1
|
Kassab SE. A new computational cross-structure-activity relationship (C-SAR) approach applies to a selective HDAC6 inhibitor dataset for accelerated structure development. Comput Biol Med 2025; 192:110169. [PMID: 40311460 DOI: 10.1016/j.compbiomed.2025.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 05/03/2025]
Abstract
Several structure-activity relationship (SAR) methodologies have been developed for the research community to improve the potential activity of prototype structures. To accomplish this, Topliss proposed the Topliss tree and the Topliss Batchwise scheme for structure development. Structure development necessitates tactics beyond traditional SAR procedures when handling issues, such as rapid structural inactivation during development. SAR data is vital for altering chemical structures and addressing compound problems. Obtaining unique SAR data that provides strategic options for structure transformation relevant to every chemotype and not limited to a specific parent structure, as the Topliss approach does, is challenging. In this context, we present the C-SAR strategy, which addresses these issues and accelerates structural development. The C-SAR method provides insights into converting an inactive compound into an active one. We used cheminformatics and molecular docking tools to study a chemical library of diverse chemotypes targeting HDAC6, arranging it in matched molecular pairs (MMPs) with high structural activity landscape index (SALI) values of 820880 and a diversity index of 0.5827 and identifying C-SAR highlights based on repetitive pharmacophoric substitution patterns across different MMP chemotypes that resulted in activity cliffs. C-SAR is beneficial for SAR expansion when high-quality structural data are available to study a dataset of various MMPs from a specific class of compounds and allows using the obtained C-SAR highlights to design compounds of novel chemotypes beyond the investigated dataset. Data imputation using deep-learning predictive models may address the issue of data availability for C-SAR.
Collapse
Affiliation(s)
- Shaymaa E Kassab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, El-Buhaira, 22516, Damanhour, Egypt.
| |
Collapse
|
2
|
Grosjean H, Aimon A, Hassell‐Hart S, Thompson W, Koekemoer L, Bennett J, Bradley A, Anderson C, Wild C, Bradshaw WJ, FitzGerald EA, Krojer T, Fedorov O, Biggin PC, Spencer J, von Delft F. Binding-Site Purification of Actives (B-SPA) Enables Efficient Large-Scale Progression of Fragment Hits by Combining Multi-Step Array Synthesis With HT Crystallography. Angew Chem Int Ed Engl 2025; 64:e202424373. [PMID: 39931803 PMCID: PMC12001203 DOI: 10.1002/anie.202424373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025]
Abstract
Fragment approaches are long-established in target-based ligand discovery, yet their full transformative potential lies dormant because progressing the initial weakly binding hits to potency remains a formidable challenge. The only credible progression paradigm involves multiple cycles of costly conventional design-make-test-analyse medicinal chemistry. We propose an alternative approach to fragment elaboration, namely performing large numbers of parallel and diverse automated multiple step reactions, and evaluating the binding of the crude reaction products by high-throughput protein X-ray crystallography. We show it is effective and low-cost to perform, in parallel, large numbers of non-uniform multi-step reactions, because, even without compound purification, crystallography provides a high-quality readout of binding. This can detect low-level binding of weakly active compounds, which the target binding site extracts directly from crude reaction mixtures. In this proof-of-concept study, we have expanded a fragment hit, from a crystal-based screen of the second bromodomain of pleckstrin homology domain-interacting protein (PHIP(2)), using array synthesis on low-cost robotics. We were able to implement 6 independent multi-step reaction routes of up to 5 steps, attempting the synthesis of 1876 diverse expansions, designs entirely driven by synthetic tractability. The expected product was present in 1108 (59%) crude reaction mixtures, detected by liquid chromatography mass spectrometry (LCMS). 22 individual products were resolved in the crystal structures of crude reaction mixtures added to crystals, providing an initial structure activity relationship map. 19 of these showed binding pose stability, while, through binding instability in the remaining 3 products, we could resolve a stereochemical preference for mixtures containing racemic compounds. One compound showed biochemical potency (IC50=34 μM) and affinity (Kd=50 μM) after resynthesis. This approach therefore lends itself to routine fragment progression, if coupled with algorithmically guided compound and reaction design and new formalisms for data analysis.
Collapse
Affiliation(s)
- Harold Grosjean
- Diamond Light Source LtdHarwell Science and Innovation CampusOX11 0QXDidcotUK
- Structural Bioinformatics and Computational BiochemistryDepartement of BiochemistryUniversity of OxfordSouth Parks RoadOX1 3QUOxfordUK
| | - Anthony Aimon
- Diamond Light Source LtdHarwell Science and Innovation CampusOX11 0QXDidcotUK
- Research Complex at HarwellHarwell Science and Innovation CampusOX11 0FADidcotUK
| | - Storm Hassell‐Hart
- Department of ChemistrySchool of Life SciencesUniversity of SussexFalmerBN1 9QJUK
| | - Warren Thompson
- Diamond Light Source LtdHarwell Science and Innovation CampusOX11 0QXDidcotUK
- Research Complex at HarwellHarwell Science and Innovation CampusOX11 0FADidcotUK
| | - Lizbé Koekemoer
- Centre for Medicines DiscoveryUniversity of OxfordOld Road Campus, Roosevelt DriveOX3 7DQHeadingtonUK
- Structural Genomics ConsortiumUniversity of OxfordOld Road Campus, Roosevelt DriveOX3 7DQHeadingtonUK
| | - James Bennett
- Centre for Medicines DiscoveryUniversity of OxfordOld Road Campus, Roosevelt DriveOX3 7DQHeadingtonUK
- Structural Genomics ConsortiumUniversity of OxfordOld Road Campus, Roosevelt DriveOX3 7DQHeadingtonUK
| | - Anthony Bradley
- Structural Genomics ConsortiumUniversity of OxfordOld Road Campus, Roosevelt DriveOX3 7DQHeadingtonUK
| | - Cameron Anderson
- Structural Bioinformatics and Computational BiochemistryDepartement of BiochemistryUniversity of OxfordSouth Parks RoadOX1 3QUOxfordUK
| | - Conor Wild
- Diamond Light Source LtdHarwell Science and Innovation CampusOX11 0QXDidcotUK
- Structural Genomics ConsortiumUniversity of OxfordOld Road Campus, Roosevelt DriveOX3 7DQHeadingtonUK
| | - William J. Bradshaw
- Centre for Medicines DiscoveryUniversity of OxfordOld Road Campus, Roosevelt DriveOX3 7DQHeadingtonUK
| | | | - Tobias Krojer
- Structural Genomics ConsortiumUniversity of OxfordOld Road Campus, Roosevelt DriveOX3 7DQHeadingtonUK
| | - Oleg Fedorov
- Structural Genomics ConsortiumUniversity of OxfordOld Road Campus, Roosevelt DriveOX3 7DQHeadingtonUK
| | - Philip C. Biggin
- Structural Bioinformatics and Computational BiochemistryDepartement of BiochemistryUniversity of OxfordSouth Parks RoadOX1 3QUOxfordUK
| | - John Spencer
- Department of ChemistrySchool of Life SciencesUniversity of SussexFalmerBN1 9QJUK
- Sussex Drug Discovery Centre (SDDC)School of Life SciencesUniversity of SussexFalmerBN1 9QJUK.
| | - Frank von Delft
- Diamond Light Source LtdHarwell Science and Innovation CampusOX11 0QXDidcotUK
- Research Complex at HarwellHarwell Science and Innovation CampusOX11 0FADidcotUK
- Centre for Medicines DiscoveryUniversity of OxfordOld Road Campus, Roosevelt DriveOX3 7DQHeadingtonUK
- Structural Genomics ConsortiumUniversity of OxfordOld Road Campus, Roosevelt DriveOX3 7DQHeadingtonUK
- Department of BiochemistryUniversity of Johannesburg, AucklandPark2006South Africa
| |
Collapse
|
3
|
Singh SR, Bhaskar R, Ghosh S, Yarlagadda B, Singh KK, Verma P, Sengupta S, Mladenov M, Hadzi-Petrushev N, Stojchevski R, Sinha JK, Avtanski D. Exploring the Genetic Orchestra of Cancer: The Interplay Between Oncogenes and Tumor-Suppressor Genes. Cancers (Basel) 2025; 17:1082. [PMID: 40227591 PMCID: PMC11988167 DOI: 10.3390/cancers17071082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Cancer is complex because of the critical imbalance in genetic regulation as characterized by both the overexpression of oncogenes (OGs), mainly through mutations, amplifications, and translocations, and the inactivation of tumor-suppressor genes (TSGs), which entail the preservation of genomic integrity by inducing apoptosis to counter the malignant growth. Reviewing the intricate molecular interplay between OGs and TSGs draws attention to their cell cycle, apoptosis, and cancer metabolism regulation. In the present review, we discuss seminal discoveries, such as Knudson's two-hit hypothesis, which framed the field's understanding of cancer genetics, leading to the next breakthroughs with next-generation sequencing and epigenetic profiling, revealing novel insights into OG and TSG dysregulation with opportunities for targeted therapy. The key pathways, such as MAPK/ERK, PI3K/AKT/mTOR, and Wnt/β-catenin, are presented in the context of tumor progression. Importantly, we further highlighted the advances in therapeutic strategies, including inhibitors of KRAS and MYC and restoration of TSG function, despite which mechanisms of resistance and tumor heterogeneity pose daunting challenges. A high-level understanding of interactions between OG-TSGs forms the basis for effective, personalized cancer treatment-something to strive for in better clinical outcomes. This synthesis should integrate foundational biology with translation and, in this case, contribute to the ongoing effort against cancer.
Collapse
Affiliation(s)
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea;
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | | | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Symbiosis International (Deemed University), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune 411057, India
| | - Prashant Verma
- School of Management, BML Munjal University, NH8, Sidhrawali, Gurugram 122413, India
| | - Sonali Sengupta
- Department of Gastroenterology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | | | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
4
|
Anaya YA, Bracho RP, Chauhan SC, Tripathi MK, Bandyopadhyay D. Small Molecule B-RAF Inhibitors as Anti-Cancer Therapeutics: Advances in Discovery, Development, and Mechanistic Insights. Int J Mol Sci 2025; 26:2676. [PMID: 40141317 PMCID: PMC11942083 DOI: 10.3390/ijms26062676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
B-RAF is a serine/threonine kinase that plays a crucial role in the MAPK signaling pathway, regulating cell proliferation and survival. Mutations in B-RAF, particularly V600E, are associated with several malignancies, including melanoma, colorectal cancer, and non-small cell lung cancer, making it a key therapeutic target. The development of B-RAF inhibitors, such as Vemurafenib, Dabrafenib, and second-generation inhibitors like Encorafenib, has led to significant advancements in targeted cancer therapy. However, acquired resistance, driven by MAPK pathway reactivation, RAF dimerization, and alternative signaling pathways, remains a major challenge. This review explores the molecular mechanisms of B-RAF inhibitors, their therapeutic efficacy, and resistance mechanisms, emphasizing the importance of combination strategies to enhance treatment outcomes. The current standard of care involves B-RAF and MEK inhibitors, with additional therapies such as EGFR inhibitors and immune checkpoint blockades showing potential in overcoming resistance. Emerging pan-RAF and brain-penetrant inhibitors offer new opportunities for treating refractory cancers, while precision medicine approaches, including genomic profiling and liquid biopsies, are shaping the future of B-RAF-targeted therapy.
Collapse
Affiliation(s)
- Yamile Abuchard Anaya
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (Y.A.A.); (R.P.B.)
- Department of Health and Human Performance, College of Health Professions, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
- South Texas Center of Excellence in Cancer Research, McAllen, TX 78504, USA; (S.C.C.); (M.K.T.)
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, 5300 N L St., McAllen, TX 78504, USA
| | - Ricardo Pequeno Bracho
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (Y.A.A.); (R.P.B.)
- South Texas Center of Excellence in Cancer Research, McAllen, TX 78504, USA; (S.C.C.); (M.K.T.)
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, 5300 N L St., McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- South Texas Center of Excellence in Cancer Research, McAllen, TX 78504, USA; (S.C.C.); (M.K.T.)
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, 5300 N L St., McAllen, TX 78504, USA
| | - Manish K. Tripathi
- South Texas Center of Excellence in Cancer Research, McAllen, TX 78504, USA; (S.C.C.); (M.K.T.)
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, 5300 N L St., McAllen, TX 78504, USA
| | - Debasish Bandyopadhyay
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (Y.A.A.); (R.P.B.)
- School of Earth Environment & Marine Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
5
|
Wang S, Wang Q, Zheng J, Yan L, Pan Y, Jiang D, Li H, Liang S, He Z, Chen Q. Clinical implications and molecular mechanism of long noncoding RNA LINC00518 and protein-coding genes in skin cutaneous melanoma by genome‑wide investigation. Arch Dermatol Res 2025; 317:454. [PMID: 39987414 DOI: 10.1007/s00403-025-03961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/26/2024] [Accepted: 02/03/2025] [Indexed: 02/24/2025]
Abstract
Skin cutaneous melanoma (SKCM) is a cancer with serious global impact. Long non-coding RNA was previously found to be associated with tumor prognosis. This research focuses on long intergenic non-protein coding (LINC) RNAs, and correlated protein-coding genes (PCGs), to explore their diagnostic and prognostic value, function and mechanism. Gene expression data was obtained from TCGA and Oncomine for analysis; in total there were 458 cases included in this study. LIN00518 and the 10 most highly correlated PCGs were selected to determine the diagnostic and prognostic value. We undertook bioinformatic analysis with LINC00518 and the prognostic-related PCGs in order to explore their molecular mechanism. The Connectivity Map was carried out for pharmacological target prediction and drug selection. Among the top 10 correlated PCGs, trafficking kinesin protein 2 (TRAK2), epilepsy of progressive myoclonus type 2 gene A (EPM2A) and melanocyte inducing transcription factor (MITF) had significant diagnostic value (all AUC > 0.7, P < 0.05). LINC00518, ras association domain family member 3 (RASSF3), cdk5 and Abl enzyme substrate 1 (CABLES1), kazrin, periplakin interacting protein (KAZN), EF-hand calcium binding domain 5 (EFCAB5) and MITF were significantly associated with prognosis (all adjusted P < 0.05). LINC00518 was associated with cell cycle process, melanogenesis, MAPK signaling pathway, cell division and DNA repair(all P < 0.05). Pharmacological targets analysis suggested results acquired eight potential target drugs. Up-regulation of LINC00518 is significantly associated with poor prognosis. TRAK2, EPM2A and MITF had diagnostic significance. RASSF3, CABLES1, KAZN, EFCAB5 and MITF had prognostic significance. This study provided novel biomarkers for SKCM.
Collapse
Affiliation(s)
- Shaoxi Wang
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China
| | - Qiaoqi Wang
- The Emergency Department, The First Affiliated Hospital of Guangxi Medical University, No.6, Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China
| | - Jiayu Zheng
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China
| | - Lingxin Yan
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China
| | - Yanqing Pan
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China
| | - Diandian Jiang
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China
| | - Huiling Li
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China
| | - Siqiao Liang
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China
| | - Zhiyi He
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China.
| | - Quanfang Chen
- Department of Respiratory, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530000, People's Republic of China.
| |
Collapse
|
6
|
Desai SA, Patel VP, Bhosle KP, Nagare SD, Thombare KC. The tumor microenvironment: shaping cancer progression and treatment response. J Chemother 2025; 37:15-44. [PMID: 38179655 DOI: 10.1080/1120009x.2023.2300224] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer progression and treatment response. It comprises a complex network of stromal cells, immune cells, extracellular matrix, and blood vessels, all of which interact with cancer cells and influence tumor behaviour. This review article provides an in-depth examination of the TME, focusing on stromal cells, blood vessels, signaling molecules, and ECM, along with commonly available therapeutic compounds that target these components. Moreover, we explore the TME as a novel strategy for discovering new anti-tumor drugs. The dynamic and adaptive nature of the TME offers opportunities for targeting specific cellular interactions and signaling pathways. We discuss emerging approaches, such as combination therapies that simultaneously target cancer cells and modulate the TME. Finally, we address the challenges and future prospects in targeting the TME. Overcoming drug resistance, improving drug delivery, and identifying new therapeutic targets within the TME are among the challenges discussed. We also highlight the potential of personalized medicine and the integration of emerging technologies, such as immunotherapy and nanotechnology, in TME-targeted therapies. This comprehensive review provides insights into the TME and its therapeutic implications. Understanding the TME's complexity and targeting its components offer promising avenues for the development of novel anti-tumor therapies and improved patient outcomes.
Collapse
Affiliation(s)
- Sharav A Desai
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Vipul P Patel
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kunal P Bhosle
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Sandip D Nagare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kirti C Thombare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| |
Collapse
|
7
|
Ill CR, Marikar NC, Nguyen V, Nangia V, Darnell AM, Vander Heiden MG, Reigan P, Spencer SL. BRAF V600 and ErbB inhibitors directly activate GCN2 in an off-target manner to limit cancer cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629301. [PMID: 39763857 PMCID: PMC11702603 DOI: 10.1101/2024.12.19.629301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Targeted kinase inhibitors are well known for their promiscuity and off-target effects. Herein, we define an off-target effect in which several clinical BRAFV600 inhibitors, including the widely used dabrafenib and encorafenib, interact directly with GCN2 to activate the Integrated Stress Response and ATF4. Blocking this off-target effect by co-drugging with a GCN2 inhibitor in A375 melanoma cells causes enhancement rather than suppression of cancer cell outgrowth, suggesting that the off-target activation of GCN2 is detrimental to these cells. This result is mirrored in PC9 lung cancer cells treated with erlotinib, an EGFR inhibitor, that shares the same off-target activation of GCN2. Using an in silico kinase inhibitor screen, we identified dozens of FDA-approved drugs that appear to share this off-target activation of GCN2 and ATF4. Thus, GCN2 activation may modulate the therapeutic efficacy of some kinase inhibitors, depending on the cancer context.
Collapse
Affiliation(s)
- C Ryland Ill
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Nasreen C Marikar
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Vu Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, USA
| | - Varuna Nangia
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado School of Medicine, University of Colorado Anschutz, Aurora, CO, USA
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, MA, USA
- Current address: Department of Pharmacology and Cancer Biology, Duke University School of Medicine, NC, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, MA, USA
- Dana-Farber Cancer Institute, MA, USA
| | - Philip Reigan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, USA
| | - Sabrina L Spencer
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
8
|
Zhang R, Wang Z, Wang H, Li L, Dong L, Ding L, Li Q, Zhu L, Zhang T, Zhu Y, Ding K. CTHRC1 is associated with BRAF(V600E) mutation and correlates with prognosis, immune cell infiltration, and drug resistance in colon cancer, thyroid cancer, and melanoma. BIOMOLECULES & BIOMEDICINE 2024; 25:42-61. [PMID: 39052013 PMCID: PMC11647256 DOI: 10.17305/bb.2024.10397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Colon cancer, thyroid cancer, and melanoma are common malignant tumors that seriously threaten human health globally. The B-Raf proto-oncogene, serine/threonine kinase (BRAF)(V600E) mutation is an important driver gene mutation in these cancer types. In this study, we identified that collagen triple helix repeat containing 1 (CTHRC1) expression was associated with the BRAF(V600E) mutation in colon cancer, thyroid cancer, and melanoma. Based on database analysis and clinical tissue studies, CTHRC1 was verified to correlate with poor prognosis and worse clinicopathological features in colon cancer and thyroid cancer patients, but not in patients with melanoma. Several signaling pathways, immune cell infiltration, and immunotherapy markers were associated with CTHRC1 expression. Additionally, a high level of CTHRC1 was correlated with decreased sensitivity to antitumor drugs (vemurafenib, PLX-4720, dabrafenib, and SB-590885) targeting the BRAF(V600E) mutation. This study provides evidence of a significant correlation between CTHRC1 and the BRAF(V600E) mutation, suggesting its potential utility as a diagnostic and prognostic biomarker in human colon cancer, thyroid cancer, and melanoma.
Collapse
Affiliation(s)
- Rumeng Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zhihao Wang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Huan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lin Li
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lin Dong
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lin Ding
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Qiushuang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Linyan Zhu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Tiantian Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
9
|
Baird JR, Alice AF, Saito R, Chai Q, Han M, Ng C, Han S, Fernandez B, Ledoux S, Grosse J, Korman AJ, Potuznik M, Rajamanickam V, Bernard B, Crittenden MR, Gough MJ. A novel small molecule Enpp1 inhibitor improves tumor control following radiation therapy by targeting stromal Enpp1 expression. Sci Rep 2024; 14:29913. [PMID: 39622844 PMCID: PMC11612208 DOI: 10.1038/s41598-024-80677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
The uniqueness in each person's cancer cells and variation in immune infiltrates means that each tumor represents a unique problem, but therapeutic targets can be found among their shared features. Radiation therapy alters the interaction between the cancer cells and the stroma through release of innate adjuvants. The extranuclear DNA that can result from radiation damage of cells can result in production of the second messenger cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) by cyclic GMP-AMP synthase (cGAS). In turn, cGAMP can activate the innate sensor stimulator of interferon genes (STING), resulting in innate immune activation. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1) is a phosphodiesterase that can be expressed by cancer cells that can degrade cGAMP, thus can decrease or block STING activation following radiation therapy, impairing the innate immunity that is critical to support adaptive immune control of tumors. We observed that many human and murine cancer cells lack Enpp1 expression, but that Enpp1 is expressed in cells of the tumor stroma where it limits tumor control by radiation therapy. We demonstrate in preclinical models the efficacy of a novel Enpp1 inhibitor and show that this inhibitor improves tumor control by radiation even where the cancer cells lack Enpp1. This mechanism requires STING and type I interferon (IFN) receptor expression by non-cancer cells and is dependent on CD8 T cells as a final effector mechanism of tumor control. This suggests that Enpp1 inhibition may be an effective partner for radiation therapy regardless of whether cancer cells express Enpp1. This broadens the potential patient base for whom Enpp1 inhibitors can be applied to improve innate immune responses following radiation therapy.
Collapse
Affiliation(s)
- Jason R Baird
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Alejandro F Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Roland Saito
- VIR Biotechnology Inc, 1800 Owens Street, Suite 900, San Francisco, CA, 94158, USA
| | - Qingqing Chai
- VIR Biotechnology Inc, 1800 Owens Street, Suite 900, San Francisco, CA, 94158, USA
| | - Minhua Han
- VIR Biotechnology Inc, 1800 Owens Street, Suite 900, San Francisco, CA, 94158, USA
| | - Cindy Ng
- VIR Biotechnology Inc, 1800 Owens Street, Suite 900, San Francisco, CA, 94158, USA
| | - Stephanie Han
- VIR Biotechnology Inc, 1800 Owens Street, Suite 900, San Francisco, CA, 94158, USA
| | - Beth Fernandez
- VIR Biotechnology Inc, 1800 Owens Street, Suite 900, San Francisco, CA, 94158, USA
| | - Sarah Ledoux
- VIR Biotechnology Inc, 1800 Owens Street, Suite 900, San Francisco, CA, 94158, USA
| | - Johannes Grosse
- VIR Biotechnology Inc, 1800 Owens Street, Suite 900, San Francisco, CA, 94158, USA
| | - Alan J Korman
- VIR Biotechnology Inc, 1800 Owens Street, Suite 900, San Francisco, CA, 94158, USA
| | - Megan Potuznik
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Venkatesh Rajamanickam
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Brady Bernard
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA
- The Oregon Clinic, Portland, OR, 97213, USA
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, Portland, OR, 97213, USA.
| |
Collapse
|
10
|
Wang X, Li Z, Xu J, Wang J, Li Y, Li Q, Niu J, Yang R. HSPA4 Expression is Correlated with Melanoma Cell Proliferation, Prognosis, and Immune Regulation. Clin Cosmet Investig Dermatol 2024; 17:2733-2746. [PMID: 39629045 PMCID: PMC11614586 DOI: 10.2147/ccid.s477870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
Purpose Heat shock protein A4 (HSPA4) is associated with a variety of human diseases. However, its function in cutaneous malignant melanoma (CMM) remains uncertain. Patients and Methods The gene and protein expression level of HSPA4 in CMM was investigated with public databases. Cell Counting Kit-8 (CCK8) assay was performed to assess the effect of HSPA4 on the proliferation of melanoma cells. Then, the diagnostic and prognostic value of HSPA4 in CMM were analyzed. Gene variations and methylation levels, and the correlation between HSPA4 expression and immune cell infiltration were evaluated, followed by the construction of HSPA4 related protein-protein interaction networks and functional enrichment analysis. Results The mRNA and protein expression level of HSPA4 was significantly higher in CMM. Knocking down HSPA4 in A-375 cell line could inhibit tumor cell growth. The receiver operating characteristic (ROC) curve analysis confirmed the diagnostic value of HSPA4. Survival analysis showed that high expression of HSPA4 was associated with poor prognosis. HSPA4 gene alterations were observed in 3% of CMM patients. Five CpG sites are associated with the prognosis of CMM. HSPA4 is negatively correlated with most immune cells in CMM. The protein interaction network shows that HSPA4 is closely related to proteins such as DnaJ heat shock protein family (Hsp40) member B1 (DNAJB1) and DnaJ heat shock protein family (Hsp40) member B6 (DNAJB6), and the expression of DNAJB1 is positively correlated with HSPA4. Functional enrichment analysis indicated that HSPA4 may be associated with immune suppression and immune escape within the tumor microenvironment of CMM. Conclusion HSPA4 may participate in the regulation of tumor development and microenvironment, which may be a potential diagnostic and prognostic marker of CMM.
Collapse
Affiliation(s)
- Xudong Wang
- Outpatient Department of Yangfangdian, Southern Medical District of Chinese PLA General Hospital, Beijing, 100843, People’s Republic of China
- Department of Dermatology, Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100010, People’s Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| | - Zhiyong Li
- Outpatient Department of Yangfangdian, Southern Medical District of Chinese PLA General Hospital, Beijing, 100843, People’s Republic of China
| | - Jianhong Xu
- Outpatient Department of Yangfangdian, Southern Medical District of Chinese PLA General Hospital, Beijing, 100843, People’s Republic of China
| | - Jun Wang
- Outpatient Department of Yangfangdian, Southern Medical District of Chinese PLA General Hospital, Beijing, 100843, People’s Republic of China
| | - Ying Li
- Outpatient Department of Yangfangdian, Southern Medical District of Chinese PLA General Hospital, Beijing, 100843, People’s Republic of China
| | - Qiang Li
- Medical Health Care Dept, Air Force Medical Center PLA, Beijing, 100142, People’s Republic of China
| | - Jianrong Niu
- Department of Dermatology, Air Force Medical Center PLA, Beijing, 100142, People’s Republic of China
| | - Rongya Yang
- Department of Dermatology, Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100010, People’s Republic of China
| |
Collapse
|
11
|
Seif SE, Wardakhan WW, Hassan RA, Abdou AM, Mahmoud Z. New S-substituted-3-phenyltetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one scaffold with promising anticancer activity profile through the regulation and inhibition of mutated B-RAF signaling pathway. Drug Dev Res 2024; 85:e70007. [PMID: 39425261 DOI: 10.1002/ddr.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Novel 3-phenyltetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives were synthesized and screened for their antiproliferative activity against a panel of 60 cancer cell lines. Derivatives 5b, 5f, and 9c showed significant antitumor activity at a single dose with mean growth inhibition of 55.62%, 55.79%, and 71.40%, respectively. These compounds were further investigated against HCT-116, colon cancer cell line, and FHC, normal colon cell line. Compound 9c showed the highest activity with IC50 = 0.904 ± 0.03 µM and SI = 20.42 excelling doxorubicin which scored IC50 = 2.556 ± 0.09 µM and SI = 6.19. Compound 9c was also the most potent against B-RAFWT and mutated B-RAFV600E with IC50 = 0.145 ± 0.005 and 0.042 ± 0.002 µM, respectively in comparison with vemurafenib with IC50 = 0.229 ± 0.008 and 0.038 ± 0.001 µM, respectively. The cell cycle analysis showed that 9c increased the cell population and induced an arrest in the cell cycle of HCT-116 cancer cells at the G0-G1 stage with 1.23-fold. Apoptosis evaluation showed that compound 9c displayed an 18.18-fold elevation in total apoptosis of HCT-116 cancer cells in comparison to the control. Compound 9c increased the content of caspase-3 by 3.52-fold versus the control. A molecular modeling study determined the binding profile and interaction of 9c with the B-RAF active site.
Collapse
Affiliation(s)
- Safaa E Seif
- National Organization for Drug Control and Research, Cairo, Egypt
| | | | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Zeinab Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
12
|
Jarab AS, Al-Qerem WA, Khdour LM, Mimi YA, Khdour MR. New emerging treatment options for metastatic melanoma: a systematic review and meta-analysis of skin cancer therapies. Arch Dermatol Res 2024; 316:735. [PMID: 39485529 DOI: 10.1007/s00403-024-03467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Skin cancer, notably melanoma, poses a significant global health burden, with rising incidence and mortality rates. While therapeutic advancements have improved outcomes, metastatic melanoma remains challenging to treat. This study aims to systematically review systemic treatment options for advanced melanoma, focusing on efficacy and safety in the first-line setting. Through a comprehensive search and meta-analysis of randomized controlled trials conducted from 2013 to 2023, 11 studies encompassing 2816 participants were analyzed. Treatment options included BRAF inhibitors (vemurafenib, dabrafenib), MEK inhibitors (trametinib, cobimetinib), and immune checkpoint inhibitors (ipilimumab). Combined therapy with vemurafenib, cobimetinib, and ipilimumab demonstrated superior overall survival (OS) and progression-free survival (PFS) compared to monotherapy, with a significant odds ratio (OR) of 6.95 (95% CI: 4.25-9.64, p < 0.00001) for OS and 2.49 (95% CI: 1.42-3.56, p < 0.00001) for PFS. Additionally, dabrafenib and trametinib combination therapy showed improved outcomes with favorable tolerability, including a significant reduction in adverse event (AE) risk, with an OR of 2.20 (95% CI: 1.72-2.81). Furthermore, our analysis highlighted vemurafenib-associated dermatological toxicities, emphasizing the need for effective management strategies. The study underscores the evolving treatment landscape in melanoma management, with a potential shift towards immune checkpoint inhibitors in the adjuvant setting, particularly for BRAF-mutated disease. However, limitations in meta-analysis methodologies and the need for long-term investigations into treatment implications on survival and quality of life underscore the importance of continued research.
Collapse
Affiliation(s)
- Anan S Jarab
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Walid A Al-Qerem
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Lina M Khdour
- Faculty of Medicine, Al-Quds University, Abu Deis, P.O. Box 20002, West Bank, Palestine
| | - Yousef A Mimi
- Department of Health Sciences, Faculty of Graduated Studies, Arab American University, Jenin, Palestine
| | - Maher R Khdour
- Faculty of Pharmacy, Al-Quds University, Abu Deis, P.O. Box 20002, Jerusalem, Palestine.
- Faculty of Pharmacy, Al-Quds University, Abu Deis, P.O. Box 20002, Jerusalem, Palestine.
| |
Collapse
|
13
|
Jalil A, Donate MM, Mattei J. Exploring resistance to immune checkpoint inhibitors and targeted therapies in melanoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:42. [PMID: 39534873 PMCID: PMC11555183 DOI: 10.20517/cdr.2024.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Melanoma is the most aggressive form of skin cancer, characterized by a poor prognosis, and its incidence has risen rapidly over the past 30 years. Recent therapies, notably immunotherapy and targeted therapy, have significantly improved the outcome of patients with metastatic melanoma. Previously dismal five-year survival rates of below 5% have shifted to over 50% of patients surviving the five-year mark, marking a significant shift in the landscape of melanoma treatment and survival. Unfortunately, about 50% of patients either do not respond to therapy or experience early or late relapses following an initial response. The underlying mechanisms for primary and secondary resistance to targeted therapies or immunotherapy and relapse patterns remain not fully identified. However, several molecular pathways and genetic factors have been associated with melanoma resistance to these treatments. Understanding these mechanisms paves the way for creating novel treatments that can address resistance and ultimately enhance patient outcomes in melanoma. This review explores the mechanisms behind immunotherapy and targeted therapy resistance in melanoma patients. Additionally, it describes the treatment strategies to overcome resistance, which have improved patients' outcomes in clinical trials and practice.
Collapse
Affiliation(s)
- Anum Jalil
- Department of Medicine, UT Health Science Center San Antonio, San Antonio, TA 78229, USA
| | - Melissa M Donate
- Long School of Medicine, UT Health Science Center San Antonio, San Antonio, TA 78229, USA
| | - Jane Mattei
- Department of Hematology Oncology, UT Health Science Center San Antonio, San Antonio, TA 78229, USA
| |
Collapse
|
14
|
Chaudhuri D, Majumder S, Datta J, Giri K. In silico fragment-based design and pharmacophore modelling of therapeutics against dengue virus envelope protein. In Silico Pharmacol 2024; 12:87. [PMID: 39310675 PMCID: PMC11415559 DOI: 10.1007/s40203-024-00262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
Dengue virus, an arbovirus of genus Flavivirus, is an infectious disease causing organisms in the tropical environment leading to numerous deaths every year. No therapeutic is available against the virus till date with only symptomatic relief available. Here, we have tried to design therapeutic compounds from scratch by fragment based method followed by pharmacophore based modelling to find suitable similar structure molecules and validated the same by MD simulation, followed by binding energy calculations and ADMET analysis. The receptor binding region of the dengue envelope protein was considered as the target for prevention of viral host cell entry and thus infection. This resulted in the final selection of kanamycin as a stable binding molecule against the Dengue virus envelope protein receptor binding domain. This study results in selection of a single molecule having high binding energy and prominent stable interactions as determined by post simulation analyses. This study aims to provide a direction for development of small molecule therapeutics against the dengue virus in order to control infection. This study may open a new avenue in the arena of structure based and fragment based therapeutic design to obtain novel molecules with therapeutic potential. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00262-9.
Collapse
Affiliation(s)
- Dwaipayan Chaudhuri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073 India
| | - Satyabrata Majumder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073 India
| | - Joyeeta Datta
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073 India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073 India
| |
Collapse
|
15
|
Goetz A, Shanahan F, Brooks L, Lin E, Mroue R, Dela Cruz D, Hunsaker T, Czech B, Dixit P, Segal U, Martin S, Foster SA, Gerosa L. Computational Modeling of Drug Response Identifies Mutant-Specific Constraints for Dosing panRAF and MEK Inhibitors in Melanoma. Cancers (Basel) 2024; 16:2914. [PMID: 39199684 PMCID: PMC11353013 DOI: 10.3390/cancers16162914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
PURPOSE This study explores the potential of pre-clinical in vitro cell line response data and computational modeling in identifying the optimal dosage requirements of pan-RAF (Belvarafenib) and MEK (Cobimetinib) inhibitors in melanoma treatment. Our research is motivated by the critical role of drug combinations in enhancing anti-cancer responses and the need to close the knowledge gap around selecting effective dosing strategies to maximize their potential. RESULTS In a drug combination screen of 43 melanoma cell lines, we identified specific dosage landscapes of panRAF and MEK inhibitors for NRAS vs. BRAF mutant melanomas. Both experienced benefits, but with a notably more synergistic and narrow dosage range for NRAS mutant melanoma (mean Bliss score of 0.27 in NRAS vs. 0.1 in BRAF mutants). Computational modeling and follow-up molecular experiments attributed the difference to a mechanism of adaptive resistance by negative feedback. We validated the in vivo translatability of in vitro dose-response maps by predicting tumor growth in xenografts with high accuracy in capturing cytostatic and cytotoxic responses. We analyzed the pharmacokinetic and tumor growth data from Phase 1 clinical trials of Belvarafenib with Cobimetinib to show that the synergy requirement imposes stricter precision dose constraints in NRAS mutant melanoma patients. CONCLUSION Leveraging pre-clinical data and computational modeling, our approach proposes dosage strategies that can optimize synergy in drug combinations, while also bringing forth the real-world challenges of staying within a precise dose range. Overall, this work presents a framework to aid dose selection in drug combinations.
Collapse
Affiliation(s)
- Andrew Goetz
- gRED Computational Sciences, Genentech, South San Francisco, CA 94080, USA;
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA;
| | - Frances Shanahan
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA; (F.S.); (R.M.); (S.A.F.)
| | - Logan Brooks
- Department of Modeling and Simulation Clinical Pharmacology, Genentech, South San Francisco, CA 94080, USA;
| | - Eva Lin
- Department of Functional Genomics, Genentech, South San Francisco, CA 94080, USA; (E.L.); (S.M.)
| | - Rana Mroue
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA; (F.S.); (R.M.); (S.A.F.)
| | - Darlene Dela Cruz
- Department of Translational Oncology, Genentech, South San Francisco, CA 94080, USA; (D.D.C.); (T.H.); (U.S.)
| | - Thomas Hunsaker
- Department of Translational Oncology, Genentech, South San Francisco, CA 94080, USA; (D.D.C.); (T.H.); (U.S.)
| | - Bartosz Czech
- Roche Global IT Solution Centre, Roche, 02-672 Warsaw, Poland;
| | - Purushottam Dixit
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA;
| | - Udi Segal
- Department of Translational Oncology, Genentech, South San Francisco, CA 94080, USA; (D.D.C.); (T.H.); (U.S.)
| | - Scott Martin
- Department of Functional Genomics, Genentech, South San Francisco, CA 94080, USA; (E.L.); (S.M.)
| | - Scott A. Foster
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA; (F.S.); (R.M.); (S.A.F.)
| | - Luca Gerosa
- gRED Computational Sciences, Genentech, South San Francisco, CA 94080, USA;
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA; (F.S.); (R.M.); (S.A.F.)
| |
Collapse
|
16
|
Kolathur KK, Nag R, Shenoy PV, Malik Y, Varanasi SM, Angom RS, Mukhopadhyay D. Molecular Susceptibility and Treatment Challenges in Melanoma. Cells 2024; 13:1383. [PMID: 39195270 PMCID: PMC11352263 DOI: 10.3390/cells13161383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Melanoma is the most aggressive subtype of cancer, with a higher propensity to spread compared to most solid tumors. The application of OMICS approaches has revolutionized the field of melanoma research by providing comprehensive insights into the molecular alterations and biological processes underlying melanoma development and progression. This review aims to offer an overview of melanoma biology, covering its transition from primary to malignant melanoma, as well as the key genes and pathways involved in the initiation and progression of this disease. Utilizing online databases, we extensively explored the general expression profile of genes, identified the most frequently altered genes and gene mutations, and examined genetic alterations responsible for drug resistance. Additionally, we studied the mechanisms responsible for immune checkpoint inhibitor resistance in melanoma.
Collapse
Affiliation(s)
- Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India;
| | - Radhakanta Nag
- Department of Microbiology, College of Basic Science & Humanities, Odisha University of Agriculture & Technology (OUAT), Bhubaneswar 751003, Odisha, India;
| | - Prathvi V Shenoy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India; (P.V.S.); (Y.M.)
| | - Yagya Malik
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India; (P.V.S.); (Y.M.)
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| |
Collapse
|
17
|
Goetz A, Shanahan F, Brooks L, Lin E, Mroue R, Cruz DD, Hunsaker T, Czech B, Dixit P, Segal U, Martin S, Foster SA, Gerosa L. Computational modeling of drug response identifies mutant-specific constraints for dosing panRAF and MEK inhibitors in melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606432. [PMID: 39149377 PMCID: PMC11326189 DOI: 10.1101/2024.08.02.606432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Purpose This study explores the potential of preclinical in vitro cell line response data and computational modeling in identifying optimal dosage requirements of pan-RAF (Belvarafenib) and MEK (Cobimetinib) inhibitors in melanoma treatment. Our research is motivated by the critical role of drug combinations in enhancing anti-cancer responses and the need to close the knowledge gap around selecting effective dosing strategies to maximize their potential. Results In a drug combination screen of 43 melanoma cell lines, we identified unique dosage landscapes of panRAF and MEK inhibitors for NRAS vs BRAF mutant melanomas. Both experienced benefits, but with a notably more synergistic and narrow dosage range for NRAS mutant melanoma. Computational modeling and molecular experiments attributed the difference to a mechanism of adaptive resistance by negative feedback. We validated in vivo translatability of in vitro dose-response maps by accurately predicting tumor growth in xenografts. Then, we analyzed pharmacokinetic and tumor growth data from Phase 1 clinical trials of Belvarafenib with Cobimetinib to show that the synergy requirement imposes stricter precision dose constraints in NRAS mutant melanoma patients. Conclusion Leveraging pre-clinical data and computational modeling, our approach proposes dosage strategies that can optimize synergy in drug combinations, while also bringing forth the real-world challenges of staying within a precise dose range.
Collapse
Affiliation(s)
- Andrew Goetz
- gRED Computational Sciences, Genentech, South San Francisco, CA, US
- Department of Biomedical Engineering, Yale University, New Haven, CT, US
| | - Frances Shanahan
- Department of Discovery Oncology, Genentech, South San Francisco, CA, US
| | - Logan Brooks
- Department of Modeling and Simulation Clinical Pharmacology, Genentech, South San Francisco, CA, US
| | - Eva Lin
- Department of Functional Genomics, Genentech, South San Francisco, CA, US
| | - Rana Mroue
- Department of Discovery Oncology, Genentech, South San Francisco, CA, US
| | - Darlene Dela Cruz
- Department of Translational Oncology, Genentech, South San Francisco, CA, US
| | - Thomas Hunsaker
- Department of Translational Oncology, Genentech, South San Francisco, CA, US
| | | | - Purushottam Dixit
- Department of Biomedical Engineering, Yale University, New Haven, CT, US
| | - Udi Segal
- Department of Translational Oncology, Genentech, South San Francisco, CA, US
| | - Scott Martin
- Department of Functional Genomics, Genentech, South San Francisco, CA, US
| | - Scott A. Foster
- Department of Discovery Oncology, Genentech, South San Francisco, CA, US
| | - Luca Gerosa
- gRED Computational Sciences, Genentech, South San Francisco, CA, US
- Department of Discovery Oncology, Genentech, South San Francisco, CA, US
| |
Collapse
|
18
|
Wu X, Feng N, Wang C, Jiang H, Guo Z. Small molecule inhibitors as adjuvants in cancer immunotherapy: enhancing efficacy and overcoming resistance. Front Immunol 2024; 15:1444452. [PMID: 39161771 PMCID: PMC11330769 DOI: 10.3389/fimmu.2024.1444452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Adjuvant therapy is essential in cancer treatment to enhance primary treatment effectiveness, reduce adverse effects, and prevent recurrence. Small molecule inhibitors as adjuvants in cancer immunotherapy aim to harness their immunomodulatory properties to optimize treatment outcomes. By modulating the tumor microenvironment, enhancing immune cell function, and increasing tumor sensitivity to immunotherapy, small molecule inhibitors have the potential to improve patient responses. This review discusses the evolving use of small molecule inhibitors as adjuvants in cancer treatment, highlighting their role in enhancing the efficacy of immunotherapy and the opportunities for advancing cancer therapies in the future.
Collapse
Affiliation(s)
- Xiaolin Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nuan Feng
- Department of Nutrition, Peking University People’s Hospital, Qingdao, China
- Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhu Guo
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Sun L, Ying J, Guo R, Jia L, Zhang H. A bibliometric analysis of global research on microbial immune microenvironment in melanoma from 2012 to 2022. Skin Res Technol 2024; 30:e70017. [PMID: 39167029 PMCID: PMC11337907 DOI: 10.1111/srt.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Melanoma is an aggressive malignancy primarily impacting the skin, mucous membranes, and pigment epithelium. The tumor microbial microenvironment encompasses both the microorganisms inhabiting the tumor vicinity and the environmental factors influencing their interactions. Emerging evidence highlights the pivotal role of the microbial immune microenvironment in melanoma. METHODS We conducted an extensive review of scholarly works published from 2012 to 2022, utilizing The Web of Science Core Collection. Subsequently, we employed analytical tools such as VOSviewer, CiteSpace, and the R programming language to scrutinize prevailing research patterns within this domain. RESULTS A sum of 513 articles were pinpointed, with notable input coming from the United States and China. Harvard University stood out as the top-contributing institution, while the journal Science received the most citations. Current research within this sphere chiefly focuses on two principal domains: the gut microbiota and the PD-L1 pathway concerning melanoma treatment. CONCLUSION The study offers an extensive analysis and overview of the worldwide research landscape concerning the immune microenvironment with a focus on microbes in melanoma. It underscores the promising prospects for harnessing the microbial immune microenvironment's potential in melanoma. These findings furnish valuable insights and guidance for advancing scientific inquiry and refining clinical approaches within this dynamic field.
Collapse
Affiliation(s)
- Lin Sun
- Department of RadiotherapyYantaishan HospitalShandongChina
| | - Jianghui Ying
- Department of Plastic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Rong Guo
- Department of Plastic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Lingling Jia
- Department of Plastic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Hongyi Zhang
- Department of Plastic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
20
|
Norollahi SE, Yousefzadeh-Chabok S, Yousefi B, Nejatifar F, Rashidy-Pour A, Samadani AA. The effects of the combination therapy of chemotherapy drugs on the fluctuations of genes involved in the TLR signaling pathway in glioblastoma multiforme therapy. Biomed Pharmacother 2024; 177:117137. [PMID: 39018875 DOI: 10.1016/j.biopha.2024.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
One of the most lethal and aggressive types of malignancies with a high mortality rate and poor response to treatment is glioblastoma multiforme (GBM). This means that modernizing the medications used in chemotherapy, in addition to medicines licensed for use in other illnesses and chosen using a rationale process, can be beneficial in treating this illness. Meaningly, drug combination therapy with chemical or herbal originations or implanting a drug wafer in tumors to control angiogenesis is of great importance. Importantly, the primary therapeutic hurdles in GBM are the development of angiogenesis and the blood-brain barrier (BBB), which keeps medications from getting to the tumor. This malignancy can be controlled if the drug's passage through the BBB and the VEGF (vascular endothelial growth factor), which promotes angiogenesis, are inhibited. In this way, the effect of combination therapy on the genes of different main signaling pathways like TLRs may be indicated as an impressive therapeutic strategy for treating GBM. This article aims to discuss the effects of chemotherapeutic drugs on the expression of various genes and associated translational factors involved in the TLR signaling pathway.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Bahman Yousefi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
21
|
Roso-Mares A, Andújar I, Díaz Corpas T, Sun BK. Non-coding RNAs as skin disease biomarkers, molecular signatures, and therapeutic targets. Hum Genet 2024; 143:801-812. [PMID: 37580609 DOI: 10.1007/s00439-023-02588-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/23/2023] [Indexed: 08/16/2023]
Abstract
Non-coding RNAs (ncRNAs) are emerging as biomarkers, molecular signatures, and therapeutic tools and targets for diseases. In this review, we focus specifically on skin diseases to highlight how two classes of ncRNAs-microRNAs and long noncoding RNAs-are being used to diagnose medical conditions of unclear etiology, improve our ability to guide treatment response, and predict disease prognosis. Furthermore, we explore how ncRNAs are being used as both as drug targets and associated therapies have unique benefits, risks, and challenges to development, but offer a distinctive promise for improving patient care and outcomes.
Collapse
Affiliation(s)
- Andrea Roso-Mares
- Department of Dermatology, University of California San Diego, San Diego, CA, USA
- Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Isabel Andújar
- Department of Pharmacology, University of Valencia, Valencia, Spain
| | - Tania Díaz Corpas
- Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- Department of Dermatology, Hospital Dr Peset, Valencia, Spain
| | - Bryan K Sun
- Department of Dermatology, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
22
|
Kirthiga Devi SS, Singh S, Joga R, Patil SY, Meghana Devi V, Chetan Dushantrao S, Dwivedi F, Kumar G, Kumar Jindal D, Singh C, Dhamija I, Grover P, Kumar S. Enhancing cancer immunotherapy: Exploring strategies to target the PD-1/PD-L1 axis and analyzing the associated patent, regulatory, and clinical trial landscape. Eur J Pharm Biopharm 2024; 200:114323. [PMID: 38754524 DOI: 10.1016/j.ejpb.2024.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/10/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Cancer treatment modalities and their progression is guided by the specifics of cancer, including its type and site of localization. Surgery, radiation, and chemotherapy are the most often used conventional treatments. Conversely, emerging treatment techniques include immunotherapy, hormone therapy, anti-angiogenic therapy, dendritic cell-based immunotherapy, and stem cell therapy. Immune checkpoint inhibitors' anticancer properties have drawn considerable attention in recent studies in the cancer research domain. Programmed Cell Death Protein-1 (PD-1) and its ligand (PD-L1) checkpoint pathway are key regulators of the interactions between activated T-cells and cancer cells, protecting the latter from immune destruction. When the ligand PD-L1 attaches to the receptor PD-1, T-cells are prevented from destroying cells that contain PD-L1, including cancer cells. The PD-1/PD-L1 checkpoint inhibitors block them, boosting the immune response and strengthening the body's defenses against tumors. Recent years have seen incredible progress and tremendous advancement in developing anticancer therapies using PD-1/PD-L1 targeting antibodies. While immune-related adverse effects and low response rates significantly limit these therapies, there is a need for research on methods that raise their efficacy and lower their toxicity. This review discusses various recent innovative nanomedicine strategies such as PLGA nanoparticles, carbon nanotubes and drug loaded liposomes to treat cancer targeting PD-1/PD-L1 axis. The biological implications of PD-1/PD-L1 in cancer treatment and the fundamentals of nanotechnology, focusing on the novel strategies used in nanomedicine, are widely discussed along with the corresponding guidelines, clinical trial status, and the patent landscape of such formulations.
Collapse
Affiliation(s)
- S S Kirthiga Devi
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sidhartha Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sharvari Y Patil
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Vakalapudi Meghana Devi
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Sabnis Chetan Dushantrao
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Falguni Dwivedi
- School of Bioscience and Bioengineering, D Y Patil International University, Akurdi, Pune 411044, India
| | - Gautam Kumar
- School of Bioscience and Bioengineering, D Y Patil International University, Akurdi, Pune 411044, India; Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani campus, Rajasthan 333031, India
| | - Deepak Kumar Jindal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, 125001, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Garhwal, Uttarakhand 246174, India
| | - Isha Dhamija
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, India; Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan 303121, India
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India; Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan 303121, India.
| |
Collapse
|
23
|
Zhao G, Zhu M, Li Y, Zhang G, Li Y. Using DNA-encoded libraries of fragments for hit discovery of challenging therapeutic targets. Expert Opin Drug Discov 2024; 19:725-740. [PMID: 38753553 DOI: 10.1080/17460441.2024.2354287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The effectiveness of Fragment-based drug design (FBDD) for targeting challenging therapeutic targets has been hindered by two factors: the small library size and the complexity of the fragment-to-hit optimization process. The DNA-encoded library (DEL) technology offers a compelling and robust high-throughput selection approach to potentially address these limitations. AREA COVERED In this review, the authors propose the viewpoint that the DEL technology matches perfectly with the concept of FBDD to facilitate hit discovery. They begin by analyzing the technical limitations of FBDD from a medicinal chemistry perspective and explain why DEL may offer potential solutions to these limitations. Subsequently, they elaborate in detail on how the integration of DEL with FBDD works. In addition, they present case studies involving both de novo hit discovery and full ligand discovery, especially for challenging therapeutic targets harboring broad drug-target interfaces. EXPERT OPINION The future of DEL-based fragment discovery may be promoted by both technical advances and application scopes. From the technical aspect, expanding the chemical diversity of DEL will be essential to achieve success in fragment-based drug discovery. From the application scope side, DEL-based fragment discovery holds promise for tackling a series of challenging targets.
Collapse
Affiliation(s)
- Guixian Zhao
- Chongqing University FuLing Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Mengping Zhu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
24
|
Jean-Pierre P, Nouri K. A retrospective analysis of drugs associated with the development of cutaneous squamous cell carcinoma reported by patients on the FDA's adverse events reporting system. Arch Dermatol Res 2024; 316:250. [PMID: 38795220 PMCID: PMC11127877 DOI: 10.1007/s00403-024-03109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 05/27/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common type of skin cancer arising from squamous cells of the epidermis. Most cases of cSCC have a good prognosis if detected and treated early; however, certain cases can be aggressive. The primary risk factor for cSCC is prolonged ultraviolet radiation from sun exposure, leading to DNA mutations. Other risk factors have also been observed, including adverse reactions to medications, particularly immunosuppressants. A query of the Food and Drug Administration Adverse Events Reporting System (FAERS) was done, and all reported events of cSCC as adverse events to medication were recorded along with demographic data of patients affected. A total of 4,792 cases of cSCC as an adverse event to medication were reported between 1997 and 2023. Lenalidomide, a chemotherapeutic drug, had the most cases of cSCC as an adverse event. Nine of the top 10 drugs associated with cSCC had immunosuppressive characteristics. While males had higher odds of cSCC associated with corticosteroids and calcineurin inhibitors, females had higher odds of cSCC related to monoclonal antibodies. Geriatric patients accounted for the majority of cSCC cases at 59.7%. Drawing on data from the FAERS database, there's been a consistent increase in cSCC cases as a side-effect to certain medications, with most having immunosuppressive characteristics. Since there is a lack of up-to-date literature overviewing the most implicated medications for cSCC, we aimed to illustrate this better, as well as patient demographics, to better guide clinicians when prescribing these medications.
Collapse
Affiliation(s)
- Philippe Jean-Pierre
- Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, 1150 NW 14th Street, Suite 500, Miami, FL, 33136, USA.
| | - Keyvan Nouri
- Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, 1150 NW 14th Street, Suite 500, Miami, FL, 33136, USA
| |
Collapse
|
25
|
Sabt A, Khedr MA, Eldehna WM, Elshamy AI, Abdelhameed MF, Allam RM, Batran RZ. New pyrazolylindolin-2-one based coumarin derivatives as anti-melanoma agents: design, synthesis, dual BRAF V600E/VEGFR-2 inhibition, and computational studies. RSC Adv 2024; 14:5907-5925. [PMID: 38370458 PMCID: PMC10870110 DOI: 10.1039/d4ra00157e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Malignant melanoma is the most invasive skin cancer with the highest risk of death. The inhibition of BRAFV600E appears relevant for overcoming secondary resistance developed during melanoma treatment. BRAFV600E triggers angiogenesis via modification of the expression of angiogenic inducers, which play a crucial role in the metastasis of melanoma. Accordingly, the dual inhibition of the BRAFV600E/VEGFR-2 signaling pathway is considered a rational approach in the design of anti-melanoma candidates. In this study, a new class of pyrazolylindolin-2-one linked coumarin derivatives as dual BRAFV600E/VEGFR-2 inhibitors targeting A375 melanoma cells was designed. Target compounds were tailored to occupy the pockets of BRAFV600E and VEGFR-2. Most of the synthesized compounds demonstrated potent mean growth inhibitory activity against A375 cells. Compound 4j was the most active cytotoxic derivative, displaying an IC50 value at a low micromolar concentration of 0.96 μM with a significant safety profile. Moreover, 4j showed dual potent inhibitory activity against BRAFV600E and VEGFR-2 (IC50 = 1.033 and 0.64 μM, respectively) and was more active than the reference drug sorafenib. Furthermore, derivative 4j caused significant G0/G1 cell cycle arrest, induced apoptosis, and inhibited the migration of melanoma cells. Molecular docking showed that compound 4j achieved the highest ΔG value of -9.5 kcal mol-1 against BRAFV600E and significant ΔG of -8.47 kcal mol-1 against VEGFR-2. Furthermore, the structure-activity relationship study revealed that TPSA directly contributed to the anticancer activity of the tested compounds.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Mohammed A Khedr
- Department of Pharmaceutical Chemistry, College of Pharmacy, Kuwait University Safat 13110 Kuwait
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University 11795 Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University Kafrelsheikh 33516 Egypt
| | - Abdelsamed I Elshamy
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, Medical and Clinical Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Rasha M Allam
- Pharmacology Department, Medical and Clinical Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Rasha Z Batran
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| |
Collapse
|
26
|
Caraban BM, Aschie M, Deacu M, Cozaru GC, Pundiche MB, Orasanu CI, Voda RI. A Narrative Review of Current Knowledge on Cutaneous Melanoma. Clin Pract 2024; 14:214-241. [PMID: 38391404 PMCID: PMC10888040 DOI: 10.3390/clinpract14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Cutaneous melanoma is a public health problem. Efforts to reduce its incidence have failed, as it continues to increase. In recent years, many risk factors have been identified. Numerous diagnostic systems exist that greatly assist in early clinical diagnosis. The histopathological aspect illustrates the grim nature of these cancers. Currently, pathogenic pathways and the tumor microclimate are key to the development of therapeutic methods. Revolutionary therapies like targeted therapy and immune checkpoint inhibitors are starting to replace traditional therapeutic methods. Targeted therapy aims at a specific molecule in the pathogenic chain to block it, stopping cell growth and dissemination. The main function of immune checkpoint inhibitors is to boost cellular immunity in order to combat cancer cells. Unfortunately, these therapies have different rates of effectiveness and side effects, and cannot be applied to all patients. These shortcomings are the basis of increased incidence and mortality rates. This study covers all stages of the evolutionary sequence of melanoma. With all these data in front of us, we see the need for new research efforts directed at therapies that will bring greater benefits in terms of patient survival and prognosis, with fewer adverse effects.
Collapse
Affiliation(s)
- Bogdan Marian Caraban
- Clinical Department of Plastic Surgery, Microsurgery-Reconstructive, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Mariana Aschie
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Service of Pathology, Departments of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Academy of Medical Sciences of Romania, 030171 Bucharest, Romania
- The Romanian Academy of Scientists, 030167 Bucharest, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), "Ovidius" University of Constanta, 900591 Constanta, Romania
| | - Mariana Deacu
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Service of Pathology, Departments of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), "Ovidius" University of Constanta, 900591 Constanta, Romania
- Clinical Service of Pathology, Departments of Genetics, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Mihaela Butcaru Pundiche
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Department of General Surgery, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Cristian Ionut Orasanu
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Service of Pathology, Departments of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), "Ovidius" University of Constanta, 900591 Constanta, Romania
| | - Raluca Ioana Voda
- Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Service of Pathology, Departments of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), "Ovidius" University of Constanta, 900591 Constanta, Romania
| |
Collapse
|
27
|
Gupta PK, Orlovskiy S, Arias-Mendoza F, Nelson DS, Osborne A, Pickup S, Glickson JD, Nath K. Metabolic Imaging Biomarkers of Response to Signaling Inhibition Therapy in Melanoma. Cancers (Basel) 2024; 16:365. [PMID: 38254853 PMCID: PMC10814512 DOI: 10.3390/cancers16020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Dabrafenib therapy for metastatic melanoma focuses on blocking growth-promoting signals produced by a hyperactive BRAF protein. We report the metabolic differences of four human melanoma cell lines with diverse responses to dabrafenib therapy (30 mg/kg; oral): WM3918 < WM9838BR < WM983B < DB-1. Our goal was to determine if metabolic changes produced by the altered signaling pathway due to BRAF mutations differ in the melanoma models and whether these differences correlate with response to treatment. We assessed metabolic changes in isolated cells using high-resolution proton magnetic resonance spectroscopy (1H MRS) and supplementary biochemical assays. We also noninvasively studied mouse xenografts using proton and phosphorus (1H/31P) MRS. We found consistent changes in lactate and alanine, either in isolated cells or mouse xenografts, correlating with their relative dabrafenib responsiveness. In xenografts, we also observed that a more significant response to dabrafenib correlated with higher bioenergetics (i.e., increased βNTP/Pi). Notably, our noninvasive assessment of the metabolic status of the human melanoma xenografts by 1H/31P MRS demonstrated early metabolite changes preceding therapy response (i.e., tumor shrinkage). Therefore, this noninvasive methodology could be translated to assess in vivo predictive metabolic biomarkers of response in melanoma patients under dabrafenib and probably other signaling inhibition therapies.
Collapse
Affiliation(s)
- Pradeep Kumar Gupta
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.K.G.); (S.O.); (F.A.-M.); (D.S.N.); (A.O.); (S.P.); (J.D.G.)
| | - Stepan Orlovskiy
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.K.G.); (S.O.); (F.A.-M.); (D.S.N.); (A.O.); (S.P.); (J.D.G.)
| | - Fernando Arias-Mendoza
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.K.G.); (S.O.); (F.A.-M.); (D.S.N.); (A.O.); (S.P.); (J.D.G.)
- Advanced Imaging Research, Inc., Cleveland, OH 44114, USA
| | - David S. Nelson
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.K.G.); (S.O.); (F.A.-M.); (D.S.N.); (A.O.); (S.P.); (J.D.G.)
| | - Aria Osborne
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.K.G.); (S.O.); (F.A.-M.); (D.S.N.); (A.O.); (S.P.); (J.D.G.)
| | - Stephen Pickup
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.K.G.); (S.O.); (F.A.-M.); (D.S.N.); (A.O.); (S.P.); (J.D.G.)
| | - Jerry D. Glickson
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.K.G.); (S.O.); (F.A.-M.); (D.S.N.); (A.O.); (S.P.); (J.D.G.)
| | - Kavindra Nath
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.K.G.); (S.O.); (F.A.-M.); (D.S.N.); (A.O.); (S.P.); (J.D.G.)
| |
Collapse
|
28
|
Kozyra P, Pitucha M. Revisiting the Role of B-RAF Kinase as a Therapeutic Target in Melanoma. Curr Med Chem 2024; 31:2003-2020. [PMID: 37855341 DOI: 10.2174/0109298673258495231011065225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 10/20/2023]
Abstract
Malignant melanoma is the rarest but most aggressive and deadly skin cancer. Melanoma is the result of a malignant transformation of melanocytes, which leads to their uncontrolled proliferation. Mutations in the mitogen-activated protein kinase (MAPK) pathway, which are crucial for the control of cellular processes, such as apoptosis, division, growth, differentiation, and migration, are one of its most common causes. BRAF kinase, as one of the known targets of this pathway, has been known for many years as a prominent molecular target in melanoma therapy, and the following mini-review outlines the state-of-the-art knowledge regarding its structure, mutations and mechanisms.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Lublin, PL, 20093, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Lublin, PL-20093, Poland
| |
Collapse
|
29
|
Hamdani S, Allali H, Bouchentouf S. Exploring the Therapeutic Potential of Ginkgo biloba Polyphenols in Targeting Biomarkers of Colorectal Cancer: An In-silico Evaluation. Curr Drug Discov Technol 2024; 21:e020224226651. [PMID: 38318835 DOI: 10.2174/0115701638282497240124102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is a major contributor to cancer-related deaths worldwide, driving the need for effective anticancer therapies with fewer side effects. The exploration of Ginkgo biloba, a natural source, offers a hopeful avenue for novel treatments targeting key colorectal biomarkers involved in CRC treatment. OBJECTIVE The aim of this study was to explore the binding affinity of natural molecules derived from G. biloba to essential biomarkers associated with CRC, including Kirsten rat sarcoma virus, neuroblastoma RAS mutations, serine/threonine-protein kinase B-Raf, phosphatidylinositol 3'-kinase, and deleted colorectal cancer, using molecular docking. The focus of this research was to evaluate how effectively these molecules bind to specified targets in order to identify potential inhibitors for the treatment of CRC. METHODS A total of 152 polyphenolic compounds from G. biloba were selected and subjected to molecular docking simulations to evaluate their interactions with CRC-related biomarkers. The docking results were analysed to identify ligands exhibiting strong affinities towards the targeted genes, suggesting potential inhibitory effects. RESULTS Docking simulations unveiled the strong binding affinities between selected polyphenolic compounds derived from G. biloba and genes associated with CRC. The complex glycoside structures that are found in flavonols are of significant importance. These compounds, including derivatives with distinctive arrangements, exhibited promising docking scores, signifying substantial interactions with the targeted biomarkers. CONCLUSION The study demonstrates the potential of G. biloba-derived molecules as effective anticancer agents for colorectal cancer. The identified ligands exhibit strong interactions with crucial CRC-related biomarkers, suggesting potential inhibition ability. Further in vitro and in vivo investigations are needed to validate and build upon these promising findings, advancing the development of novel and efficient CRC therapies.
Collapse
Affiliation(s)
- Sarra Hamdani
- Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, P.O. Box 119, Tlemcen 13000, Algeria
- Laboratory of Natural and Bioactive Substances (LASNABIO), Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, P.O. Box 119, Tlemcen 13000, Algeria
| | - Hocine Allali
- Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, P.O. Box 119, Tlemcen 13000, Algeria
- Laboratory of Natural and Bioactive Substances (LASNABIO), Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, P.O. Box 119, Tlemcen 13000, Algeria
| | - Salim Bouchentouf
- Laboratory of Natural and Bioactive Substances (LASNABIO), Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, P.O. Box 119, Tlemcen 13000, Algeria
- Department of Process Engineering, Faculty of Technology, Doctor Tahar Moulay University of Saida, BP 138 cité EN-NASR, Saïda 20000, Algeria
| |
Collapse
|
30
|
Siljamäki E, Riihilä P, Suwal U, Nissinen L, Rappu P, Kallajoki M, Kähäri VM, Heino J. Inhibition of TGF-β signaling, invasion, and growth of cutaneous squamous cell carcinoma by PLX8394. Oncogene 2023; 42:3633-3647. [PMID: 37864034 PMCID: PMC10691969 DOI: 10.1038/s41388-023-02863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. The prognosis of patients with metastatic cSCC is poor emphasizing the need for new therapies. We have previously reported that the activation of Ras/MEK/ERK1/2 and transforming growth factor β (TGF-β)/Smad2 signaling in transformed keratinocytes and cSCC cells leads to increased accumulation of laminin-332 and accelerated invasion. Here, we show that the next-generation B-Raf inhibitor PLX8394 blocks TGF-β signaling in ras-transformed metastatic epidermal keratinocytes (RT3 cells) harboring wild-type B-Raf and hyperactive Ras. PLX8394 decreased phosphorylation of TGF-β receptor II and Smad2, as well as p38 activity, MMP-1 and MMP-13 synthesis, and laminin-332 accumulation. PLX8394 significantly inhibited the growth of human cSCC tumors and in vivo collagen degradation in xenograft model. In conclusion, our data indicate that PLX8394 inhibits several serine-threonine kinases in malignantly transformed human keratinocytes and cSCC cells and inhibits cSCC invasion and tumor growth in vitro and in vivo. We identify PLX8394 as a potential therapeutic compound for advanced human cSCC.
Collapse
Affiliation(s)
- Elina Siljamäki
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Ujjwal Suwal
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Pekka Rappu
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland.
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520, Turku, Finland.
| | - Jyrki Heino
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland.
- Department of Life Technologies and InFLAMES Research Flagship, University of Turku, FI-20014, Turku, Finland.
| |
Collapse
|
31
|
Fert S, River P, Bondonny L, Cauzinille L. Metastatic extradural melanoma of the lumbar spine in a cat. Vet Med Sci 2023; 9:2393-2398. [PMID: 37656442 PMCID: PMC10650352 DOI: 10.1002/vms3.1248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023] Open
Abstract
A 7-year-old neutered male Domestic shorthair cat, with a 1.5-year history of left eye enucleation secondary to a diffuse iris malignant melanoma, was evaluated for progressive onset of pelvic limb paresis and ataxia with severe thoracolumbar hyperaesthesia and dysorexia. Neurological examination localised a lesion to the T3-L3 spinal cord segments. Magnetic resonance imaging of the thoracolumbar spine showed a well-defined extradural T1-weighted hyperintense non-contrast-enhancing mass, initially suggesting a potential haemorrhagic component. Exploratory surgery revealed a brownish extradural lumbar mass. Histologic examination concluded to a melanoma, most probably metastatic given the animal's previous medical history. This report highlights the importance of collecting a complete medical history, which can help in obtaining a preliminary differential diagnosis in cats with clinical signs of myelopathy. Although the location of this metastasis is particularly unusual both in human and veterinary medicine, making optimal treatment challenging for neurosurgeon, our increased understanding of immune and tumour cell biology during the past decade is likely to improve the future treatments of feline melanoma and its metastases.
Collapse
Affiliation(s)
- Sabrina Fert
- Department of NeurologyVeterinary Hospital Center FrégisGentillyFrance
| | - Pablo River
- Department of SurgeryVeterinary Hospital Center OnlyvetSaint PriestFrance
| | - Laura Bondonny
- Department of SurgeryVeterinary Hospital Center OnlyvetSaint PriestFrance
| | | |
Collapse
|
32
|
Alamery S, AlAjmi A, Wani TA, Zargar S. In Silico and In Vitro Exploration of Poziotinib and Olmutinib Synergy in Lung Cancer: Role of hsa-miR-7-5p in Regulating Apoptotic Pathway Marker Genes. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1923. [PMID: 38003971 PMCID: PMC10673591 DOI: 10.3390/medicina59111923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Background and objectives: Non-small cell lung cancer (NSCLC) is often caused by EGFR mutations, leading to overactive cell growth pathways. Drug resistance is a significant challenge in lung cancer treatment, affecting therapy effectiveness and patient survival. However, combining drugs in research shows promise in addressing or delaying resistance, offering a more effective approach to cancer treatment. In this study, we investigated the potential alterations in the apoptotic pathway in A549 cells induced by a combined targeted therapy using tyrosine kinase inhibitors (TKIs) olmutinib and poziotinib, focusing on cell proliferation, differential gene expression, and in silico analysis of apoptotic markers. Methods: A combined targeted therapy involving olmutinib and poziotinib was investigated for its impact on the apoptotic pathway in A549 cells. Cell proliferation, quantitative differential gene expression, and in silico analysis of apoptotic markers were examined. A549 cells were treated with varying concentrations (1, 2.5, and 5 μM) of poziotinib, olmutinib, and their combination. Results: Treatment with poziotinib, olmutinib, and their combination significantly reduced cell proliferation, with the most pronounced effect at 2.5 μM (p < 0.005). A synergistic antiproliferative effect was observed with the combination of poziotinib and olmutinib (p < 0.0005). Quantitative differential gene expression showed synergistic action of the drug combination, impacting key apoptotic genes including STK-11, Bcl-2, Bax, and the Bax/Bcl-2 ratio. In silico analysis revealed direct interactions between EGFR and ERBB2 genes, accounting for 77.64% of their interactions, and 8% co-expression with downstream apoptotic genes. Molecular docking indicated strong binding of poziotinib and olmutinib to extrinsic and intrinsic apoptotic pathway markers, with binding energies of -9.4 kcal/mol and -8.5 kcal/mol, respectively, on interacting with STK-11. Conclusions: Combining poziotinib and olmutinib therapies may significantly improve drug tolerance and conquer drug resistance more effectively than using them individually in lung cancer patients, as suggested by this study's mechanisms.
Collapse
Affiliation(s)
- Salman Alamery
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (A.A.)
| | - Anfal AlAjmi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (A.A.)
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (A.A.)
| |
Collapse
|
33
|
Jia P, Tian T, Li Z, Wang Y, Lin Y, Zeng W, Ye Y, He M, Ni X, Pan J, Dong X, Huang J, Li C, Guo D, Hou P. CCDC50 promotes tumor growth through regulation of lysosome homeostasis. EMBO Rep 2023; 24:e56948. [PMID: 37672005 PMCID: PMC10561174 DOI: 10.15252/embr.202356948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023] Open
Abstract
The maintenance of lysosome homeostasis is crucial for cell growth. Lysosome-dependent degradation and metabolism sustain tumor cell survival. Here, we demonstrate that CCDC50 serves as a lysophagy receptor, promoting tumor progression and invasion by controlling lysosomal integrity and renewal. CCDC50 monitors lysosomal damage, recognizes galectin-3 and K63-linked polyubiquitination on damaged lysosomes, and specifically targets them for autophagy-dependent degradation. CCDC50 deficiency causes the accumulation of ruptured lysosomes, impaired autophagic flux, and superfluous reactive oxygen species, consequently leading to cell death and tumor suppression. CCDC50 expression is associated with malignancy, progression to metastasis, and poor overall survival in human melanoma. Targeting CCDC50 suppresses tumor growth and lung metastasis, and enhances the effect of BRAFV600E inhibition. Thus, we demonstrate critical roles of CCDC50-mediated clearance of damaged lysosomes in supporting tumor growth, hereby identifying a potential therapeutic target of melanoma.
Collapse
Affiliation(s)
- Penghui Jia
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Tian Tian
- The Center for Applied Genomics, Abramson Research CenterThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Zibo Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Yicheng Wang
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Yuxin Lin
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Weijie Zeng
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Yu Ye
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Miao He
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Xiangrong Ni
- Department of Neurosurgery/Neuro‐oncology, Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaGuangzhouChina
| | - Ji'an Pan
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Xiaonan Dong
- Guangzhou LaboratoryGuangzhou International Bio‐IslandGuangzhouChina
| | - Jian Huang
- Coriell Institute for Medical ResearchCamdenNJUSA
| | - Chun‐mei Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Deyin Guo
- Guangzhou LaboratoryGuangzhou International Bio‐IslandGuangzhouChina
| | - Panpan Hou
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
34
|
Wądzyńska J, Simiczyjew A, Pietraszek-Gremplewicz K, Kot M, Ziętek M, Matkowski R, Nowak D. The impact of cellular elements of TME on melanoma biology and its sensitivity to EGFR and MET targeted therapy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119549. [PMID: 37506884 DOI: 10.1016/j.bbamcr.2023.119549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Microenvironment of the melanoma consists of cellular elements like fibroblasts, adipocytes, and keratinocytes as well as extracellular matrix and physicochemical conditions. In our previous research, we have established that melanoma influences strongly above mentioned cells present in the tumor niche and recruits them to support cancer progression. In this work, we evaluated the impact of cancer-associated cells, namely fibroblasts (CAFs), adipocytes (CAAs), and keratinocytes (CAKs) on melanoma proliferation, signaling pathways activation, metabolism as well as the effectiveness of used anti-cancer therapy. Obtained results indicated elevated phosphorylation of STAT3, upregulated GLUT1 and GLUT3 as well as downregulated of MCT-1 expression level in melanoma cells under the influence of all examined cells present in the tumor niche. The proliferation of melanoma cells was increased after co-culture with CAFs and CAKs, while epithelial-mesenchymal transition markers' expression level was raised in the presence of CAFs and CAAs. The level of perilipin 2 and lipid content was elevated in melanoma cells under the influence of CAAs. Moreover, increased expression of CYP1A1, gene encoding drug metabolizing protein, in melanoma cells co-cultured with CAFs and CAKs prompted us to verify the effectiveness of the previously proposed by us anti-melanoma therapy based on combination of EGFR and MET inhibitors. Obtained results indicate that the designed therapy is still efficient, even if the fibroblasts, adipocytes, and keratinocytes, are present in the melanoma vicinity.
Collapse
Affiliation(s)
- Justyna Wądzyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | | | - Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wroclaw, Poland; Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wroclaw, Poland; Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
35
|
Stegmann DP, Steuber J, Fritz G, Wojdyla JA, Sharpe ME. Fast fragment and compound screening pipeline at the Swiss Light Source. Methods Enzymol 2023; 690:235-284. [PMID: 37858531 DOI: 10.1016/bs.mie.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Crystallography-based fragment screening is a highly effective technique employed in structure-based drug discovery to expand the range of lead development opportunities. It allows screening and sorting of weakly binding, low molecular mass fragments, which can be developed into larger high-affinity lead compounds. Technical improvements at synchrotron beamlines, design of innovative libraries mapping chemical space efficiently, effective soaking methods and enhanced data analysis have enabled the implementation of high-throughput fragment screening pipelines at multiple synchrotron facilities. This widened access to CBFS beyond the pharma industry has allowed academic users to rapidly screen large quantities of fragment-soaked protein crystals. The positive outcome of a CBFS campaign is a set of structures that present the three-dimensional arrangement of fragment-protein complexes in detail, thereby providing information on the location and the mode of interaction of bound fragments. Through this review, we provide users with a comprehensive guide that sets clear expectations before embarking on a crystallography-based fragment screening campaign. We present a list of essential pre-requirements that must be assessed, including the suitability of your current crystal system for a fragment screening campaign. Furthermore, we extensively discuss the available methodological options, addressing their limitations and providing strategies to overcome them. Additionally, we provide a brief perspective on how to proceed once hits are obtained. Notably, we emphasize the solutions we have implemented for instrumentation and software development within our Fast Fragment and Compound Screening pipeline. We also highlight third-party software options that can be utilized for rapid refinement and hit assessment.
Collapse
Affiliation(s)
| | - Julia Steuber
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Günter Fritz
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Stuttgart, Germany.
| | | | | |
Collapse
|
36
|
Lara-Vega I, Correa-Lara MVM, Vega-López A. Effectiveness of radiotherapy and targeted radionuclide therapy for melanoma in preclinical mouse models: A combination treatments overview. Bull Cancer 2023; 110:912-936. [PMID: 37277266 DOI: 10.1016/j.bulcan.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Cutaneous melanoma is an aggressive and highly metastatic skin cancer. In recent years, immunotherapy and targeted small-molecule inhibitors have improved the overall survival of patients. Unfortunately, most patients in advanced stages of disease exhibit either intrinsically resistant or rapidly acquire resistance to these approved treatments. However, combination treatments have emerged to overcome resistance, and novel treatments based on radiotherapy (RT) and targeted radionuclide therapy (TRT) have been developed to treat melanoma in the preclinical mouse model, raising the question of whether synergy in combination therapies may motivate and increase their use as primary treatments for melanoma. To help clarify this question, we reviewed the studies in preclinical mouse models where they evaluated RT and TRT in combination with other approved and unapproved therapies from 2016 onwards, focusing on the type of melanoma model used (primary tumor and or metastatic model). PubMed® was the database in which the search was performed using mesh search algorithms resulting in 41 studies that comply with the inclusion rules of screening. Studies reviewed showed that synergy with RT or TRT had strong antitumor effects, such as tumor growth inhibition and fewer metastases, also exhibiting systemic protection. In addition, most studies were carried out on antitumor response for the implanted primary tumor, demonstrating that more studies are needed to evaluate these combined treatments in metastatic models on long-term protocols.
Collapse
Affiliation(s)
- Israel Lara-Vega
- National School of Biological Sciences, National Polytechnic Institute, Environmental Toxicology Laboratory, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Mexico City CP 07738, Mexico
| | - Maximiliano V M Correa-Lara
- National School of Biological Sciences, National Polytechnic Institute, Environmental Toxicology Laboratory, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Mexico City CP 07738, Mexico
| | - Armando Vega-López
- National School of Biological Sciences, National Polytechnic Institute, Environmental Toxicology Laboratory, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Mexico City CP 07738, Mexico.
| |
Collapse
|
37
|
Scaini MC, Piccin L, Bassani D, Scapinello A, Pellegrini S, Poggiana C, Catoni C, Tonello D, Pigozzo J, Dall’Olmo L, Rosato A, Moro S, Chiarion-Sileni V, Menin C. Molecular Modeling Unveils the Effective Interaction of B-RAF Inhibitors with Rare B-RAF Insertion Variants. Int J Mol Sci 2023; 24:12285. [PMID: 37569660 PMCID: PMC10418914 DOI: 10.3390/ijms241512285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The Food and Drug Administration (FDA) has approved MAPK inhibitors as a treatment for melanoma patients carrying a mutation in codon V600 of the BRAF gene exclusively. However, BRAF mutations outside the V600 codon may occur in a small percentage of melanomas. Although these rare variants may cause B-RAF activation, their predictive response to B-RAF inhibitor treatments is still poorly understood. We exploited an integrated approach for mutation detection, tumor evolution tracking, and assessment of response to treatment in a metastatic melanoma patient carrying the rare p.T599dup B-RAF mutation. He was addressed to Dabrafenib/Trametinib targeted therapy, showing an initial dramatic response. In parallel, in-silico ligand-based homology modeling was set up and performed on this and an additional B-RAF rare variant (p.A598_T599insV) to unveil and justify the success of the B-RAF inhibitory activity of Dabrafenib, showing that it could adeptly bind both these variants in a similar manner to how it binds and inhibits the V600E mutant. These findings open up the possibility of broadening the spectrum of BRAF inhibitor-sensitive mutations beyond mutations at codon V600, suggesting that B-RAF V600 WT melanomas should undergo more specific investigations before ruling out the possibility of targeted therapy.
Collapse
Affiliation(s)
- Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.S.); (S.P.); (C.P.); (C.C.); (D.T.); (A.R.); (C.M.)
| | - Luisa Piccin
- Melanoma Unit, Oncology 2 Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (L.P.); (J.P.); (V.C.-S.)
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padua, Italy;
| | - Antonio Scapinello
- Anatomy and Pathological Histology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Stefania Pellegrini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.S.); (S.P.); (C.P.); (C.C.); (D.T.); (A.R.); (C.M.)
| | - Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.S.); (S.P.); (C.P.); (C.C.); (D.T.); (A.R.); (C.M.)
| | - Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.S.); (S.P.); (C.P.); (C.C.); (D.T.); (A.R.); (C.M.)
| | - Debora Tonello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.S.); (S.P.); (C.P.); (C.C.); (D.T.); (A.R.); (C.M.)
| | - Jacopo Pigozzo
- Melanoma Unit, Oncology 2 Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (L.P.); (J.P.); (V.C.-S.)
| | - Luigi Dall’Olmo
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, 35128 Padua, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.S.); (S.P.); (C.P.); (C.C.); (D.T.); (A.R.); (C.M.)
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, 35128 Padua, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padua, Italy;
| | - Vanna Chiarion-Sileni
- Melanoma Unit, Oncology 2 Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (L.P.); (J.P.); (V.C.-S.)
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.S.); (S.P.); (C.P.); (C.C.); (D.T.); (A.R.); (C.M.)
| |
Collapse
|
38
|
Bijak V, Szczygiel M, Lenkiewicz J, Gucwa M, Cooper DR, Murzyn K, Minor W. The current role and evolution of X-ray crystallography in drug discovery and development. Expert Opin Drug Discov 2023; 18:1221-1230. [PMID: 37592849 PMCID: PMC10620067 DOI: 10.1080/17460441.2023.2246881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION Macromolecular X-ray crystallography and cryo-EM are currently the primary techniques used to determine the three-dimensional structures of proteins, nucleic acids, and viruses. Structural information has been critical to drug discovery and structural bioinformatics. The integration of artificial intelligence (AI) into X-ray crystallography has shown great promise in automating and accelerating the analysis of complex structural data, further improving the efficiency and accuracy of structure determination. AREAS COVERED This review explores the relationship between X-ray crystallography and other modern structural determination methods. It examines the integration of data acquired from diverse biochemical and biophysical techniques with those derived from structural biology. Additionally, the paper offers insights into the influence of AI on X-ray crystallography, emphasizing how integrating AI with experimental approaches can revolutionize our comprehension of biological processes and interactions. EXPERT OPINION Investing in science is crucially emphasized due to its significant role in drug discovery and advancements in healthcare. X-ray crystallography remains an essential source of structural biology data for drug discovery. Recent advances in biochemical, spectroscopic, and bioinformatic methods, along with the integration of AI techniques, hold the potential to revolutionize drug discovery when effectively combined with robust data management practices.
Collapse
Affiliation(s)
- Vanessa Bijak
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| | - Michal Szczygiel
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | - Joanna Lenkiewicz
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| | - Michal Gucwa
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - David R. Cooper
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| | - Krzysztof Murzyn
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| |
Collapse
|
39
|
Fang G, Chen H, Cheng Z, Tang Z, Wan Y. Azaindole derivatives as potential kinase inhibitors and their SARs elucidation. Eur J Med Chem 2023; 258:115621. [PMID: 37423125 DOI: 10.1016/j.ejmech.2023.115621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Currently, heterocycles have occupied an important position in the fields of drug design. Among them, azaindole moiety is regarded as one privileged scaffold to develop therapeutic agents. Since two nitrogen atoms of azaindole increase the possibility to form hydrogen bonds in the adenosine triphosphate (ATP)-binding site, azaindole derivatives are important sources of kinase inhibitors. Moreover, some of them have been on the market or in clinical trials for the treatment of some kinase-related diseases (e.g., vemurafenib, pexidartinib, decernotinib). In this review, we focused on the recent development of azaindole derivatives as potential kinase inhibitors based on kinase targets, such as adaptor-associated kinase 1 (AAK1), anaplastic lymphoma kinase (ALK), AXL, cell division cycle 7 (Cdc7), cyclin-dependent kinases (CDKs), dual-specificity tyrosine (Y)-phosphorylation regulated kinase 1A (DYRK1A), fibroblast growth factor receptor 4 (FGFR4), phosphatidylinositol 3-kinase (PI3K) and proviral insertion site in moloney murine leukemia virus (PIM) kinases. Meanwhile, the structure-activity relationships (SARs) of most azaindole derivatives were also elucidated. In addition, the binding modes of some azaindoles complexed with kinases were also investigated during the SARs elucidation. This review may offer an insight for medicinal chemists to rationally design more potent kinase inhibitors bearing the azaindole scaffold.
Collapse
Affiliation(s)
- Guoqing Fang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Hongjuan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zhiyun Cheng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, PR China.
| |
Collapse
|
40
|
Timis T, Bergthorsson JT, Greiff V, Cenariu M, Cenariu D. Pathology and Molecular Biology of Melanoma. Curr Issues Mol Biol 2023; 45:5575-5597. [PMID: 37504268 PMCID: PMC10377842 DOI: 10.3390/cimb45070352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Almost every death in young patients with an advanced skin tumor is caused by melanoma. Today, with the help of modern treatments, these patients survive longer or can even achieve a cure. Advanced stage melanoma is frequently related with poor prognosis and physicians still find this disease difficult to manage due to the absence of a lasting response to initial treatment regimens and the lack of randomized clinical trials in post immunotherapy/targeted molecular therapy settings. New therapeutic targets are emerging from preclinical data on the genetic profile of melanocytes and from the identification of molecular factors involved in the pathogenesis of malignant transformation. In the current paper, we present the diagnostic challenges, molecular biology and genetics of malignant melanoma, as well as the current therapeutic options for patients with this diagnosis.
Collapse
Affiliation(s)
- Tanase Timis
- Department of Oncology, Bistrita Emergency Hospital, 420094 Bistrita, Romania;
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Jon Thor Bergthorsson
- Department of Pharmacology and Toxicology, Medical Faculty, University of Iceland, Hofsvallagotu 53, 107 Reykjavík, Iceland;
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo University Hospital, 0372 Oslo, Norway;
| | - Mihai Cenariu
- Department of Animal Reproduction, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur Street, 400372 Cluj-Napoca, Romania;
| | - Diana Cenariu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
41
|
Azad I, Khan T, Ahmad N, Khan AR, Akhter Y. Updates on drug designing approach through computational strategies: a review. Future Sci OA 2023; 9:FSO862. [PMID: 37180609 PMCID: PMC10167725 DOI: 10.2144/fsoa-2022-0085] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
The drug discovery and development (DDD) process in pursuit of novel drug candidates is a challenging procedure requiring lots of time and resources. Therefore, computer-aided drug design (CADD) methodologies are used extensively to promote proficiency in drug development in a systematic and time-effective manner. The point in reference is SARS-CoV-2 which has emerged as a global pandemic. In the absence of any confirmed drug moiety to treat the infection, the science fraternity adopted hit and trial methods to come up with a lead drug compound. This article is an overview of the virtual methodologies, which assist in finding novel hits and help in the progression of drug development in a short period with a specific medicinal solution.
Collapse
Affiliation(s)
- Iqbal Azad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Naseem Ahmad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, UP, 2260025, India
| |
Collapse
|
42
|
Barresi E, Baldanzi C, Roncetti M, Roggia M, Baglini E, Lepori I, Vitiello M, Salerno S, Tedeschi L, Da Settimo F, Cosconati S, Poliseno L, Taliani S. A cyanine-based NIR fluorescent Vemurafenib analog to probe BRAF V600E in cancer cells. Eur J Med Chem 2023; 256:115446. [PMID: 37182332 DOI: 10.1016/j.ejmech.2023.115446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
BRAF represents one of the most frequently mutated protein kinase genes and BRAFV600E mutation may be found in many types of cancer, including hairy cell leukemia (HCL), anaplastic thyroid cancer (ATC), colorectal cancer and melanoma. Herein, a fluorescent probe, based on the structure of the highly specific BRAFV600E inhibitor Vemurafenib (Vem, 1) and featuring the NIR fluorophore cyanine-5 (Cy5), was straightforwardly synthesized and characterized (Vem-L-Cy5, 3), showing promising spectroscopic properties. Biological validation in BRAFV600E-mutated cancer cells evidenced the ability of 3 to penetrate inside the cells, specifically binding to its elective target BRAFV600E with high affinity, and inhibiting MEK phosphorylation and cell growth with a potency comparable to that of native Vem 1. Taken together, these data highlight Vem-L-Cy5 3 as a useful tool to probe BRAFV600E mutation in cancer cells, and suitable to acquire precious insights for future developments of more informed BRAF inhibitors-centered therapeutic strategies.
Collapse
Affiliation(s)
- Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126, Pisa, Italy
| | - Caterina Baldanzi
- Institute of Clinical Physiology, CNR, Via Moruzzi 1, 56124, Pisa, Italy; Oncogenomics Unit, Core Research Laboratory, ISPRO, Via Moruzzi 1, 56124, Pisa, Italy
| | - Marta Roncetti
- Institute of Clinical Physiology, CNR, Via Moruzzi 1, 56124, Pisa, Italy; Oncogenomics Unit, Core Research Laboratory, ISPRO, Via Moruzzi 1, 56124, Pisa, Italy; University of Siena, Siena, Italy
| | - Michele Roggia
- DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Irene Lepori
- Institute of Clinical Physiology, CNR, Via Moruzzi 1, 56124, Pisa, Italy; Oncogenomics Unit, Core Research Laboratory, ISPRO, Via Moruzzi 1, 56124, Pisa, Italy; Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Marianna Vitiello
- Institute of Clinical Physiology, CNR, Via Moruzzi 1, 56124, Pisa, Italy; Oncogenomics Unit, Core Research Laboratory, ISPRO, Via Moruzzi 1, 56124, Pisa, Italy
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126, Pisa, Italy
| | - Lorena Tedeschi
- Institute of Clinical Physiology, CNR, Via Moruzzi 1, 56124, Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126, Pisa, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Laura Poliseno
- Institute of Clinical Physiology, CNR, Via Moruzzi 1, 56124, Pisa, Italy; Oncogenomics Unit, Core Research Laboratory, ISPRO, Via Moruzzi 1, 56124, Pisa, Italy.
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126, Pisa, Italy.
| |
Collapse
|
43
|
Bührmann M, Kallepu S, Warmuth JD, Wiese JN, Ehrt C, Vatheuer H, Hiller W, Seitz C, Levy L, Czodrowski P, Sievers S, Müller MP, Rauh D. Fragtory: Pharmacophore-Focused Design, Synthesis, and Evaluation of an sp 3-Enriched Fragment Library. J Med Chem 2023; 66:6297-6314. [PMID: 37130057 DOI: 10.1021/acs.jmedchem.3c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fragment-based drug discovery has played an important role in medicinal chemistry and pharmaceutical research. Despite numerous demonstrated successes, the limited diversity and overrepresentation of planar, sp2-rich structures in commercial libraries often hamper the full potential of this approach. Hence, the thorough design of screening libraries inevitably determines the probability for meaningful hits and subsequent structural elaboration. Against this background, we present the generation of an exclusive fragment library based on iterative entry nomination by a specifically designed computational workflow: "Fragtory". Following a pharmacophore diversity-driven approach, we used Fragtory in an interdisciplinary academic setting to guide both tailored synthesis efforts and the implementation of in-house compounds to build a curated 288-member library of sp3-enriched fragments. Subsequent NMR screens against a model protein and hit validation by protein crystallography led to the identification of structurally novel ligands that were further characterized by isothermal titration calorimetry, demonstrating the applicability of our experimental approach.
Collapse
Affiliation(s)
- Mike Bührmann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für integrierte Wirkstoffforschung (ZIW), Dortmund 44227, Germany
| | - Shivakrishna Kallepu
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Jonas D Warmuth
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Jan N Wiese
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Christiane Ehrt
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Helge Vatheuer
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Carina Seitz
- Max Planck Institute of Molecular Physiology, Compound Management and Screening Center (COMAS), Otto-Hahn-Strasse 11/15, Dortmund 44227, Germany
| | - Laura Levy
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für integrierte Wirkstoffforschung (ZIW), Dortmund 44227, Germany
- Taros Chemicals GmbH & Co. KG, Emil-Figge-Strasse 76a, Dortmund 44227, Germany
| | - Paul Czodrowski
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Sonja Sievers
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für integrierte Wirkstoffforschung (ZIW), Dortmund 44227, Germany
- Max Planck Institute of Molecular Physiology, Compound Management and Screening Center (COMAS), Otto-Hahn-Strasse 11/15, Dortmund 44227, Germany
| | - Matthias P Müller
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Daniel Rauh
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für integrierte Wirkstoffforschung (ZIW), Dortmund 44227, Germany
| |
Collapse
|
44
|
Bladen JC, Malhotra R, Litwin A. Long-term outcomes of margin-controlled excision for eyelid melanoma. Eye (Lond) 2023; 37:1009-1013. [PMID: 36828958 PMCID: PMC10049999 DOI: 10.1038/s41433-023-02428-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/26/2023] Open
Abstract
OBJECTIVES To provide evidence for long-term outcomes for margin-controlled excision of eyelid melanoma. METHODS Retrospective single-centre observational case series of patients treated for eyelid melanoma between 2007 and 2016, with a minimum of 5-year follow-up. Tumour excision involved rush-paraffin en face horizontal sections and delayed repair (Slow Mohs; SM). RESULTS Twenty-two cases were seen with a survival of 91% (two deaths from nodular and lentigo maligna melanoma) and seven with melanoma in situ (MIS). Invasive melanoma includes eight lentigo maligna melanoma, four nodular, two amelanotic and one desmoplastic. Mean Breslow thickness was 6 mm for invasive (range 0.5-26). Mean excision margin for MIS was 3 mm (range 2-5 mm) and for invasive was 5 mm (range 2-10). Further excisions were performed in nine (41%); two went on to recur. Local recurrence was 36%; six invasive (27%) at a mean of 24 months (range 1.5-5 years) and two for MIS at a mean of 15 months (range 1-1.5 years). Imaging occurred for suspected advanced disease. Sentinel node biopsy was not performed. Advanced melanoma therapy was performed in two cases. No vitamin D testing occurred. CONCLUSIONS Survival rates are in line with 90% overall survival in the UK. Prescriptive excision margins are not applicable in the periocular region and margin-controlled excision with a delayed repair is recommended, but patients need to know further excision may be needed to obtain clearance. Evidence recommending vitamin D therapy needs to be put into clinical practice. In addition, upstaging of MIS occurred advocating excision rather than observation of MIS. More studies are needed to determine the best management of eyelid melanoma.
Collapse
Affiliation(s)
- John C Bladen
- Corneoplastic department, Queen Victoria Hospital, East Grinstead, UK
| | - Raman Malhotra
- Corneoplastic department, Queen Victoria Hospital, East Grinstead, UK
| | - Andre Litwin
- Corneoplastic department, Queen Victoria Hospital, East Grinstead, UK.
| |
Collapse
|
45
|
Nelson BE, Roszik J, Janku F, Hong DS, Kato S, Naing A, Piha-Paul S, Fu S, Tsimberidou A, Cabanillas M, Busaidy NL, Javle M, Byers LA, Heymach JV, Meric-Bernstam F, Subbiah V. BRAF v600E-mutant cancers treated with vemurafenib alone or in combination with everolimus, sorafenib, or crizotinib or with paclitaxel and carboplatin (VEM-PLUS) study. NPJ Precis Oncol 2023; 7:19. [PMID: 36801912 PMCID: PMC9938883 DOI: 10.1038/s41698-022-00341-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/14/2022] [Indexed: 02/20/2023] Open
Abstract
Combined BRAF + MEK inhibition is FDA approved for BRAF V600E-mutant solid tumors except for colorectal cancer. However, beyond MAPK mediated resistance several other mechanisms of resistance such as activation of CRAF, ARAF, MET, P13K/AKT/mTOR pathway exist among other complex pathways. In the VEM-PLUS study, we performed a pooled analysis of four phase one studies evaluating the safety and efficacy of vemurafenib monotherapy and vemurafenib combined with targeted therapies (sorafenib, crizotinib, or everolimus) or carboplatin plus paclitaxel in advanced solid tumors harboring BRAF V600 mutations. When vemurafenib monotherapy was compared with the combination regimens, no significant differences in OS or PFS durations were noted, except for inferior OS in the vemurafenib and paclitaxel and carboplatin trial (P = 0.011; HR, 2.4; 95% CI, 1.22-4.7) and in crossover patients (P = 0.0025; HR, 2.089; 95% CI, 1.2-3.4). Patients naïve to prior BRAF inhibitors had statistically significantly improved OS at 12.6 months compared to 10.4 months in the BRAF therapy refractory group (P = 0.024; HR, 1.69; 95% CI 1.07-2.68). The median PFS was statistically significant between both groups, with 7 months in the BRAF therapy naïve group compared to 4.7 months in the BRAF therapy refractory group (P = 0.016; HR, 1.80; 95% CI 1.11-2.91). The confirmed ORR in the vemurafenib monotherapy trial (28%) was higher than that in the combination trials. Our findings suggest that, compared with vemurafenib monotherapy, combinations of vemurafenib with cytotoxic chemotherapy or with RAF- or mTOR-targeting agents do not significantly extend the OS or PFS of patients who have solid tumors with BRAF V600E mutations. Gaining a better understanding of the molecular mechanisms of BRAF inhibitor resistance, balancing toxicity and efficacy with novel trial designs are warranted.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jason Roszik
- grid.240145.60000 0001 2291 4776Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Filip Janku
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - David S. Hong
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Shumei Kato
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Aung Naing
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Sarina Piha-Paul
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Siqing Fu
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Apostolia Tsimberidou
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Maria Cabanillas
- grid.240145.60000 0001 2291 4776Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Naifa Lamki Busaidy
- grid.240145.60000 0001 2291 4776Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Milind Javle
- grid.240145.60000 0001 2291 4776Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Lauren Averett Byers
- grid.240145.60000 0001 2291 4776Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - John V. Heymach
- grid.240145.60000 0001 2291 4776Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Funda Meric-Bernstam
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Vivek Subbiah
- Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
46
|
Qiu X, Wu X, Fang X, Fu Q, Wang P, Wang X, Li S, Li Y. Raman spectroscopy combined with deep learning for rapid detection of melanoma at the single cell level. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122029. [PMID: 36323090 DOI: 10.1016/j.saa.2022.122029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Melanoma is an aggressive and metastatic skin cancer caused by genetic mutations in melanocytes, and its incidence is increasing year by year. Understanding the gene mutation information of melanoma cases is very important for its precise treatment. The current diagnostic methods for melanoma include radiological, pharmacological, histological, cytological and molecular techniques, but the gold standard for diagnosis is still pathological biopsy, which is time consuming and destructive. Raman spectroscopy is a rapid, sensitive and nondestructive detection method. In this study, a total of 20,000 Surface-enhanced Raman scattering (SERS) spectra of melanocytes and melanoma cells were collected using a positively charged gold nanoparticles planar solid SERS substrate, and a classification network system based on convolutional neural networks (CNN) was constructed to achieve the classification of melanocytes and melanoma cells, wild-type and mutant melanoma cells and their drug resistance. Among them, the classification accuracy of melanocytes and melanoma cells was over 98%. Raman spectral differences between melanocytes and melanoma cells were analyzed and compared, and the response of cells to antitumor drugs were also evaluated. The results showed that Raman spectroscopy provided a basis for the medication of melanoma, and SERS spectra combined with CNN classification model realized classification of melanoma, which is of great significance for rapid diagnosis and identification of melanoma.
Collapse
Affiliation(s)
- Xun Qiu
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Xingda Wu
- Biomedical Photonics Laboratory, School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Xianglin Fang
- Biomedical Photonics Laboratory, School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Qiuyue Fu
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Peng Wang
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Xin Wang
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Shaoxin Li
- Biomedical Photonics Laboratory, School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Ying Li
- Biomedical Photonics Laboratory, School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
47
|
Wang D. Progress in the study of ferroptosis in cancer treatment: State-of-the-Art. Chem Biol Interact 2023; 371:110348. [PMID: 36646403 DOI: 10.1016/j.cbi.2023.110348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
As a regulatory cell death mode defined in recent years, Ferroptosis is mainly characterized by increased intracellular free iron and the accumulation of lipid peroxides. Ferroptosis is closely related to iron ion metabolism, lipid metabolism, and amino acid metabolism. Cancer is the second leading cause of death worldwide, and effective removal of tumour cells while protecting normal cells is the key to tumour treatment. The continuous development and refinement of molecular mechanisms related to ferroptosis have shown promising applications in tumour therapy. There is increasing evidence that triggering ferroptosis in tumour cells is expected to be a new therapeutic strategy for tumour treatment.
Collapse
Affiliation(s)
- Dong Wang
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
48
|
Ye Q, Li Z, Li Y, Li Y, Zhang Y, Gui R, Cui Y, Zhang Q, Qian L, Xiong Y, Yu Y. Exosome-Derived microRNA: Implications in Melanoma Progression, Diagnosis and Treatment. Cancers (Basel) 2022; 15:cancers15010080. [PMID: 36612077 PMCID: PMC9818028 DOI: 10.3390/cancers15010080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Melanoma is a malignant and aggressive cancer, and its progression is greatly affected by interactions between melanoma cells and their surroundings. Exploration on mechanism of melanoma and improved diagnostic and therapeutic strategies are becoming increasingly important. Unlike extracellular messengers that mainly work on targeted cells through corresponding receptors, exosomes are essential intercellular messengers that deliver biologically active substances such as nucleic acids and proteins to target cells for cell-cell communication. Of them, microRNAs (miRNAs) are common and important exosomal components that can regulate the expression of a wide range of target genes. Accordingly, exosome-derived miRNAs play a significant role in melanoma progression, including invasion and metastasis, microenvironment establishment, angiogenesis, and immune escape. MiRNA signatures of exosomes are specific in melanoma patients compared to healthy controls, thus circulating miRNAs, especially exosomal miRNAs, become potential diagnostic markers and therapeutic targets for melanoma. This review aims to summarize recent studies on the role of exosomal miRNAs in melanoma as well as ongoing efforts in melanoma treatment.
Collapse
Affiliation(s)
- Qiang Ye
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Zi Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yang Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yirong Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yan Zhang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Runlin Gui
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yue Cui
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Qi Zhang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Lu Qian
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Department of Endocrinology, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi’an 710069, China
| | - Yuyan Xiong
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
- Correspondence: (Y.X.); (Y.Y.)
| | - Yi Yu
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
- Correspondence: (Y.X.); (Y.Y.)
| |
Collapse
|
49
|
Li Q, Li Z, Luo T, Shi H. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. MOLECULAR BIOMEDICINE 2022; 3:47. [PMID: 36539659 PMCID: PMC9768098 DOI: 10.1186/s43556-022-00110-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR and RAF/MEK/ERK pathways are commonly activated by mutations and chromosomal translocation in vital targets. The PI3K/AKT/mTOR signaling pathway is dysregulated in nearly all kinds of neoplasms, with the component in this pathway alternations. RAF/MEK/ERK signaling cascades are used to conduct signaling from the cell surface to the nucleus to mediate gene expression, cell cycle processes and apoptosis. RAS, B-Raf, PI3K, and PTEN are frequent upstream alternative sites. These mutations resulted in activated cell growth and downregulated cell apoptosis. The two pathways interact with each other to participate in tumorigenesis. PTEN alterations suppress RAF/MEK/ERK pathway activity via AKT phosphorylation and RAS inhibition. Several inhibitors targeting major components of these two pathways have been supported by the FDA. Dozens of agents in these two pathways have attracted great attention and have been assessed in clinical trials. The combination of small molecular inhibitors with traditional regimens has also been explored. Furthermore, dual inhibitors provide new insight into antitumor activity. This review will further comprehensively describe the genetic alterations in normal patients and tumor patients and discuss the role of targeted inhibitors in malignant neoplasm therapy. We hope this review will promote a comprehensive understanding of the role of the PI3K/AKT/mTOR and RAF/MEK/ERK signaling pathways in facilitating tumors and will help direct drug selection for tumor therapy.
Collapse
Affiliation(s)
- Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, PR China
| | - Ting Luo
- Department of Breast, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| |
Collapse
|
50
|
Yadav V, Jobe N, Satapathy SR, Mohapatra P, Andersson T. Increased MARCKS Activity in BRAF Inhibitor-Resistant Melanoma Cells Is Essential for Their Enhanced Metastatic Behavior Independent of Elevated WNT5A and IL-6 Signaling. Cancers (Basel) 2022; 14:cancers14246077. [PMID: 36551563 PMCID: PMC9775662 DOI: 10.3390/cancers14246077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Treatment of melanoma with a BRAF inhibitor (BRAFi) frequently initiates development of BRAFi resistance, leading to increased tumor progression and metastasis. Previously, we showed that combined inhibition of elevated WNT5A and IL-6 signaling reduced the invasion and migration of BRAFi-resistant (BRAFi-R) melanoma cells. However, the use of a combined approach per se and the need for high inhibitor concentrations to achieve this effect indicate a need for an alternative and single target. One such target could be myristoylated alanine-rich C-kinase substrate (MARCKS), a downstream target of WNT5A in BRAFi-sensitive melanoma cells. Our results revealed that MARCKS protein expression and activity are significantly elevated in PLX4032 and PLX4720 BRAFi-R A375 and HTB63 melanoma cells. Surprisingly, neither WNT5A nor IL-6 contributed to the increases in MARCKS expression and activity in BRAFi-R melanoma cells, unlike in BRAFi-sensitive melanoma cells. However, despite the above findings, our functional validation experiments revealed that MARCKS is essential for the increased metastatic behavior of BRAFi-R melanoma cells. Knockdown of MARCKS in BRAFi-R melanoma cells caused reductions in the F-actin content and the number of filopodia-like protrusions, explaining the impaired migration, invasion and metastasis of these cells observed in vitro and in an in vivo zebrafish model. In our search for an alternative explanation for the increased activity of MARCKS in BRAFi-R melanoma cells, we found elevated basal activities of PKCα, PKCε, PKCι, and RhoA. Interestingly, combined inhibition of basal PKC and RhoA effectively impaired MARCKS activity in BRAFi-R melanoma cells. Our results reveal that MARCKS is an attractive single antimetastatic target in BRAFi-R melanoma cells.
Collapse
Affiliation(s)
- Vikas Yadav
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE 20213 Malmö, Sweden
- Correspondence: (V.Y.); (T.A.); Tel.: +46-40-391167 (V.Y. & T.A.)
| | - Njainday Jobe
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE 20213 Malmö, Sweden
| | - Shakti Ranjan Satapathy
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE 20213 Malmö, Sweden
| | - Purusottam Mohapatra
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE 20213 Malmö, Sweden
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati 781101, Assam, India
| | - Tommy Andersson
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE 20213 Malmö, Sweden
- Correspondence: (V.Y.); (T.A.); Tel.: +46-40-391167 (V.Y. & T.A.)
| |
Collapse
|