1
|
Kim J. Smart Nanocarriers in Cosmeceuticals Through Advanced Delivery Systems. Biomimetics (Basel) 2025; 10:217. [PMID: 40277615 PMCID: PMC12025235 DOI: 10.3390/biomimetics10040217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Nanomaterials have revolutionized various biological applications, including cosmeceuticals, enabling the development of smart nanocarriers for enhanced skin delivery. This review focuses on the role of nanotechnologies in skincare and treatments, providing a concise overview of smart nanocarriers, including thermo-, pH-, and multi-stimuli-sensitive systems, focusing on their design, fabrication, and applications in cosmeceuticals. These nanocarriers offer controlled release of active ingredients, addressing challenges like poor skin penetration and ingredient instability. This work discusses the unique properties and advantages of various nanocarrier types, highlighting their potential in addressing diverse skin concerns. Furthermore, we address the critical aspect of biocompatibility, examining potential health risks associated with nanomaterials. Finally, this review highlights current challenges, including the precise control of drug release, scalability, and the transition from in vitro to in vivo applications. We also discuss future perspectives such as the integration of digital technologies and artificial intelligence for personalized skincare to further advance the technology of smart nanocarriers in cosmeceuticals.
Collapse
Affiliation(s)
- Jinku Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
2
|
Velasco S, Gallego I, Olivares-González L, Puras G, Castro MC, Salom D, Pedraz JL, Rodrigo R. Noninvasive ocular delivery of adalimumab-loaded nanostructured lipid carriers for targeted retinitis pigmentosa therapy. Biomed Pharmacother 2025; 185:117962. [PMID: 40073744 DOI: 10.1016/j.biopha.2025.117962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Retinitis pigmentosa is a genetically heterogeneous retinal degeneration process. There is hardly any treatment available. It is associated with extensive chronic inflammation and the release of proinflammatory cytokines such as TNFα. The blockade of TNFα through systemic or intraocular routes slows retinal degeneration. They are invasive routes with possible side effects. Herein, we propose a noninvasive approach to address the inflammatory component of retinitis pigmentosa. This approach is based on the development of eye drops of nanostructured lipid carriers (NLCs) loaded with the monoclonal antibody against TNFα, adalimumab (ADA). We physicochemically characterized NLC-ADA. We evaluated retinal and corneal toxicity; corneal permeation; diffusion to the retina; and effects on retinal dysfunction, degeneration and inflammation. These results prove that NLC-ADA eye drops exhibit excellent corneal permeation, no toxicity and high retinal distribution in mice. These compounds improve retinal function, reduce retinal degeneration and ameliorate the inflammatory process. In particular, NLC-ADA eye drops reduce M1 microglial activation, macrophage infiltration and the levels of some components of the NLRP3 inflammasome in rd10 mice, a model of retinitis pigmentosa. This strategy offers a noninvasive route that circumvents the bloodretinal barrier in a safe and efficient manner. Hence, this approach could offer a promising therapeutic option for treating retinitis pigmentosa regardless of genetic defects. This approach could be useful for other inflammation-related retinal diseases.
Collapse
Affiliation(s)
- Sheyla Velasco
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain.
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Bioaraba, NanoBioCel Research Group, Jose Atxotegi Kalea, s/n, Txagorritxu, Vitoria-Gasteiz 01009, Spain.
| | - Lorena Olivares-González
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain.
| | - Gustavo Puras
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Bioaraba, NanoBioCel Research Group, Jose Atxotegi Kalea, s/n, Txagorritxu, Vitoria-Gasteiz 01009, Spain.
| | - Ma Carmen Castro
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain.
| | - David Salom
- Service of Ophthalmology, Manises Hospital, Generalitat Valenciana, 50, Manises, Valencia 46940, Spain; Biomedical Research Networking Center in Rare Diseases (CIBER-ER), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Catholic University of Valencia (UCV), Faculty of Health Sciences, Quevedo, 2, Valencia 46001, Spain.
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Bioaraba, NanoBioCel Research Group, Jose Atxotegi Kalea, s/n, Txagorritxu, Vitoria-Gasteiz 01009, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joined Venture of TECNALIA, Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain.
| | - Regina Rodrigo
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain; Biomedical Research Networking Center in Rare Diseases (CIBER-ER), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Catholic University of Valencia (UCV), Faculty of Health Sciences, Quevedo, 2, Valencia 46001, Spain.
| |
Collapse
|
3
|
Radeva L, Yoncheva K. Nanogels-Innovative Drug Carriers for Overcoming Biological Membranes. Gels 2025; 11:124. [PMID: 39996667 PMCID: PMC11854394 DOI: 10.3390/gels11020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Nanogels are promising drug delivery systems since they possess undeniable advantages such as high loading capacity for hydrophilic and hydrophobic drugs, stabilization of sensitive drugs, biocompatibility, and biodegradability. The present review summarizes experimental studies related to carriers, drug loading, and membrane transport of nanogels. In particular, the review discusses the properties, advantages, and limitations of polymeric carriers with respect to the behavior of the prepared nanogels in in vivo conditions. The potential of nanogel systems for encapsulation of hydrophilic or hydrophobic drugs and the mechanisms of loading and drug release are also emphasized. Moreover, the challenges related to nanogel transport through the barriers presented in parenteral, oral, ocular, nasal, and dermal routes of administration are also considered.
Collapse
|
4
|
Mariano M, Naseri N, Nascimento DMD, Franqui L, Seabra AB, Mathew AP, Bernardes JS. Calcium Cross-Linked Cellulose Nanofibrils: Hydrogel Design for Local and Controlled Nitric Oxide Release. ACS APPLIED BIO MATERIALS 2024; 7:8377-8388. [PMID: 39568116 DOI: 10.1021/acsabm.4c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Nitric oxide (NO) holds promise for wound healing due to its antimicrobial properties and role in promoting vasodilation and tissue regeneration. The local delivery of NO to target cells or organs offers significant potential in numerous biomedical applications, especially when NO donors are integrated into nontoxic viscous matrices. This study presents the development of robust cellulose nanofibril (CNF) hydrogels designed to control the release of nitric oxide (NO) generated in situ from a NO-donor molecule (S-nitrosoglutathione, GSNO) obtained from the nitrosation of its precursor molecule glutathione (GSH). CNF, efficiently isolated from sugar cane bagasse, exhibited a high aspect ratio and excellent colloidal stability in water. Although depletion forces could be observed upon the addition of GSH, this effect did not significantly alter the morphology of the CNF network at low GSH concentrations (<20 mM). Ionic cross-linking with Ca2+ resulted in nontoxic and robust hydrogels (elastic moduli ranging from 300 to 3000 Pa) at low CNF solid content. The release rate of NO from GSNO decreased in CNF from 1.61 to 0.40 mmol. L-1·h-1 when the nanofibril content raised from 0.3 to 1.0 wt %. The stabilization effect monitored for 16 h was assigned to hydrogel mesh size, which was easily tailored by modifying the concentration of CNF in the initial suspension. These results highlight the potential of CNF-based hydrogels in biomedical applications requiring a precise NO delivery.
Collapse
Affiliation(s)
- Marcos Mariano
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
| | - Narges Naseri
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Diego Magalhães Do Nascimento
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
| | - Lidiane Franqui
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
| | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Aji P Mathew
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Juliana Silva Bernardes
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
5
|
Cimino C, Vidal LB, Conti F, López ES, Bucolo C, García ML, Musumeci T, Pignatello R, Carbone C. From Preformulative Design to in Vivo Tests: A Complex Path of Requisites and Studies for Nanoparticle Ocular Application. Part 2: In Vitro, Ex Vivo, and In Vivo Studies. Mol Pharm 2024; 21:6062-6099. [PMID: 39514183 DOI: 10.1021/acs.molpharmaceut.4c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The incidence of ocular pathologies is constantly increasing, as is the interest of the researchers in developing new strategies to ameliorate the treatment of these conditions. Nowadays, drug delivery systems are considered among the most relevant approaches due to their applicability in the treatment of a great variety of inner and outer eye pathologies through painless topical administrations. The design of such nanocarriers requires a deep study of many aspects related to the administration route but also a consideration of the authorities and pharmacopeial requirements, in order to achieve a clinical outcome. On such bases, the scope of this review is to describe the path of the analyses that could be performed on nanoparticles, along with the assessment of their applicability for ophthalmic treatments. Preformulation studies, physicochemical and technological characterization, and preliminary noncellular in vitro studies have been described in part 1 of this review. Herein, first the in vitro cellular assays are described; subsequently, nonocular organotypic tests and ex vivo studies are reported, as to present the various analyses to which the formulations can be subjected before in vivo studies, described in the last part. In each step, the models that could be used are presented and compared, highlighting the pros and cons. Moreover, their reliability and eventual acceptance by regulatory agencies are discussed. Hence, this review provides an overview of the most relevant assays applicable for nanocarriers intended for ophthalmic administration to guide researchers in the experimental decision process.
Collapse
Affiliation(s)
- Cinzia Cimino
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Lorena Bonilla Vidal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95124 Catania, Italy
| | - Elena Sánchez López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95124 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95124 Catania, Italy
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| |
Collapse
|
6
|
Gade L, Boyd BJ, Malmsten M, Heinz A. Stimuli-responsive drug delivery systems for inflammatory skin conditions. Acta Biomater 2024; 187:1-19. [PMID: 39209132 DOI: 10.1016/j.actbio.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Inflammatory skin conditions highly influence the quality of life of the patients suffering from these disorders. Symptoms include red, itchy and painful skin lesions, which are visible to the rest of the world, causing stigmatization and a significantly lower mental health of the patients. Treatment options are often unsatisfactory, as they suffer from either low patient adherence or the risk of severe side effects. Considering this, there is a need for new treatments, and notably of new ways of delivering the drugs. Stimuli-responsive drug delivery systems are able to deliver their drug cargo in response to a given stimulus and are, thus, promising for the treatment of inflammatory skin conditions. For example, the use of external stimuli such as ultraviolet light, near infrared radiation, or alteration of magnetic field enables drug release to be precisely controlled in space and time. On the other hand, internal stimuli induced by the pathological condition, including pH alteration in the skin or upregulation of reactive oxygen species or enzymes, can be utilized to create drug delivery systems that specifically target the diseased skin to achieve a better efficacy and safety. In the latter context, however, it is of key importance to match the trigger mechanism of the drug delivery system to the actual pathological features of the specific skin condition. Hence, the focus of this article is placed not only on reviewing stimuli-responsive drug delivery systems developed to treat specific inflammatory skin conditions, but also on critically evaluating their efficacy in the context of specific skin diseases. STATEMENT OF SIGNIFICANCE: Skin diseases affect one-third of the world's population, significantly lowering the quality of life of the patients, who deal with symptoms such as painful and itchy skin lesions, as well as stigmatization due to the visibility of their symptoms. Current treatments for inflammatory skin conditions are often hampered by low patient adherence or serious drug side effects. Therefore, more emphasis should be placed on developing innovative formulations that provide better efficacy and safety for patients. Stimuli-responsive drug delivery systems hold considerable promise in this regard, as they can deliver their cargo precisely where and when it is needed, reducing adverse effects and potentially offering better treatment outcomes.
Collapse
Affiliation(s)
- Luna Gade
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Martin Malmsten
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark; Department of Physical Chemistry 1, Lund University, Lund, Sweden
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.
| |
Collapse
|
7
|
Yu YF, Wu EC, Lin SQ, Chu YX, Yang Y, Pan F, Ding TH, Qian J, Jiang K, Zhan CY. Reexamining the effects of drug loading on the in vivo performance of PEGylated liposomal doxorubicin. Acta Pharmacol Sin 2024; 45:646-659. [PMID: 37845342 PMCID: PMC10834505 DOI: 10.1038/s41401-023-01169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023]
Abstract
Higher drug loading employed in nanoscale delivery platforms is a goal that researchers have long sought after. But such viewpoint remains controversial because the impacts that nanocarriers bring about on bodies have been seriously overlooked. In the present study we investigated the effects of drug loading on the in vivo performance of PEGylated liposomal doxorubicin (PLD). We prepared PLDs with two different drug loading rates: high drug loading rate, H-Dox, 12.9% w/w Dox/HSPC; low drug loading rate, L-Dox, 2.4% w/w Dox/HSPC (L-Dox had about 5 folds drug carriers of H-Dox at the same Dox dose). The pharmaceutical properties and biological effects of H-Dox and L-Dox were compared in mice, rats or 4T1 subcutaneous tumor-bearing mice. We showed that the lowering of doxorubicin loading did not cause substantial shifts to the pharmaceutical properties of PLDs such as in vitro and in vivo stability (stable), anti-tumor effect (equivalent effective), as well as tissue and cellular distribution. Moreover, it was even more beneficial for mitigating the undesired biological effects caused by PLDs, through prolonging blood circulation and alleviating cutaneous accumulation in the presence of pre-existing anti-PEG Abs due to less opsonins (e.g. IgM and C3) deposition on per particle. Our results warn that the effects of drug loading would be much more convoluted than expected due to the complex intermediation between nanocarriers and bodies, urging independent investigation for each individual delivery platform to facilitate clinical translation and application.
Collapse
Affiliation(s)
- Yi-Fei Yu
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, China
| | - Er-Can Wu
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Shi-Qi Lin
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, China
| | - Yu-Xiu Chu
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, China
| | - Yang Yang
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, China
| | - Feng Pan
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Tian-Hao Ding
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, China
| | - Jun Qian
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China.
| | - Kuan Jiang
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, China.
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Chang-You Zhan
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200032, China.
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China.
| |
Collapse
|
8
|
Zabihi F, Cherri M, Guo X, Rancan F, Schumacher F, Mohammadifar E, Kleuser B, Bäumer W, Schirner M, Vogt A, Haag R. Topical Delivery of Tofacitinib in Dermatology: The Promise of a Novel Therapeutic Class Using Biodegradable Dendritic Polyglycerol Sulfates. Pharmaceuticals (Basel) 2024; 17:77. [PMID: 38256910 PMCID: PMC10821331 DOI: 10.3390/ph17010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Inflammatory skin diseases, such as psoriasis, atopic dermatitis, and alopecia areata, occur when the regulatory tolerance of the innate immune system is disrupted, resulting in the activation of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) inflammatory signaling pathway by interleukin 6 (IL-6) and other key inflammatory cytokines. JAK inhibitors, such as tofacitinib, bind to these enzymes which are coupled to receptors on cell surfaces and block the transcription of inflammatory cytokine-induced genes. The first topical applications are being marketed, yet insufficient effects regarding indications, such as alopecia areata, suggest that improved delivery technologies could help increase the efficacy. In this study, we used sulfated dendritic polyglycerol with caprolactone segments integrated in its backbone (dPGS-PCL), with a molecular weight of 54 kDa, as a degradable carrier to load and solubilize the hydrophobic drug tofacitinib (TFB). TFB loaded in dPGS-PCL (dPGS-PCL@TFB), at a 11 w/w% loading capacity in aqueous solution, showed in an ex-vivo human skin model better penetration than free TFB in a 30:70 (v/v) ethanol/water mixture. We also investigated the anti-inflammatory efficacy of dPGS-PCL@TFB (0.5 w/w%), dPGS-PCL, and free TFB in the water/ethanol mixture by measuring their effects on IL-6 and IL-8 release, and STAT3 and STAT5 activation in ex vivo skin models of simulated inflamed human skin. Our results suggest that dPGS-PCL@TFB reduces the activation of STAT3 and STAT5 by increasing the penetration of the tofacitinib. However, no statistically significant differences with respect to the inhibition of IL-6 and IL-8 were observed in this short incubation time.
Collapse
Affiliation(s)
- Fatemeh Zabihi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany; (F.Z.); (M.C.); (E.M.); (M.S.)
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology, and Allergy, Charité Universitaetsmedizin, 10117 Berlin, Germany; (X.G.); (F.R.)
| | - Mariam Cherri
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany; (F.Z.); (M.C.); (E.M.); (M.S.)
| | - Xiao Guo
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology, and Allergy, Charité Universitaetsmedizin, 10117 Berlin, Germany; (X.G.); (F.R.)
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology, and Allergy, Charité Universitaetsmedizin, 10117 Berlin, Germany; (X.G.); (F.R.)
| | - Fabian Schumacher
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (F.S.); (B.K.)
- Core Facility BioSupraMol PharmaMS, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Ehsan Mohammadifar
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany; (F.Z.); (M.C.); (E.M.); (M.S.)
| | - Burkhard Kleuser
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; (F.S.); (B.K.)
| | - Wolfgang Bäumer
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany;
| | - Michael Schirner
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany; (F.Z.); (M.C.); (E.M.); (M.S.)
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology, and Allergy, Charité Universitaetsmedizin, 10117 Berlin, Germany; (X.G.); (F.R.)
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany; (F.Z.); (M.C.); (E.M.); (M.S.)
| |
Collapse
|
9
|
Thongrom B, Tang P, Arora S, Haag R. Polyglycerol-Based Hydrogel as Versatile Support Matrix for 3D Multicellular Tumor Spheroid Formation. Gels 2023; 9:938. [PMID: 38131924 PMCID: PMC10742718 DOI: 10.3390/gels9120938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
Hydrogel-based artificial scaffolds are essential for advancing cell culture models from 2D to 3D, enabling a more realistic representation of physiological conditions. These hydrogels can be customized through crosslinking to mimic the extracellular matrix. While the impact of extracellular matrix scaffolds on cell behavior is widely acknowledged, mechanosensing has become a crucial factor in regulating various cellular functions. cancer cells' malignant properties depend on mechanical cues from their microenvironment, including factors like stiffness, shear stress, and pressure. Developing hydrogels capable of modulating stiffness holds great promise for better understanding cell behavior under distinct mechanical stress stimuli. In this study, we aim to 3D culture various cancer cell lines, including MCF-7, HT-29, HeLa, A549, BT-474, and SK-BR-3. We utilize a non-degradable hydrogel formed from alpha acrylate-functionalized dendritic polyglycerol (dPG) and thiol-functionalized 4-arm polyethylene glycol (PEG) via the thiol-Michael click reaction. Due to its high multivalent hydroxy groups and bioinert ether backbone, dPG polymer was an excellent alternative as a crosslinking hub and is highly compatible with living microorganisms. The rheological viscoelasticity of the hydrogels is tailored to achieve a mechanical stiffness of approximately 1 kPa, suitable for cell growth. Cancer cells are in situ encapsulated within these 3D network hydrogels and cultured with cell media. The grown tumor spheroids were characterized by fluorescence and confocal microscopies. The average grown size of all tumoroid types was ca. 150 µm after 25 days of incubation. Besides, the stability of a swollen gel remains constant after 2 months at physiological conditions, highlighting the nondegradable potential. The successful formation of multicellular tumor spheroids (MCTSs) for all cancer cell types demonstrates the versatility of our hydrogel platform in 3D cell growth.
Collapse
Affiliation(s)
| | | | - Smriti Arora
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany (P.T.)
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany (P.T.)
| |
Collapse
|
10
|
Zabihi F, Tu Z, Kaessmeyer S, Schumacher F, Rancan F, Kleuser B, Boettcher C, Ludwig K, Plendl J, Hedtrich S, Vogt A, Haag R. Efficient skin interactions of graphene derivatives: challenge, opportunity or both? NANOSCALE ADVANCES 2023; 5:5923-5931. [PMID: 37881716 PMCID: PMC10597544 DOI: 10.1039/d3na00574g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
Interactions between graphene, with its wide deployment in consumer products, and skin, the body's largest organ and first barrier, are highly relevant with respect to toxicology and dermal delivery. In this work, interaction of polyglycerol-functionalized graphene sheets, with 200 nm average lateral size and different surface charges, and human skin was studied and their potential as topical delivery systems were investigated. While neutral graphene sheets showed no significant skin interaction, their positively and negatively charged counterparts interacted with the skin, remaining in the stratum corneum. This efficient skin interaction bears a warning but also suggests a new topical drug delivery strategy based on the sheets' high loading capacity and photothermal property. Therefore, the immunosuppressive drug tacrolimus was loaded onto positively and negatively charged graphene sheets, and its release measured with and without laser irradiation using liquid chromatography tandem-mass spectrometry. Laser irradiation accelerated the release of tacrolimus, due to the photothermal property of graphene sheets. In addition, graphene sheets with positive and negative surface charges were loaded with Nile red, and their ability to deliver this cargo through the skin was investigated. Graphene sheets with positive surface charge were more efficient than the negatively charged ones in enhancing Nile red penetration into the skin.
Collapse
Affiliation(s)
- Fatemeh Zabihi
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustr. 3 Berlin 14195 Germany +49-030-8385-2633
- Department of Dermatology and Allergy, Clinical Research Center for Hair and Skin Science, Charité Universitaetsmedizin Berlin Germany
| | - Zhaoxu Tu
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustr. 3 Berlin 14195 Germany +49-030-8385-2633
- The Sixth Affiliated Hospital of Sun Yat-sen University Guangzhou Guangdong China
| | - Sabine Kaessmeyer
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin Germany
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern 3012 Bern Switzerland
| | - Fabian Schumacher
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin 14195 Berlin Germany
| | - Fiorenza Rancan
- Department of Dermatology and Allergy, Clinical Research Center for Hair and Skin Science, Charité Universitaetsmedizin Berlin Germany
| | - Burkhard Kleuser
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin 14195 Berlin Germany
| | - Christoph Boettcher
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstr. 36a 14195 Berlin Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstr. 36a 14195 Berlin Germany
| | - Johanna Plendl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin Germany
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences, University of British Columbia 2405 Wesbrook Mall V6T1Z3 Vancouver Canada
- Berlin Institute of Health at Charité, Universitaetsmedizin Berlin Lindenberger Weg 80 13125 Berlin Germany
| | - Annika Vogt
- Department of Dermatology and Allergy, Clinical Research Center for Hair and Skin Science, Charité Universitaetsmedizin Berlin Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustr. 3 Berlin 14195 Germany +49-030-8385-2633
| |
Collapse
|
11
|
Soleimani K, Beyranvand S, Souri Z, Ahmadian Z, Yari A, Faghani A, Shams A, Adeli M. Ferrocene/ β-cyclodextrin based supramolecular nanogels as theranostic systems. Biomed Pharmacother 2023; 166:115402. [PMID: 37660653 DOI: 10.1016/j.biopha.2023.115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023] Open
Abstract
A supramolecular redox responsive nanogel (NG) with the ability to sense cancer cells and loaded with a releasing therapeutic agent was synthesized using hostguest interactions between polyethylene glycol-grafted-β-cyclodextrin and ferrocene boronic acid. Cyclic voltammetry matched with other spectroscopy and microscopy methods provided strong indications regarding host-guest interactions and formation of the NG. Moreover, the biological properties of the NG were evaluated using fluorescence silencing, confocal laser scanning microscopy, and cell toxicity assays. Nanogel with spherical core-shell architecture and 100-200 nm sized nanoparticles showed high encapsulation efficiency for doxorubicin (DOX) and luminol (LU) as therapeutic and sensing agents. High therapeutic and sensing efficiencies were manifested by complete release of DOX and dramatic quenching of LU fluorescence triggered by 0.05 mM H2O2 (as an ROS component). The NGs showed high ROS sensitivity. Taking advantage of a high loading capacity, redox sensitivity, and biocompatibility, the NGs can be used as strong theranostic systems in inflammation-associated diseases.
Collapse
Affiliation(s)
- Khadijeh Soleimani
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Zeinab Souri
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Abdollah Yari
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Abbas Faghani
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Azim Shams
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Mohsen Adeli
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran.
| |
Collapse
|
12
|
Terada E, Isono T, Satoh T, Yamamoto T, Kakuchi T, Sato S. All-Atom Molecular Dynamics Simulations of the Temperature Response of Poly(glycidyl ether)s with Oligooxyethylene Side Chains Terminated with Alkyl Groups. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101628. [PMID: 37242043 DOI: 10.3390/nano13101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Recently, experimental investigations of a class of temperature-responsive polymers tethered to oligooxyethylene side chains terminated with alkyl groups have been conducted. In this study, aqueous solutions of poly(glycidyl ether)s (PGE) with varying numbers of oxyethylene units, poly(methyl(oligooxyethylene)n glycidyl ether) (poly(Me(EO)nGE)), and poly(ethyl(oligooxyethylene)n glycidyl ether) (poly(Et(EO)nGE) (n = 0, 1, and 2) were investigated by all-atom molecular dynamics simulations, focusing on the thermal responses of their chain extensions, the recombination of intrapolymer and polymer-water hydrogen bonds, and water-solvation shells around the alkyl groups. No clear relationship was established between the phase-transition temperature and the polymer-chain extensions unlike the case for the coil-globule transition of poly(N-isopropylacrylamide). However, the temperature response of the first water-solvation shell around the alkyl group exhibited a notable correlation with the phase-transition temperature. In addition, the temperature at which the hydrophobic hydration shell strength around the terminal alkyl group equals the bulk water density (TCRP) was slightly lower than the cloud point temperature (TCLP) for the methyl-terminated poly(Me(EO)nGE) and slightly higher for the ethyl-terminated poly(Et(EO)nGE). It was concluded that the polymer-chain fluctuation affects the relationship between TCRP and TCLP.
Collapse
Affiliation(s)
- Erika Terada
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Yamamoto
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toyoji Kakuchi
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130012, China
| | - Shinichiro Sato
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
13
|
Slavkova M, Tzankov B, Popova T, Voycheva C. Gel Formulations for Topical Treatment of Skin Cancer: A Review. Gels 2023; 9:gels9050352. [PMID: 37232944 DOI: 10.3390/gels9050352] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Skin cancer, with all its variations, is the most common type of cancer worldwide. Chemotherapy by topical application is an attractive strategy because of the ease of application and non-invasiveness. At the same time, the delivery of antineoplastic agents through the skin is difficult because of their challenging physicochemical properties (solubility, ionization, molecular weight, melting point) and the barrier function of the stratum corneum. Various approaches have been applied in order to improve drug penetration, retention, and efficacy. This systematic review aims at identifying the most commonly used techniques for topical drug delivery by means of gel-based topical formulations in skin cancer treatment. The excipients used, the preparation approaches, and the methods characterizing gels are discussed in brief. The safety aspects are also highlighted. The combinatorial formulation of nanocarrier-loaded gels is also reviewed from the perspective of improving drug delivery characteristics. Some limitations and drawbacks in the identified strategies are also outlined and considered within the future scope of topical chemotherapy.
Collapse
Affiliation(s)
- Marta Slavkova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Borislav Tzankov
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Teodora Popova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Christina Voycheva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
14
|
Hemmatpour H, Haddadi-Asl V, Burgers TCQ, Yan F, Stuart MCA, Reker-Smit C, Vlijm R, Salvati A, Rudolf P. Temperature-responsive and biocompatible nanocarriers based on clay nanotubes for controlled anti-cancer drug release. NANOSCALE 2023; 15:2402-2416. [PMID: 36651239 DOI: 10.1039/d2nr06801j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Administration of temperature-responsive drug carriers that release anticancer drugs at high temperatures can benefit hyperthermia therapies because of the synergistic effect of anticancer drug molecules and high temperature on killing the cancer cells. In this study, we design and characterize a new temperature-responsive nanocarrier based on a naturally occurring and biocompatible clay mineral, halloysite nanotubes. Poly(N-isopropylacrylamide) brushes were grown on the surface of halloysite nanotubes using a combination of mussel-inspired dopamine polymerization and surface-initiated atom transfer radical polymerization. The chemical structure of the hybrid materials was investigated using X-ray photoelectron spectroscopy, thermogravimetric analysis and energy-dispersive X-ray spectroscopy. The hybrid material was shown to have a phase transition temperature of about 32 °C, corresponding to a 40 nm thick polymer layer surrounding the nanotubes. Cell studies suggested that grafting of poly(N-isopropylacrylamide) brushes on the polydopamine-modified halloysite nanotubes suppresses the cytotoxicity caused by the polydopamine interlayer and drug release studies on nanotubes loaded with doxorubicin showed that thanks to the poly(N-isopropylacrylamide) brushes a temperature-dependent drug release is observed. Finally, a fluorescent dye molecule was covalently attached to the polymer-grafted nanotubes and stimulated emission depletion nanoscopy was used to confirm the internalization of the nanotubes in HeLa cells.
Collapse
Affiliation(s)
- Hamoon Hemmatpour
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 1587-4413, Tehran, Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 1587-4413, Tehran, Iran
| | - Thomas C Q Burgers
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Feng Yan
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Marc C A Stuart
- Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Catharina Reker-Smit
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Rifka Vlijm
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| |
Collapse
|
15
|
Radbruch M, Pischon H, Du F, Haag R, Schumacher F, Kleuser B, Mundhenk L, Gruber AD. Biodegradable core-multishell nanocarrier: Topical tacrolimus delivery for treatment of dermatitis. J Control Release 2022; 349:917-928. [PMID: 35905785 DOI: 10.1016/j.jconrel.2022.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 10/15/2022]
Abstract
Two challenges in topical drug delivery to the skin include solubilizing hydrophobic drugs in water-based formulations and increasing drug penetration into the skin. Polymeric core-multishell nanocarrier (CMS), particularly the novel biodegradable CMS (bCMS = hPG-PCL1.1K-mPEG2k-CMS) have shown both advantages on excised skin ex vivo. Here, we investigated topical delivery of tacrolimus (TAC; > 500 g/mol) by bCMS in a hydrogel on an oxazolone-induced model of dermatitis in vivo. As expected, bCMS successfully delivered TAC into the skin. However, in vivo they did not increase, but decrease TAC penetration through the stratum corneum compared to ointment. Differences in the resulting mean concentrations were mostly non-significant in the skin (epidermis: 35.7 ± 20.9 ng/cm2 for bCMS vs. 92.6 ± 62.7 ng/cm2 for ointment; dermis: 76.8 ± 26.8 ng/cm2vs 118.2 ± 50.4 ng/cm2), but highly significant in blood (plasma: 1.1 ± 0.4 ng/ml vs 11.3 ± 9.3 ng/ml; erythrocytes: 0.5 ± 0.2 ng/ml vs 3.4 ± 2.4 ng/ml) and liver (0.01 ± 0.01 ng/mg vs 0.03 ± 0.01 ng/mg). bCMS were detected in the stratum corneum but not in viable skin or beyond. The therapeutic efficacy of TAC delivered by bCMS was equivalent to that of standard TAC ointment. Our results suggest that bCMS may be a promising carrier for the topical delivery of TAC. The quantitative difference to previous results should be interpreted in light of structural differences between murine and human skin, but highlights the need as well as potential methods to develop more a complex ex vivo analysis on human skin to ensure quantitative predictive value.
Collapse
Affiliation(s)
- Moritz Radbruch
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag Str. 15, 14163 Berlin, Germany
| | - Hannah Pischon
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag Str. 15, 14163 Berlin, Germany
| | - Fang Du
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Fabian Schumacher
- Department for Nutritional Toxicology, Universität Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Burkhard Kleuser
- Department for Nutritional Toxicology, Universität Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag Str. 15, 14163 Berlin, Germany
| | - Achim D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag Str. 15, 14163 Berlin, Germany.
| |
Collapse
|
16
|
Tacrolimus-Eluting Disk within the Allograft Enables Vascularized Composite Allograft Survival with Site-Specific Immunosuppression without Systemic Toxicity. Pharm Res 2022; 39:2179-2190. [PMID: 35915321 DOI: 10.1007/s11095-022-03345-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/14/2022] [Indexed: 10/16/2022]
Abstract
AIM Widespread clinical application of vascularized composite allotransplantation (VCA) has been limited by the need for lifelong systemic immunosuppression to prevent rejection. Our goal was to develop a site-specific immunosuppressive strategy that promotes VCA allograft survival and minimizes the risk of systemic side effects. METHODS Tacrolimus loaded polycaprolactone (TAC-PCL) disks were prepared and tested for their efficacy in sustaining VCA allograft survival via site-specific immunosuppression. Brown Norway-to-Lewis rat hind limb transplantations were performed; animals received one TAC disk either in the transplanted (DTx) or in the contralateral non-transplanted (DnonTx) limbs. In another group, animals received DTx and lymphadenectomy on Tx side. Blood and allograft levels of TAC were measured using LC-MS/MS. Systemic toxicity was evaluated. RESULTS Animals that received DTx achieved long-term allograft survival (> 200 days) without signs of metabolic and infectious complications. In these animals, TAC blood levels were low but stable between 2 to 5 ng/mL for nearly 100 days. High concentrations of TAC were achieved in the allografts and the draining lymph nodes (DLN). Animals that underwent lymphadenectomy rejected their allograft by 175 days. Animals that received DnonTx rejected their allografts by day 70. CONCLUSION Controlled delivery of TAC directly within the allograft (with a single TAC disk) effectively inhibits rejection and prolongs VCA allograft survival, while mitigating the complications of systemic immunosuppression. There was a survival benefit of delivering TAC within the allograft as compared to a remote site. We believe this approach of local drug delivery has significant implications for drug administration in transplantation.
Collapse
|
17
|
Pouyan P, Cherri M, Haag R. Polyglycerols as Multi-Functional Platforms: Synthesis and Biomedical Applications. Polymers (Basel) 2022; 14:polym14132684. [PMID: 35808728 PMCID: PMC9269438 DOI: 10.3390/polym14132684] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 02/07/2023] Open
Abstract
The remarkable and unique characteristics of polyglycerols (PG) have made them an attractive candidate for many applications in the biomedical and pharmaceutical fields. The presence of multiple hydroxy groups on the flexible polyether backbone not only enables the further modification of the PG structure but also makes the polymer highly water-soluble and results in excellent biocompatibility. In this review, the polymerization routes leading to PG with different architectures are discussed. Moreover, we discuss the role of these polymers in different biomedical applications such as drug delivery systems, protein conjugation, and surface modification.
Collapse
|
18
|
Matthes R, Frey H. Polyethers Based on Short-Chain Alkyl Glycidyl Ethers: Thermoresponsive and Highly Biocompatible Materials. Biomacromolecules 2022; 23:2219-2235. [PMID: 35622963 DOI: 10.1021/acs.biomac.2c00223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The polymerization of short-chain alkyl glycidyl ethers (SCAGEs) enables the synthesis of biocompatible polyethers with finely tunable hydrophilicity. Aliphatic polyethers, most prominently poly(ethylene glycol) (PEG), are utilized in manifold biomedical applications due to their excellent biocompatibility and aqueous solubility. By incorporation of short hydrophobic side-chains at linear polyglycerol, control of aqueous solubility and the respective lower critical solution temperature (LCST) in aqueous solution is feasible. Concurrently, the chemically inert character in analogy to PEG is maintained, as no further functional groups are introduced at the polyether structure. Adjustment of the hydrophilicity and the thermoresponsive behavior of the resulting poly(glycidyl ether)s in a broad temperature range is achieved either by the combination of the different SCAGEs or with PEG as a hydrophilic block. Homopolymers of methyl and ethyl glycidyl ether (PGME, PEGE) are soluble in aqueous solution at room temperature. In contrast, n-propyl glycidyl ether and iso-propyl glycidyl ether lead to hydrophobic polyethers. The use of a variety of ring-opening polymerization techniques allows for controlled polymerization, while simultaneously determining the resulting microstructures. Atactic as well as isotactic polymers are accessible by utilization of the respective racemic or enantiomerically pure monomers. Polymer architectures varying from statistical copolymers, di- and triblock structures to star-shaped architectures, in combination with PEG, have been applied in various thermoresponsive hydrogel formulations or polymeric surface coatings for cell sheet engineering. Materials responding to stimuli are of increasing importance for "smart" biomedical systems, making thermoresponsive polyethers with short-alkyl ether side chains promising candidates for future biomaterials.
Collapse
Affiliation(s)
- Rebecca Matthes
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| |
Collapse
|
19
|
Khan NH, Mir M, Qian L, Baloch M, Ali Khan MF, Rehman AU, Ngowi EE, Wu DD, Ji XY. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. J Adv Res 2022; 36:223-247. [PMID: 35127174 PMCID: PMC8799916 DOI: 10.1016/j.jare.2021.06.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background Skin cancer has been the leading type of cancer worldwide. Melanoma and non-melanoma skin cancers are now the most common types of skin cancer that have been reached to epidemic proportion. Based on the rapid prevalence of skin cancers, and lack of efficient drug delivery systems, it is essential to surge the possible ways to prevent or cure the disease. Aim of review Although surgical modalities and therapies have been made great progress in recent years, however, there is still an urgent need to alleviate its increased burden. Hence, understanding the precise pathophysiological signaling mechanisms and all other factors of such skin insults will be beneficial for the development of more efficient therapies. Key scientific concepts of review In this review, we explained new understandings about onset and development of skin cancer and described its management via polymeric micro/nano carriers-based therapies, highlighting the current key bottlenecks and future prospective in this field. In therapeutic drug/gene delivery approaches, polymeric carriers-based system is the most promising strategy. This review discusses that how polymers have successfully been exploited for development of micro/nanosized systems for efficient delivery of anticancer genes and drugs overcoming all the barriers and limitations associated with available conventional therapies. In addition to drug/gene delivery, intelligent polymeric nanocarriers platforms have also been established for combination anticancer therapies including photodynamic and photothermal, and for theranostic applications. This portfolio of latest approaches could promote the blooming growth of research and their clinical availability.
Collapse
Key Words
- 5-ALA, 5-aminolevulinic acid
- 5-FU, 5-fluorouracil
- AIDS, Acquired immune deficiency syndrome
- BCC, Basal cell carcinoma
- BCCs, Basal cell carcinomas
- Basal cell carcinoma
- CREB, response element-binding protein
- DDS, Drug delivery system
- DIM-D, Di indolyl methane derivative
- Drug delivery
- GNR-PEG-MN, PEGylated gold nanorod microneedle
- Gd, Gadolinium
- Gene delivery
- HH, Hedgehog
- HPMC, Hydroxypropyl methylcellulose
- IPM, Isopropyl myristate
- MCIR, Melanocortin-1 receptor
- MNPs, Magnetic nanoparticle
- MNs, Microneedles
- MRI, Magnetic Resonance Imaging
- MSC, Melanoma skin cancer
- Microneedles
- Mn, Manganese
- NMSC, Non melanoma skin cancer
- NPs, Nano Particles
- OTR, Organ transplant recipients
- PAMAM, Poly-amidoamines
- PAN, Polyacrylonitrile
- PATCH1, Patch
- PCL, Poly (ε-caprolactone)
- PDT, Photodynamic therapy
- PEG, Polyethylene glycol
- PLA, Poly lactic acid
- PLA-HPG, Poly (d-l-lactic acid)-hyperbranched polyglycerol
- PLGA, Poly (lactide-co-glycolide) copolymers
- PLL, Poly (L-lysine)
- Polymeric nanocarriers
- QDs, Quantum dots
- SC, Skin cancer
- SCC, Squamous cell Carcinoma
- SMO, Smoothen
- SPIO, Superparamagnetic iron oxide
- Squamous cell carcinoma
- UV, Ultra Violet
- cAMP, Cyclic adenosine monophosphate
- dPG, Dendritic polyglycerol
- hTERT, Human telomerase reverse transcriptase
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences. Henan University, Kaifeng, Henan 475004, China
| | - Maria Mir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Lei Qian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mahnoor Baloch
- School of Natural Sciences, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Muhammad Farhan Ali Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asim-ur- Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Sciences, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
20
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Neha Tiwari
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ana Sonzogni
- Group of Polymers and Polymerization Reactors INTEC (Universidad Nacional del Litoral-CONICET) Güemes 3450 Santa Fe 3000 Argentina
| | - David Esporrín‐Ubieto
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Huiyi Wang
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Marcelo Calderón
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science 48009 Bilbao Spain
| |
Collapse
|
21
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022; 61:e202107960. [PMID: 34487599 PMCID: PMC9292798 DOI: 10.1002/anie.202107960] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/15/2022]
Abstract
Skin penetration of active molecules for treatment of diverse diseases is a major field of research owing to the advantages associated with the skin like easy accessibility, reduced systemic-derived side effects, and increased therapeutic efficacy. Despite these advantages, dermal drug delivery is generally challenging due to the low skin permeability of therapeutics. Although various methods have been developed to improve skin penetration and permeation of therapeutics, they are usually aggressive and could lead to irreversible damage to the stratum corneum. Nanosized carrier systems represent an alternative approach for current technologies, with minimal damage to the natural barrier function of skin. In this Review, the use of nanoparticles to deliver drug molecules, genetic material, and vaccines into the skin is discussed. In addition, nanotoxicology studies and the recent clinical development of nanoparticles are highlighted to shed light on their potential to undergo market translation.
Collapse
Affiliation(s)
- Neha Tiwari
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ana Sonzogni
- Group of Polymers and Polymerization ReactorsINTEC (Universidad Nacional del Litoral-CONICET)Güemes 3450Santa Fe3000Argentina
| | - David Esporrín‐Ubieto
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Huiyi Wang
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Marcelo Calderón
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
- IKERBASQUE, Basque Foundation for Science48009BilbaoSpain
| |
Collapse
|
22
|
Keskin D, Zu G, Forson AM, Tromp L, Sjollema J, van Rijn P. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact Mater 2021; 6:3634-3657. [PMID: 33898869 PMCID: PMC8047124 DOI: 10.1016/j.bioactmat.2021.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
The implementation of nanotechnology to develop efficient antimicrobial systems has a significant impact on the prospects of the biomedical field. Nanogels are soft polymeric particles with an internally cross-linked structure, which behave as hydrogels and can be reversibly hydrated/dehydrated (swollen/shrunken) by the dispersing solvent and external stimuli. Their excellent properties, such as biocompatibility, colloidal stability, high water content, desirable mechanical properties, tunable chemical functionalities, and interior gel-like network for the incorporation of biomolecules, make them fascinating in the field of biological/biomedical applications. In this review, various approaches will be discussed and compared to the newly developed nanogel technology in terms of efficiency and applicability for determining their potential role in combating infections in the biomedical area including implant-associated infections.
Collapse
Affiliation(s)
| | | | | | - Lisa Tromp
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| |
Collapse
|
23
|
Soliman MM, Sakr TM, Rashed HM, Hamed AA, Abd El-Rehim HA. Polyethylene oxide-polyacrylic acid-folic acid (PEO-PAAc) nanogel as a 99m Tc targeting receptor for cancer diagnostic imaging. J Labelled Comp Radiopharm 2021; 64:534-547. [PMID: 34582054 DOI: 10.1002/jlcr.3952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 01/14/2023]
Abstract
Nanoparticles are frequently used as targeting delivery systems for therapeutic and diagnostic radiopharmaceuticals. Polyethylene oxide-polyacrylic acid (PEO-PAAc) nanogel was prepared via γ-radiation-induced polymerization. Variable factors affecting nanoparticles size were investigated. The nanogel was radiolabeled with the imaging radioisotope 99m Tc and finally conjugated with folic acid to target folate receptor actively. PEO-PAAc-folic acid gel was characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM). Biodistribution was studied in normal mice and solid tumor-bearing mice via intravenous and intratumor injections of the radiolabeled PEO-PAAc-folic acid nanogel. Results of biodistribution showed high selective uptake of the prepared complex in tumor muscle compared with normal muscle for both intravenous and intratumor injections. The T/NT ratio was found to be 6.186 and 294.5 for intravenous and intratumor injections, respectively. Consequently, 99m Tc-PEO-PAAc-folic acid complex could be a promising agent for cancer diagnostic imaging.
Collapse
Affiliation(s)
- Moamen M Soliman
- Department of Polymers, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Tamer M Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Hassan M Rashed
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Kantara, Egypt
| | - Ashraf A Hamed
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hassan A Abd El-Rehim
- Department of Polymers, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
24
|
Hudita A, Radu IC, Galateanu B, Ginghina O, Herman H, Balta C, Rosu M, Zaharia C, Costache M, Tanasa E, Velonia K, Tsatsakis A, Hermenean A. Bioinspired silk fibroin nano-delivery systems protect against 5-FU induced gastrointestinal mucositis in a mouse model and display antitumor effects on HT-29 colorectal cancer cells in vitro. Nanotoxicology 2021; 15:973-994. [PMID: 34213984 DOI: 10.1080/17435390.2021.1943032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Colorectal cancer (CRC), is the second cause of cancer-related deaths worldwide is one of the most prevalent types of cancers. Conventional treatment continues to rely on surgery, chemotherapy, and radiotherapy, but for advanced cases, adjuvant chemotherapy remains the main approach for improving surgical outcomes and lower the disease recurrence probability. Chemotherapy-induced gastrointestinal (GI) toxicity is the main dose-limiting factor for many chemotherapeutic regimens, including 5-FU, and one of the biggest oncological challenges. Up to 40% of the patients receiving 5-FU get mucositis, 10-15% of which develop severe symptoms. In this context, our study aimed to develop a bioinspired nanosized drug delivery system as a strategy to reduce 5-FU associated side effects, such as GI mucositis. To this end, SF-based nanoparticles were prepared and characterized in terms of size and morphology, as well as in terms of in vitro antitumoral activity on a biomimetic colorectal cancer model by investigation of apoptosis, DNA fragmentation, and release of reactive oxygen species. Additionally, the capacity of the SF-based nanocarriers to offer intestinal protection against 5-FU-induced GI mucositis was evaluated in vivo using a mouse model that mimics the chemotherapy-associated gut mucositis occurring in colorectal cancer. Our studies show that silk fibroin nanoparticles efficiently deliver 5-FU to tumor cells in vitro while protecting against drug-induced GI mucositis in a mouse model.
Collapse
Affiliation(s)
- A Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - I C Radu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - B Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - O Ginghina
- Department of Surgery, "Sf. Ioan" Clinical Emergency Hospital, Bucharest, Romania.,Faculty of Dental Medicine, Department II, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - H Herman
- Institute of Life Science, Vasile Goldis Western University of Arad, Arad, Romania
| | - C Balta
- Institute of Life Science, Vasile Goldis Western University of Arad, Arad, Romania
| | - M Rosu
- Institute of Life Science, Vasile Goldis Western University of Arad, Arad, Romania
| | - C Zaharia
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - M Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - E Tanasa
- University Politehnica of Bucharest, Bucharest, Romania
| | - K Velonia
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece
| | - A Tsatsakis
- Department of Toxicology and Forensic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - A Hermenean
- Institute of Life Science, Vasile Goldis Western University of Arad, Arad, Romania
| |
Collapse
|
25
|
Ultraviolet B irradiation-induced keratinocyte senescence and impaired development of 3D epidermal reconstruct. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:293-303. [PMID: 33151171 DOI: 10.2478/acph-2021-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/13/2020] [Indexed: 01/19/2023]
Abstract
Ultraviolet B (UVB) induces morphological and functional changes of the skin. This study investigated the effect of UVB on keratinocyte senescence and the development of reconstructed human epidermis (RHE). Primary normal human keratinocytes (NHK) from juvenile foreskin were irradiated with UVB (30 mJ cm-2) and these effects were compared to NHK that underwent senescence in the late passage. UVB enhanced the accumulation of reactive oxygen species (ROS) and halted cell replication as detected by BrdU cell proliferation assay. The senescence phenotype was evaluated by beta-galactosidase (β-gal) staining and qPCR of genes related to senescent regulation, i.e. p16INK4a, cyclin D2, and IFI27. Senescence induced by high dose UVB resulted in morphological changes, enhanced β-gal activity, elevated cellular ROS levels and reduced DNA synthesis. qPCR revealed differential expression of the genes regulated senescence. p16INK4a expression was significantly increased in NHK exposed to UVB whereas enhanced IFI27 expression was observed only in cultural senescence. The levels of cyclin D2 expression were not significantly altered either by UVB or long culturing conditions. UVB significantly induced the aging phenotype in keratinocytes and impaired epidermal development. RHE generated from UVB-irradiated keratinocytes showed a thinner cross-sectional structure and the majority of keratinocytes in the lower epidermis were degenerated. The 3D epidermis model is useful in studying the skin aging process.
Collapse
|
26
|
Nanogels as a Versatile Drug Delivery System for Brain Cancer. Gels 2021; 7:gels7020063. [PMID: 34073626 PMCID: PMC8162335 DOI: 10.3390/gels7020063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Chemotherapy and radiation remain as mainstays in the treatment of a variety of cancers globally, yet some therapies exhibit limited specificity and result in harsh side effects in patients. Brain tissue differs from other tissue due to restrictions from the blood-brain barrier, thus systemic treatment options are limited. The focus of this review is on nanogels as local and systemic drug delivery systems in the treatment of brain cancer. Nanogels are a unique local or systemic drug delivery system that is tailorable and consists of a three-dimensional polymeric network formed via physical or chemical assembly. For example, thermosensitive nanogels show promise in their ability to incorporate therapeutic agents in nano-structured matrices, be applied in the forms of sprays or sols to the area from which a tumor has been removed, form adhesive gels to fill the cavity and deliver treatment locally. Their usage does come with complications, such as handling, storage, chemical stability, and degradation. Despite these limitations, the current ongoing development of nanogels allows patient-centered treatment that can be considered as a promising tool for the management of brain cancer.
Collapse
|
27
|
Van Gheluwe L, Chourpa I, Gaigne C, Munnier E. Polymer-Based Smart Drug Delivery Systems for Skin Application and Demonstration of Stimuli-Responsiveness. Polymers (Basel) 2021; 13:1285. [PMID: 33920816 PMCID: PMC8071137 DOI: 10.3390/polym13081285] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Progress in recent years in the field of stimuli-responsive polymers, whose properties change depending on the intensity of a signal, permitted an increase in smart drug delivery systems (SDDS). SDDS have attracted the attention of the scientific community because they can help meet two current challenges of the pharmaceutical industry: targeted drug delivery and personalized medicine. Controlled release of the active ingredient can be achieved through various stimuli, among which are temperature, pH, redox potential or even enzymes. SDDS, hitherto explored mainly in oncology, are now developed in the fields of dermatology and cosmetics. They are mostly hydrogels or nanosystems, and the most-used stimuli are pH and temperature. This review offers an overview of polymer-based SDDS developed to trigger the release of active ingredients intended to treat skin conditions or pathologies. The methods used to attest to stimuli-responsiveness in vitro, ex vivo and in vivo are discussed.
Collapse
Affiliation(s)
| | | | | | - Emilie Munnier
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.V.G.); (I.C.); (C.G.)
| |
Collapse
|
28
|
Zahn I, Stöbener DD, Weinhart M, Gögele C, Breier A, Hahn J, Schröpfer M, Meyer M, Schulze-Tanzil G. Cruciate Ligament Cell Sheets Can Be Rapidly Produced on Thermoresponsive poly(glycidyl ether) Coating and Successfully Used for Colonization of Embroidered Scaffolds. Cells 2021; 10:cells10040877. [PMID: 33921450 PMCID: PMC8069541 DOI: 10.3390/cells10040877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 01/14/2023] Open
Abstract
Anterior cruciate ligament (ACL) cell sheets combined with biomechanically competent scaffolds might facilitate ACL tissue engineering. Since thermoresponsive polymers allow a rapid enzyme-free detachment of cell sheets, we evaluated the applicability of a thermoresponsive poly(glycidyl ether) (PGE) coating for cruciate ligamentocyte sheet formation and its influence on ligamentocyte phenotype during sheet-mediated colonization of embroidered scaffolds. Ligamentocytes were seeded on surfaces either coated with PGE or without coating. Detached ligamentocyte sheets were cultured separately or wrapped around an embroidered scaffold made of polylactide acid (PLA) and poly(lactic-co-ε-caprolactone) (P(LA-CL)) threads functionalized by gas-phase fluorination and with collagen foam. Ligamentocyte viability, protein and gene expression were determined in sheets detached from surfaces with or without PGE coating, scaffolds seeded with sheets from PGE-coated plates and the respective monolayers. Stable and vital ligamentocyte sheets could be produced within 24 h with both surfaces, but more rapidly with PGE coating. PGE did not affect ligamentocyte phenotype. Scaffolds could be colonized with sheets associated with high cell survival, stable gene expression of ligament-related type I collagen, decorin, tenascin C and Mohawk after 14 d and extracellular matrix (ECM) deposition. PGE coating facilitates ligamentocyte sheet formation, and sheets colonizing the scaffolds displayed a ligament-related phenotype.
Collapse
Affiliation(s)
- Ingrid Zahn
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany; (I.Z.); (C.G.)
- Department of Applied Chemistry, Nuremberg Institute of Technology Georg Simon Ohm, Keßlerplatz 12, 90489 Nuremberg, Germany
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University, Erlangen-Nuremberg, Universitätsstr. 19, 91054 Erlangen, Germany
| | - Daniel David Stöbener
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany; (D.D.S.); (M.W.)
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3A, 30167 Hannover, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany; (D.D.S.); (M.W.)
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3A, 30167 Hannover, Germany
| | - Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany; (I.Z.); (C.G.)
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Annette Breier
- Leibniz-Institut für Polymerforschung Dresden e. V. (IPF), Hohe Straße 6, 01069 Dresden, Germany; (A.B.); (J.H.)
| | - Judith Hahn
- Leibniz-Institut für Polymerforschung Dresden e. V. (IPF), Hohe Straße 6, 01069 Dresden, Germany; (A.B.); (J.H.)
| | - Michaela Schröpfer
- FILK Freiberg Institute (FILK), Meißner Ring 1-5, 09599 Freiberg, Germany; (M.S.); (M.M.)
| | - Michael Meyer
- FILK Freiberg Institute (FILK), Meißner Ring 1-5, 09599 Freiberg, Germany; (M.S.); (M.M.)
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany; (I.Z.); (C.G.)
- Correspondence: ; Tel.: +49-911-398-(11)-6772
| |
Collapse
|
29
|
Hennies HC, Poumay Y. Skin Disease Models In Vitro and Inflammatory Mechanisms: Predictability for Drug Development. Handb Exp Pharmacol 2021; 265:187-218. [PMID: 33387068 DOI: 10.1007/164_2020_428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Investigative skin biology, analysis of human skin diseases, and numerous clinical and pharmaceutical applications rely on skin models characterized by reproducibility and predictability. Traditionally, such models include animal models, mainly rodents, and cellular models. While animal models are highly useful in many studies, they are being replaced by human cellular models in more and more approaches amid recent technological development due to ethical considerations. The culture of keratinocytes and fibroblasts has been used in cell biology for many years. However, only the development of co-culture and three-dimensional epidermis and full-skin models have fundamentally contributed to our understanding of cell-cell interaction and cell signalling in the skin, keratinocyte adhesion and differentiation, and mechanisms of skin barrier function. The modelling of skin diseases has highlighted properties of the skin important for its integrity and cutaneous development. Examples of monogenic as well as complex diseases including atopic dermatitis and psoriasis have demonstrated the role of skin models to identify pathomechanisms and drug targets. Recent investigations have indicated that 3D skin models are well suitable for drug testing and preclinical studies of topical therapies. The analysis of skin diseases has recognized the importance of inflammatory mechanisms and immune responses and thus other cell types such as dendritic cells and T cells in the skin. Current developments include the production of more complete skin models comprising a range of different cell types. Organ models and even multi-organ systems are being developed for the analysis of higher levels of cellular interaction and drug responses and are among the most recent innovations in skin modelling. They promise improved robustness and flexibility and aim at a body-on-a-chip solution for comprehensive pharmaceutical in vitro studies.
Collapse
Affiliation(s)
- Hans Christian Hennies
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK. .,Cologne Center for Genomics, University Hospital Cologne, Cologne, Germany.
| | - Yves Poumay
- Faculty of Medicine, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| |
Collapse
|
30
|
Zhang I, Lépine P, Han C, Lacalle-Aurioles M, Chen CXQ, Haag R, Durcan TM, Maysinger D. Nanotherapeutic Modulation of Human Neural Cells and Glioblastoma in Organoids and Monocultures. Cells 2020; 9:cells9112434. [PMID: 33171886 PMCID: PMC7695149 DOI: 10.3390/cells9112434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammatory processes in the brain are orchestrated by microglia and astrocytes in response to activators such as pathogen-associated molecular patterns, danger-associated molecular patterns and some nanostructures. Microglia are the primary immune responders in the brain and initiate responses amplified by astrocytes through intercellular signaling. Intercellular communication between neural cells can be studied in cerebral organoids, co-cultures or in vivo. We used human cerebral organoids and glioblastoma co-cultures to study glia modulation by dendritic polyglycerol sulfate (dPGS). dPGS is an extensively studied nanostructure with inherent anti-inflammatory properties. Under inflammatory conditions, lipocalin-2 levels in astrocytes are markedly increased and indirectly enhanced by soluble factors released from hyperactive microglia. dPGS is an effective anti-inflammatory modulator of these markers. Our results show that dPGS can enter neural cells in cerebral organoids and glial cells in monocultures in a time-dependent manner. dPGS markedly reduces lipocalin-2 abundance in the neural cells. Glioblastoma tumoroids of astrocytic origin respond to activated microglia with enhanced invasiveness, whereas conditioned media from dPGS-treated microglia reduce tumoroid invasiveness. Considering that many nanostructures have only been tested in cancer cells and rodent models, experiments in human 3D cerebral organoids and co-cultures are complementary in vitro models to evaluate nanotherapeutics in the pre-clinical setting. Thoroughly characterized organoids and standardized procedures for their preparation are prerequisites to gain information of translational value in nanomedicine. This study provides data for a well-characterized dendrimer (dPGS) that modulates the activation state of human microglia implicated in brain tumor invasiveness.
Collapse
Affiliation(s)
- Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada;
| | - Paula Lépine
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (P.L.); (C.H.); (M.L.-A.); (C.X.-Q.C.); (T.M.D.)
| | - Chanshuai Han
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (P.L.); (C.H.); (M.L.-A.); (C.X.-Q.C.); (T.M.D.)
| | - María Lacalle-Aurioles
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (P.L.); (C.H.); (M.L.-A.); (C.X.-Q.C.); (T.M.D.)
| | - Carol X.-Q. Chen
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (P.L.); (C.H.); (M.L.-A.); (C.X.-Q.C.); (T.M.D.)
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany;
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; (P.L.); (C.H.); (M.L.-A.); (C.X.-Q.C.); (T.M.D.)
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada;
- Correspondence: ; Tel.: +1-514-398-1264
| |
Collapse
|
31
|
Shim SY, Gong S, Fan VH, Rosenblatt MI, Al-Qahtani AF, Sun MG, Zhou Q, Kanu L, Vieira IV, Yu CQ. Characterization of an Electronic Corneal Prosthesis System. Curr Eye Res 2020; 45:914-920. [PMID: 31886728 PMCID: PMC9997130 DOI: 10.1080/02713683.2019.1708957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE Corneal opacity is a leading cause of reversible blindness worldwide. An electronic corneal prosthesis, or intraocular projector, could potentially restore high-quality vision without need for corneal clarity. MATERIALS AND METHODS Four intraocular projection systems were constructed from commercially available electronic components and encased in biocompatible plastic housing. They were tested for optical properties, biocompatibility, heat dissipation, waterproofing, and accelerated wear. A surgical implantation technique was developed. RESULTS Intraocular projectors were produced of a size that can fit within the eye. Their optics produce better than 20/200 equivalent visual acuity. MTT assay demonstrated no cytotoxicity of devices in vitro. Temperature testing demonstrated less than 2°C increase in temperature after 1 h. Three devices lasted over 12 weeks under accelerated wear conditions. Implantation surgery was demonstrated via corneal trephination insertion in a cadaver eye. CONCLUSION This is the first study to demonstrate and characterize fully functional intraocular projection systems. This technology has the potential to be an important new tool in the treatment of intractable corneal blindness.
Collapse
Affiliation(s)
- Sarah Y Shim
- Electrical and Computer Engineering, The University of Illinois Urbana Champaign , Champaign, IL, USA
| | - Songbin Gong
- Electrical and Computer Engineering, The University of Illinois Urbana Champaign , Champaign, IL, USA
| | - Victoria H Fan
- Department of Ophthalmology, Byers Eye Institute, Stanford University , Palo Alto, CA, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, The University of Illinois Chicago , Chicago, IL, USA
| | - Ahmed F Al-Qahtani
- Department of Ophthalmology and Visual Sciences, The University of Illinois Chicago , Chicago, IL, USA
| | - Michael G Sun
- Department of Ophthalmology and Visual Sciences, The University of Illinois Chicago , Chicago, IL, USA
| | - Qiang Zhou
- Department of Ophthalmology and Visual Sciences, The University of Illinois Chicago , Chicago, IL, USA
| | - Levi Kanu
- Department of Ophthalmology and Visual Sciences, The University of Illinois Chicago , Chicago, IL, USA
| | - Ibraim V Vieira
- Department of Ophthalmology, Byers Eye Institute, Stanford University , Palo Alto, CA, USA
| | - Charles Q Yu
- Department of Ophthalmology, Byers Eye Institute, Stanford University , Palo Alto, CA, USA.,Department of Ophthalmology and Visual Sciences, The University of Illinois Chicago , Chicago, IL, USA
| |
Collapse
|
32
|
Ji Y, Winter L, Navarro L, Ku MC, Periquito JS, Pham M, Hoffmann W, Theune LE, Calderón M, Niendorf T. Controlled Release of Therapeutics from Thermoresponsive Nanogels: A Thermal Magnetic Resonance Feasibility Study. Cancers (Basel) 2020; 12:cancers12061380. [PMID: 32471299 PMCID: PMC7352924 DOI: 10.3390/cancers12061380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
Thermal magnetic resonance (ThermalMR) accommodates radio frequency (RF)-induced temperature modulation, thermometry, anatomic and functional imaging, and (nano)molecular probing in an integrated RF applicator. This study examines the feasibility of ThermalMR for the controlled release of a model therapeutics from thermoresponsive nanogels using a 7.0-tesla whole-body MR scanner en route to local drug-delivery-based anticancer treatments. The capacity of ThermalMR is demonstrated in a model system involving the release of fluorescein-labeled bovine serum albumin (BSA-FITC, a model therapeutic) from nanometer-scale polymeric networks. These networks contain thermoresponsive polymers that bestow environmental responsiveness to physiologically relevant changes in temperature. The release profile obtained for the reference data derived from a water bath setup used for temperature stimulation is in accordance with the release kinetics deduced from the ThermalMR setup. In conclusion, ThermalMR adds a thermal intervention dimension to an MRI device and provides an ideal testbed for the study of the temperature-induced release of drugs, magnetic resonance (MR) probes, and other agents from thermoresponsive carriers. Integrating diagnostic imaging, temperature intervention, and temperature response control, ThermalMR is conceptually appealing for the study of the role of temperature in biology and disease and for the pursuit of personalized therapeutic drug delivery approaches for better patient care.
Collapse
Affiliation(s)
- Yiyi Ji
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (Y.J.); (M.-C.K.); (J.S.P.); (M.P.)
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), 10587 Berlin, Germany; (L.W.); (W.H.)
| | - Lucila Navarro
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany; (L.N.); (L.E.T.); (M.C.)
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral (UNL)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina
| | - Min-Chi Ku
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (Y.J.); (M.-C.K.); (J.S.P.); (M.P.)
| | - João S. Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (Y.J.); (M.-C.K.); (J.S.P.); (M.P.)
| | - Michal Pham
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (Y.J.); (M.-C.K.); (J.S.P.); (M.P.)
| | - Werner Hoffmann
- Physikalisch-Technische Bundesanstalt (PTB), 10587 Berlin, Germany; (L.W.); (W.H.)
| | - Loryn E. Theune
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany; (L.N.); (L.E.T.); (M.C.)
| | - Marcelo Calderón
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany; (L.N.); (L.E.T.); (M.C.)
- POLYMAT and Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (Y.J.); (M.-C.K.); (J.S.P.); (M.P.)
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Correspondence: ; Tel.: +49-30-9406-4505
| |
Collapse
|
33
|
Navarro L, Theune LE, Calderón M. Effect of crosslinking density on thermoresponsive nanogels: A study on the size control and the kinetics release of biomacromolecules. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Borgheti-Cardoso LN, Viegas JSR, Silvestrini AVP, Caron AL, Praça FG, Kravicz M, Bentley MVLB. Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev 2020; 153:109-136. [PMID: 32113956 DOI: 10.1016/j.addr.2020.02.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Skin cancer is a high burden disease with a high impact on global health. Conventional therapies have several drawbacks; thus, the development of effective therapies is required. In this context, nanotechnology approaches are an attractive strategy for cancer therapy because they enable the efficient delivery of drugs and other bioactive molecules to target tissues with low toxic effects. In this review, nanotechnological tools for skin cancer will be summarized and discussed. First, pathology and conventional therapies will be presented, followed by the challenges of skin cancer therapy. Then, the main features of developing efficient nanosystems will be discussed, and next, the most commonly used nanoparticles (NPs) described in the literature for skin cancer therapy will be presented. Subsequently, the use of NPs to deliver chemotherapeutics, immune and vaccine molecules and nucleic acids will be reviewed and discussed as will the combination of physical methods and NPs. Finally, multifunctional delivery systems to codeliver anticancer therapeutic agents containing or not surface functionalization will be summarized.
Collapse
|
35
|
Zhou L, Jiao X, Liu S, Hao M, Cheng S, Zhang P, Wen Y. Functional DNA-based hydrogel intelligent materials for biomedical applications. J Mater Chem B 2020; 8:1991-2009. [DOI: 10.1039/c9tb02716e] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multifunctional intelligent DNA hydrogels have been reviewed for many biomedical applications.
Collapse
Affiliation(s)
- Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing
- China
| | - Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing
- China
| | - Songyang Liu
- Department of Orthopaedics and Trauma
- Peking University People's Hospital
- Beijing
- China
| | - Mingda Hao
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing
- China
| | - Siyang Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing
- China
| | - Peixun Zhang
- Department of Orthopaedics and Trauma
- Peking University People's Hospital
- Beijing
- China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing
- China
| |
Collapse
|
36
|
Tiwari N, Sonzogni AS, Calderón M. Can dermal delivery of therapeutics be improved using thermoresponsive nanogels? Nanomedicine (Lond) 2019; 14:2891-2895. [DOI: 10.2217/nnm-2019-0345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Neha Tiwari
- POLYMAT & Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain
| | - Ana S Sonzogni
- Group of Polymers & Polymerization Reactors, INTEC (Universidad Nacional del Litoral-CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Marcelo Calderón
- POLYMAT & Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
37
|
Wollina U, Tirant M, Vojvodic A, Lotti T. Treatment of Psoriasis: Novel Approaches to Topical Delivery. Open Access Maced J Med Sci 2019; 7:3018-3025. [PMID: 31850114 PMCID: PMC6910788 DOI: 10.3889/oamjms.2019.414] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/04/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
Topical treatment is the cornerstone for the management of mild to moderate psoriasis. Despite efforts in drug development, patient's satisfaction with the available topical treatments is limited. A strategy to improve safety, efficacy and comfort of topical treatment provides the development of new drug delivery and drug carrier systems. This review provides an overview of recent advances in this field with a focus on psoriasis. Laser-assisted drug delivery, foam formulations, nanoparticles, ethosomes, and niomes are considered. Hopefully, these new developments will improve topical drug therapy and patient satisfaction.
Collapse
Affiliation(s)
- Uwe Wollina
- Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Academic Teaching Hospital, Dresden, Germany
| | - Michael Tirant
- Department of Dermatology, University of Rome “G. Marconi”, Rome, Italy
| | | | - Torello Lotti
- Department of Dermatology, University of Rome “G. Marconi”, Rome, Italy
| |
Collapse
|
38
|
Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels. Pharmaceutics 2019; 11:pharmaceutics11080394. [PMID: 31387279 PMCID: PMC6723892 DOI: 10.3390/pharmaceutics11080394] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/30/2023] Open
Abstract
Polyglycerol-based thermoresponsive nanogels (tNGs) have been shown to have excellent skin hydration properties and to be valuable delivery systems for sustained release of drugs into skin. In this study, we compared the skin penetration of tacrolimus formulated in tNGs with a commercial 0.1% tacrolimus ointment. The penetration of the drug was investigated in ex vivo abdominal and breast skin, while different methods for skin barrier disruption were investigated to improve skin permeability or simulate inflammatory conditions with compromised skin barrier. The amount of penetrated tacrolimus was measured in skin extracts by liquid chromatography tandem-mass spectrometry (LC-MS/MS), whereas the inflammatory markers IL-6 and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). Higher amounts of tacrolimus penetrated in breast as compared to abdominal skin or in barrier-disrupted as compared to intact skin, confirming that the stratum corneum is the main barrier for tacrolimus skin penetration. The anti-proliferative effect of the penetrated drug was measured in skin tissue/Jurkat cells co-cultures. Interestingly, tNGs exhibited similar anti-proliferative effects as the 0.1% tacrolimus ointment. We conclude that polyglycerol-based nanogels represent an interesting alternative to paraffin-based formulations for the treatment of inflammatory skin conditions.
Collapse
|
39
|
3D-Organotypic Cultures to Unravel Molecular and Cellular Abnormalities in Atopic Dermatitis and Ichthyosis Vulgaris. Cells 2019; 8:cells8050489. [PMID: 31121896 PMCID: PMC6562513 DOI: 10.3390/cells8050489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Atopic dermatitis (AD) is characterized by dry and itchy skin evolving into disseminated skin lesions. AD is believed to result from a primary acquired or a genetically-induced epidermal barrier defect leading to immune hyper-responsiveness. Filaggrin (FLG) is a protein found in the cornified envelope of fully differentiated keratinocytes, referred to as corneocytes. Although FLG null mutations are strongly associated with AD, they are not sufficient to induce the disease. Moreover, most patients with ichthyosis vulgaris (IV), a monogenetic skin disease characterized by FLG homozygous, heterozygous, or compound heterozygous null mutations, display non-inflamed dry and scaly skin. Thus, all causes of epidermal barrier impairment in AD have not yet been identified, including those leading to the Th2-predominant inflammation observed in AD. Three dimensional organotypic cultures have emerged as valuable tools in skin research, replacing animal experimentation in many cases and precluding the need for repeated patient biopsies. Here, we review the results on IV and AD obtained with epidermal or skin equivalents and consider these findings in the context of human in vivo data. Further research utilizing complex models including immune cells and cutaneous innervation will enable finer dissection of the pathogenesis of AD and deepen our knowledge of epidermal biology.
Collapse
|
40
|
Zabihi F, Koeppe H, Achazi K, Hedtrich S, Haag R. One-Pot Synthesis of Poly(glycerol-co-succinic acid) Nanogels for Dermal Delivery. Biomacromolecules 2019; 20:1867-1875. [PMID: 30995401 DOI: 10.1021/acs.biomac.8b01741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - Sarah Hedtrich
- University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, V6T1Z3 Vancouver, Canada
| | | |
Collapse
|
41
|
Divya, Kaur G. Stimulus Sensitive Smart Nanoplatforms: An Emerging Paradigm for the Treatment of Skin Diseases. Curr Drug Deliv 2019; 16:295-311. [DOI: 10.2174/1567201816666190123125813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/07/2019] [Accepted: 01/17/2019] [Indexed: 11/22/2022]
Abstract
Background:
Over the past century, the prevalence of skin diseases has substantially increased. These diseases present a significant physical, emotional and socio-economic burden to the society. Such conditions are also associated with a multitude of psychological traumas to the suffering patients. The effective treatment strategy implicates targeting of drugs to the skin. The field of drug targeting has been revolutionized with the advent of nanotechnology. The emergence of stimulus-responsive nanoplatforms has provided remarkable control over fundamental polymer properties for external triggers. This enhanced control has empowered pioneering approaches in the treatment of chronic inflammatory skin diseases.
Objective:
Our aim was to investigate the studies on smart nanoplatforms that exploit the altered skin physiology under diseased conditions and provide site-specific controlled drug delivery.
Method:
All literature search regarding the advances in stimulus sensitive smart nanoplatforms for skin diseases was done using Google Scholar and Pubmed.
Conclusion:
Various stimuli explored lately for such nano platforms are pH, temperature, light and magnet. Although, the scientists have actively taken up this research topic but there are still certain lacunaes associated which have been discussed in this review. Further, an interdisciplinary collaboration between the healthcare providers and pharmacists is a pivotal requirement for such systems to be available for patients.
Collapse
Affiliation(s)
- Divya
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Gurpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
42
|
Fibroblast origin shapes tissue homeostasis, epidermal differentiation, and drug uptake. Sci Rep 2019; 9:2913. [PMID: 30814627 PMCID: PMC6393472 DOI: 10.1038/s41598-019-39770-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/25/2019] [Indexed: 01/03/2023] Open
Abstract
Preclinical studies frequently lack predictive value for human conditions. Human cell-based disease models that reflect patient heterogeneity may reduce the high failure rates of preclinical research. Herein, we investigated the impact of primary cell age and body region on skin homeostasis, epidermal differentiation, and drug uptake. Fibroblasts derived from the breast skin of female 20- to 30-year-olds or 60- to 70-year-olds and fibroblasts from juvenile foreskin (<10 years old) were compared in cell monolayers and in reconstructed human skin (RHS). RHS containing aged fibroblasts differed from its juvenile and adult counterparts, especially in terms of the dermal extracellular matrix composition and interleukin-6 levels. The site from which the fibroblasts were derived appeared to alter fibroblast-keratinocyte crosstalk by affecting, among other things, the levels of granulocyte-macrophage colony-stimulating factor. Consequently, the epidermal expression of filaggrin and e-cadherin was increased in RHS containing breast skin fibroblasts, as were lipid levels in the stratum corneum. In conclusion, the region of the body from which fibroblasts are derived appears to affect the epidermal differentiation of RHS, while the age of the fibroblast donors determines the expression of proteins involved in wound healing. Emulating patient heterogeneity in preclinical studies might improve the treatment of age-related skin conditions.
Collapse
|
43
|
Frombach J, Unbehauen M, Kurniasih IN, Schumacher F, Volz P, Hadam S, Rancan F, Blume-Peytavi U, Kleuser B, Haag R, Alexiev U, Vogt A. Core-multishell nanocarriers enhance drug penetration and reach keratinocytes and antigen-presenting cells in intact human skin. J Control Release 2019; 299:138-148. [PMID: 30797867 DOI: 10.1016/j.jconrel.2019.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 11/30/2022]
Abstract
In reconstructed skin and diffusion cell studies, core-multishell nanocarriers (CMS-NC) showed great potential for drug delivery across the skin barrier. Herein, we investigated penetration, release of dexamethasone (DXM), in excised full-thickness human skin with special focus on hair follicles (HF). Four hours and 16 h after topical application of clinically relevant dosages of 10 μg DXM/cm2 skin encapsulated in CMS-NC (12 nm diameter, 5.8% loading), presence of DXM in the tissue as assessed by fluorescence microscopy of anti-DXM-stained tissue sections as well as ELISA and HPLC-MS/MS in tissue extracts was enhanced compared to standard LAW-creme but lower compared to DXM aqueous/alcoholic solution. Such enhanced penetration compared to conventional cremes offers high potential for topical therapies, as recurrent applications of corticosteroid solutions face limitations with regard to tolerability and fast drainage. The findings encourage more detailed investigations on where and how the nanocarrier and drug dissociate within the skin and what other factors, e.g. thermodynamic activity, influence the penetration of this formulations. Microscopic studies on the spatial distribution within the skin revealed accumulation in HF and furrows accompanied by limited cellular uptake assessed by flow cytometry (up to 9% of total epidermal cells). FLIM clearly visualized the presence of CMS-NC in the viable epidermis and dermis. When exposed in situ a fraction of up to 25% CD1a+ cells were found within the epidermal CMS-NC+ population compared to approximately 3% CD1a+/CMS-NC+ cells after in vitro exposure in short-term cultures of epidermal cell suspensions. The latter reflects the natural percentage of Langerhans cells (LC) in epidermis suspensions and indicated that CMS-NC were not preferentially internalized by one cell type. The increased CMS-NC+ LC proportion after exposure within the tissue is in accordance with the strategic suprabasal LC-localization. More specifically we postulate that the extensive dendrite meshwork, their position around HF orifices and their capacity to modulate tight junctions facilitated a preferential uptake of CMS-NC by LC within the skin. This newly identified aspect of CMS-NC penetration underlines the potential of CMS-NC for dermatotherapy and encourages further investigations of CMS-NC for the delivery of other molecule classes for which intracellular delivery is even more crucial.
Collapse
Affiliation(s)
- Janna Frombach
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Unbehauen
- Organic Chemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Indah N Kurniasih
- Organic Chemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Fabian Schumacher
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany; Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Pierre Volz
- Department of Physics, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Rainer Haag
- Organic Chemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ulrike Alexiev
- Department of Physics, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
44
|
Meng Q, Hu H, Zhou L, Zhang Y, Yu B, Shen Y, Cong H. Logical design and application of prodrug platforms. Polym Chem 2019. [DOI: 10.1039/c8py01160e] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review summarizes the current state of prodrugs and elaborates the logical design and future development of the prodrug platform.
Collapse
Affiliation(s)
- Qingye Meng
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Hao Hu
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Liping Zhou
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Yixin Zhang
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
45
|
Bordat A, Boissenot T, Nicolas J, Tsapis N. Thermoresponsive polymer nanocarriers for biomedical applications. Adv Drug Deliv Rev 2019; 138:167-192. [PMID: 30315832 DOI: 10.1016/j.addr.2018.10.005] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/12/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022]
Abstract
Polymer nanocarriers allow drug encapsulation leading to fragile molecule protection from early degradation/metabolization, increased solubility of poorly soluble drugs and improved plasmatic half-life. However, efficiently controlling the drug release from nanocarriers is still challenging. Thermoresponsive polymers exhibiting either a lower critical solution temperature (LCST) or an upper critical solution temperature (UCST) in aqueous medium may be the key to build spatially and temporally controlled drug delivery systems. In this review, we provide an overview of LCST and UCST polymers used as building blocks for thermoresponsive nanocarriers for biomedical applications. Recent nanocarriers based on thermoresponsive polymer exhibiting unprecedented features useful for biomedical applications are also discussed. While LCST nanocarriers have been studied for over two decades, UCST nanocarriers have recently emerged and already show great potential for effective thermoresponsive drug release.
Collapse
Affiliation(s)
- Alexandre Bordat
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Tanguy Boissenot
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Julien Nicolas
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Nicolas Tsapis
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France.
| |
Collapse
|
46
|
Balansin Rigon R, Kaessmeyer S, Wolff C, Hausmann C, Zhang N, Sochorová M, Kováčik A, Haag R, Vávrová K, Ulrich M, Schäfer-Korting M, Zoschke C. Ultrastructural and Molecular Analysis of Ribose-Induced Glycated Reconstructed Human Skin. Int J Mol Sci 2018; 19:ijms19113521. [PMID: 30413126 PMCID: PMC6275002 DOI: 10.3390/ijms19113521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 01/12/2023] Open
Abstract
Aging depicts one of the major challenges in pharmacology owing to its complexity and heterogeneity. Thereby, advanced glycated end-products modify extracellular matrix proteins, but the consequences on the skin barrier function remain heavily understudied. Herein, we utilized transmission electron microscopy for the ultrastructural analysis of ribose-induced glycated reconstructed human skin (RHS). Molecular and functional insights substantiated the ultrastructural characterization and proved the relevance of glycated RHS beyond skin aging. In particular, electron microscopy mapped the accumulation and altered spatial orientation of fibrils and filaments in the dermal compartment of glycated RHS. Moreover, the epidermal basement membrane appeared thicker in glycated than in non-glycated RHS, but electron microscopy identified longitudinal clusters of the finest collagen fibrils instead of real thickening. The stratum granulosum contained more cell layers, the morphology of keratohyalin granules decidedly differed, and the stratum corneum lipid order increased in ribose-induced glycated RHS, while the skin barrier function was almost not affected. In conclusion, dermal advanced glycated end-products markedly changed the epidermal morphology, underlining the importance of matrix⁻cell interactions. The phenotype of ribose-induced glycated RHS emulated aged skin in the dermis, while the two to three times increased thickness of the stratum granulosum resembled poorer cornification.
Collapse
Affiliation(s)
- Roberta Balansin Rigon
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| | - Sabine Kaessmeyer
- Institute of Veterinary Anatomy, Department of Veterinary Medicine, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany.
| | - Christopher Wolff
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| | - Christian Hausmann
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| | - Nan Zhang
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| | - Michaela Sochorová
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Andrej Kováčik
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany; Germany.
| | - Kateřina Vávrová
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Martina Ulrich
- Collegium Medicum Berlin, Luisenstr. 54, 10117 Berlin, Germany.
| | - Monika Schäfer-Korting
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| | - Christian Zoschke
- Institute of Pharmacy (Pharmacology & Toxicology), Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
47
|
Novel targeted drug delivery systems to minimize systemic immunosuppression in vascularized composite allotransplantation. Curr Opin Organ Transplant 2018; 23:568-576. [DOI: 10.1097/mot.0000000000000564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Zabihi F, Graff P, Schumacher F, Kleuser B, Hedtrich S, Haag R. Synthesis of poly(lactide-co-glycerol) as a biodegradable and biocompatible polymer with high loading capacity for dermal drug delivery. NANOSCALE 2018; 10:16848-16856. [PMID: 30168550 DOI: 10.1039/c8nr05536j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Due to the low cutaneous bioavailability of tacrolimus (TAC), penetration enhancers are used to improve its penetration into the skin. However, poor loading capacity, non-biodegradability, toxicity, and in some cases inefficient skin penetration are challenging issues that hamper their applications for the dermal TAC delivery. Here we present poly(lactide-co-glycerol) (PLG) as a water soluble, biodegradable, and biocompatible TAC-carrier with high loading capacity (14.5% w/w for TAC) and high drug delivery efficiencies into the skin. PLG was synthesized by cationic ring-opening copolymerization of a mixture of glycidol and lactide and showed 35 nm and 300 nm average sizes in aqueous solutions before and after loading of TAC, respectively. Delivery experiments on human skin, quantified by fluorescence microscopy and LC-MS/MS, showed a high ability for PLG to deposit Nile red and TAC into the stratum corneum and viable epidermis of skin in comparison with Protopic® (0.03% w/w, TAC ointment). The cutaneous distribution profile of delivered TAC proved that 80%, 16%, and 4% of the cutaneous drug level was deposited in the stratum corneum, viable epidermis, and upper dermis, respectively. TAC delivered by PLG was able to efficiently decrease the IL-2 and TSLP expressions in human skin models. Taking advantage of the excellent physicochemical and biological properties of PLG, it can be used for efficient dermal TAC delivery and potential treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Fatemeh Zabihi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Narang P, Venkatesu P. Unravelling the role of polyols with increasing carbon chain length and OH groups on the phase transition behavior of PNIPAM. NEW J CHEM 2018. [DOI: 10.1039/c8nj02510j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In advanced applications of pharmaceutical, agricultural and biomedical research, thermoresponsive polymers (TRPs) are potential candidates which show conformational transitions at given temperatures.
Collapse
Affiliation(s)
- Payal Narang
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| | | |
Collapse
|
50
|
Giulbudagian M, Yealland G, Hönzke S, Edlich A, Geisendörfer B, Kleuser B, Hedtrich S, Calderón M. Breaking the Barrier - Potent Anti-Inflammatory Activity following Efficient Topical Delivery of Etanercept using Thermoresponsive Nanogels. Am J Cancer Res 2018; 8:450-463. [PMID: 29290820 PMCID: PMC5743560 DOI: 10.7150/thno.21668] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022] Open
Abstract
Topical administration permits targeted, sustained delivery of therapeutics to human skin. Delivery to the skin, however, is typically limited to lipophilic molecules with molecular weight of < 500 Da, capable of crossing the stratum corneum. Nevertheless, there are indications protein delivery may be possible in barrier deficient skin, a condition found in several inflammatory skin diseases such as psoriasis, using novel nanocarrier systems. Methods: Water in water thermo-nanoprecipitation; dynamic light scattering; zeta potential measurement; nanoparticle tracking analysis; atomic force microscopy; cryogenic transmission electron microscopy; UV absorption; centrifugal separation membranes; bicinchoninic acid assay; circular dichroism; TNFα binding ELISA; inflammatory skin equivalent construction; human skin biopsies; immunohistochemistry; fluorescence microscopy; western blot; monocyte derived Langerhans cells; ELISA Results: Here, we report the novel synthesis of thermoresponsive nanogels (tNG) and the stable encapsulation of the anti-TNFα fusion protein etanercept (ETR) (~150 kDa) without alteration to its structure, as well as temperature triggered release from the tNGs. Novel tNG synthesis without the use of organic solvents was conducted, permitting in situ encapsulation of protein during assembly, something that holds great promise for easy manufacture and storage. Topical application of ETR loaded tNGs to inflammatory skin equivalents or tape striped human skin resulted in efficient ETR delivery throughout the SC and into the viable epidermis that correlated with clear anti-inflammatory effects. Notably, effective ETR delivery depended on temperature triggered release following topical application. Conclusion: Together these results indicate tNGs hold promise as a biocompatible and easy to manufacture vehicle for stable protein encapsulation and topical delivery into barrier-deficient skin.
Collapse
|