
Collapse
Affiliation(s)
- Maryam Rameshk
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Faculty of Pharmacy Kerman University of Medical Sciences, Haft Bagh-e Alavi Blvd, Kerman, Iran
- Faculty of Persian Medicine, Department of Traditional Pharmacy, Kerman University of Medical Sciences, Modiriat Street, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Faculty of Pharmacy Kerman University of Medical Sciences, Haft Bagh-e Alavi Blvd, Kerman, Iran
| | - Mitra Mehrabani
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Faculty of Pharmacy Kerman University of Medical Sciences, Haft Bagh-e Alavi Blvd, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Haft Bagh-e Alavi Blvd, Kerman, Iran
| | - Alireza Farsinejad
- Department of Hematology and Blood Banking, faculty of allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Afzalipour School of Medicine, University of Shahid Bahonar, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center; Neuropharmacology Institute, Kerman University of Medical Sciences, Ibne cina street, Kerman, Iran
| |
Collapse
|
40
|
Lawsone-loaded Niosome and its antitumor activity in MCF-7 breast Cancer cell line: a Nano-herbal treatment for Cancer. ACTA ACUST UNITED AC 2018; 26:11-17. [PMID: 30159762 PMCID: PMC6154483 DOI: 10.1007/s40199-018-0207-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/18/2018] [Indexed: 10/29/2022]
Abstract
Phytochemicals like Lawsone have some drawbacks that stem from their poor solubility. Low solubility in aqueous mediums results in low bioavailability, poor permeability and instability of phytochemical compounds in biological environments. The aim of this study was to design nanoniosomes containing Lawsone (Law) using non-ionic surfactants and cholesterol. Niosomes were prepared by thin film hydration method (TFH). Then, they were loaded with Henna extract (HLaw) and standard Lawsone (SLaw), and two resulted formulations were compared. The henna extract was analyzed by mass gas chromatography. Size, zeta potential, polydispersity index (PDI) and morphology of the loaded formulations were evaluated by dynamic light scattering (DLS) and scanning electron spectroscopy (SEM). The incorporation and release rate of Law from niosome bilayers were evaluated by UV-Vis spectroscopy. In vitro experiments were carried out to evaluate antitumor activity in MCF-7 cell line. The results showed distinct spherical shapes and particle sizes were about 250 nm in diameter and have negative zeta potentials. Niosomes were stable at 4 °C for 2 months. Entrapment efficiently of both formulations was about 70% and showed a sustained release profile. In vitro study exhibited that using of niosome to encapsulating Law can significantly increase antitumor activity of formulation in MCF-7 cell line compared to Law solution (free Law). Thus, niosomes are a promising carrier system for delivery of phytochemical compounds that have poor solubility in biological fluids. Graphical abstract ᅟ.
Collapse
|
41
|
Sansone F, Esposito T, Lauro MR, Picerno P, Mencherini T, Gasparri F, De Santis S, Chieppa M, Cirillo C, Aquino RP. Application of Spray Drying Particle Engineering to a High-Functionality/Low-Solubility Milk Thistle Extract: Powders Production and Characterization. Molecules 2018; 23:E1716. [PMID: 30011893 PMCID: PMC6100597 DOI: 10.3390/molecules23071716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022] Open
Abstract
Many natural compounds having antioxidant and anti-inflammatory activity are a potential target for new therapies against chronic inflammatory syndromes. The oral administration of functional herbal supplements may become a prevention strategy or therapy adjuvant for susceptible patients. A case study is our milk thistle (Silybum marianum) extract rich in silymarin complex. A water-soluble microencapsulated powder system was developed by a spray drying technique to improve the poor silymarin bioactivity after oral administration. Sodium carboxymethylcellulose (NaCMC) was employed as coating/swelling polymer matrix and sodium lauryl sulfate (SLS) as the surfactant (1:1:0.05 w/w/w). A H₂O/EtOH/acetone (50/15/35 v/v/v) solvent system was used as liquid feed. The microsystems were capable of improving the in vitro dissolution and permeation rates, suggesting an enhancement of bioactivity after oral administration. The microsystems protect the antioxidant activity of silymarin after harsh storage conditions period and do not affect the anti-inflammatory properties of the raw extract (efficient already at lower concentrations of 0.312 mg/mL) to reduce dendritic cells (DCs) inflammatory cytokine secretion after lipopolysaccharide administration. This approach allows managing particle size, surface properties and release of bioactive agents improving the bioactivity of a herbal supplement and is also possibly applicable to many other similar natural products.
Collapse
Affiliation(s)
- Francesca Sansone
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Tiziana Esposito
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
- PhD Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Maria Rosaria Lauro
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Patrizia Picerno
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Teresa Mencherini
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Franco Gasparri
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Stefania De Santis
- IRCCS "de Bellis", Laboratory of Experimental Immunopathology, 70013 Castellana Grotte, Italy.
| | - Marcello Chieppa
- PhD Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
- IRCCS "de Bellis", Laboratory of Experimental Immunopathology, 70013 Castellana Grotte, Italy.
- EBRIS, European Biomedical Research Institute of Salerno, 84121 Salerno, Italy.
| | - Claudia Cirillo
- Department of Industrial Engineering and NANO_MATES Research Centre, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| |
Collapse
|