1
|
Zhang P, Cao M, Chetwynd AJ, Faserl K, Abdolahpur Monikh F, Zhang W, Ramautar R, Ellis LJA, Davoudi HH, Reilly K, Cai R, Wheeler KE, Martinez DST, Guo Z, Chen C, Lynch I. Analysis of nanomaterial biocoronas in biological and environmental surroundings. Nat Protoc 2024; 19:3000-3047. [PMID: 39044000 DOI: 10.1038/s41596-024-01009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/10/2024] [Indexed: 07/25/2024]
Abstract
A biomolecular coating, or biocorona, forms on the surface of engineered nanomaterials (ENMs) immediately as they enter biological or environmental systems, defining their biological and environmental identity and influencing their fate and performance. This biomolecular layer includes proteins (the protein corona) and other biomolecules, such as nucleic acids and metabolites. To ensure a meaningful and reproducible analysis of the ENMs-associated biocorona, it is essential to streamline procedures for its preparation, separation, identification and characterization, so that studies in different labs can be easily compared, and the information collected can be used to predict the composition, dynamics and properties of biocoronas acquired by other ENMs. Most studies focus on the protein corona as proteins are easier to monitor and characterize than other biomolecules and play crucial roles in receptor engagement and signaling; however, metabolites play equally critical roles in signaling. Here we describe how to reproducibly prepare and characterize biomolecule-coated ENMs, noting especially the steps that need optimization for different types of ENMs. The structure and composition of the biocoronas are characterized using general methods (transmission electron microscopy, dynamic light scattering, capillary electrophoresis-mass spectrometry and liquid chromatography-mass spectrometry) as well as advanced techniques, such as transmission electron cryomicroscopy, synchrotron-based X-ray absorption near edge structure and circular dichroism. We also discuss how to use molecular dynamic simulation to study and predict the interaction between ENMs and biomolecules and the resulting biocorona composition. The application of this protocol can provide mechanistic insights into the formation, composition and evolution of the ENM biocorona, ultimately facilitating the biomedical and agricultural application of ENMs and a better understanding of their impact in the environment.
Collapse
Grants
- 1001634 RCUK | Engineering and Physical Sciences Research Council (EPSRC)
- 814572, 814425, 731032, 101008099 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- 814572 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- 814425 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- 731032, 101008099 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- BX2021088 Bureau of International Cooperation, Chinese Academy of Sciences
- XDB36000000, BX2021088 Bureau of International Cooperation, Chinese Academy of Sciences
- 1853690, 2122860 Royal Society
- 1853690 Royal Society
- 22027810, 32071402, 22027810, U2032107 National Natural Science Foundation of China (National Science Foundation of China)
Collapse
Affiliation(s)
- Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Mingjing Cao
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing, China
| | - Andrew J Chetwynd
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Klaus Faserl
- Institute of Medical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Fazel Abdolahpur Monikh
- Department of Chemical Sciences, University of Padua, Padova, Italy
- Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec, Liberec, Czech Republic
| | - Wei Zhang
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Rawi Ramautar
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Laura-Jayne A Ellis
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Hossein Hayat Davoudi
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Katie Reilly
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Rong Cai
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing, China
| | - Korin E Wheeler
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing, China.
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, China.
- GBA National Institute for Nanotechnology Innovation, Guangzhou, China.
| | - Iseult Lynch
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Marcellini F, Varrella S, Ghilardi M, Barucca G, Giorgetti A, Danovaro R, Corinaldesi C. Inorganic UV filter-based sunscreens labelled as eco-friendly threaten sea urchin populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124093. [PMID: 38703981 DOI: 10.1016/j.envpol.2024.124093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Although the negative effects of inorganic UV filters have been documented on several marine organisms, sunscreen products containing such filters are available in the market and proposed as eco-friendly substitutes for harmful, and already banned, organic UV filters (e.g. octinoxate and oxybenzone). In the present study, we investigated the effects of four sunscreen products, labelled by cosmetic companies as "eco-friendly", on the early developmental stages of the sea urchin Paracentrotus lividus, a keystone species occurring in vulnerable coastal habitats. Among sunscreens tested, those containing ZnO and TiO2 or their mix caused severe impacts on sea urchin embryos. We show that inorganic UV filters were incorporated by larvae during their development and, despite the activation of defence strategies (e.g. phagocytosis by coelomocytes), generated anomalies such as skeletal malformations and tissue necrosis. Conversely, the sunscreen product containing only new-generation organic UV filters (e.g. methylene bis-benzotriazolyl tetramethyl, ethylhexyl triazone, butylphenol diethylamino hydroxybenzoyl hexyl benzoate) did not affect sea urchins, thus resulting actually eco-compatible. Our findings expand information on the impact of inorganic UV filters on marine life, corroborate the need to improve the eco-friendliness assessment of sunscreen products and warn of the risk of bioaccumulation and potential biomagnification of inorganic UV filters along the marine food chain.
Collapse
Affiliation(s)
- F Marcellini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; National Biodiversity Future Centre, Italy
| | - S Varrella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; National Biodiversity Future Centre, Italy
| | - M Ghilardi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - G Barucca
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - A Giorgetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - R Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; National Biodiversity Future Centre, Italy
| | - C Corinaldesi
- National Biodiversity Future Centre, Italy; Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
3
|
Habumugisha T, Zhang Z, Uwizewe C, Yan C, Ndayishimiye JC, Rehman A, Zhang X. Toxicological review of micro- and nano-plastics in aquatic environments: Risks to ecosystems, food web dynamics and human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116426. [PMID: 38718727 DOI: 10.1016/j.ecoenv.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
The increase of micro- and nano-plastics (MNPs) in aquatic environments has become a significant concern due to their potential toxicological effects on ecosystems, food web dynamics, and human health. These plastic particles emerge from a range of sources, such as the breakdown of larger plastic waste, consumer products, and industrial outputs. This review provides a detailed report of the transmission and dangers of MNPs in aquatic ecosystems, environmental behavior, and interactions within aquatic food webs, emphasizing their toxic impact on marine life. It explores the relationship between particle size and toxicity, their distribution in different tissues, and the process of trophic transfer through the food web. MNPs, once consumed, can be found in various organs, including the digestive system, gills, and liver. Their consumption by lower trophic level organisms facilitates their progression up the food chain, potentially leading to bioaccumulation and biomagnification, thereby posing substantial risks to the health, reproduction, and behavior of aquatic species. This work also explores how MNPs, through their persistence and bioaccumulation, pose risks to aquatic biodiversity and disrupt trophic relationships. The review also addresses the implications of MNPs for human health, particularly through the consumption of contaminated seafood, highlighting the direct and indirect pathways through which humans are exposed to these pollutants. Furthermore, the review highlights the recommendations for future research directions, emphasizing the integration of ecological, toxicological, and human health studies to inform risk assessments and develop mitigation strategies to address the global challenge of plastic pollution in aquatic environments.
Collapse
Affiliation(s)
- Théogène Habumugisha
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Zixing Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Constance Uwizewe
- Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao 266100, PR China
| | - Changzhou Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | | | - Abdul Rehman
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
4
|
Sugni M, Balzano A, De Felice B, Bonasoro F, Casati L, Madaschi L, Ascagni M, Parolini M. Exposure to polystyrene nanoplastics induced physiological and behavioral effects on the brittle star Ophiactis virens. MARINE POLLUTION BULLETIN 2024; 200:116061. [PMID: 38290366 DOI: 10.1016/j.marpolbul.2024.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Nanoplastic contamination has become an issue of environmental concern but the information on the potential adverse effects of nanoplastics on marine ecosystems is still limited. Therefore, the aim of this work was to investigate the effects of the exposure to polystyrene nanoplastics (PS-NPs; 0.05, 0.5 and 5 μg/mL) on the brittles star Ophiactis virens. Diverse endpoints at different levels of biological organization were considered, including behavior, arm regeneration capacity and oxidative stress. PS-NPs were observed on the brittle star body surface but not in inner tissues. Accumulation of PS-NPs was observed in the pre-buccal cavity of animals exposed to 5 μg/mL PS-NPs which also displayed delayed righting activity and an oxidative stress condition. Nevertheless, no effect was observed on arm regeneration efficiency at any tested PS-NPs concentration. Overall, our results highlighted that prolonged exposure to high amounts of PS-NPs could interfere at least partially with the physiology of O. virens.
Collapse
Affiliation(s)
- Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, I-20133 Milan, Italy.
| | - Alessandra Balzano
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, I-20133 Milan, Italy
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, I-20133 Milan, Italy.
| | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, I-20133 Milan, Italy.
| | - Lavinia Casati
- Department of Health Sciences, University of Milan, Via di Rudinì, 8 - ASST Santi Paolo e Carlo, I-20142 Milan, Italy.
| | - Laura Madaschi
- NOLIMITS-UNITECH imaging platform, University of Milan, Via Golgi 19, I-20133 Milan, Italy.
| | - Miriam Ascagni
- NOLIMITS-UNITECH imaging platform, University of Milan, Via Golgi 19, I-20133 Milan, Italy.
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, I-20133 Milan, Italy.
| |
Collapse
|
5
|
Jebashalomi V, Charles PE, Rajaram R, Sadayan P. A critical review on nanoplastics and its future perspectives in the marine environment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1186. [PMID: 37695547 DOI: 10.1007/s10661-023-11701-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
Nanoplastics (plastic particles smaller than 1 μm) are the least-known type of marine litter. Nanoplastics (NPs) have attracted much interest in recent years because of their prevalence in the environment and the potential harm they can cause to living organisms. This article focuses on understanding NPs and their fate in the marine environment. Sources of NPs have been identified, including accidental release from products or through nano-fragmentation of larger plastic debris. As NPs have a high surface area, they may retain harmful compounds. The presence of harmful additives in NPs poses unique practical challenges for studies on their toxicity. In this review, several methods specifically adapted for the physical and chemical characterization of NPs have been discussed. Furthermore, the review provides an overview of the translocation and absorption of NPs into organisms, along with an evaluation of the release of potential toxins from NPs. Further, we have provided an overview about the existing methods suggested for the possible degradation of these NPs. We conclude that the hazards of NPs are plausible but unknown, necessitating a thorough examination of NPs' sources, fate, and effects to better mitigate and spread awareness about this emerging contaminant.
Collapse
Affiliation(s)
- Vethanayaham Jebashalomi
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | | | - Rajendran Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| | - Paramasivam Sadayan
- Department of Oceanography and Coastal Area Studies, School of Marine Science, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| |
Collapse
|
6
|
Rex M C, Debroy A, Nirmala MJ, Mukherjee A. Ecotoxicological significance of bio-corona formation on micro/nanoplastics in aquatic organisms. RSC Adv 2023; 13:22905-22917. [PMID: 37520083 PMCID: PMC10375451 DOI: 10.1039/d3ra04054b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023] Open
Abstract
The unsustainable manufacturing, utilization and inadequate handling of plastics have led to a surge in global plastic pollution. In recent times, there has been increasing concern about the plausible hazards associated with exposure to micro/nanoplastics (M/NPs). As aquatic systems are considered to be the likely sink for M/NPs, it is crucial to comprehend their environmental behavior. The bioavailability, toxicity and fate of M/NPs in the environment are predominantly dictated by their surface characteristics. In the aquatic environment, M/NPs are prone to be internalized by aquatic organisms. This may facilitate their interaction with a diverse array of biomolecules within the organism, resulting in the formation of a biocorona (BC). The development of BC causes modifications in the physicochemical attributes of the M/NPs including changes to their size, stability, surface charge and other properties. This review details the concept of BC formation and its underlying mechanism. It provides insight on the analytical techniques employed for characterizing BC formation and addresses the associated challenges. Further, the eco-toxicological implications of M/NPs and the role of BC in modifying their potential toxicity on aquatic organisms is specified. The impact of BC formation on the fate and transport of M/NPs is discussed. A concise outlook on the future perspectives is also presented.
Collapse
Affiliation(s)
- Camil Rex M
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India
| | - Abhrajit Debroy
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India
| | - M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600036 India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India
| |
Collapse
|
7
|
Murano C, Nonnis S, Scalvini FG, Maffioli E, Corsi I, Tedeschi G, Palumbo A. Response to microplastic exposure: An exploration into the sea urchin immune cell proteome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121062. [PMID: 36641070 DOI: 10.1016/j.envpol.2023.121062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
It is now known that the Mediterranean Sea currently is one of the major hotspot for microplastics (MPs; < 5 mm) pollution and that the risks will be even more pronounced in the coming years. Thus, the in-depth study of the mechanisms underlying the MPs toxicity in key Mediterranean organisms, subjected to high anthropic pressures, has become a categorical imperative to pursue. Here, we explore for the first time the sea urchins immune cells profile combined to their proteome upon in vivo exposure (72 h) to different concentrations of polystyrene-microbeads (micro-PS) starting from relevant environmental concentrations (10, 50, 103, 104 MP/L). Every 24 h, immunological parameters were monitored. After 72 h, the abundance of MPs was examined in various organs and coelomocytes were collected for proteomic analysis based on a shotgun label free proteomic approach. While sea urchins treated with the lowest concentration tested (10 and 50 micro-PS/L) did not show the presence of micro-PS in any tissue, in the specimens exposed to the highest concentration (103 and 104 micro-PS) there was an internalisation of 9.75 ± 2.75 and 113.75 ± 34.5 MP/g, respectively. Proteomic analyses revealed that MPs exposure altered coelomocytes protein profile not only compared to the control group but also among the different micro-PS concentrations and these variations are micro-PS concentration dependent. The proteins exclusively expressed in the coelomocytes of specimens exposed to MPs are mainly metabolite interconversion enzymes, involved in cellular processes, indicating a severe alteration of the cellular metabolic pathways. Overall, these findings provide new insights on the mode of action of MPs in the sea urchin immune cells both at the molecular and cellular level.
Collapse
Affiliation(s)
- Carola Murano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy; CRC "Innovation for Well-being and Environment" (I-WE), Università Degli Studi di Milano, Milano, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
| | - Elisa Maffioli
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy; CRC "Innovation for Well-being and Environment" (I-WE), Università Degli Studi di Milano, Milano, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
8
|
Entezari S, Al MA, Mostashari A, Ganjidoust H, Ayati B, Yang J. Microplastics in urban waters and its effects on microbial communities: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88410-88431. [PMID: 36327084 DOI: 10.1007/s11356-022-23810-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Microplastic (MP) pollution is one of the emerging threats to the water and terrestrial environment, forcing a new environmental challenge due to the growing trend of plastic released into the environment. Synthetic and non-synthetic plastic components can be found in rivers, lakes/reservoirs, oceans, mountains, and even remote areas, such as the Arctic and Antarctic ice sheets. MPs' main challenge is identifying, measuring, and evaluating their impacts on environmental behaviors, such as carbon and nutrient cycles, water and wastewater microbiome, and the associated side effects. However, until now, no standardized methodical protocols have been proposed for comparing the results of studies in different environments, especially in urban water and wastewater. This review briefly discusses MPs' sources, fate, and transport in urban waters and explains methodological uncertainty. The effects of MPs on urban water microbiomes, including urban runoff, sewage wastewater, stagnant water in plumbing networks, etc., are also examined in depth. Furthermore, this study highlights the pathway of MPs and their transport vectors to different parts of ecosystems and human life, particularly through mediating microbial communities, antibiotic-resistant genes, and biogeochemical cycles. Overall, we have briefly highlighted the present research gaps, the lack of appropriate policy for evaluating microplastics and their interactions with urban water microbiomes, and possible future initiatives.
Collapse
Affiliation(s)
- Saber Entezari
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Mamun Abdullah Al
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Amir Mostashari
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Hossein Ganjidoust
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran.
| | - Bita Ayati
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Jun Yang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| |
Collapse
|
9
|
Ferrari E, Eliso MC, Bellingeri A, Corsi I, Spagnuolo A. Short-Term Exposure to Nanoplastics Does Not Affect Bisphenol A Embryotoxicity to Marine Ascidian Ciona robusta. Biomolecules 2022; 12:1661. [PMID: 36359011 PMCID: PMC9687932 DOI: 10.3390/biom12111661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 09/14/2023] Open
Abstract
Plastic pollution is recognized as a global environmental threat and concern is increasing regarding the potential interactions of the smallest fragments, nanoplastics (1 µm), with either physical and chemical entities encountered in the natural environment, including toxic pollutants. The smallest size of nanoplastics (<100nm) rebounds to their safety associated with remarkable biological, chemical and physical reactivity that allow them to interact with cellular machinery by crossing biological barriers and causing damage to living beings. Recent findings on nanoplastic occurrence in marine coastal waters, including the Mediterranean Sea, leave open the question on their ability to act as a vector of other contaminants of emerging concerns (CECs) concomitantly released by wastewater treatment plants and reaching marine coastal waters. Here, we assess for the first time the role of non-functionalized polystyrene nanoparticles (PS NPs, 20 nm) as a proxy for nanoplastics (1 and 10 µg/mL) alone and in combination with bisphenol A (BPA) (4.5 and 10 µM) on Ciona robusta embryos (22 h post fertilization, hpf) by looking at embryotoxicity through phenotypic alterations. We confirmed the ability of BPA to impact ascidian C. robusta embryo development, by affecting sensory organs pigmentation, either alone and in combination with PS NPs. Our findings suggest that no interactions are taking place between PS NPs and BPA in filtered sea water (FSW) probably due to the high ionic strength of seawater able to trigger the sorption surface properties of PS NPs. Further studies are needed to elucidate such peculiarities and define the risk posed by combined exposure to BPA and PS NPs in marine coastal waters.
Collapse
Affiliation(s)
- Emma Ferrari
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Arianna Bellingeri
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
- Department of Sciences, Roma Tre University, 00146 Rome, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| |
Collapse
|
10
|
Panacea for the nanoplastic surge in Africa: A state-of-the-art review. Heliyon 2022; 8:e11562. [DOI: 10.1016/j.heliyon.2022.e11562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
|
11
|
Avellán-Llaguno RD, Zhang X, Zhao P, Velez A, Cruz M, Kikuchi J, Dong S, Huang Q. Differential aggregation of polystyrene and titanium dioxide nanoparticles under various salinity conditions and against multiple proteins types. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74173-74184. [PMID: 35644000 DOI: 10.1007/s11356-022-20729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The interaction of nanoplastics (NPls) and engineered nanoparticles (ENPs) with organic matter and environmental pollutants is particularly important. Therefore, their behavior should be investigated under the different salinity conditions, mimicking rivers and coastal environments, to understand this phenomenon in those areas. In this work, we analyzed the elementary characteristics of polystyrene-PS (unmodified surface and modified with amino or carboxyl groups) and titanium dioxide-TiO2 nanoparticles. The effect of salinity on their colloidal properties was studied too. Also, the interaction with different types of proteins (bovine serum albumin-BSA and tilapia proteins), as well as the formation of the BSA corona and its effect on the colloidal stability of nanoparticles, were evaluated. The morphology and dispersion of sizes were more uniform in unmodified-surface PS-NPs (70.5 ± 13.7 nm) than in TiO2-NPs (131.2 ± 125.6 nm). Likewise, Rama spectroscopy allowed recognizing peaks associated with the PS phenyl group aromatic ring in unmodified-surface PS-NPs (621, 1002, 1582, and 1602 cm-1). For TiO2-NPs, the data suggest belonging to the tetragonal form, also known as rutile (445, 610 cm-1). The elevation of salinity dose-dependently decreased NP colloid stability, with more significant variation in the PS-NPs compared to TiO2-NPs. The organic matter is also involved in this phenomenon, differentially as a function of time compared to its absence (unmodified-surface PS-NPs 30 psu/TOC 5 mgL-1/24 h: 2876.6 ± 378.03 nm; unmodified-surface PS-NPs 30 psu/24 h: 2133 ± 49.57 nm). In general, the TiO2-NPs demonstrated greater affinity with all proteins tested (0.066 g/L). It was observed that morphology, size, and surface chemical modification intervene in a relevant way in the interaction of the nanoparticles with bovine serum albumin (unmodified-surface PS-NPs 298 K: 6.08E+02; 310 K: 6.63E+02; TiO2-NPs 298 K: 8.76E+02; 310 K: 1.05E+03 L mol-1) and tilapia tissues proteins (from blood, gills, liver, and brain). Their morphology and size also determined the protein corona formation and the NPs' agglomeration. These findings can provide references during knowledge transfer between NPls and ENPs.
Collapse
Affiliation(s)
- Ricardo David Avellán-Llaguno
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xu Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Peiqiang Zhao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Alberto Velez
- Agencia de Regulación Y Control de La Bioseguridad Y Cuarentena Para Galápagos, Puerto Ayora, 200105, Ecuador
| | - Marilyn Cruz
- Agencia de Regulación Y Control de La Bioseguridad Y Cuarentena Para Galápagos, Puerto Ayora, 200105, Ecuador
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Sijun Dong
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Qiansheng Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China.
- National Basic Science Data Center, Beijing, 100190, People's Republic of China.
| |
Collapse
|
12
|
Zhang P, Liu Y, Zhang L, Xu M, Gao L, Zhao B. The interaction of micro/nano plastics and the environment: Effects of ecological corona on the toxicity to aquatic organisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113997. [PMID: 35988380 DOI: 10.1016/j.ecoenv.2022.113997] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Concerns about the micro/nano plastics (MNPs) exposure risks have risen in recent years. The ecological corona (EC), which is generated by the interaction between MNPs and environmental substances, has a significant impact on their environmental fate and ecological risks. As the largest sink of MNPs, the aquatic environment is of great significance for understanding the environmental behaviour of MNPs. Transmission Electron Microscope (TME), Fourier Transform Infra-Red (FTIR), Scanning Electron Microscope (SEM), Dynamic Light Scattering (DLS) and other analytical methods have been used as effective methods to analyse the formation process of EC and detect the existing EC directly or indirectly on the surface of MNPs. The physicochemical properties of MNPs, complex aquatic environments and ageing time have been identified as the key factors affecting EC formation in aquatic environments. Moreover, the EC absorbed on MNPs significantly changed their environmental behaviour and toxicity to aquatic organisms. This review gives a full understanding of the EC formation progress on the surface of MNPs and different analytical methods for EC have been summarised which can further assist the ecological risk assessment of MNPs in the aquatic environment.
Collapse
Affiliation(s)
- Peiming Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Long Zhang
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China; State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
| | - Ming Xu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lirong Gao
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
13
|
Liu W, Worms IAM, Jakšić Ž, Slaveykova VI. Aquatic organisms modulate the bioreactivity of engineered nanoparticles: focus on biomolecular corona. FRONTIERS IN TOXICOLOGY 2022; 4:933186. [PMID: 36060121 PMCID: PMC9437328 DOI: 10.3389/ftox.2022.933186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
The increased use of nanoparticle (NP)-enabled materials in everyday-life products have raised concerns about their environmental implications and safety. This motivated the extensive research in nanoecotoxicology showing the possibility that NPs could cause harm to the aquatic organisms if present at high concentrations. By contrast, studies dealing with influence that organisms could exert on the fate and thus effects of NPs are still very rare. Drawing on the existing up-to-date knowledge we critically discuss the formation of biomolecular corona as one of the mechanisms by which organisms exerted control on the NPs fate in the aquatic and biotic environments. We focused the formation of corona by exogeneous and endogenous biomolecules and illustrated the discussion with the specific example of phytoplankton and aquatic invertebrate species. We highlighted the necessity to incorporate the concept of biomolecular corona within more general framework considering the feedback of aquatic organisms and the control they exert in shaping the fate and impact of NPs in the aquatic and biological environment. In our view such broader perspective will contribute to get novel insights into the drivers of environmental transformations of NPs and their mechanisms, which are important in environmental risk assessment.
Collapse
Affiliation(s)
- Wei Liu
- Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, Faculty of Sciences, Earth and Environment Sciences, University of Geneva, Uni Carl Vogt, Geneva, Switzerland
| | - Isabelle A. M. Worms
- Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, Faculty of Sciences, Earth and Environment Sciences, University of Geneva, Uni Carl Vogt, Geneva, Switzerland
| | - Željko Jakšić
- Center for Marine Research Rovinj, Institute Ruđer Bošković, Rovinj, Croatia
| | - Vera I. Slaveykova
- Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, Faculty of Sciences, Earth and Environment Sciences, University of Geneva, Uni Carl Vogt, Geneva, Switzerland
- *Correspondence: Vera I. Slaveykova,
| |
Collapse
|
14
|
Zaki MRM, Aris AZ. An overview of the effects of nanoplastics on marine organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154757. [PMID: 35339559 DOI: 10.1016/j.scitotenv.2022.154757] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The ubiquity and detrimental effects of plastics in the environment have become global environmental concerns over the past decade. Intensive anthropogenic activities, such as urbanisation, industrialisation and increasing population density, have resulted in increased plastic pollution in the environment. Recently, nanoplastics have received increased research attention and concern because of their potential adverse effects on marine organisms. However, the potential ecological issues associated with nanoplastics are not yet fully understood because of the insufficient and limited research conducted to date on baseline data, exposure and associated risks for marine organisms. This review highlights an understanding of the nature and characteristics of nanoplastics, as well as the occurrence of nanoplastics in the marine environment. In the future, the effects of nanoplastics on marine organisms may directly or indirectly influence human health. Thus, this review also highlights the effects of nanoplastics on marine organisms. An overview and insights into the occurrence of nanoplastics in marine environments and their potential effects on marine organisms will facilitate the preventative interventions and measures of nanoplastics pollution in the marine environment.
Collapse
Affiliation(s)
- Muhammad Rozaimi Mohd Zaki
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
15
|
Manzo S, Schiavo S. Physical and chemical threats posed by micro(nano)plastic to sea urchins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152105. [PMID: 34863733 DOI: 10.1016/j.scitotenv.2021.152105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The awareness of the plastic issue is rising in recent years. Our seas and coastal seawaters are investigated with the aim to evaluate the possible fate, behavior and the impact of these novel contaminants upon marine biota. In particular, benthic organisms are exposed to micro(nano)plastics that sink and accumulated on the seabed. Sea urchins can be prone to the plastic impact for all their lifespan with effect that can be extended upon the trophic cascade since their key role as grazer organisms. Moreover, they are largely used in the assessment of contaminant impact both as adult individuals and as early larval stages. This review analyzes the recent literature about the chemical and physical hazards posed by diverse polymers to sea urchins, in relation to their peculiar characteristics and to their size. The search was based on a query of the keyword terms: microplastic _ OR nanoplastic_AND Sea urchins in Web of Science and Google Scholar. The effects provoked by exposure of different sea urchin biological form are highlighted, considering both laboratory exposure and collection in real world. Additional focus has also been given upon the exposure methods utilized in laboratory test and in the existing limitations in the testing procedures. In conclusion, the micro(nano)plastics major impact seemed to be attributable to leaching compounds, however variability and lacking of realisms in the procedures do not allow a full understanding of the hazard posed by micro(nano)plastics for sea urchins. Finally, the work provides insights into the future research strategies to better characterize the actual risk for sea urchins.
Collapse
Affiliation(s)
- Sonia Manzo
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy.
| | - Simona Schiavo
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy
| |
Collapse
|
16
|
Casabianca S, Bellingeri A, Capellacci S, Sbrana A, Russo T, Corsi I, Penna A. Ecological implications beyond the ecotoxicity of plastic debris on marine phytoplankton assemblage structure and functioning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118101. [PMID: 34523510 DOI: 10.1016/j.envpol.2021.118101] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Plastic pollution is a global issue posing a threat to marine biota with ecological implications on ecosystem functioning. Micro and nanoplastic impact on phytoplankton autotrophic species (e.g., cell growth inhibition, decrease in chlorophyll a and photosynthetic efficiency and hetero-aggregates formation) have been largely documented. However, the heterogeneity of data makes rather difficult a comparison based on size (i.e. micro vs nano). In addition, knowledge gaps on the ecological impact on phytoplankton assemblage structure and functioning are evident. A new virtual meta-analysis on cause-effect relationships of micro and nanoplastics on phytoplankton species revealed the significant effect posed by polymer type on reducing cell density for tested PVC, PS and PE plastics. Linked with autotrophic phytoplankton role in atmospheric CO2 fixation, a potential impact of plastics on marine carbon pump is discussed. The understanding of the effects of microplastics and nanoplastics on the phytoplankton functioning is fundamental to raise awareness on the overall impact on the first level of marine food web. Interactions between micro and nanoplastics and phytoplankton assemblages have been quite documented by in vitro examinations; but, further studies considering natural plankton assemblages and/or large mesocosm experiments should be performed to evaluate and try predicting ecological impacts on primary producers.
Collapse
Affiliation(s)
- Silvia Casabianca
- Department of Biomolecular Sciences, University of Urbino, Campus E. Mattei, 61121, Urbino, Italy; CoNISMa, National Inter-University Consortium for Marine Sciences, 00196, Rome, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032, Fano, Italy.
| | - Arianna Bellingeri
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
| | - Samuela Capellacci
- Department of Biomolecular Sciences, University of Urbino, Campus E. Mattei, 61121, Urbino, Italy; CoNISMa, National Inter-University Consortium for Marine Sciences, 00196, Rome, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032, Fano, Italy
| | - Alice Sbrana
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy; PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133, Roma, Italy
| | - Tommaso Russo
- CoNISMa, National Inter-University Consortium for Marine Sciences, 00196, Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Ilaria Corsi
- CoNISMa, National Inter-University Consortium for Marine Sciences, 00196, Rome, Italy; Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
| | - Antonella Penna
- Department of Biomolecular Sciences, University of Urbino, Campus E. Mattei, 61121, Urbino, Italy; CoNISMa, National Inter-University Consortium for Marine Sciences, 00196, Rome, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032, Fano, Italy
| |
Collapse
|
17
|
Echinochrome A Treatment Alleviates Atopic Dermatitis-like Skin Lesions in NC/Nga Mice via IL-4 and IL-13 Suppression. Mar Drugs 2021; 19:md19110622. [PMID: 34822493 PMCID: PMC8625509 DOI: 10.3390/md19110622] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease in which skin barrier dysfunction leads to dryness, pruritus, and erythematous lesions. AD is triggered by immune imbalance and oxidative stress. Echinochrome A (Ech A), a natural pigment isolated from sea urchins, exerts antioxidant and beneficial effects in various inflammatory disease models. In the present study, we tested whether Ech A treatment alleviated AD-like skin lesions. We examined the anti-inflammatory effect of Ech A on 2,4-dinitrochlorobenzene (DNCB)-induced AD-like lesions in an NC/Nga mouse model. AD-like skin symptoms were induced by treatment with 1% DNCB for 1 week and 0.4% DNCB for 5 weeks in NC/Nga mice. The results showed that Ech A alleviated AD clinical symptoms, such as edema, erythema, and dryness. Treatment with Ech A induced the recovery of epidermis skin lesions as observed histologically. Tewameter® and Corneometer® measurements indicated that Ech A treatment reduced transepidermal water loss and improved stratum corneum hydration, respectively. Ech A treatment also inhibited inflammatory-response-induced mast cell infiltration in AD-like skin lesions and suppressed the expression of proinflammatory cytokines, such as interferon-γ, interleukin-4, and interleukin-13. Collectively, these results suggest that Ech A may be beneficial for treating AD owing to its anti-inflammatory effects.
Collapse
|
18
|
Sanchez-Hernandez JC. A toxicological perspective of plastic biodegradation by insect larvae. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109117. [PMID: 34186180 DOI: 10.1016/j.cbpc.2021.109117] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022]
Abstract
Larvae of some insect species (Coleoptera and Lepidoptera) can consume and biodegrade synthetic polymers, including polyethylene, polystyrene, polyvinyl chloride, and polypropylene. Multiple chemical (polymer mass loss and shift of the molecular weight, alterations in chemical functionality, formation of biodegraded intermediates, CO2 production), physical (surface hydrophobicity, thermal analysis), and biological approaches (antibiotic treatment, gut dysbiosis, isolation of plastic microbial degraders) have provided evidence for polymer biodegradation in the larva digestive tract. However, the extent and rate of biodegradation largely depend on the physicochemical structure of the polymer as well as the presence of additives. Additionally, toxicology associated with plastic biodegradation has not been investigated. This knowledge gap is critical to understand the gut symbiont-host interaction in the biodegradation process, its viability in the long term, the effects of plastic additives and their metabolites, and the phenotypic traits linked to a plastic-rich diet might be transferred in successive generations. Likewise, plastic-eating larvae represent a unique case study for elucidating the mechanisms of toxic action by micro- and nanoplastics because of the high concentration of plastics these organisms may be intentionally exposed to. This perspective review graphically summarizes the current knowledge on plastic biodegradation by insect larvae and describes the physiological processes (digestive and immune systems) that may be disrupted by micro- and nanoplastics. It also provides an outlook to advance current knowledge on the toxicity assessment of plastic-rich diets and the environmental risks of plastic-containing by-products (e.g., insect manure used as fertilizer).
Collapse
Affiliation(s)
- Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Faculty of Environmental Science and Biochemistry, University of Castilla-La Mancha, 45071 Toledo, Spain.
| |
Collapse
|
19
|
Machado AJT, Mataribu B, Serrão C, da Silva Silvestre L, Farias DF, Bergami E, Corsi I, Marques-Santos LF. Single and combined toxicity of amino-functionalized polystyrene nanoparticles with potassium dichromate and copper sulfate on brine shrimp Artemia franciscana larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45317-45334. [PMID: 33860426 DOI: 10.1007/s11356-021-13907-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
The increasing use and disposal of plastics has become a persistent problem in the marine environment, calling for studies that refer to realistic scenarios to understand their effects on biota. Particularly, the understanding about the effects of co-exposure with nanoplastic particles and metals on aquatic organisms is still limited. The present work aimed to investigate the acute toxicity of amino-functionalized polystyrene nanoparticles (PS-NH2; 50 nm) as proxy for nanoplastics on brine shrimp Artemia franciscana larvae under different culture conditions and at different stages of development, as well as the combined effect with two reference toxicants - potassium dichromate (K2Cr2O7) and copper sulfate (CuSO4). Nauplii (instar II or III larval stages) were exposed to different concentrations of PS-NH2 (0.005 to 5 μg mL-1) for up to 48 h, with or without agitation in order to mimic a more realistic environmental scenario. Larval mobility and PS-NH2 accumulation were monitored under microscopy. PS-NH2 alone showed toxicity only at the highest concentration tested (5 μg mL-1) regardless the incubation method used (61.2 + 3.1% and 65.0 + 4.5% with and without agitation, respectively). Moreover, instar III stage was the most sensitive to PS-NH2 exposure (38.2% immobility in 24 h of exposure; 5 μg mL-1). Evidence of PS-NH2 retention in the gastrointestinal tract in a concentration- and time-dependent manner was also obtained. Mixtures of PS-NH2 (0.005 and 5 μg mL-1) with different concentrations of K2Cr2O7 increased the immobilization rate of the larvae after 48 h of exposure, when compared to the K2Cr2O7 alone. Similar results were observed for CuSO4 in the co-exposure conditions at different concentrations. However, exposing nauplii to a mixture of PS-NH2 (0.005 μg mL-1) and CuSO4 decreased immobilization rate, in comparison to the group exposed to CuSO4 alone. The present work highlights the potential risk posed by nanoplastics to zooplanktonic species through their interaction with other toxicants.
Collapse
Affiliation(s)
- Antonio Júdson Targino Machado
- Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular (DBM), Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba (UFPB, Campus I), Cidade Universitária s/n, Castelo Branco, CEP, João Pessoa, PB, 58051-900, Brazil
- Programa de Ecologia e Monitoramento Ambiental (PPGEMA), Universidade Federal da Paraíba (UFPB, Campus IV), Rio Tinto, Paraíba, Brazil
| | - Bianca Mataribu
- Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular (DBM), Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba (UFPB, Campus I), Cidade Universitária s/n, Castelo Branco, CEP, João Pessoa, PB, 58051-900, Brazil
| | - Catarina Serrão
- Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular (DBM), Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba (UFPB, Campus I), Cidade Universitária s/n, Castelo Branco, CEP, João Pessoa, PB, 58051-900, Brazil
| | - Leanderson da Silva Silvestre
- Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular (DBM), Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba (UFPB, Campus I), Cidade Universitária s/n, Castelo Branco, CEP, João Pessoa, PB, 58051-900, Brazil
| | - Davi Felipe Farias
- Laboratório de Avaliação de Risco de Novas Tecnologias (LabRisco), Departamento de Biologia Molecular (DBM), Universidade Federal da Paraíba (UFPB, Campus I), João Pessoa, Paraíba, Brazil
| | - Elisa Bergami
- Department of Physical, Earth and Environmental Sciences-DSFTA, University of Siena, Siena, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences-DSFTA, University of Siena, Siena, Italy
| | - Luis Fernando Marques-Santos
- Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular (DBM), Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba (UFPB, Campus I), Cidade Universitária s/n, Castelo Branco, CEP, João Pessoa, PB, 58051-900, Brazil.
- Programa de Ecologia e Monitoramento Ambiental (PPGEMA), Universidade Federal da Paraíba (UFPB, Campus IV), Rio Tinto, Paraíba, Brazil.
| |
Collapse
|
20
|
Kokalj AJ, Hartmann NB, Drobne D, Potthoff A, Kühnel D. Quality of nanoplastics and microplastics ecotoxicity studies: Refining quality criteria for nanomaterial studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125751. [PMID: 34088206 DOI: 10.1016/j.jhazmat.2021.125751] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 05/23/2023]
Abstract
It is becoming increasingly important to develop assessment criteria for the quality of nanoplastics studies. This study is an attempt to establish such criteria based on those developed for engineered nanomaterials, the GUIDEnano and DaNa criteria being two representatives. These criteria were applied to studies on polystyrene nanoparticles (PS NPs), which currently represent the majority of studies on nanoplastics. We compiled a list of existing nanomaterial-related criteria that are not fully relevant to PS NPs and propose additional nanoplastic-specific criteria targeting polymer chemical composition, source, production and field collection, impurities/chemical additives, density, hydrophobicity, colour, and chemical leaching. For each criterion, scientific justification is provided. We conclude that the existing study quality assessments originally developed for nano(eco)toxicity studies can, through refinements, be applied to those dealing with nanoplastics studies, with a further outlook on microplastics. The final quality criteria catalogue presented here is intended as a starting point for further elaborations considering different purposes of an assessment.
Collapse
Affiliation(s)
- Anita Jemec Kokalj
- University of Ljubljana, Biotechnical faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Nanna B Hartmann
- Department of Environment Engineering, Technical University of Denmark, Bygningstorvet, Building 115, Kongens Lyngby 2800, Denmark
| | - Damjana Drobne
- University of Ljubljana, Biotechnical faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Annegret Potthoff
- Fraunhofer Institute for Ceramic Technologies and Systems, Winterbergstrasse 28, D-01277 Dresden, Germany
| | - Dana Kühnel
- Helmholtz Centre for Environmental Research - UFZ, Dept. Bioanalytical Ecotoxicology, Permoserstrasse 15, D-04318 Leipzig, Germany
| |
Collapse
|
21
|
Thomas PJ, Perono G, Tommasi F, Pagano G, Oral R, Burić P, Kovačić I, Toscanesi M, Trifuoggi M, Lyons DM. Resolving the effects of environmental micro- and nanoplastics exposure in biota: A knowledge gap analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146534. [PMID: 34030291 DOI: 10.1016/j.scitotenv.2021.146534] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 05/25/2023]
Abstract
The pervasive spread of microplastics (MPs) and nanoplastics (NPs) has raised significant concerns on their toxicity in both aquatic and terrestrial environments. These polymer-based materials have implications for plants, wildlife and human health, threatening food chain integrity and ultimate ecosystem resilience. An extensive - and growing - body of literature is available on MP- and NP-associated effects, including in a number of aquatic biota, with as yet limited reports in terrestrial environments. Effects range from no detectable, or very low level, biological effects to more severe outcomes such as (but not limited to) increased mortality rates, altered immune and inflammatory responses, oxidative stress, genetic damage and dysmetabolic changes. A well-established exposure route to MPs and NPs involves ingestion with subsequent incorporation into tissues. MP and NP exposures have also been found to lead to genetic damage, including effects related to mitotic anomalies, or to transmissible damage from sperm cells to their offspring, especially in echinoderms. Effects on the proteome, transcriptome and metabolome warrant ad hoc investigations as these integrated "omics" workflows could provide greater insight into molecular pathways of effect. Given their different physical structures, chemical identity and presumably different modes of action, exposure to different types of MPs and NPs may result in different biological effects in biota, thus comparative investigations of different MPs and NPs are required to ascertain the respective effects. Furthermore, research on MP and NP should also consider their ability to act as vectors for other toxicants, and possible outcomes of exposure may even include effects at the community level, thus requiring investigations in mesocosm models.
Collapse
Affiliation(s)
- Philippe J Thomas
- Environment and Climate Change Canada, Science & Technology Branch, National Wildlife Research Center - Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Genevieve Perono
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Franca Tommasi
- "Aldo Moro" Bari University, Department of Biology, I-70125 Bari, Italy
| | | | - Rahime Oral
- Ege University, Faculty of Fisheries, TR-35100 Bornova, İzmir, Turkey
| | - Petra Burić
- Juraj Dobrila University of Pula, HR-52100 Pula, Croatia
| | - Ines Kovačić
- Juraj Dobrila University of Pula, HR-52100 Pula, Croatia
| | | | | | - Daniel M Lyons
- Center for Marine Research, Ruđer Bošković Institute, HR-52210 Rovinj, Croatia.
| |
Collapse
|
22
|
Eco-Interactions of Engineered Nanomaterials in the Marine Environment: Towards an Eco-Design Framework. NANOMATERIALS 2021; 11:nano11081903. [PMID: 34443734 PMCID: PMC8398366 DOI: 10.3390/nano11081903] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022]
Abstract
Marine nano-ecotoxicology has emerged with the purpose to assess the environmental risks associated with engineered nanomaterials (ENMs) among contaminants of emerging concerns entering the marine environment. ENMs’ massive production and integration in everyday life applications, associated with their peculiar physical chemical features, including high biological reactivity, have imposed a pressing need to shed light on risk for humans and the environment. Environmental safety assessment, known as ecosafety, has thus become mandatory with the perspective to develop a more holistic exposure scenario and understand biological effects. Here, we review the current knowledge on behavior and impact of ENMs which end up in the marine environment. A focus on titanium dioxide (n-TiO2) and silver nanoparticles (AgNPs), among metal-based ENMs massively used in commercial products, and polymeric NPs as polystyrene (PS), largely adopted as proxy for nanoplastics, is made. ENMs eco-interactions with chemical molecules including (bio)natural ones and anthropogenic pollutants, forming eco- and bio-coronas and link with their uptake and toxicity in marine organisms are discussed. An ecologically based design strategy (eco-design) is proposed to support the development of new ENMs, including those for environmental applications (e.g., nanoremediation), by balancing their effectiveness with no associated risk for marine organisms and humans.
Collapse
|
23
|
Catena V, Bruno T, Iezzi S, Matteoni S, Salis A, Sorino C, Damonte G, Fanciulli M. CK2-mediated phosphorylation of Che-1/AATF is required for its pro-proliferative activity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:232. [PMID: 34266450 PMCID: PMC8281565 DOI: 10.1186/s13046-021-02038-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022]
Abstract
Background Che-1/AATF (Che-1) is an RNA polymerase II binding protein involved in several cellular processes, including proliferation, apoptosis and response to stress. We have recently demonstrated that Che-1 is able to promote cell proliferation by sustaining global histone acetylation in multiple myeloma (MM) cells where it interacts with histone proteins and competes with HDAC class I members for binding. Methods Site-directed Mutagenesis was performed to generate a Che-1 mutant (Che-1 3S) lacking three serine residues (Ser316, Ser320 and Ser321) in 308–325 aa region. Western blot experiments were conducted to examine the effect of depletion or over-expression of Che-1 and Che-1 3S mutant on histone acetylation, in different human cancer cell lines. Proliferation assays were assessed to estimate the change in cells number when Che-1 was over-expressed or deleted. Immunoprecipitation assays were performed to evaluate Che-1/histone H3 interaction when Ser316, Ser320 and Ser321 were removed. The involvement of CK2 kinase in Che-1 phosphorylation at these residues was analysed by in vitro kinase, 2D gel electrophoresis assays and mass spectrometry analysis. Results Here, we confirmed that Che-1 depletion reduces cell proliferation with a concomitant general histone deacetylation in several tumor cell lines. Furthermore, we provided evidence that CK2 protein kinase phosphorylates Che-1 at Ser316, Ser320 and Ser321 and that these modifications are required for Che-1/histone H3 binding. These results improve our understanding onto the mechanisms by which Che-1 regulates histone acetylation and cell proliferation. Conclusions Che-1 phosphorylation at Ser316, Ser320 and Ser321 by CK2 promotes the interaction with histone H3 and represents an essential requirement for Che-1 pro-proliferative ability. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02038-x.
Collapse
Affiliation(s)
- Valeria Catena
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy.
| | - Tiziana Bruno
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Simona Iezzi
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Silvia Matteoni
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Annalisa Salis
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genoa, Viale Benedetto XV 1, 16132, Genoa, Italy
| | - Cristina Sorino
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Gianluca Damonte
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genoa, Viale Benedetto XV 1, 16132, Genoa, Italy
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
24
|
Chen G, Li Y, Wang J. Occurrence and ecological impact of microplastics in aquaculture ecosystems. CHEMOSPHERE 2021; 274:129989. [PMID: 33979917 DOI: 10.1016/j.chemosphere.2021.129989] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Extensive applications of plastic in human life has caused substantial microplastic pollution in the global environment, which, due to plastic's ubiquitous nature and everlasting ecological impact, has caused worldwide concern. In aquatic ecosystems, microplastics are ingested by aquatic animals, affecting their growth and development and resulting in trophic transfer to higher organisms in the food chain. Therefore, consumption of aquatic products is a main primary source of human exposure to microplastics. Recently, aquaculture production has experienced tremendous growth and will exceed production from fish catch soon. Because they constitute an important source of protein in the human food supply, aquaculture products contaminated with microplastics directly affect food quality and safety. The present review summarizes documented studies regarding the occurrence and distribution of microplastics in various aquaculture systems and species and compares microplastic pollution in aquaculture species and captured species. Microplastics in aquaculture environments mainly come from exogenous imports, such as plastic waste and debris from the land, tourism, shipping transportation and atmospheric deposition. In addition, the use of plastic gear and equipment, aquaculture feed and health products, and special aquaculture environments contribute to a higher accumulation of microplastics. We also discuss the adverse effects of microplastics in aquaculture species and the potential health risks of microplastics to humans through the food chain. In summary, this review highlights the effects of microplastic pollution in aquaculture, particularly the ecological impacts on aquaculture species and associated human health implications, and calls for restricted control of microplastics in aquaculture ecosystems.
Collapse
Affiliation(s)
- Guanglong Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yizheng Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
25
|
Swartzwelter BJ, Mayall C, Alijagic A, Barbero F, Ferrari E, Hernadi S, Michelini S, Navarro Pacheco NI, Prinelli A, Swart E, Auguste M. Cross-Species Comparisons of Nanoparticle Interactions with Innate Immune Systems: A Methodological Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1528. [PMID: 34207693 PMCID: PMC8230276 DOI: 10.3390/nano11061528] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Many components of the innate immune system are evolutionarily conserved and shared across many living organisms, from plants and invertebrates to humans. Therefore, these shared features can allow the comparative study of potentially dangerous substances, such as engineered nanoparticles (NPs). However, differences of methodology and procedure between diverse species and models make comparison of innate immune responses to NPs between organisms difficult in many cases. To this aim, this review provides an overview of suitable methods and assays that can be used to measure NP immune interactions across species in a multidisciplinary approach. The first part of this review describes the main innate immune defense characteristics of the selected models that can be associated to NPs exposure. In the second part, the different modes of exposure to NPs across models (considering isolated cells or whole organisms) and the main endpoints measured are discussed. In this synergistic perspective, we provide an overview of the current state of important cross-disciplinary immunological models to study NP-immune interactions and identify future research needs. As such, this paper could be used as a methodological reference point for future nano-immunosafety studies.
Collapse
Affiliation(s)
| | - Craig Mayall
- Department of Biology, Biotechnical Faculty, University of Liubljana, 1000 Ljubljana, Slovenia;
| | - Andi Alijagic
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy;
| | - Francesco Barbero
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, 08193 Barcelona, Spain;
| | - Eleonora Ferrari
- Center for Plant Molecular Biology–ZMBP Eberhard-Karls University Tübingen, 72076 Tübingen, Germany;
| | - Szabolcs Hernadi
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Sara Michelini
- Department of Biosciences, Paris-Lodron University Salzburg, 5020 Salzburg, Austria;
| | | | | | - Elmer Swart
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK;
| | - Manon Auguste
- Department of Earth Environment and Life Sciences, University of Genova, 16126 Genova, Italy
| |
Collapse
|
26
|
Schultz CL, Bart S, Lahive E, Spurgeon DJ. What Is on the Outside Matters-Surface Charge and Dissolve Organic Matter Association Affect the Toxicity and Physiological Mode of Action of Polystyrene Nanoplastics to C. elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6065-6075. [PMID: 33848142 DOI: 10.1021/acs.est.0c07121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To better understand nanoplastic effects, the potential for surface functionalization and dissolve organic matter eco-corona formation to modify the mechanisms of action and toxicity of different nanoplastics needs to be established. Here, we assess how different surface charges modifying functionalization (postive (+ve) aminated; neutral unfunctionalized; negative (-ve) carboxylated) altered the toxicity of 50 and 60 nm polystyrene nanoplastics to the nematode Caenorhabditis elegans. The potency for effects on survival, growth, and reproduction reduced in the order +ve aminated > neutral unfunctionalized ≫ -ve carboxylated with toxicity >60-fold higher for the +ve than -ve charged forms. Toxicokinetic-toxicodynamic modeling (DEBtox) showed that the charge-related potency was primarily linked to differences in effect thresholds and dose-associated damage parameters, rather than to toxicokinetic parameters. This suggests that surface functionalization may change the nature of nanoplastic interactions with membrane and organelles leading to variations in toxicity. Eco-corona formation reduced the toxicity of all nanoplastics indicating that organic molecule associations may passivate surfaces. Between particles, eco-corona interactions resulting in more equivalent effects; however, even despite these changes, the order of potency of the charged forms was retained. These results have important implications for the development of future grouping approaches.
Collapse
Affiliation(s)
- Carolin L Schultz
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - Sylvain Bart
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
- Department of Environment and Geography, University of York, Heslington, York YO10 5NG, United Kingdom
| | - Elma Lahive
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - David J Spurgeon
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| |
Collapse
|
27
|
Wu C, Guo WB, Liu YY, Yang L, Miao AJ. Perturbation of calcium homeostasis and multixenobiotic resistance by nanoplastics in the ciliate Tetrahymena thermophila. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123923. [PMID: 33264974 DOI: 10.1016/j.jhazmat.2020.123923] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/23/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are an environmental hazard of growing concern, including their potential toxic effects on the biota of different trophic levels. Nevertheless, the molecular mechanisms underlying MP-induced toxicity remain largely unknown. In the present study, Tetrahymena thermophila was exposed to polystyrene nanoplastics (PS-NPs) and the responses of this relatively sensitive ciliate were then followed using transcriptome analysis together with several other verification methods. The results showed that PS-NPs perturbed calcium (Ca) homeostasis, by inducing the inositol-1,4,5-trisphosphate-dependent liberation of Ca from the endoplasmic reticulum into the cytosol. The high cytosolic concentration of Ca induced Ca accumulation in mitochondria, which increased mitochondrial permeability and the generation of reactive oxygen species, finally leading to growth inhibition. Such toxicity is the so-called direct effects of PS-NPs. By contrast, PS-NPs also inhibited the activity of multixenobiotic resistance transporter, by down-regulating the ATP-binding cassette transporter genes Abcb15 and Abcc52. This additional effect may alter cellular responses to other pollutants and implicates PS-NPs in the risks to the organism posed by subsequent toxic exposures, which was named as the indirect effects of PS-NPs. Our study highlights the importance of considering both direct and indirect biological effects of MPs in evaluations of their environmental and health risks.
Collapse
Affiliation(s)
- Chao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210046, PR China
| | - Wen-Bo Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210046, PR China
| | - Yue-Yue Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210046, PR China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210046, PR China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210046, PR China.
| |
Collapse
|
28
|
Busch M, Bredeck G, Kämpfer AAM, Schins RPF. Investigations of acute effects of polystyrene and polyvinyl chloride micro- and nanoplastics in an advanced in vitro triple culture model of the healthy and inflamed intestine. ENVIRONMENTAL RESEARCH 2021; 193:110536. [PMID: 33253701 DOI: 10.1016/j.envres.2020.110536] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The continuous degradation of plastic waste in the environment leads to the generation of micro- and nanoplastic fragments and particles. Due to the ubiquitous presence of plastic particles in natural habitats as well as in food, beverages and tap water, oral exposure of the human population with plastic particles occurs worldwide. We investigated acute toxicological effects of polystyrene (PS) and polyvinyl chloride (PVC) micro- and nanoparticles in an advanced in vitro triple culture model (Caco-2/HT29-MTX-E12/THP-1) mimicking the healthy and inflamed human intestine to study the effect of inflammatory processes on plastic particle toxicity. We monitored barrier integrity, cytotoxicity, cell layer integrity, DNA damage, the release of pro-inflammatory cytokines (IL-1β, IL-6, IL-8 and TNF-α) and mucus distribution after 24 h of particle exposure. In addition, we investigated cytotoxicity, DNA damage and IL-1β release in monocultures of the three cell lines. Amine-modified polystyrene nanoparticles (PS-NH2) served as a positive control for particle-induced toxicity. No acute effects in the investigated endpoints were observed in the model of the healthy intestine after PS or PVC exposure. However, during active inflammatory processes, exposure to PVC particles was found to augment the release of IL-1β and to cause a loss of epithelial cells. Our results suggest that prevalent intestinal inflammation might be an important factor to consider when assessing the hazard of ingested micro- and nanoplastic particles.
Collapse
Affiliation(s)
- Mathias Busch
- IUF - Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Gerrit Bredeck
- IUF - Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Roel P F Schins
- IUF - Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| |
Collapse
|
29
|
Kim HM, Long NP, Min JE, Anh NH, Kim SJ, Yoon SJ, Kwon SW. Comprehensive phenotyping and multi-omic profiling in the toxicity assessment of nanopolystyrene with different surface properties. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123005. [PMID: 32937704 DOI: 10.1016/j.jhazmat.2020.123005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
There is a growing concern regarding the toxic effects of terrestrial nanoplastic contaminants. However, an all-encompassing phenotyping- and omics-based strategy for the toxicity assessment of nanoplastics with different surface properties on soil living organisms remains to be established. Herein, we devised a comprehensive phenotyping and multi-omic profiling method to examine the molecular disturbance of nanopolystyrene (PS)-exposed Caenorhabditis elegans. The exposure time was 24 h with either 1 μg/mL or 10 μg/mL of PS. We found that PS considerably affected the reproduction and locomotion, as well as increased the oxidative stress of worms regardless of their surface properties. Nevertheless, each type of PS affected the metabolome and lipidome of the nematodes differently. Uncharged PS (PS-N) triggered significant metabolic disturbances, whereas the metabolic influences from PS-NH2 and PS-COOH were subtle. The dysregulated transcriptome profiles of PS-N were strongly associated with the metabolic pathways. Besides, the altered expression of several genes associated with autophagy and longevity was observed. Collectively, we demonstrated that comprehensive phenotyping and omics-based profiling establish a practical framework that allows us to gain deeper insights into the maladaptive consequences of PS in nematodes. It can be utilized for the evaluation of other environmental contaminants in the terrestrial ecosystem.
Collapse
Affiliation(s)
- Hyung Min Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nguyen Phuoc Long
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Eun Min
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sun Jo Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Jun Yoon
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
30
|
Sharifinia M, Bahmanbeigloo ZA, Keshavarzifard M, Khanjani MH, Lyons BP. Microplastic pollution as a grand challenge in marine research: A closer look at their adverse impacts on the immune and reproductive systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111109. [PMID: 32798751 DOI: 10.1016/j.ecoenv.2020.111109] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 05/06/2023]
Abstract
Microplastic (MP) pollution of the marine environment is now a growing global concern posing a threat to a variety of species through the ingestion and transfer within food webs. This is considered a potential toxicological threat to marine species due to the chemical additives used to make many plastic products, or the persistent organic pollutants that may accumulate on them while residing in the environment. While the presence of MPs in the marine environment is widely documented, there are no other review articles providing a summary of published effect studies of MPs on the immune and reproductive systems of marine species. This manuscript reviews reproductive and immune-system changes in response to MPs in 7 and 9 species, respectively. Some species such as Mytilus galloprovincialis and oyster Crassostrea gigas were investigated in multiple papers. Most studies have been conducted on invertebrates, and only 3 studies have been performed on vertebrates, with exposure times ranging between 30 min and 60 days. A review of the literature revealed that the most common MPs types studied in relation to adverse impacts on immune system and reproductive success in marine species were polystyrene (PS) and polyethylene (PE). The immune system's responses to MPs exposure varied depending on the species, with altered organismal defense mechanisms and neutrophil function observed in fish and changes in lysosomal membrane stability and apoptotic-like nuclear alterations in phagocytes reported in invertebrate species. Reproductive responses to MPs exposure, varied depending on species, but included significant reduction in gamete and oocyte quality, fecundity, sperm swimming speed, and quality of offspring. The lack of published data means that developing a clear understanding of the impact across taxonomic groups with different feeding and behavioral traits is often difficult. Further work is required to better understand the risk MPs pose to the immune and reproductive systems of marine species in order to fully evaluate the impact these ubiquitous pollutants are having on marine ecosystems and the associated goods and services they provide.
Collapse
Affiliation(s)
- Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr, Iran.
| | | | - Mehrzad Keshavarzifard
- Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr, Iran.
| | - Mohammad Hossein Khanjani
- Department of Fisheries Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Kerman, Iran
| | - Brett P Lyons
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Barrack Road, Weymouth, Dorset, DT4 8UB, UK
| |
Collapse
|
31
|
Tan Y, Zhu X, Wu D, Song E, Song Y. Compromised Autophagic Effect of Polystyrene Nanoplastics Mediated by Protein Corona Was Recovered after Lysosomal Degradation of Corona. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11485-11493. [PMID: 32786567 DOI: 10.1021/acs.est.0c04097] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The adverse biological and ecological consequences of plastic debris have become a serious problem worldwide. Evidences have uncovered the accumulation of nanoplastics (NPs) in organisms. In a complex biological environment, proteins are prone to adsorbed onto the NPs' surface and form a protein corona layer, which mediates the interaction of NPs with cells. Here, we discovered the interaction of polystyrene (PS) NPs with protein fetal bovine serum (FBS) and altered cytotoxic effects. Mechanistically, prefabricated FBS protein corona mediated the relief of autophagic flux blockage, autophagosomes accumulation, and lysosomal damage in RAW264.7 cells caused by PS NPs. Using an individual fluorescent protein bovine serum albumin (BSA) as a corona surrogate, we demonstrated that coronal BSA remains, at least partially, on the surface of PS NPs during the initial stage of internalization and protects cell membrane from PS NPs-induced damage. However, along with the degradation of corona in lysosomes, reappearance of cytotoxicity was observed. Herein, we provided a proof of principle of the manipulation of corona on NPs' toxicity and we expect the result will promote the further safety assessment of NPs.
Collapse
Affiliation(s)
- Ya Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Xiangyu Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Di Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| |
Collapse
|
32
|
Xu L, Xu M, Wang R, Yin Y, Lynch I, Liu S. The Crucial Role of Environmental Coronas in Determining the Biological Effects of Engineered Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003691. [PMID: 32780948 DOI: 10.1002/smll.202003691] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/26/2020] [Indexed: 06/11/2023]
Abstract
In aquatic environments, a large number of ecological macromolecules (e.g., natural organic matter (NOM), extracellular polymeric substances (EPS), and proteins) can adsorb onto the surface of engineered nanomaterials (ENMs) to form a unique environmental corona. The presence of environmental corona as an eco-nano interface can significantly alter the bioavailability, biocompatibility, and toxicity of pristine ENMs to aquatic organisms. However, as an emerging field, research on the impact of the environmental corona on the fate and behavior of ENMs in aquatic environments is still in its infancy. To promote a deeper understanding of its importance in driving or moderating ENM toxicity, this study systemically recapitulates the literature of representative types of macromolecules that are adsorbed onto ENMs; these constitute the environmental corona, including NOM, EPS, proteins, and surfactants. Next, the ecotoxicological effects of environmental corona-coated ENMs on representative aquatic organisms at different trophic levels are discussed in comparison to pristine ENMs, based on the reported studies. According to this analysis, molecular mechanisms triggered by pristine and environmental corona-coated ENMs are compared, including membrane adhesion, membrane damage, cellular internalization, oxidative stress, immunotoxicity, genotoxicity, and reproductive toxicity. Finally, current knowledge gaps and challenges in this field are discussed from the ecotoxicology perspective.
Collapse
Affiliation(s)
- Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Iseult Lynch
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Murano C, Agnisola C, Caramiello D, Castellano I, Casotti R, Corsi I, Palumbo A. How sea urchins face microplastics: Uptake, tissue distribution and immune system response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114685. [PMID: 32402714 DOI: 10.1016/j.envpol.2020.114685] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/14/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Plastic pollution represents one of the major threats to the marine environment. A wide range of marine organisms has been shown to ingest microplastics due to their small dimensions (less than 1 mm). This negatively affects some biological processes, such as feeding, energy reserves and reproduction. Very few studies have been performed on the effect of microplastics on sea urchin development and virtually none on adults. The aim of this work was to evaluate the uptake and distribution of fluorescent labelled polystyrene microbeads (micro-PS) in the Mediterranean sea urchin Paracentrotus lividus and the potential impact on circulating immune cells. Differential uptake was observed in the digestive and water vascular systems as well as in the gonads based on microbeads size (10 and 45 μm in diameter). Treatment of sea urchins with particles of both sizes induced an increase of the total number of immune cells already after 24 h. No significant differences were observed among immune cell types. However, the ratio between red and white amoebocytes, indicative of sea urchin healthy status, increased with both particles. This effect was detectable already at 24 h upon exposure to smaller micro-PS (10 μm). An increase of intracellular levels of reactive oxygen and nitrogen species was observed at 24 h upon both micro-PS exposure, whereas at later time these levels became comparable to those of controls. A significant increase of total antioxidant capacity was observed after treatment with 10 μm micro-PS. Overall data provide the first evidence on polystyrene microbeads uptake and tissue distribution in sea urchins, indicating a stress-related impact on circulating immune cells.
Collapse
Affiliation(s)
- Carola Murano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
| | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, Via Cinthia 4, 80125 Naples, Italy
| | - Davide Caramiello
- Unit Marine Resources for Research, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Raffaella Casotti
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
34
|
Gangadoo S, Owen S, Rajapaksha P, Plaisted K, Cheeseman S, Haddara H, Truong VK, Ngo ST, Vu VV, Cozzolino D, Elbourne A, Crawford R, Latham K, Chapman J. Nano-plastics and their analytical characterisation and fate in the marine environment: From source to sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:138792. [PMID: 32442765 DOI: 10.1016/j.scitotenv.2020.138792] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Polymer contamination is a major pollutant in all waterways and a significant concern of the 21st Century, gaining extensive research, media, and public attention. The polymer pollution problem is so vast; plastics are now observed in some of the Earth's most remote regions such as the Mariana trench. These polymers enter the waterways, migrate, breakdown; albeit slowly, and then interact with the environment and the surrounding biodiversity. It is these biodiversity and ecosystem interactions that are causing the most nervousness, where health researchers have demonstrated that plastics have entered the human food chain, also showing that plastics are damaging organisms, animals, and plants. Many researchers have focused on reviewing the macro and micro-forms of these polymer contaminants, demonstrating a lack of scientific data and also a lack of investigation regarding nano-sized polymers. It is these nano-polymers that have the greatest potential to cause the most harm to our oceans, waterways, and wildlife. This review has been especially ruthless in discussing nano-sized polymers, their ability to interact with organisms, and the potential for these nano-polymers to cause environmental damage in the marine environment. This review details the breakdown of macro-, micro-, and nano-polymer contamination, examining the sources, the interactions, and the fates of all of these polymer sizes in the environment. The main focus of this review is to perform a comprehensive examination of the literature of the interaction of nanoplastics with organisms, soils, and waters; followed by the discussion of toxicological issues. A significant focus of the review is also on current analytical characterisation techniques for nanoplastics, which will enable researchers to develop protocols for nanopolymer analysis and enhance understanding of nanoplastics in the marine environment.
Collapse
Affiliation(s)
- Sheeana Gangadoo
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Stephanie Owen
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | | | - Katie Plaisted
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Samuel Cheeseman
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Hajar Haddara
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Vi Khanh Truong
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 758307, Viet Nam
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Viet Nam
| | - Daniel Cozzolino
- School of Science, RMIT University, Melbourne, VIC 3000, Australia; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Russell Crawford
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Kay Latham
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - James Chapman
- School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
35
|
Boraschi D, Alijagic A, Auguste M, Barbero F, Ferrari E, Hernadi S, Mayall C, Michelini S, Navarro Pacheco NI, Prinelli A, Swart E, Swartzwelter BJ, Bastús NG, Canesi L, Drobne D, Duschl A, Ewart MA, Horejs-Hoeck J, Italiani P, Kemmerling B, Kille P, Prochazkova P, Puntes VF, Spurgeon DJ, Svendsen C, Wilde CJ, Pinsino A. Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000598. [PMID: 32363795 DOI: 10.1002/smll.202000598] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
The interaction of a living organism with external foreign agents is a central issue for its survival and adaptation to the environment. Nanosafety should be considered within this perspective, and it should be examined that how different organisms interact with engineered nanomaterials (NM) by either mounting a defensive response or by physiologically adapting to them. Herein, the interaction of NM with one of the major biological systems deputed to recognition of and response to foreign challenges, i.e., the immune system, is specifically addressed. The main focus is innate immunity, the only type of immunity in plants, invertebrates, and lower vertebrates, and that coexists with adaptive immunity in higher vertebrates. Because of their presence in the majority of eukaryotic living organisms, innate immune responses can be viewed in a comparative context. In the majority of cases, the interaction of NM with living organisms results in innate immune reactions that eliminate the possible danger with mechanisms that do not lead to damage. While in some cases such interaction may lead to pathological consequences, in some other cases beneficial effects can be identified.
Collapse
Affiliation(s)
- Diana Boraschi
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli, 80131, Italy
| | - Andi Alijagic
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, 90146, Italy
| | - Manon Auguste
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, 16126, Italy
| | - Francesco Barbero
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, Barcelona, 08193, Spain
| | - Eleonora Ferrari
- Center for Plant Molecular Biology - ZMBP, Eberhard-Karls University Tübingen, Tübingen, 72076, Germany
| | - Szabolcs Hernadi
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Craig Mayall
- Department of Biology, Biotechnical Faculty, University of Liubljana, Ljubljana, 1000, Slovenia
| | - Sara Michelini
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | | | | | - Elmer Swart
- UK Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK
| | | | - Neus G Bastús
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, Barcelona, 08193, Spain
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, 16126, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Liubljana, Ljubljana, 1000, Slovenia
| | - Albert Duschl
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | | | - Jutta Horejs-Hoeck
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli, 80131, Italy
| | - Birgit Kemmerling
- Center for Plant Molecular Biology - ZMBP, Eberhard-Karls University Tübingen, Tübingen, 72076, Germany
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Petra Prochazkova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Victor F Puntes
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
- Vall d Hebron, Institut de Recerca (VHIR), Barcelona, 08035, Spain
| | | | - Claus Svendsen
- UK Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK
| | | | - Annalisa Pinsino
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, 90146, Italy
| |
Collapse
|
36
|
Auguste M, Balbi T, Ciacci C, Canonico B, Papa S, Borello A, Vezzulli L, Canesi L. Shift in Immune Parameters After Repeated Exposure to Nanoplastics in the Marine Bivalve Mytilus. Front Immunol 2020; 11:426. [PMID: 32351496 PMCID: PMC7174705 DOI: 10.3389/fimmu.2020.00426] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Bivalves are widespread in coastal environments subjected to a wide range of environmental fluctuations: however, the rapidly occurring changes due to several anthropogenic factors can represent a significant threat to bivalve immunity. The mussel Mytilus spp. has extremely powerful immune defenses toward different potential pathogens and contaminant stressors. In particular, the mussel immune system represents a significant target for different types of nanoparticles (NPs), including amino-modified nanopolystyrene (PS-NH2) as a model of nanoplastics. In this work, the effects of repeated exposure to PS-NH2 on immune responses of Mytilus galloprovincialis were investigated after a first exposure (10 μg/L; 24 h), followed by a resting period (72-h depuration) and a second exposure (10 μg/L; 24 h). Functional parameters were measured in hemocytes, serum, and whole hemolymph samples. In hemocytes, transcription of selected genes involved in proliferation/apoptosis and immune response was evaluated by qPCR. First exposure to PS-NH2 significantly affected hemocyte mitochondrial and lysosomal parameters, serum lysozyme activity, and transcription of proliferation/apoptosis markers; significant upregulation of extrapallial protein precursor (EPp) and downregulation of lysozyme and mytilin B were observed. The results of functional hemocyte parameters indicate the occurrence of stress conditions that did not however result in changes in the overall bactericidal activity. After the second exposure, a shift in hemocyte subpopulations, together with reestablishment of basal functional parameters and of proliferation/apoptotic markers, was observed. Moreover, hemolymph bactericidal activity, as well as transcription of five out of six immune-related genes, all codifying for secreted proteins, was significantly increased. The results indicate an overall shift in immune parameters that may act as compensatory mechanisms to maintain immune homeostasis after a second encounter with PS-NH2.
Collapse
Affiliation(s)
- Manon Auguste
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Teresa Balbi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences (DIBS), University of Urbino, Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences (DIBS), University of Urbino, Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences (DIBS), University of Urbino, Urbino, Italy
| | - Alessio Borello
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Luigi Vezzulli
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| |
Collapse
|
37
|
Kögel T, Bjorøy Ø, Toto B, Bienfait AM, Sanden M. Micro- and nanoplastic toxicity on aquatic life: Determining factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136050. [PMID: 31887526 DOI: 10.1016/j.scitotenv.2019.136050] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 05/20/2023]
Abstract
Plastic pollution has become a major environmental concern due to its omnipresence and degradation to smaller particles. The potential toxicological effects of micro- and nanoplastic on biota have been investigated in a growing number of exposure studies. We have performed a comprehensive review of the main determining factors for plastic particle toxicity in the relevant exposure systems, from publications until including the year 2018. For a focused scope, effects of additives or other pollutants accumulated by the plastic particles are not included. In summary, current literature suggests that plastic particle toxicity depends on concentration, particle size, exposure time, particle condition, shape and polymer type. Furthermore, contaminant background, food availability, species, developmental stage and sex have major influence on the outcome of plastic particles exposures. Frequently reported effects were on body and population growth, energy metabolism, feeding, movement activity, physiological stress, oxidative stress, inflammation, the immune system, hormonal regulation, aberrant development, cell death, general toxicity and altered lipid metabolism. Several times reported were increased growth and food consumption, neuro-, liver- or kidney pathology and intestinal damage. Photosynthesis disruption was reported in studies investigating effects on phytoplankton. For the currently unquantified plastic particles below 10 μm, more toxic effects were reported in all aquatic life, as compared to plastic particles of larger size.
Collapse
Affiliation(s)
- Tanja Kögel
- Institute of Marine Research (IMR), PO Box 1870 Nordnes, NO-5817 Bergen, Norway.
| | - Ørjan Bjorøy
- Institute of Marine Research (IMR), PO Box 1870 Nordnes, NO-5817 Bergen, Norway
| | - Benuarda Toto
- Center for Nutrition, Children's and Youth Hospital, Haukelandsbakken 15, PO Box 7804, NO-5020 Bergen, Norway
| | | | - Monica Sanden
- Institute of Marine Research (IMR), PO Box 1870 Nordnes, NO-5817 Bergen, Norway
| |
Collapse
|
38
|
Yong CQY, Valiyaveettil S, Tang BL. Toxicity of Microplastics and Nanoplastics in Mammalian Systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:1509. [PMID: 32111046 PMCID: PMC7084551 DOI: 10.3390/ijerph17051509] [Citation(s) in RCA: 406] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/19/2022]
Abstract
Fragmented or otherwise miniaturized plastic materials in the form of micro- or nanoplastics have been of nagging environmental concern. Perturbation of organismal physiology and behavior by micro- and nanoplastics have been widely documented for marine invertebrates. Some of these effects are also manifested by larger marine vertebrates such as fishes. More recently, possible effects of micro- and nanoplastics on mammalian gut microbiota as well as host cellular and metabolic toxicity have been reported in mouse models. Human exposure to micro- and nanoplastics occurs largely through ingestion, as these are found in food or derived from food packaging, but also in a less well-defined manner though inhalation. The pathophysiological consequences of acute and chronic micro- and nanoplastics exposure in the mammalian system, particularly humans, are yet unclear. In this review, we focus on the recent findings related to the potential toxicity and detrimental effects of micro- and nanoplastics as demonstrated in mouse models as well as human cell lines. The prevailing data suggest that micro- and nanoplastics accumulation in mammalian and human tissues would likely have negative, yet unclear long-term consequences. There is a need for cellular and systemic toxicity due to micro- and nanoplastics to be better illuminated, and the underlying mechanisms defined by further work.
Collapse
Affiliation(s)
- Cheryl Qian Ying Yong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore;
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore;
| | - Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore;
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
39
|
Wong JC, Xiang L, Ngoi KH, Chia CH, Jin KS, Ree M. Quantitative Structural Analysis of Polystyrene Nanoparticles Using Synchrotron X-Ray Scattering and Dynamic Light Scattering. Polymers (Basel) 2020; 12:polym12020477. [PMID: 32093008 PMCID: PMC7077714 DOI: 10.3390/polym12020477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 01/03/2023] Open
Abstract
A series of polystyrene nanoparticles (PS-1, PS-2, PS-3, and PS-4) in aqueous solutions were investigated in terms of morphological structure, size, and size distribution. Synchrotron small-angle X-ray scattering analysis (SAXS) was carried out, providing morphology details, size and size distribution on the particles. PS-1, PS-2, and PS-3 were confirmed to behave two-phase (core and shell) spherical shapes, whereas PS-4 exhibited a single-phase spherical shape. They all revealed very narrow unimodal size distributions. The structural parameter details including radial density profile were determined. In addition, the presence of surfactant molecules and their assemblies were detected for all particle solutions, which could originate from their surfactant-assisted emulsion polymerizations. In addition, dynamic light scattering (DLS) analysis was performed, finding only meaningful hydrodynamic size and intensity-weighted mean size information on the individual PS solutions because of the particles' spherical nature. In contrast, the size distributions were extracted unrealistically too broad, and the volume- and number-weighted mean sizes were too small, therefore inappropriate to describe the particle systems. Furthermore, the DLS analysis could not detect completely the surfactant and their assemblies present in the particle solutions. Overall, the quantitative SAXS analysis confirmed that the individual PS particle systems were successfully prepared with spherical shape in a very narrow unimodal size distribution.
Collapse
Affiliation(s)
- Jia Chyi Wong
- Materials Science Program, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (J.C.W.); (K.H.N.)
- Department of Chemistry, Polymer Research Institute, and Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Li Xiang
- Department of Chemistry, Polymer Research Institute, and Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Kuan Hoon Ngoi
- Materials Science Program, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (J.C.W.); (K.H.N.)
- Department of Chemistry, Polymer Research Institute, and Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Chin Hua Chia
- Materials Science Program, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (J.C.W.); (K.H.N.)
- Correspondence: (C.H.C.); (K.S.J.); (M.R.)
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science & Technology, Pohang 37673, Korea
- Correspondence: (C.H.C.); (K.S.J.); (M.R.)
| | - Moonhor Ree
- Department of Chemistry, Polymer Research Institute, and Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Korea;
- Correspondence: (C.H.C.); (K.S.J.); (M.R.)
| |
Collapse
|
40
|
Varó I, Perini A, Torreblanca A, Garcia Y, Bergami E, Vannuccini ML, Corsi I. Time-dependent effects of polystyrene nanoparticles in brine shrimp Artemia franciscana at physiological, biochemical and molecular levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:570-580. [PMID: 31030162 DOI: 10.1016/j.scitotenv.2019.04.157] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 04/14/2023]
Abstract
Micro- (<5 mm) and nanoplastics (<1 μm) are emerging threats for marine ecosystems worldwide. Brine shrimp Artemia is recognized as a suitable model among planktonic species for studying the impact of polystyrene nanoparticles (PS NPs) through short and long-term bioassays. Our study aims to evaluate the time-dependent effects of cationic amino-modified PS-NH2 (50 nm) in A. franciscana after short- (48 h) and long-term exposure (14 days). For this purpose, nauplii were exposed to a concentration range of PS-NH2 (0.1, 1, 3 and 10 μg/mL) in natural sea water (NSW), and physiological, biochemical and molecular responses were investigated. Short-term exposure to PS-NH2 caused a decrease in nauplii growth and affected the development in a concentration-dependent manner, long-term exposure impaired the survival, but not the growth and feeding behavior. Oxidative stress was detected after short term exposure as the decrease in the activity of antioxidant enzymes, and was fully evident in the long-term as lipid peroxidation, suggesting an accumulative effect. The decrease in Cholinesterase (ChE) activity observed indicates possible neurotoxic action of PS-NH2. Also, Carboxylesterase (CbE) inhibition by PS-NH2, described for the first time in this study, anticipates potential effects in biotransformation of exogenous and endogenous compounds, being the crustacean juvenile hormone methyl farnesoate (MF) that regulates development and molting, one candidate. Furthermore, short- and long-term exposure to PS-NH2 affect the expression of genes involved in cell protection, development and molting. Overall, our results reveal that low PS-NH2 concentrations induce physiological, biochemical and molecular (changes in gene expression) alterations in Artemia, and point at their potential risk for this model organism, supporting the general concern about nanoplastics occurrences in aquatic environments and their ability to represent an ecological threat for aquatic zooplanktonic species.
Collapse
Affiliation(s)
- Inmaculada Varó
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
| | - Aurora Perini
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain; Department of Physical, Earth and Environmental Sciences (DSFTA), University of Siena, Siena, Italy
| | - Amparo Torreblanca
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, Spain
| | - Yaiza Garcia
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain; Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia, Spain
| | - Elisa Bergami
- Department of Physical, Earth and Environmental Sciences (DSFTA), University of Siena, Siena, Italy
| | - Maria L Vannuccini
- Department of Physical, Earth and Environmental Sciences (DSFTA), University of Siena, Siena, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences (DSFTA), University of Siena, Siena, Italy
| |
Collapse
|
41
|
Bergami E, Krupinski Emerenciano A, González-Aravena M, Cárdenas CA, Hernández P, Silva JRMC, Corsi I. Polystyrene nanoparticles affect the innate immune system of the Antarctic sea urchin Sterechinus neumayeri. Polar Biol 2019. [DOI: 10.1007/s00300-019-02468-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
42
|
Lehner R, Weder C, Petri-Fink A, Rothen-Rutishauser B. Emergence of Nanoplastic in the Environment and Possible Impact on Human Health. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1748-1765. [PMID: 30629421 DOI: 10.1021/acs.est.8b05512] [Citation(s) in RCA: 578] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
On account of environmental concerns, the fate and adverse effects of plastics have attracted considerable interest in the past few years. Recent studies have indicated the potential for fragmentation of plastic materials into nanoparticles, i.e., "nanoplastics," and their possible accumulation in the environment. Nanoparticles can show markedly different chemical and physical properties than their bulk material form. Therefore possible risks and hazards to the environment need to be considered and addressed. However, the fate and effect of nanoplastics in the (aquatic) environment has so far been little explored. In this review, we aim to provide an overview of the literature on this emerging topic, with an emphasis on the reported impacts of nanoplastics on human health, including the challenges involved in detecting plastics in a biological environment. We first discuss the possible sources of nanoplastics and their fates and effects in the environment and then describe the possible entry routes of these particles into the human body, as well as their uptake mechanisms at the cellular level. Since the potential risks of environmental nanoplastics to humans have not yet been extensively studied, we focus on studies demonstrating cell responses induced by polystyrene nanoparticles. In particular, the influence of particle size and surface chemistry are discussed, in order to understand the possible risks of nanoplastics for humans and provide recommendations for future studies.
Collapse
Affiliation(s)
- Roman Lehner
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , 1700 Fribourg , Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , 1700 Fribourg , Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , 1700 Fribourg , Switzerland
- Chemistry Department , University of Fribourg , Chemin du Musée 9 , 1700 Fribourg , Switzerland
| | | |
Collapse
|