1
|
Li P, Ni P, Haines GK, Si Q, Li X, Baskovich B. Expression and clinicopathologic significance of HER2 and PD-L1 in high grade urothelial carcinoma of the urinary tract. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:236-244. [PMID: 39262437 PMCID: PMC11384330 DOI: 10.62347/aapb6946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/05/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Urothelial carcinoma (UC) is an aggressive tumor with high recurrence rates and poses a great challenge for clinical management. Programmed death ligand-1 (PD-L1) inhibitors and human epidermal growth factor receptor 2 (HER2) blockers have been approved for the treatment of advanced urothelial carcinoma. PD-L1 and HER2 expression in UC will determine whether patients are likely to respond to these targeted treatments. This study assessed the expressions of HER2 and PD-L1 in UC at our institution and investigated their correlations with gender, tumor location (upper genitourinary (GU) tract vs. lower GU tract), tumor stage, and histologic divergent subtypes. DESIGN Patients with UC who had PD-L1 or HER2 immunostains performed in the past 3 years at our institution were included in our analysis. A total of 97 cases were identified. PD-L1 and HER2 scores were provided by two experienced GU pathologists. HER2 scores were given according to the criteria used in breast cancer, while PD-L1 scores were reported as the combined positive score. We assessed correlation of the scores with the patients' gender, tumor location, tumor stage, and histologic divergent subtypes. The data for PD-L1 expression were analyzed using the Mann-Whitney U Test for gender and urinary tract location, and one-way analysis of variance (ANOVA) for stage and histology. The data for HER2 expression were analyzed using the chi-square test. For all analyses, significance was set at P<0.05. RESULTS Of the 97 patients, the average age was 69 years. There were 95 patients who had previously reported HER2 results and 86 patients who had PD-L1 results. PD-L1 expression did not show a significant difference among the histological divergent subtypes (P=0.36). However, HER2 status exhibited a significant difference, with more HER2-positive cases observed in the conventional histology (P=0.008). No correlation between HER2 status and either gender or tumor stage was identified. The median PD-L1 combined positive score was significantly higher in lower urinary tract UC than upper (10 and 2, respectively; P=0.049). No significant differences were observed for gender or pathologic stage. CONCLUSION Our data suggest that HER2 is more frequently expressed in conventional UC than in divergent subtypes. Additionally, PD-L1 has a higher expression level in lower urinary tract UC compared to upper. However, PD-L1 and HER2 expression are not related to gender or tumor stage in UC.
Collapse
Affiliation(s)
- Peizi Li
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Pu Ni
- Department of Pathology, Mount Sinai West New York, NY, USA
| | - G Kenneth Haines
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Qiusheng Si
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Xuanyou Li
- Department of Biostatistics, Yale School of Public Health New Haven, CT, USA
| | - Brett Baskovich
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
2
|
Patel SG, Sharma I, Parmar MP, Nogales J, Patel CD, Bhalodiya SS, Vala DP, Shah NV, Banerjee S, Patel HM. Alkoxy-functionalised dihydropyrimido[4,5- b]quinolinones enabling anti-proliferative and anti-invasive agents. Chem Commun (Camb) 2024; 60:7093-7096. [PMID: 38899811 DOI: 10.1039/d4cc01219d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In this communication, we explored the synthesis of novel alkoxy-functionalised dihydropyrimido[4,5-b]quinolinones using a microwave-assisted multicomponent reaction. All the synthesized molecules were screened for anti-proliferative and anti-invasive activity against glioblastoma cells. 5c shows the most potent anti-proliferative activity with a half maximal effective concentration of less than 3 μM against primary patient-derived glioblastoma cells. 5c effectively inhibited invasion and tumor growth of 3D primary glioma cultures in a basement membrane matrix. This suggests that the novel compounds could inhibit both the proliferation and invasive spread of glioma and they were selected for further study.
Collapse
Affiliation(s)
- Subham G Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India.
- J & J College of Science, Nadiad-387001, Kheda, Gujarat, India
| | - Ira Sharma
- Department of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK.
| | - Mehul P Parmar
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India.
| | - Joaquina Nogales
- Department of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK.
| | - Chirag D Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India.
| | - Savan S Bhalodiya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India.
| | - Disha P Vala
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India.
| | - Niraj V Shah
- J & J College of Science, Nadiad-387001, Kheda, Gujarat, India
| | - Sourav Banerjee
- Department of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK.
| | - Hitendra M Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India.
| |
Collapse
|
3
|
Paris A, Bodaghi B, Touhami S. Pan fibroblast growth factor receptor inhibitor associated retinopathy. Eur J Ophthalmol 2024; 34:NP66-NP71. [PMID: 38086757 DOI: 10.1177/11206721231220334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
PURPOSE To report a case of Fibroblast Growth Factor Receptor inhibitor (FGFRi) associated retinopathy in a patient treated with Erdafitinib. CASE REPORT A patient with a history of non-muscle invasive urothelial carcinoma treated with Erdafitinib developed symptomatic unifocal bilateral serous retinal detachments (SRD) eight weeks after starting this new treatment. Six months after discontinuing the drug, the SRDs resolved and visual acuity recovered to baseline. However, hyper and hypo auto fluorescent lesions were still visible on fundus autofluorescence, suggesting a still ongoing retinal pigment epithelium (RPE) impairment. CONCLUSIONS Cancer treatments using FGFRi are showing promising results but their ocular toxicity is not well reported nor fully understood. Oncologists should be aware of the potential risks associated with FGFRi and involve ophthalmologists for the follow-up of their patients. The toxicity of FGFRi seems to resolve after drug continuation, but a certain degree of infra clinical RPE impairment may persist. Longer term follow-ups are warranted to further understand the effects of FGFRi on the RPE.
Collapse
Affiliation(s)
- Arianna Paris
- Department of Ophthalmology, Pitié-Salpêtrière University Hospital, Sorbonne Université, Paris, France
- Clinic of Ophthalmology, Institute of Clinical Neurosciences of Southern Switzerland (INSI), Ente Ospedaliero Cantonale, Ospedale Regionale di Lugano, Lugano, Switzerland
| | - Bahram Bodaghi
- Department of Ophthalmology, Pitié-Salpêtrière University Hospital, Sorbonne Université, Paris, France
| | - Sara Touhami
- Department of Ophthalmology, Pitié-Salpêtrière University Hospital, Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Yildir MH, Genc AA, Erk N, Bouali W, Bugday N, Yasar S, Duygulu O. Pioneering electrochemical detection unveils erdafitinib: a breakthrough in anticancer agent determination. Mikrochim Acta 2024; 191:221. [PMID: 38536529 PMCID: PMC10973028 DOI: 10.1007/s00604-024-06318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
The successful fabrication is reported of highly crystalline Co nanoparticles interconnected with zeolitic imidazolate framework (ZIF-12) -based amorphous porous carbon using the molten-salt-assisted approach utilizing NaCl. Single crystal diffractometers (XRD), and X-ray photoelectron spectroscopy (XPS) analyses confirm the codoped amorphous carbon structure. Crystallite size was calculated by Scherrer (34 nm) and Williamson-Hall models (42 nm). The magnetic properties of NPCS (N-doped porous carbon sheet) were studied using a vibrating sample magnetometer (VSM). The NPCS has a magnetic saturation (Ms) value of 1.85 emu/g. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses show that Co/Co3O4 nanoparticles are homogeneously distributed in the carbon matrix. While a low melting point eutectic salt acts as an ionic liquid solvent, ZIF-12, at high temperature, leading cobalt nanoparticles with a trace amount of Co3O4 interconnected by conductive amorphous carbon. In addition, the surface area (89.04 m2/g) and pore architectures of amorphous carbon embedded with Co nanoparticles are created using the molten salt approach. Thanks to this inexpensive and effective method, the optimal composite porous carbon structures were obtained with the strategy using NaCl salt and showed distinct electrochemical performance on electrochemical methodology revealing the analytical profile of Erdatifinib (ERD) as a sensor modifier. The linear response spanned from 0.01 to 7.38 μM, featuring a limit of detection (LOD) of 3.36 nM and a limit of quantification (LOQ) of 11.2 nM. The developed sensor was examined in terms of selectivity, repeatability, and reproducibility. The fabricated electrode was utilized for the quantification of Erdafitinib in urine samples and pharmaceutical dosage forms. This research provides a fresh outlook on the advancements in electrochemical sensor technology concerning the development and detection of anticancer drugs within the realms of medicine and pharmacology.
Collapse
Affiliation(s)
- Merve Hatun Yildir
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey.
- Graduate School of Health Sciences, Ankara University, 06110, Ankara, Turkey.
| | - Asena Ayse Genc
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, 06110, Ankara, Turkey
| | - Nevin Erk
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey.
| | - Wiem Bouali
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, 06110, Ankara, Turkey
| | - Nesrin Bugday
- Department of Chemistry, İnonu University, 44280, Malatya, Turkey
| | - Sedat Yasar
- Department of Chemistry, İnonu University, 44280, Malatya, Turkey
| | - Ozgur Duygulu
- TÜBİTAK Marmara Research Center, Materials Technologies, TÜBİTAK Gebze Campus, 41470, Gebze, Kocaeli, Turkey
| |
Collapse
|
5
|
Cabezas-Camarero S, Pérez-Alfayate R, Polidura C, Gómez-Ruiz MN, Gil-Martínez L, Casado-Fariñas I, Bartolomé J, Pérez-Segura P. Durable benefit and slowdown in tumor growth dynamics with erdafitinib in a FGFR3-TACC3 fusion-positive IDH-wild type glioblastoma. Neurooncol Adv 2024; 6:vdae139. [PMID: 39211518 PMCID: PMC11358818 DOI: 10.1093/noajnl/vdae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
FGFR3-TACC3 fusion-positive IDH-wild-type (IDH-WT) glioblastoma (GB) is a rare GB subtype occurring in approximately 3% of cases. It is clinical behavior and molecular profile is different from those of fusion-negative IDH-WT GBs. Evidence on the role of FGFR inhibitors in FGFR-altered gliomas is limited. We present the case of a patient with a FGFR3-TACC3 fusion-positive IDH-WT GB that at its second recurrence was treated with the FGFR inhibitor erdafitinib through a compassionate use program. Although no objective response was achieved, an overt deceleration in tumor growth was evidenced and the patient remained on treatment for 5.5 months.
Collapse
Affiliation(s)
- Santiago Cabezas-Camarero
- Medical Oncology Department, IOB Institute of Oncology-Madrid, Madrid, Spain
- Medical Oncology Department, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico Universitario San Carlos, Madrid, Spain
| | | | - Carmen Polidura
- Radiology Department, Hospital Clínico Universitario San Carlos, Madrid, Spain
| | | | - Lidia Gil-Martínez
- Radiology Department, Hospital Clínico Universitario San Carlos, Madrid, Spain
| | | | - Jorge Bartolomé
- Medical Oncology Department, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico Universitario San Carlos, Madrid, Spain
| | - Pedro Pérez-Segura
- Medical Oncology Department, IOB Institute of Oncology-Madrid, Madrid, Spain
- Medical Oncology Department, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico Universitario San Carlos, Madrid, Spain
| |
Collapse
|
6
|
Ahsan R, Khan MM, Mishra A, Noor G, Ahmad U. Protein Kinases and their Inhibitors Implications in Modulating Disease Progression. Protein J 2023; 42:621-632. [PMID: 37768476 DOI: 10.1007/s10930-023-10159-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Protein phosphorylation plays an important role in cellular pathways, including cell cycle regulation, metabolism, differentiation and survival. The protein kinase superfamily network consists of 518 members involved in intrinsic or extrinsic interaction processes. Protein kinases are divided into two categories based on their ability to phosphorylate tyrosine, serine, and threonine residues. The complexity of the system implies its vulnerability. Any changes in the pathways of protein kinases may be implicated in pathological processes. Therefore, they are regarded as having an important role in human diseases and represent prospective therapeutic targets. This article provides a review of the protein kinase inhibitors approved by the FDA. Finally, we summarize the mechanism of action of protein kinases, including their role in the development and progression of protein kinase-related roles in various pathological conditions and the future therapeutic potential of protein kinase inhibitors, along with links to protein kinase databases. Further clinical studies aimed at examining the sequence of protein kinase inhibitor availability would better utilize current protein kinase inhibitors in diseases. Additionally, this review may help researchers and biochemists find new potent and selective protein kinase inhibitors and provide more indications for using existing drugs.
Collapse
Affiliation(s)
- Rabiya Ahsan
- Department of pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohd Muazzam Khan
- Department of pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India.
| | - Anuradha Mishra
- Department of pharmacology, Amity Institute of Pharmacy, Amity University, sector 125, Noida, Uttar Pradesh, 201313, India
| | - Gazala Noor
- Department of pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Usama Ahmad
- Department of pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
7
|
Yuan T, Li F, Hou Y, Guo H. Adverse events in patients with advanced urothelial carcinoma treated with erdafitinib: a retrospective pharmacovigilance study. Front Pharmacol 2023; 14:1266890. [PMID: 38074150 PMCID: PMC10702547 DOI: 10.3389/fphar.2023.1266890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2024] Open
Abstract
Purpose: On 12 April 2019, erdafitinib gained the first FDA approval as the second-line treatment for adult patients with locally advanced or metastatic urothelial cancer following progression during or after at least one previous line of platinum-based chemotherapy. However, the long-term safety profile of erdafitinib in a large patient population remains unexplored. The current study aimed to assess the adverse events (AEs) associated with erdafitinib through data mining of the US Food and Drug Administration Adverse Event Reporting System (FAERS). Method: The reporting odds ratio (ROR), the proportional reporting ratio (PRR), the Bayesian confidence propagation neural network (BCPNN), and the multi-item gamma Poisson shrinker (MGPS) algorithms based on disproportionality were employed to quantify the signals of erdafitinib-associated AEs. Results: A total of 6,322,279 reports of AEs were retrieved from the FAERS database spanning 2019 to 2022, out of which, 700 reports of erdafitinib as the "primary suspected" were identified. These erdafitinib-induced AEs were observed across 24 targeted system organ classes (SOCs). After conforming to the four algorithms at the same time, a total of 441 signals of erdafitinib-induced AEs were detected across 23 SOCs. Notably, signals associated with metabolism and nutrition disorders, eye disorders, and skin and subcutaneous tissue disorders were among the most prevalent. The median onset time for AEs was found to be 54 days [interquartile range (IQR) 17-112 days], with a majority of AEs occurring within the initial 6 months after initiating erdafitinib (37.23% within the first month, 15.53% within the second month, and 16.79% within the third month). Conclusion: The findings of this study align with existing clinical observations, offering a comprehensive long-term post-marketing safety evaluation of erdafitinib. The results provide valuable evidence to enhance the understanding of erdafitinib's safety profile, aiding further research and guiding clinical practice.
Collapse
Affiliation(s)
| | | | - Yuchuan Hou
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Hui Guo
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Chen GQ, Guo HY, Quan ZS, Shen QK, Li X, Luan T. Natural Products-Pyrazine Hybrids: A Review of Developments in Medicinal Chemistry. Molecules 2023; 28:7440. [PMID: 37959859 PMCID: PMC10649211 DOI: 10.3390/molecules28217440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Pyrazine is a six-membered heterocyclic ring containing nitrogen, and many of its derivatives are biologically active compounds. References have been downloaded through Web of Science, PubMed, Science Direct, and SciFinder Scholar. The structure, biological activity, and mechanism of natural product derivatives containing pyrazine fragments reported from 2000 to September 2023 were reviewed. Publications reporting only the chemistry of pyrazine derivatives are beyond the scope of this review and have not been included. The results of research work show that pyrazine-modified natural product derivatives have a wide range of biological activities, including anti-inflammatory, anticancer, antibacterial, antiparasitic, and antioxidant activities. Many of these derivatives exhibit stronger pharmacodynamic activity and less toxicity than their parent compounds. This review has a certain reference value for the development of heterocyclic compounds, especially pyrazine natural product derivatives.
Collapse
Affiliation(s)
- Guo-Qing Chen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (G.-Q.C.); (H.-Y.G.); (Z.-S.Q.); (Q.-K.S.)
| | - Tian Luan
- Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
9
|
Nawaf C, Shiang A, Chauhan PS, Chaudhuri AA, Agarwal G, Smith ZL. Circulating tumor DNA based minimal residual disease detection and adjuvant treatment decision-making for muscle-invasive bladder cancer guided by modern clinical trials. Transl Oncol 2023; 37:101763. [PMID: 37657155 PMCID: PMC10495651 DOI: 10.1016/j.tranon.2023.101763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023] Open
Abstract
Up to 430,000 cases of bladder cancer are diagnosed each year worldwide. A proposed method for non-invasive monitoring has been to utilize a "liquid biopsy." Liquid biopsy has been proposed as a non-invasive method of testing biomarkers in bodily fluids in order to detect and survey cancer. The liquid biopsy could be utilized to obtain information regarding circulating tumor cells, circulating cell-free tumor DNA, circulating cell-free tumor RNA, and more. It is currently being investigated to help guide adjuvant therapy and improve oncological outcomes. We highlight an array of exciting past and ongoing clinical trials regarding ctDNA and adjuvant therapy in regard to urothelial carcinoma which we believe to be amongst the leaders in the field.
Collapse
Affiliation(s)
- Cayce Nawaf
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America; Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO, United States of America
| | - Alexander Shiang
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America; Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Pradeep S Chauhan
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Aadel A Chaudhuri
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States of America; Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, United States of America; Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America; Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States of America.
| | - Gautum Agarwal
- Division of Urology, David Pratt Cancer Center, Mercy Hospital, 607 S New Ballas Rd, St. Louis, MO, United States of America.
| | - Zachary L Smith
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America; Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO, United States of America.
| |
Collapse
|
10
|
Lebedeva A, Timokhin G, Ignatova E, Kavun A, Veselovsky E, Sharova M, Mileyko V, Yakushina V, Kuznetsova O, Stepanova M, Shilo P, Moiseenko F, Volkov N, Plaksa I, Isaev A, Gayryan M, Artemyeva E, Zhabina A, Kramchaninov M, Shamrikova V, Pokataev I, Rumyantsev A, Ledin E, Tryakin A, Fedyanin M, Ivanov M. Utility of public knowledge bases for the interpretation of comprehensive tumor molecular profiling results. Clin Exp Med 2023; 23:2663-2674. [PMID: 36752890 DOI: 10.1007/s10238-023-01011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023]
Abstract
With the growing use of comprehensive tumor molecular profiling (CTMP), the therapeutic landscape of cancer is rapidly evolving. NGS produces large amounts of genomic data requiring complex analysis and subsequent interpretation. We sought to determine the utility of publicly available knowledge bases (KB) for the interpretation of the cancer mutational profile in clinical practice. Analysis was performed across patients who previously underwent CTMP. Independent interpretation of the CTMP was performed manually, and then, the recommendations were compared to ones present in KBs (OncoKB, CIViC, CGI, CGA, VICC, MolecularMatch). A total of 222 CTMP reports from 222 patients with 932 genomic alterations (GA) were identified. For 368 targetable GA identified in 171 (77%) of the patients, 1381 therapy recommendations were compiled. Except for CGA, therapy ESCAT LOE I, II, IIIA and IIIB therapy options were equally represented in the majority of KB. Personalized treatment options with ESCAT LOE I-II were provided for 35 patients (16%); MolecularMatch/CIViC allowed to collect ESCAT I-II treatment options for 34 of them (97%), OncoKB/CGI-for 33 of them (94%). Employing VICC and CGA 6 (17%) and 20 (57%) of patients were left without ESCAT I or II treatment options. For 88 patients with ESCAT level III-B therapy recommendations: only 2 (2%), 3 (3%), 4 (5%) and 6 (7%) of patients were left without options with CIViC, MolecularMatch, CGI and OncoKB, and with VICC-12 (14%). Highest overlap ratio was observed for IIIA (0.81) biomarkers, with the comparable results for LOE I-II. Meanwhile, overlap ratio for ESCAT LOE IV was 0.22. Public KBs provide substantial information on ESCAT-I/R1 biomarkers, but the information on ESCAT II-IV and resistance biomarkers is underrepresented. Manual curation should be considered the gold standard for the CTMP interpretation.
Collapse
Affiliation(s)
| | - Grigory Timokhin
- OncoAtlas LLC, Malaya Nikitskaya Str., 31, Moscow, Russia, 121069
| | - Ekaterina Ignatova
- Research Centre for Medical Genetics, Moskvorech'ye Ulitsa, 1, Moscow, Russia, 115478
| | - Alexandra Kavun
- OncoAtlas LLC, Malaya Nikitskaya Str., 31, Moscow, Russia, 121069
| | - Egor Veselovsky
- OncoAtlas LLC, Malaya Nikitskaya Str., 31, Moscow, Russia, 121069
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, Moscow, Russian Federation, 119334
| | | | | | | | - Olesya Kuznetsova
- OncoAtlas LLC, Malaya Nikitskaya Str., 31, Moscow, Russia, 121069
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology, Kashira Hwy, 23, Moscow, Russian Federation, 115522
| | - Maria Stepanova
- Clinic "Luch'', Savushkina Str., 73, Saint-Petersburg, Russian Federation, 197183
| | - Polina Shilo
- Clinic "Luch'', Savushkina Str., 73, Saint-Petersburg, Russian Federation, 197183
| | - Fedor Moiseenko
- Saint-Petersburg Clinical Research Center of Specialized Types of Medical Care (Oncological), Leningradskaya Str., 68A, Saint-Petersburg, Russian Federation, 197758
| | - Nikita Volkov
- Saint-Petersburg Clinical Research Center of Specialized Types of Medical Care (Oncological), Leningradskaya Str., 68A, Saint-Petersburg, Russian Federation, 197758
| | - Igor Plaksa
- GENETICO LLC, Gubkina Str., 3/1, Moscow, Russian Federation, 119333
| | - Andrey Isaev
- Higher School of Oncology, Saint Petersburg, Russian Federation
| | | | - Elizaveta Artemyeva
- Saint-Petersburg Clinical Research Center of Specialized Types of Medical Care (Oncological), Leningradskaya Str., 68A, Saint-Petersburg, Russian Federation, 197758
| | - Albina Zhabina
- Saint-Petersburg Clinical Research Center of Specialized Types of Medical Care (Oncological), Leningradskaya Str., 68A, Saint-Petersburg, Russian Federation, 197758
| | - Mikhail Kramchaninov
- Saint-Petersburg Clinical Research Center of Specialized Types of Medical Care (Oncological), Leningradskaya Str., 68A, Saint-Petersburg, Russian Federation, 197758
| | - Valentina Shamrikova
- Clinical Hospital No. 2, "Medsi" Group of Companies, 5/4 2-Oy Botkinskiy Proezd, Moscow, Russia, 125284
| | - Ilya Pokataev
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology, Kashira Hwy, 23, Moscow, Russian Federation, 115522
| | - Alexey Rumyantsev
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology, Kashira Hwy, 23, Moscow, Russian Federation, 115522
| | | | - Alexey Tryakin
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology, Kashira Hwy, 23, Moscow, Russian Federation, 115522
| | - Mikhail Fedyanin
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology, Kashira Hwy, 23, Moscow, Russian Federation, 115522
| | - Maxim Ivanov
- OncoAtlas LLC, Malaya Nikitskaya Str., 31, Moscow, Russia, 121069
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Oblast, Russia, 141701
| |
Collapse
|
11
|
Nielsen TJ, Varga MG, Cronister CT, Ring BZ, Seitz RS, Ross DT, Schweitzer BL, McGregor K. The 27-gene IO score is associated with efficacy of PD-1/L1 inhibitors independent of FGFR expression in a real-world metastatic urothelial carcinoma cohort. Cancer Immunol Immunother 2023; 72:2075-2086. [PMID: 36806983 PMCID: PMC10264529 DOI: 10.1007/s00262-023-03401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Multiple targeted therapeutics have been approved by the FDA for mUC, including immune checkpoint inhibitors (ICIs) and more recently targeted agents for both FGFR and Nectin-4. FGFR3-aberrant and Nectin-4 expressing cells have been associated with an immunosuppressed phenotype. Given that less than half of all patients respond to these agents as monotherapies and less than 20% are eligible to receive salvage therapy, effective personalized treatment plans are critical. Typical biomarkers for ICIs such as PD-L1 and TMB have not been definitive in mUC, yet a biomarker-driven optimization of first-line therapy and subsequent sequencing have the potential to achieve higher and more durable response rates. The IO score is a 27-gene tumor immune microenvironment (TIME) classifier that has been associated with the clinical benefits of ICIs in multiple cancer types, including mUC. This study demonstrates that the IO score was associated with both progression-free survival (PFS) and overall survival (OS) in a real-world cohort of mUC patients treated with ICIs. Furthermore, the IO score was independent of and provided information incremental to TMB. Interestingly, the IO score predicted benefit in patients with high FGFR expression, despite conflicting data regarding response rates among the FGFR aberrant population. Taken together, these results demonstrate that the IO score assessment of the TIME is associated with a clinical benefit from ICI therapy and that this novel biomarker may inform therapeutic sequencing decisions in mUC, potentially improving outcomes for this notoriously difficult-to-treat disease.
Collapse
Affiliation(s)
| | | | | | - Brian Z Ring
- Oncocyte Corporation, 15 Cushing, Irvine, CA, 92618, USA
| | - Robert S Seitz
- Oncocyte Corporation, 15 Cushing, Irvine, CA, 92618, USA
| | - Douglas T Ross
- Oncocyte Corporation, 15 Cushing, Irvine, CA, 92618, USA
| | | | | |
Collapse
|
12
|
He W, Chen C, Lin T, Xu Q, Ye C, Du J, Huang J. Epidemiology, treatments, and related biomarkers of locally advanced or metastatic urothelial carcinoma in Chinese population: A scoping review. Cancer Med 2023; 12:15384-15403. [PMID: 37387501 PMCID: PMC10417093 DOI: 10.1002/cam4.6112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 07/01/2023] Open
Abstract
OBJECTIVE Bladder cancer is the 13th most common cancer in China with the predominant histologic type being urothelial carcinoma (UC). Locally advanced and metastatic (la/m) UC accounts for 12% of UC and the five-year survival rate is only 39.4%, imposing a significant disease and economic burden on the patients. The aim of this scoping review is to synthesize existing evidence of epidemiology, the landscape of treatment options and associated efficacy and safety profiles, as well as treatment-related biomarkers among Chinese la/mUC patients. METHODS A systematic search was conducted on five databases (PubMed, Web of Science, Embase, Wanfang, and CNKI) from January 2011 to March 2022 based on the scoping review criteria in accordance with the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews. RESULTS A total of 6211 records were identified, and further review resulted in 41 relevant studies that met all criteria. Additional searches were conducted on epidemiology and treatment-related biomarkers of bladder cancer to supplement the evidence. Among 41 studies, 24 reported on platinum-based chemotherapy, eight on non-platinum-based chemotherapy, six on immunotherapy, two on targeted therapy, and one on surgery. Efficacy outcomes were summarized by line of therapy. Treatment-related biomarkers including PD-L1, HER2, and FGFR3 alterations were identified, and the alteration rate of FGFR3 of Chinese UC patients was lower than that of the western patients. CONCLUSIONS Despite chemotherapy has been the main treatment choice for decades, appealing new therapeutic strategies including ICIs, targeted therapies and ADCs were applied in clinical practice. Further research on epidemiology and treatment-related biomarkers of la/mUC patients is needed given only a limited number of studies have been identified thus far. High genomic heterogeneity and complexity of molecular features were observed among la/mUC patients; thus, further studies are required to identify critical drivers and promote potential precise therapies.
Collapse
Affiliation(s)
- Wang He
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, State Key Laboratory of Oncology in South ChinaGuangzhouChina
| | - Changhao Chen
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, State Key Laboratory of Oncology in South ChinaGuangzhouChina
| | - Tianxin Lin
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, State Key Laboratory of Oncology in South ChinaGuangzhouChina
| | - Qian Xu
- Xi'an Janssen Pharmaceutical Ltd.BeijingChina
| | - Chong Ye
- Xi'an Janssen Pharmaceutical Ltd.BeijingChina
| | - Jieyi Du
- Xi'an Janssen Pharmaceutical Ltd.BeijingChina
| | - Jian Huang
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, State Key Laboratory of Oncology in South ChinaGuangzhouChina
| |
Collapse
|
13
|
Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther 2023; 8:198. [PMID: 37169756 PMCID: PMC10175505 DOI: 10.1038/s41392-023-01460-1] [Citation(s) in RCA: 391] [Impact Index Per Article: 195.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a complex and dynamic process regulated by various pro- and anti-angiogenic molecules, which plays a crucial role in tumor growth, invasion, and metastasis. With the advances in molecular and cellular biology, various biomolecules such as growth factors, chemokines, and adhesion factors involved in tumor angiogenesis has gradually been elucidated. Targeted therapeutic research based on these molecules has driven anti-angiogenic treatment to become a promising strategy in anti-tumor therapy. The most widely used anti-angiogenic agents include monoclonal antibodies and tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) pathway. However, the clinical benefit of this modality has still been limited due to several defects such as adverse events, acquired drug resistance, tumor recurrence, and lack of validated biomarkers, which impel further research on mechanisms of tumor angiogenesis, the development of multiple drugs and the combination therapy to figure out how to improve the therapeutic efficacy. Here, we broadly summarize various signaling pathways in tumor angiogenesis and discuss the development and current challenges of anti-angiogenic therapy. We also propose several new promising approaches to improve anti-angiogenic efficacy and provide a perspective for the development and research of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Zhen-Ling Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Huan-Huan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Li Zheng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
14
|
Li X, Li Y, Liu B, Chen L, Lyu F, Zhang P, He Q, Cheng L, Liu C, Song Y, Xing Y. P4HA2-mediated HIF-1α stabilization promotes erdafitinib-resistance in FGFR3-alteration bladder cancer. FASEB J 2023; 37:e22840. [PMID: 36943397 DOI: 10.1096/fj.202201247r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/03/2023] [Accepted: 02/14/2023] [Indexed: 03/23/2023]
Abstract
Erdafitinib is a novel fibroblast growth factor receptor (FGFR) inhibitor that has shown great therapeutic promise for solid tumor patients with FGFR3 alterations, especially in urothelial carcinoma. However, the mechanisms of resistance to FGFR inhibitors remain poorly understood. In this study, we found Erdafitinib could kill cells by inducing incomplete autophagy and increasing intracellular reactive oxygen species levels. We have established an Erdafitinib-resistant cell line, RT-112-RS. whole transcriptome RNA sequencing (RNA-Seq) and Cytospace analysis performed on Erdafitinib-resistant RT-112-RS cells and parental RT-112 cells introduced P4HA2 as a linchpin to Erdafitinib resistance. The gain and loss of function study provided evidence for P4HA2 conferring such resistance in RT-112 cells. Furthermore, P4HA2 could stabilize the HIF-1α protein which then activated downstream target genes to reduce reactive oxygen species levels in bladder cancer. In turn, HIF-1α could directly bind to P4HA2 promoter, indicating a positive loop between P4HA2 and HIF-1α in bladder cancer. These results suggest a substantial role of P4HA2 in mediating acquired resistance to Erdafitinib and provide a potential target for bladder cancer treatment.
Collapse
Affiliation(s)
- Xuexiang Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunxue Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Lyu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pu Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingliu He
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulin Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yarong Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Mahapatra S, Jonniya NA, Koirala S, Ursal KD, Kar P. The FGF/FGFR signalling mediated anti-cancer drug resistance and therapeutic intervention. J Biomol Struct Dyn 2023; 41:13509-13533. [PMID: 36995019 DOI: 10.1080/07391102.2023.2191721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/26/2023] [Indexed: 03/31/2023]
Abstract
Fibroblast Growth Factor (FGF) ligands and their receptors are crucial factors driving chemoresistance in several malignancies, challenging the efficacy of currently available anti-cancer drugs. The Fibroblast growth factor/receptor (FGF/FGFR) signalling malfunctions in tumor cells, resulting in a range of molecular pathways that may impact its drug effectiveness. Deregulation of cell signalling is critical since it can enhance tumor growth and metastasis. Overexpression and mutation of FGF/FGFR induce regulatory changes in the signalling pathways. Chromosomal translocation facilitating FGFR fusion production aggravates drug resistance. Apoptosis is inhibited by FGFR-activated signalling pathways, reducing multiple anti-cancer medications' destructive impacts. Angiogenesis and epithelial-mesenchymal transition (EMT) are facilitated by FGFRs-dependent signalling, which correlates with drug resistance and enhances metastasis. Further, lysosome-mediated drug sequestration is another prominent method of resistance. Inhibition of FGF/FGFR by following a plethora of therapeutic approaches such as covalent and multitarget inhibitors, ligand traps, monoclonal antibodies, recombinant FGFs, combination therapy, and targeting lysosomes and micro RNAs would be helpful. As a result, FGF/FGFR suppression treatment options are evolving nowadays. To increase positive impacts, the processes underpinning the FGF/FGFR axis' role in developing drug resistance need to be clarified, emphasizing the need for more studies to develop novel therapeutic options to address this significant problem. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Kapil Dattatray Ursal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
16
|
Emerging RNA-Based Therapeutic and Diagnostic Options: Recent Advances and Future Challenges in Genitourinary Cancers. Int J Mol Sci 2023; 24:ijms24054601. [PMID: 36902032 PMCID: PMC10003365 DOI: 10.3390/ijms24054601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Renal cell carcinoma, bladder cancer, and prostate cancer are the most widespread genitourinary tumors. Their treatment and diagnosis have significantly evolved over recent years, due to an increasing understanding of oncogenic factors and the molecular mechanisms involved. Using sophisticated genome sequencing technologies, the non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have all been implicated in the occurrence and progression of genitourinary cancers. Interestingly, DNA, protein, and RNA interactions with lncRNAs and other biological macromolecules drive some of these cancer phenotypes. Studies on the molecular mechanisms of lncRNAs have identified new functional markers that could be potentially useful as biomarkers for effective diagnosis and/or as targets for therapeutic intervention. This review focuses on the mechanisms underlying abnormal lncRNA expression in genitourinary tumors and discusses their role in diagnostics, prognosis, and treatment.
Collapse
|
17
|
Oliushina EM, Zavalishina LE, Alekseenok EY, Oskina NA, Andreeva YY, Kuznetsova OA, Filipenko ML, Frank GA. [Investigation of the mutational status of the FGFR3 gene in urothelial bladder carcinoma]. Arkh Patol 2023; 85:5-12. [PMID: 37053347 DOI: 10.17116/patol2023850215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
OBJECTIVE To study the somatic mutational status of the FGFR3 gene in urothelial bladder cancer (BC) and evaluate its relationship with the clinical and morphological characteristics of the tumor, deficiency of the DNA mismatch repair (dMMR), PD-L1 tumor status, and immunohistochemical (IHC) expression of the p16 protein. MATERIAL AND METHODS Surgical material of 40 patients with BC, on which the mutational status of the FGFR3 gene was studied using the molecular genetic method, as well as the MMR status, PD-L1 and p16 expression by the IHC method. RESULTS FGFR3 mutations, such as G370C, S249C, S371C/Y373C, R248C, were detected in 35.0% of the studied BC samples. FGFR3 status did not depend on the gender and age of patients, as well as on the degree of tumor lymphoid infiltration (TILs). Statistically significant differences were found in the analysis of FGFR3 status depending on the histological structure and degree of tumor differentiation, as well as on the pT stage. The FGFR3 status of BC was not associated with the IHC expression of the studied proteins of the MMR system, as well as with the PD-L1 status. Higher levels of PD-L1 expression were demonstrated by BC tumor cells, in which no aberrations in FGFR3 were detected. There was no significant association between p16 status and the presence of FGFR3 mutations, but for FGFR3-positive carcinomas, the basal pattern of p16 staining by IHC was noted. CONCLUSION A positive somatic mutational status of the FGFR3 gene was statistically significantly more common in the group of papillary low-grade non-muscle-invasive BC, demonstrating basal p16 IHC staining. In the study sample, there was no statistically significant relationship between the FGFR3 status of BC and gender and age differences, TILs, MMR status, PD-L1 status (SP142 and 22C3), and p16 status. The results of the study indicate the need to determine the FGFR3 status in patients with BC for further prescription of personalized therapy.
Collapse
Affiliation(s)
- E M Oliushina
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - L E Zavalishina
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - E Yu Alekseenok
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - N A Oskina
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Yu Yu Andreeva
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - O A Kuznetsova
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - M L Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - G A Frank
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
18
|
Ren J, Yu H, Li W, Jin X, Yan B. Downregulation of CBX7 induced by EZH2 upregulates FGFR3 expression to reduce sensitivity to cisplatin in bladder cancer. Br J Cancer 2023; 128:232-244. [PMID: 36396821 PMCID: PMC9902481 DOI: 10.1038/s41416-022-02058-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cisplatin-based cytotoxic chemotherapy is considered to be the first-line therapy for advanced bladder cancer (BC), but resistance to cisplatin limits its antitumor effect. Fibroblast growth factor receptor 3 (FGFR3) has been reported to contribute to the progression and cisplatin resistance of BC. Meanwhile, chromobox protein homologue 7 (CBX7) was reported to inhibit BC progression. And our previous RNA-seq data on CBX7 (GSE185630) suggested that CBX7 might repress FGFR3, but the underlying mechanism and other cancer-related functions of CBX7 are still unknown. METHODS Silico analysis of RNA-seq data to identify the upstream regulators and downstream target genes of CBX7. The western blot analysis, quantitative real-time PCR (RT-qPCR), chromatin immunoprecipitation (ChIP)-qPCR analysis, CCK-8 assay, and nude mice xenograft models were used to confirm the enhancer of zeste homologue (EZH2)/CBX7/ FGFR3 axis. RESULTS In this study, we first showed that CBX7 is downregulated in BC. Then, we revealed that EZH2 represses CBX7 expression by increasing H3K27me3 in BC cells. Moreover, we demonstrated that CBX7 directly downregulates FGFR3 expression and sensitises BC cells to cisplatin treatment by inactivating the phosphatidylinositol 3-kinase (PI3K)-(RAC-alpha serine/threonine-protein kinase) AKT signalling pathway. CONCLUSIONS These results suggest that CBX7 is an ideal candidate to overcome cisplatin resistance in BC.
Collapse
Affiliation(s)
- Jiannan Ren
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China
| | - Haixin Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China.
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China.
| | - Bin Yan
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China.
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
19
|
Shvartsbart A, Roach JJ, Witten MR, Koblish H, Harris JJ, Covington M, Hess R, Lin L, Frascella M, Truong L, Leffet L, Conlen P, Beshad E, Klabe R, Katiyar K, Kaldon L, Young-Sciame R, He X, Petusky S, Chen KJ, Horsey A, Lei HT, Epling LB, Deller MC, Vechorkin O, Yao W. Discovery of Potent and Selective Inhibitors of Wild-Type and Gatekeeper Mutant Fibroblast Growth Factor Receptor (FGFR) 2/3. J Med Chem 2022; 65:15433-15442. [DOI: 10.1021/acs.jmedchem.2c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Jeremy J. Roach
- Proteovant Therapeutics, King of Prussia, Pennsylvania 19406, United States
| | | | - Holly Koblish
- Ikena Oncology, Boston, Massachusetts 02210, United States
| | | | | | - Rodrigo Hess
- Incyte Corporation, Wilmington, Delaware 19803, United States
| | - Luping Lin
- WuXi AppTec, Philadelphia, Pennsylvania 19112, United States
| | | | - Lisa Truong
- Incyte Corporation, Wilmington, Delaware 19803, United States
| | - Lynn Leffet
- Incyte Corporation, Wilmington, Delaware 19803, United States
| | - Patricia Conlen
- Incyte Corporation, Wilmington, Delaware 19803, United States
| | - Elham Beshad
- Proteovant Therapeutics, King of Prussia, Pennsylvania 19406, United States
| | - Ron Klabe
- Incyte Corporation, Wilmington, Delaware 19803, United States
| | - Kamna Katiyar
- Incyte Corporation, Wilmington, Delaware 19803, United States
| | - Laura Kaldon
- Incyte Corporation, Wilmington, Delaware 19803, United States
| | | | - Xin He
- Incyte Corporation, Wilmington, Delaware 19803, United States
| | - Susan Petusky
- Incyte Corporation, Wilmington, Delaware 19803, United States
| | - Kwang-Jong Chen
- Incyte Corporation, Wilmington, Delaware 19803, United States
| | - April Horsey
- Incyte Corporation, Wilmington, Delaware 19803, United States
| | - Hsiang-Ting Lei
- Incyte Corporation, Wilmington, Delaware 19803, United States
| | | | - Marc C. Deller
- Incyte Corporation, Wilmington, Delaware 19803, United States
| | - Oleg Vechorkin
- Incyte Corporation, Wilmington, Delaware 19803, United States
| | - Wenqing Yao
- Synnovation Therapeutics, Wilmington, Delaware 19803, United States
| |
Collapse
|
20
|
Małkiewicz B, Gurwin A, Karwacki J, Nagi K, Knecht-Gurwin K, Hober K, Łyko M, Kowalczyk K, Krajewski W, Kołodziej A, Szydełko T. Management of Bladder Cancer Patients with Clinical Evidence of Lymph Node Invasion (cN+). Cancers (Basel) 2022; 14:5286. [PMID: 36358705 PMCID: PMC9656528 DOI: 10.3390/cancers14215286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 10/23/2022] [Indexed: 11/29/2022] Open
Abstract
The purpose of this review is to present the current knowledge about the diagnostic and treatment options for bladder cancer (BCa) patients with clinically positive lymph nodes (cN+). This review shows compaction of CT and MRI performance in preoperative prediction of lymph node invasion (LNI) in BCa patients, along with other diagnostic methods. Most scientific societies do not distinguish cN+ patients in their guidelines; recommendations concern muscle-invasive bladder cancer (MIBC) and differ between associations. The curative treatment that provides the best long-term survival in cN+ patients is a multimodal approach, with a combination of neoadjuvant chemotherapy (NAC) and radical cystectomy (RC) with extended pelvic lymph node dissection (ePLND). The role of adjuvant chemotherapy (AC) remains uncertain; however, emerging evidence indicates comparable outcomes to NAC. Therefore, in cN+ patients who have not received NAC, AC should be implemented. The response to ChT is a crucial prognostic factor for cN+ patients. Recent studies demonstrated the growing importance of immunotherapy, especially in ChT-ineligible patients. Moreover, immunotherapy can be suitable as adjuvant therapy in selected cases. In cN+ patients, the extended template of PLND should be utilized, with the total resected node count being less important than the template. This review is intended to draw special attention to cN+ BCa patients, as the oncological outcomes are significantly worse for this group.
Collapse
Affiliation(s)
- Bartosz Małkiewicz
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Adam Gurwin
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jakub Karwacki
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Krystian Nagi
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Klaudia Knecht-Gurwin
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Krzysztof Hober
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Magdalena Łyko
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Kamil Kowalczyk
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Wojciech Krajewski
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Anna Kołodziej
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Tomasz Szydełko
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
21
|
Ellinghaus P, Neureiter D, Nogai H, Stintzing S, Ocker M. Patient Selection Approaches in FGFR Inhibitor Trials-Many Paths to the Same End? Cells 2022; 11:3180. [PMID: 36231142 PMCID: PMC9563413 DOI: 10.3390/cells11193180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/16/2022] Open
Abstract
Inhibitors of fibroblast growth factor receptor (FGFR) signaling have been investigated in various human cancer diseases. Recently, the first compounds received FDA approval in biomarker-selected patient populations. Different approaches and technologies have been applied in clinical trials, ranging from protein (immunohistochemistry) to mRNA expression (e.g., RNA in situ hybridization) and to detection of various DNA alterations (e.g., copy number variations, mutations, gene fusions). We review, here, the advantages and limitations of the different technologies and discuss the importance of tissue and disease context in identifying the best predictive biomarker for FGFR targeting therapies.
Collapse
Affiliation(s)
- Peter Ellinghaus
- Global Clinical Development Oncology, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Daniel Neureiter
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | | | - Sebastian Stintzing
- Division of Hematology, Oncology, and Tumor Immunology (Campus Charité Mitte), Medical Department, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Matthias Ocker
- Division of Hematology, Oncology, and Tumor Immunology (Campus Charité Mitte), Medical Department, Charité University Medicine Berlin, 10117 Berlin, Germany
- Anji Pharmaceuticals, Cambridge, MA 02142, USA
| |
Collapse
|
22
|
Meng X, Zhu X, Ji J, Zhong H, Li X, Zhao H, Xie G, Wang K, Shu H, Wang X. Erdafitinib Inhibits Tumorigenesis of Human Lung Adenocarcinoma A549 by Inducing S-Phase Cell-Cycle Arrest as a CDK2 Inhibitor. Molecules 2022; 27:6733. [PMID: 36235266 PMCID: PMC9573074 DOI: 10.3390/molecules27196733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Lung adenocarcinoma (LADC) is the most prevalent lung cancer sub-type, and targeted therapy developed in recent years has made progress in its treatment. Erdafitinib, a potent and selective pan-FGFR tyrosine kinase inhibitor, has been confirmed to be effective for the treatment of LADC; however, the molecular mechanism responsible for this effect is unclear. The in vitro study showed that erdafitinib exhibited an outstanding anti-cancer activity in human LADC cell line A549 by inducing S-phase cell-cycle arrest and cell apoptosis. The mechanistic study based on the transcriptomic data revealed that erdafitinib exerted its anti-cancer effect by affecting the cell cycle-related pathway, and CDK2 was the regulatory target of this drug. In addition, CDK2 overexpression significantly attenuated the anti-cancer effect of erdafitinib by affecting the transcriptional activity and expression of E2F1, as well as the expression of CDK1. The in vivo study showed that erdafitinib presented an obvious anti-cancer effect in the A549 xenograft mice model, which was accompanied by the reduced expression of CDK2. Thus, this study demonstrates the anti-cancer effect of erdafitinib against LADC for the first time based on in vitro and in vivo models, whose activity is achieved by targeting CDK2 and regulating downstream E2F1-CDK1 signaling. This study may be helpful for expanding the clinical application of erdafitinib in treating LADC.
Collapse
Affiliation(s)
- Xinmin Meng
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Xue Zhu
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 210000, China
| | - Jiali Ji
- Department of Respiratory and Critical Care Medicine, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Hongqin Zhong
- Department of Respiratory and Critical Care Medicine, Wuxi Clinical College Affiliated to Nantong University, Wuxi 214002, China
| | - Xiyue Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Hongqing Zhao
- Department of Respiratory and Critical Care Medicine, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Guijuan Xie
- Department of Respiratory and Critical Care Medicine, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Ke Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 210000, China
| | - Hong Shu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Xun Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China
- Department of Respiratory and Critical Care Medicine, Wuxi Clinical College Affiliated to Nantong University, Wuxi 214002, China
| |
Collapse
|
23
|
Huang CC, Liu HY, Hsu TW, Lee WC. Updates on the Pivotal Roles of Mitochondria in Urothelial Carcinoma. Biomedicines 2022; 10:biomedicines10102453. [PMID: 36289714 PMCID: PMC9599371 DOI: 10.3390/biomedicines10102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are important organelles responsible for energy production, redox homeostasis, oncogenic signaling, cell death, and apoptosis. Deregulated mitochondrial metabolism and biogenesis are often observed during cancer development and progression. Reports have described the crucial roles of mitochondria in urothelial carcinoma (UC), which is a major global health challenge. This review focuses on research advances in the role of mitochondria in UC. Here, we discuss the pathogenic roles of mitochondria in UC and update the mitochondria-targeted therapies. We aim to offer a better understanding of the mitochondria-modulated pathogenesis of UC and hope that this review will allow the development of novel mitochondria-targeted therapies.
Collapse
Affiliation(s)
- Chiang-Chi Huang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hui-Ying Liu
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Tsuen-Wei Hsu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8306)
| |
Collapse
|
24
|
Zeng J, Ran K, Li X, Tao L, Wang Q, Ren J, Hu R, Zhu Y, Liu Z, Yu L. A novel small molecule RK-019 inhibits FGFR2-amplification gastric cancer cell proliferation and induces apoptosis in vitro and in vivo. Front Pharmacol 2022; 13:998199. [PMID: 36210834 PMCID: PMC9532703 DOI: 10.3389/fphar.2022.998199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Gastric cancer (GC) is one of the most malignant cancers and is estimated to be fifth in incidence ratio and the third leading cause of cancer death worldwide. Despite advances in GC treatment, poor prognosis and low survival rate necessitate the development of novel treatment options. Fibroblast growth factor receptors (FGFRs) have been suggested to be potential targets for GC treatment. In this study, we report a novel selective FGFR inhibitor, RK-019, with a pyrido [1, 2-a] pyrimidinone skeleton. In vitro, RK-019 showed excellent FGFR1-4 inhibitory activities and strong anti-proliferative effects against FGFR2-amplification (FGFR2-amp) GC cells, including SNU-16 and KATO III cells. Treatment with RK-019 suppressed phosphorylation of FGFR and its downstream pathway proteins, such as FRS2, PLCγ, AKT, and Erk, resulting in cell cycle arrest and induction of apoptosis. Furthermore, daily oral administration of RK-019 could attenuate tumor xenograft growth with no adverse effects. Here, we reported a novel specific FGFR inhibitor, RK-019, with potent anti-FGFR2-amp GC activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Jun Zeng
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Ran
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, China
| | - Xinyue Li
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Longyue Tao
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qiwei Wang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiangtao Ren
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Hu
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yongxia Zhu
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhihao Liu
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Xu T, Xu W, Zheng Y, Li X, Cai H, Xu Z, Zou Q, Yu B. Comprehensive FGFR3 alteration-related transcriptomic characterization is involved in immune infiltration and correlated with prognosis and immunotherapy response of bladder cancer. Front Immunol 2022; 13:931906. [PMID: 35958598 PMCID: PMC9360490 DOI: 10.3389/fimmu.2022.931906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Bladder cancer (BC) threatens the health of human beings worldwide because of its high recurrence rate and mortality. As an actionable biomarker, fibroblast growth factor receptor 3 (FGFR3) alterations have been revealed as a vital biomarker and associated with favorable outcomes in BC. However, the comprehensive relationship between the FGFR3 alteration associated gene expression profile and the prognosis of BC remains ambiguous. Materials and Methods Genomic alteration profile, gene expression data, and related clinical information of BC patients were downloaded from The Cancer Genomics database (TCGA), as a training cohort. Subsequently, the Weighted Gene Co-expression Network Analysis (WGCNA) was conducted to identify the hub modules correlated with FGFR3 alteration. The univariate, multivariate, and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were used to obtain an FGFR3 alteration-related gene (FARG) prognostic signature and FARG-based nomogram. The receiver operating characteristic (ROC) curve analysis was used for evaluation of the ability of prognosis prediction. The FARG signature was validated in four independent datasets, namely, GSE13507, GSE31684, GSE32548, and GSE48075, from Gene Expression Omnibus (GEO). Then, clinical feature association analysis, functional enrichment, genomic alteration enrichment, and tumor environment analysis were conducted to reveal differential clinical and molecular characterizations in different risk groups. Lastly, the treatment response was evaluated in the immunotherapy-related dataset of the IMvigor210 cohort and the frontline chemotherapy dataset of GSE48276, and the chemo-drug sensitivity was estimated via Genomics of Drug Sensitivity in Cancer (GDSC). Results There were a total of eleven genes (CERCAM, TPST1, OSBPL10, EMP1, CYTH3, NCRNA00201, PCDH10, GAP43, COLQ, DGKB, and SETBP1) identified in the FARG signature, which divided BC patients from the TCGA cohort into high- and low-risk groups. The Kaplan–Meier curve analysis demonstrated that BC patients in the low-risk group have superior overall survival (OS) than those in the high-risk group (median OS: 27.06 months vs. 104.65 months, p < 0.0001). Moreover, the FARG signature not only showed a good performance in prognosis prediction, but also could distinguish patients with different neoplasm disease stages, notably whether patients presented with muscle invasive phenotype. Compared to clinicopathological features, the FARG signature was found to be the only independent prognostic factor, and subsequently, a FARG-based prognostic nomogram was constructed with better ability of prognosis prediction, indicated by area under ROC curve (AUC) values for 1-, 3-, and 5-year OS of 0.69, 0.71, and 0.79, respectively. Underlying the FARG signature, multiple kinds of metabolism- and immune-related signaling pathways were enriched. Genomic alteration enrichment further identified that FGFR3 alterations, especially c.746C>G (p.Ser249Cys), were more prevalent in the low-risk group. Additionally, FARG score was positively correlated with ESTIMATE and TIDE scores, and the low-risk group had abundant enrichment of plasma B cells, CD8+ T cells, CD4+ naive T cells, and helper follicular T cells, implying that patients in the low-risk group were likely to make significant responses to immunotherapy, which was further supported by the analysis in the IMvigor210 cohort as there was a significantly higher response rate among patients with lower FARG scores. The analysis of the GDSC database finally demonstrated that low-risk samples were more sensitive to methotrexate and tipifarnib, whereas those in the high-risk group had higher sensitivities in cisplatin, docetaxel, and paclitaxel, instead. Conclusion The novel established FARG signature based on a comprehensive FGFR3 alteration-related transcriptomic profile performed well in prognosis prediction and was also correlated with immunotherapy and chemotherapy treatment responses, which had great potential in future clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bin Yu
- *Correspondence: Bin Yu, ;
| |
Collapse
|
26
|
Fabbian S, Giachin G, Bellanda M, Borgo C, Ruzzene M, Spuri G, Campofelice A, Veneziano L, Bonchio M, Carraro M, Battistutta R. Mechanism of CK2 Inhibition by a Ruthenium-Based Polyoxometalate. Front Mol Biosci 2022; 9:906390. [PMID: 35720133 PMCID: PMC9201508 DOI: 10.3389/fmolb.2022.906390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
CK2 is a Ser/Thr protein kinase involved in many cellular processes such as gene expression, cell cycle progression, cell growth and differentiation, embryogenesis, and apoptosis. Aberrantly high CK2 activity is widely documented in cancer, but the enzyme is also involved in several other pathologies, such as diabetes, inflammation, neurodegeneration, and viral infections, including COVID-19. Over the last years, a large number of small-molecules able to inhibit the CK2 activity have been reported, mostly acting with an ATP-competitive mechanism. Polyoxometalates (POMs), are metal-oxide polyanionic clusters of various structures and dimensions, with unique chemical and physical properties. POMs were identified as nanomolar CK2 inhibitors, but their mechanism of inhibition and CK2 binding site remained elusive. Here, we present the biochemical and biophysical characterizing of the interaction of CK2α with a ruthenium-based polyoxometalate, [Ru4(μ-OH)2(μ-O)4(H2O)4 (γ-SiW10O36)2]10− (Ru4POM), a potent inhibitor of CK2. Using analytical Size-Exclusion Chromatography (SEC), Isothermal Titration Calorimetry (ITC), and SAXS we were able to unravel the mechanism of inhibition of Ru4POM. Ru4POM binds to the positively-charged substrate binding region of the enzyme through electrostatic interactions, triggering the dimerization of the enzyme which consequently is inactivated. Ru4POM is the first non-peptide molecule showing a substrate-competitive mechanism of inhibition for CK2. On the basis of SAXS data, a structural model of the inactivated (CK2α)2(Ru4POM)2 complex is presented.
Collapse
Affiliation(s)
- Simone Fabbian
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Massimo Bellanda
- Department of Chemical Sciences, University of Padova, Padova, Italy
- CNR Institute of Biomolecular Chemistry, University of Padova, Padova, Italy
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CNR Institute of Neurosciences, University of Padova, Padova, Italy
- *Correspondence: Maria Ruzzene, ; Mauro Carraro, ; Roberto Battistutta,
| | - Giacomo Spuri
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ambra Campofelice
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Laura Veneziano
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Marcella Bonchio
- Department of Chemical Sciences, University of Padova, Padova, Italy
- Institute on Membrane Technology (ITM)-CNR, University of Padova, Padova, Italy
| | - Mauro Carraro
- Department of Chemical Sciences, University of Padova, Padova, Italy
- Institute on Membrane Technology (ITM)-CNR, University of Padova, Padova, Italy
- *Correspondence: Maria Ruzzene, ; Mauro Carraro, ; Roberto Battistutta,
| | - Roberto Battistutta
- Department of Chemical Sciences, University of Padova, Padova, Italy
- CNR Institute of Biomolecular Chemistry, University of Padova, Padova, Italy
- *Correspondence: Maria Ruzzene, ; Mauro Carraro, ; Roberto Battistutta,
| |
Collapse
|
27
|
Zheng J, Zhang W, Li L, He Y, Wei Y, Dang Y, Nie S, Guo Z. Signaling Pathway and Small-Molecule Drug Discovery of FGFR: A Comprehensive Review. Front Chem 2022; 10:860985. [PMID: 35494629 PMCID: PMC9046545 DOI: 10.3389/fchem.2022.860985] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Targeted therapy is a groundbreaking innovation for cancer treatment. Among the receptor tyrosine kinases, the fibroblast growth factor receptors (FGFRs) garnered substantial attention as promising therapeutic targets due to their fundamental biological functions and frequently observed abnormality in tumors. In the past 2 decades, several generations of FGFR kinase inhibitors have been developed. This review starts by introducing the biological basis of FGF/FGFR signaling. It then gives a detailed description of different types of small-molecule FGFR inhibitors according to modes of action, followed by a systematic overview of small-molecule-based therapies of different modalities. It ends with our perspectives for the development of novel FGFR inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shenyou Nie
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zufeng Guo
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Management of Advanced Urothelial Carcinoma in Older and Frail Patients: Have Novel Treatment Approaches Improved Their Care? Drugs Aging 2022; 39:271-284. [PMID: 35344197 DOI: 10.1007/s40266-022-00933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/03/2022]
Abstract
Patients with urothelial carcinoma tend to be older and frailer with a large number of chronic medical conditions. This is particularly pronounced in those with unresectable locally advanced and metastatic urothelial carcinoma. Prior to 2016, treatment options in advanced urothelial carcinoma were limited to chemotherapy, and as a result, a large number of patients were not receiving disease-directed management. Over the last 6 years, multiple alternative modalities including immune checkpoint inhibitors and targeted therapies have been introduced. They are being utilized clinically in older and frail patients, but there are limited studies investigating outcomes in these specific populations. Based upon current evidence, age does not impact the efficacy and tolerance of immune checkpoint inhibitors if patients are fit enough to receive therapy. In frailer patients, immune checkpoint inhibitors appear to be safe, but outcomes from largely retrospective studies demonstrate mixed data regarding their efficacy. Although there are indications from clinical trials that enfortumab vedotin, sacituzumab govitecan, and erdafitinib are also efficacious irrespective of age, there is still not enough evidence to draw definitive conclusions about their use in older and frail patients. Regardless, in all older patients with advanced urothelial carcinoma, it is critical to evaluate for frailty through geriatric screening tools and comprehensive assessments. Combining these evaluations with consideration of an individual patient's goals should be the foundation upon which therapeutic decisions are made in this population of patients.
Collapse
|
29
|
Amaro F, Carvalho M, Bastos MDL, Guedes de Pinho P, Pinto J. Pharmacometabolomics Applied to Personalized Medicine in Urological Cancers. Pharmaceuticals (Basel) 2022; 15:295. [PMID: 35337093 PMCID: PMC8952371 DOI: 10.3390/ph15030295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa), bladder cancer (BCa), and renal cell carcinoma (RCC) are the most common urological cancers, and their incidence has been rising over time. Surgery is the standard treatment for these cancers, but this procedure is only effective when the disease is localized. For metastatic disease, PCa is typically treated with androgen deprivation therapy, while BCa is treated with chemotherapy, and RCC is managed primarily with targeted therapies. However, response rates to these therapeutic options remain unsatisfactory due to the development of resistance and treatment-related toxicity. Thus, the discovery of biomarkers with prognostic and predictive value is needed to stratify patients into different risk groups, minimizing overtreatment and the risk of drug resistance development. Pharmacometabolomics, a branch of metabolomics, is an attractive tool to predict drug response in an individual based on its own metabolic signature, which can be collected before, during, and after drug exposure. Hence, this review focuses on the application of pharmacometabolomic approaches to identify the metabolic responses to hormone therapy, targeted therapy, immunotherapy, and chemotherapy for the most prevalent urological cancers.
Collapse
Affiliation(s)
- Filipa Amaro
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Márcia Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-I3ID, FP-ENAS, CEBIMED, University Fernando Pessoa, 4200-150 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
| | - Maria de Lourdes Bastos
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.C.); (M.d.L.B.); (P.G.d.P.)
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
30
|
Management of Patients with Metastatic Bladder Cancer in the Real-World Setting from the Multidisciplinary Team: Current Opinion of the SOGUG Multidisciplinary Working Group. Cancers (Basel) 2022; 14:cancers14051130. [PMID: 35267437 PMCID: PMC8909046 DOI: 10.3390/cancers14051130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary This report presents clinically relevant advances in the management of metastatic bladder cancer, which have been the focus of discussion of expert members of the Spanish Oncology Genitourinary (SOGUG) Multidisciplinary Working Group in the framework of the Genitourinary Alliance project (12GU) designed as a space for the integration of novel information in the care of bladder cancer patients. The present study is focused on different aspects regarding integration of immunotherapy especially in the patient unfit for platinum-based chemotherapy, PD-L1 assays and samples to be evaluated, role of imaging techniques in preoperative staging or re-staging, definition and treatment approach of oligometastatic disease, and rescue strategies in responders. Involvement of a dedicated multidisciplinary team in the care of patients with mBC is crucial to improve outcome. Abstract Based on the discussion of current state of research of relevant topics of metastatic bladder cancer (mBC) among a group of experts of a Spanish Oncology Genitourinary (SOGUG) Working Group, a set of recommendations were proposed to overcome the challenges posed by the management of mBC in clinical practice. First-line options in unfit patients for cisplatin are chemotherapy with carboplatin and immunotherapy in PD-L1 positive patients. FDG-PET/CT may be a useful imaging technique in the initial staging or re-staging. In patients with oligometastatic disease, it is important to consider not only the number of metastatic lesions, but also the tumor biology and the clinical course. The combination of stereotactic body radiotherapy and immunotherapy with anti-PD-L1 monoclonal antibodies is under investigation and could improve the results of systemic treatment in patient with oligometastatic disease. Rescue treatment with curative intent could be considered in patients with oligometastatic disease after complete response on FDG-PET/CT. Metastatic disease should be evaluated using the same imaging modality over the course of the disease from diagnosis until rescue treatment. For improving the outcome of patients with mBC, the involvement of a dedicated multidisciplinary team, including urologists, pathologists, oncologists, radiologists and other specialists is of outmost importance in the daily care of these patients.
Collapse
|
31
|
Packeiser EM, Taher L, Kong W, Ernst M, Beck J, Hewicker-Trautwein M, Brenig B, Schütz E, Murua Escobar H, Nolte I. RNA-seq of nine canine prostate cancer cell lines reveals diverse therapeutic target signatures. Cancer Cell Int 2022; 22:54. [PMID: 35109825 PMCID: PMC8812184 DOI: 10.1186/s12935-021-02422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Canine prostate adenocarcinoma (PAC) and transitional cell carcinoma (TCC) are typically characterized by metastasis and chemoresistance. Cell lines are important model systems for developing new therapeutic strategies. However, as they adapt to culturing conditions and undergo clonal selection, they can diverge from the tissue from which they were originally derived. Therefore, a comprehensive characterization of cell lines and their original tissues is paramount. METHODS This study compared the transcriptomes of nine canine cell lines derived from PAC, PAC metastasis and TCC to their respective original primary tumor or metastasis tissues. Special interests were laid on cell culture-related differences, epithelial to mesenchymal transition (EMT), the prostate and bladder cancer pathways, therapeutic targets in the PI3K-AKT signaling pathway and genes correlated with chemoresistance towards doxorubicin and carboplatin. RESULTS Independent analyses for PAC, PAC metastasis and TCC revealed 1743, 3941 and 463 genes, respectively, differentially expressed in the cell lines relative to their original tissues (DEGs). While genes associated with tumor microenvironment were mostly downregulated in the cell lines, patient-specific EMT features were conserved. Furthermore, examination of the prostate and bladder cancer pathways revealed extensive concordance between cell lines and tissues. Interestingly, all cell lines preserved downstream PI3K-AKT signaling, but each featured a unique therapeutic target signature. Additionally, resistance towards doxorubicin was associated with G2/M cell cycle transition and cell membrane biosynthesis, while carboplatin resistance correlated with histone, m- and tRNA processing. CONCLUSION Comparative whole-transcriptome profiling of cell lines and their original tissues identifies models with conserved therapeutic target expression. Moreover, it is useful for selecting suitable negative controls, i.e., cell lines lacking therapeutic target expression, increasing the transfer efficiency from in vitro to primary neoplasias for new therapeutic protocols. In summary, the dataset presented here constitutes a rich resource for canine prostate and bladder cancer research.
Collapse
Affiliation(s)
- Eva-Maria Packeiser
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, Rostock, Germany
| | - Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - Weibo Kong
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, Rostock, Germany
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Mathias Ernst
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | - Bertram Brenig
- University of Göttingen, Institute of Veterinary Medicine, Göttingen, Germany
| | | | - Hugo Murua Escobar
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany.
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, Rostock, Germany.
- Comprehensive Cancer Center Mecklenburg-Vorpommern (CCC-MV), Campus Rostock, University of Rostock, 18057, Rostock, Germany.
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
32
|
Structural insights into the potency and selectivity of covalent pan-FGFR inhibitors. Commun Chem 2022; 5:5. [PMID: 36697561 PMCID: PMC9814232 DOI: 10.1038/s42004-021-00623-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/22/2021] [Indexed: 01/28/2023] Open
Abstract
FIIN-2, TAS-120 (Futibatinib) and PRN1371 are highly potent pan-FGFR covalent inhibitors targeting the p-loop cysteine of FGFR proteins, of which TAS-120 and PRN1371 are currently in clinical trials. It is critical to analyze their target selectivity and their abilities to overcome gatekeeper mutations. In this study, we demonstrate that FIIN-2 and TAS-120 form covalent adducts with SRC, while PRN1371 does not. FIIN-2 and TAS-120 inhibit SRC and YES activities, while PRN1371 does not. Moreover, FIIN-2, TAS-120 and PRN1371 exhibit different potencies against different FGFR gatekeeper mutants. In addition, the co-crystal structures of SRC/FIIN-2, SRC/TAS-120 and FGFR4/PRN1371 complexes reveal structural basis for kinase targeting and gatekeeper mutations. Taken together, our study not only provides insight into the potency and selectivity of covalent pan-FGFR inhibitors, but also sheds light on the development of next-generation FGFR covalent inhibitors with high potency, high selectivity, and stronger ability to overcome gatekeeper mutations.
Collapse
|
33
|
Dosne AG, Valade E, Goeyvaerts N, De Porre P, Avadhani A, O'Hagan A, Li LY, Ouellet D, Perez Ruixo JJ. Exposure-response analyses of erdafitinib in patients with locally advanced or metastatic urothelial carcinoma. Cancer Chemother Pharmacol 2022; 89:151-164. [PMID: 34977972 PMCID: PMC8807442 DOI: 10.1007/s00280-021-04381-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022]
Abstract
Background Exposure–response analyses were conducted to explore the relationship between selected efficacy and safety endpoints and serum phosphate (PO4) concentrations, a potential biomarker of efficacy and safety, in locally advanced or metastatic urothelial carcinoma patients with FGFR alterations treated with erdafitinib. Methods Data from two dosing regimens of erdafitinib in a phase 2 study (NCT02365597), 6 and 8-mg/day with provision for pharmacodynamically guided titration per serum PO4 levels, were analyzed using Cox proportional hazard or logistic regression models. Efficacy endpoints were overall survival (OS), progression-free survival (PFS), and objective response rate (ORR). Safety endpoints were adverse events typical for FGFR inhibitors. Results Exposure-efficacy analyses on 156 patients (6-mg = 68; 8-mg = 88) showed that patients with higher serum PO4 levels within the first 6 weeks showed better OS (hazard ratio 0.57 [95% CI 0.46–0.72] per mg/dL of PO4; p = 0.01), PFS (hazard ratio 0.80 [0.67–0.94] per mg/dL of PO4; p = 0.01), and ORR (odds ratio 1.38 [1.02–1.86] per mg/dL of PO4; p = 0.04). Exposure-safety analyses on 177 patients (6-mg = 78; 8-mg = 99) showed that the incidence of selected adverse events associated with on-target off-tumor effects significantly rose with higher PO4. Conclusions The exploratory relationship between serum PO4 levels and efficacy/safety outcomes supported the use of pharmacodynamically guided dose titration to optimize erdafitinib’s therapeutic benefit/risk ratio. Clinical trial registration number NCT02365597. Supplementary Information The online version contains supplementary material available at 10.1007/s00280-021-04381-4.
Collapse
Affiliation(s)
| | | | | | | | | | - Anne O'Hagan
- Janssen Research and Development, Spring House, PA, USA
| | - Lilian Y Li
- Janssen Research and Development, Spring House, PA, USA
| | | | | |
Collapse
|
34
|
Patel SG, González-Bakker A, Vala RM, Patel PJ, Puerta A, Malik A, Sharma RK, Padrón JM, Patel HM. Microwave-assisted multicomponent synthesis of antiproliferative 2,4-dimethoxy-tetrahydropyrimido[4,5- b]quinolin-6(7 H)-ones †. RSC Adv 2022; 12:30404-30415. [PMID: 36337956 PMCID: PMC9593171 DOI: 10.1039/d2ra04669e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, we demonstrate a simple, highly efficient, rapid and convenient series of 2,4-dimethoxy-tetrahydropyrimido[4,5-b]quinolin-6(7H)-ones 4a–v. Microwave irradiation facilitates the one-pot multicomponent reaction of different aromatic aldehydes, 6-amino-2,4-dimethoxypyrimidine and dimedone using glacial acetic acid. Metal-free multicomponent synthesis, shorter reaction time, higher product yield, easy product purification without column chromatography and outstanding green credential parameters are the key features of this protocol. We analysed 4a–v against six human tumour cell lines for antiproliferative activity. 4h, 4o, 4q and 4v show good antiproliferative activity with a good in silico ADMET profile. Furthermore, 4h, 4o, 4q and 4v also show drug-likeness properties by obeying drug-like filters. Herein, we demonstrate a simple, rapid and green synthesis of 2,4-dimethoxy-THPQs under microwave irradiation and their antiproliferative activity, in silico ADMET and drug-likeness studies were carried out.![]()
Collapse
Affiliation(s)
- Subham G. Patel
- Department of Chemistry, Sardar Patel UniversityVallabh Vidyanagar388120GujaratIndia
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La LagunaLa Laguna E-38206Spain
| | - Ruturajsinh M. Vala
- Department of Chemistry, Sardar Patel UniversityVallabh Vidyanagar388120GujaratIndia
| | - Paras J. Patel
- Department of Chemistry, Sardar Patel UniversityVallabh Vidyanagar388120GujaratIndia
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La LagunaLa Laguna E-38206Spain
| | - Apoorva Malik
- Sustainable Materials and Catalysts Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of TechnologyJodhpurIndia
| | - Rakesh K. Sharma
- Sustainable Materials and Catalysts Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of TechnologyJodhpurIndia
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La LagunaLa Laguna E-38206Spain
| | - Hitendra M. Patel
- Department of Chemistry, Sardar Patel UniversityVallabh Vidyanagar388120GujaratIndia
| |
Collapse
|
35
|
Synthesis of Quinoxaline Derivatives as Intermediates to Obtain Erdafitinib. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Alterations of Chromatin Regulators in the Pathogenesis of Urinary Bladder Urothelial Carcinoma. Cancers (Basel) 2021; 13:cancers13236040. [PMID: 34885146 PMCID: PMC8656749 DOI: 10.3390/cancers13236040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Urinary bladder cancer is one of the ten major cancers worldwide, with higher incidences in males, in smokers, and in highly industrialized countries. New therapies beyond cytotoxic chemotherapy are urgently needed to improve treatment of these tumors. A better understanding of the mechanisms underlying their development may help in this regard. Recently, it was discovered that a group of proteins regulating the state of chromatin and thus gene expression is exceptionally and frequently affected by gene mutations in bladder cancers. Altered function of these mutated chromatin regulators must therefore be fundamental in their development, but how and why is poorly understood. Here we review the current knowledge on changes in chromatin regulators and discuss their possible consequences for bladder cancer development and options for new therapies. Abstract Urothelial carcinoma (UC) is the most frequent histological type of cancer in the urinary bladder. Genomic changes in UC activate MAPK and PI3K/AKT signal transduction pathways, which increase cell proliferation and survival, interfere with cell cycle and checkpoint control, and prevent senescence. A more recently discovered additional category of genetic changes in UC affects chromatin regulators, including histone-modifying enzymes (KMT2C, KMT2D, KDM6A, EZH2), transcription cofactors (CREBBP, EP300), and components of the chromatin remodeling complex SWI/SNF (ARID1A, SMARCA4). It is not yet well understood how these changes contribute to the development and progression of UC. Therefore, we review here the emerging knowledge on genomic and gene expression alterations of chromatin regulators and their consequences for cell differentiation, cellular plasticity, and clonal expansion during UC pathogenesis. Our analysis identifies additional relevant chromatin regulators and suggests a model for urothelial carcinogenesis as a basis for further mechanistic studies and targeted therapy development.
Collapse
|
37
|
Singh S, Utreja D, Kumar V. Pyrrolo[2,1-f][1,2,4]triazine: a promising fused heterocycle to target kinases in cancer therapy. Med Chem Res 2021; 31:1-25. [PMID: 34803342 PMCID: PMC8590428 DOI: 10.1007/s00044-021-02819-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022]
Abstract
Cancer is the second leading cause of death worldwide responsible for about 10 million deaths per year. To date several approaches have been developed to treat this deadly disease including surgery, chemotherapy, radiation therapy, hormonal therapy, targeted therapy, and synthetic lethality. The targeted therapy refers to targeting only specific proteins or enzymes that are dysregulated in cancer rather than killing all rapidly dividing cells, has gained much attention in the recent past. Kinase inhibition is one of the most successful approaches in targeted therapy. As of 30 March 2021, FDA has approved 65 small molecule protein kinase inhibitors and most of them are for cancer therapy. Interestingly, several kinase inhibitors contain one or more fused heterocycles as part of their structures. Pyrrolo[2,1-f][1,2,4]triazine is one the most interesting fused heterocycle that is an integral part of several kinase inhibitors and nucleoside drugs viz. avapritinib and remdesivir. This review articles focus on the recent advances made in the development of kinase inhibitors containing pyrrolo[2,1-f][1,2,4]triazine scaffold. ![]()
Collapse
Affiliation(s)
- Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - Vimal Kumar
- Department of Chemistry, Dr B. R. Ambedkar National Institute of Technology (NIT), Jalandhar, 144011 Punjab India
| |
Collapse
|
38
|
López-Cortés R, Vázquez-Estévez S, Fernández JÁ, Núñez C. Proteomics as a Complementary Technique to Characterize Bladder Cancer. Cancers (Basel) 2021; 13:cancers13215537. [PMID: 34771699 PMCID: PMC8582709 DOI: 10.3390/cancers13215537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Although immunohistochemistry is a routine technique in clinics, and genomics has been rapidly incorporated, proteomics is a step behind. This general situation is also the norm in bladder cancer research. This review shows the contributions of proteomics to the molecular classification of bladder cancer, and to the study of histopathology due to tissue insults caused by tumors. Furthermore, the importance of proteomics for understanding the cellular and molecular changes as a consequence of the therapy of bladder cancer cannot be neglected. Abstract Bladder cancer (BC) is the most common tumor of the urinary tract and is conventionally classified as either non-muscle invasive or muscle invasive. In addition, histological variants exist, as organized by the WHO-2016 classification. However, innovations in next-generation sequencing have led to molecular classifications of BC. These innovations have also allowed for the tracing of major tumorigenic pathways and, therefore, are positioned as strong supporters of precision medicine. In parallel, immunohistochemistry is still the clinical reference to discriminate histological layers and to stage BC. Key contributions have been made to enlarge the panel of protein immunomarkers. Moreover, the analysis of proteins in liquid biopsy has also provided potential markers. Notwithstanding, their clinical adoption is still low, with very few approved tests. In this context, mass spectrometry-based proteomics has remained a step behind; hence, we aimed to develop them in the community. Herein, the authors introduce the epidemiology and the conventional classifications to review the molecular classification of BC, highlighting the contributions of proteomics. Then, the advances in mass spectrometry techniques focusing on maintaining the integrity of the biological structures are presented, a milestone for the emergence of histoproteomics. Within this field, the review then discusses selected proteins for the comprehension of the pathophysiological mechanisms of BC. Finally, because there is still insufficient knowledge, this review considers proteomics as an important source for the development of BC therapies.
Collapse
Affiliation(s)
- Rubén López-Cortés
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
| | - Sergio Vázquez-Estévez
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain; (S.V.-E.); (J.Á.F.)
| | - Javier Álvarez Fernández
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain; (S.V.-E.); (J.Á.F.)
| | - Cristina Núñez
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Correspondence:
| |
Collapse
|
39
|
Liu Y, Lou W, Chen G, Ding B, Kuang J, Zhang Y, Wang C, Duan S, Deng Y, Lu X. Genome-wide screening for the G-protein-coupled receptor (GPCR) pathway-related therapeutic gene RGS19 (regulator of G protein signaling 19) in bladder cancer. Bioengineered 2021; 12:5892-5903. [PMID: 34482807 PMCID: PMC8806424 DOI: 10.1080/21655979.2021.1971035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer is one of the most severe genitourinary cancers, causing high morbidity worldwide. However, the underlying molecular mechanism is not clear, and it is urgent to find target genes for treatment. G-protein-coupled receptors are currently a target of high interest for drug design. Thus, we aimed to identify a target gene-related to G-protein-coupled receptors for therapy. We used The Cancer Genome Atlas (TCGA) and DepMap databases to obtain the expression and clinical data of RGS19. The results showed that RGS19 was overexpressed in a wide range of tumor, especially bladder cancer. We also explored its effect on various types of cancer. High expression of RGS19 was also shown to be significantly associated with poor prognosis. Cell models were constructed for cell cycle detection. shRGS19 can halt the cell cycle at a polyploid point. RGS19 is a G-protein-coupled receptor signaling pathway-related gene with a significant effect on survival. We chose RGS19 as a therapeutic target gene in bladder cancer. The drug GSK1070916 was found to inhibit the effect of RGS19 via cell rescue experiments in vitro.
Collapse
Affiliation(s)
- Yue Liu
- Queen Mary School, Medical Collage of Nanchang University, Nanchang, China
| | - Weiming Lou
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Guang Chen
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bing Ding
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jin Kuang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yize Zhang
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi Province, China
| | - Cong Wang
- The First Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi Province, China
| | - Sainan Duan
- The First Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi Province, China
| | - Ying Deng
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi Province, China
| | - Xiongbing Lu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
40
|
Li J, Hu K, Huang J, Zhou L, Yan Y, Xu Z. Insights of fibroblast growth factor receptor 3 aberrations in pan-cancer and their roles in potential clinical treatment. Aging (Albany NY) 2021; 13:16541-16566. [PMID: 34160364 PMCID: PMC8266346 DOI: 10.18632/aging.203175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
Fibroblast growth factor receptor 3 (FGFR3) alters frequently across various cancer types and is a common therapeutic target in bladder urothelial carcinoma (BLCA) with FGFR3 variants. Although emerging evidence supports the role of FGFR3 in individual cancer types, no pan-cancer analysis is available. In this work, we used the open comprehensive datasets, covering a total of 10,953 patients with 10,967 samples across 32 TCGA cancer types, to identify the full alteration spectrum of FGFR3. FGFR3 abnormal expression, methylation patterns, alteration frequency, mutation location distribution, functional impact, and prognostic implications differed greatly from cancer to cancer. The overall alteration frequency of FGFR3 was relatively low in all cancers. Targetable mutations were mainly detected in BLCA, and S249C, Y373C, G370C, and R248C were hotspot mutations that could be targeted by an FDA approved erdafitinib. Genetic fusions were mainly observed in glioma, followed by BLCA. FGFR3-TACC3 was the most common fusion type which was proposed as novel therapeutic targets in glioma and was targetable with erdafitinib in BLCA. Lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) were two lung cancer subtypes, FGFR3 fusion and hotspot mutation like S249C were observed more commonly in LUSC but not in LUAD. DNA methylation was correlated with the expression of FGFR3 and its downstream genes in some tumors. FGFG3 abnormal expression and alterations exhibited clinical correlations with patient prognosis in several tumors. This work exhibited the full alteration spectrum of FGFR3 and indicated several new clues for their application as potential therapeutic targets and prognostic indicators.
Collapse
Affiliation(s)
- Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Kuan Hu
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Lei Zhou
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
41
|
Li Y, Sun L, Guo X, Mo N, Zhang J, Li C. Frontiers in Bladder Cancer Genomic Research. Front Oncol 2021; 11:670729. [PMID: 34094968 PMCID: PMC8173177 DOI: 10.3389/fonc.2021.670729] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
Most of the etiology studies of bladder cancer focus on genetic changes, mainly including mutation and activation of oncogenes, mutation and inactivation of tumor suppressor genes, and rearrangement or heterozygous deletion of chromosomes. Moreover, bladder cancer is highly heterogeneous mainly due to abnormal changes in the genome and proteome of tumor cells. Surgery is the main treatment for bladder cancer, but because the recurrence rate is high after surgery and most of the muscle-invasive bladder cancer acquires distant metastasis. Therefore, there is a need to combine with chemotherapy to consolidate the treatment effect. However, there are differences in chemosensitivity among patients. In this article, we review the up-to-date genomic researches on bladder cancer occurrence, development, metastasis, and chemosensitivity in patients, in order to provide some theoretical support for the diagnosis and treatment strategy for bladder cancer.
Collapse
Affiliation(s)
- Yi Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Lihui Sun
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Na Mo
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jinku Zhang
- Department of Pathology, First Central Hospital of Baoding, Baoding, China.,Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, First Central Hospital of Baoding, Baoding, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, First Central Hospital of Baoding, Baoding, China.,Department of Immunology, Beijing Jianlan Institute of Medicine, Beijing, China.,Department of Immunology, Beijing Zhongke Jianlan Biotechnology Co., Ltd., Beijing, China
| |
Collapse
|
42
|
Matsuoka T, Yashiro M. Molecular-targeted therapy toward precision medicine for gastrointestinal cancer: Current progress and challenges. World J Gastrointest Oncol 2021; 13:366-390. [PMID: 34040699 PMCID: PMC8131909 DOI: 10.4251/wjgo.v13.i5.366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/04/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancer remains the deadliest cancer in the world. The current standard treatment for GI cancer focuses on 5-fluorouracil-based chemotherapeutic regimens and surgery, and molecular-targeted therapy is expected to be a more effective and less toxic therapeutic strategy for GI cancer. There is well-established evidence for the use of epidermal growth factor receptor-targeted and vascular endothelial growth factor-targeted antibodies, which should routinely be incorporated into treatment strategies for GI cancer. Other potential therapeutic targets involve the PI3K/AKT pathway, tumor growth factor-β pathway, mesenchymal-epithelial transition pathway, WNT pathway, poly (ADP-ribose) polymerase, and immune checkpoints. Many clinical trials assessing the agents of targeted therapy are underway and have presented promising and thought-provoking results. With the development of molecular biology techniques, we can identify more targetable molecular alterations in larger patient populations with GI cancer. Targeting these molecules will allow us to reach the goal of precision medicine and improve the outcomes of patients with GI cancer.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
43
|
Liang X, Wu P, Yang Q, Xie Y, He C, Yin L, Yin Z, Yue G, Zou Y, Li L, Song X, Lv C, Zhang W, Jing B. An update of new small-molecule anticancer drugs approved from 2015 to 2020. Eur J Med Chem 2021; 220:113473. [PMID: 33906047 DOI: 10.1016/j.ejmech.2021.113473] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 01/09/2023]
Abstract
A high incidence of cancer has given rise to the development of more anti-tumor drugs. From 2015 to 2020, fifty-six new small-molecule anticancer drugs, divided into ten categories according to their anti-tumor target activities, have been approved. These include TKIs (30 drugs), MAPK inhibitors (3 drugs), CDK inhibitors (3 drugs), PARP inhibitors (3 drugs), PI3K inhibitors (3 drugs), SMO receptor antagonists (2 drugs), AR antagonists (2 drugs), SSTR inhibitors (2 drugs), IDH inhibitors (2 drugs) and others (6 drugs). Among them, PTK inhibitors (30/56) have led to a paradigm shift in cancer treatment with less toxicity and more potency. Each of their structures, approval statuses, applications, SAR analyses, and original research synthesis routes have been summarized, giving us a more comprehensive map for further efforts to design more specific targeted agents for reducing cancer in the future. We believe this review will help further research of potential antitumor agents in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Pan Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Qian Yang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yunyu Xie
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Guizhou Yue
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Bo Jing
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| |
Collapse
|
44
|
Atkinson EL, Iegre J, Brear PD, Zhabina EA, Hyvönen M, Spring DR. Downfalls of Chemical Probes Acting at the Kinase ATP-Site: CK2 as a Case Study. Molecules 2021; 26:1977. [PMID: 33807474 PMCID: PMC8037657 DOI: 10.3390/molecules26071977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Protein kinases are a large class of enzymes with numerous biological roles and many have been implicated in a vast array of diseases, including cancer and the novel coronavirus infection COVID-19. Thus, the development of chemical probes to selectively target each kinase is of great interest. Inhibition of protein kinases with ATP-competitive inhibitors has historically been the most widely used method. However, due to the highly conserved structures of ATP-sites, the identification of truly selective chemical probes is challenging. In this review, we use the Ser/Thr kinase CK2 as an example to highlight the historical challenges in effective and selective chemical probe development, alongside recent advances in the field and alternative strategies aiming to overcome these problems. The methods utilised for CK2 can be applied to an array of protein kinases to aid in the discovery of chemical probes to further understand each kinase's biology, with wide-reaching implications for drug development.
Collapse
Affiliation(s)
- Eleanor L. Atkinson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (E.L.A.); (J.I.)
| | - Jessica Iegre
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (E.L.A.); (J.I.)
| | - Paul D. Brear
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (P.D.B.); (E.A.Z.); (M.H.)
| | - Elizabeth A. Zhabina
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (P.D.B.); (E.A.Z.); (M.H.)
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (P.D.B.); (E.A.Z.); (M.H.)
| | - David R. Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (E.L.A.); (J.I.)
| |
Collapse
|
45
|
Yue S, Li Y, Chen X, Wang J, Li M, Chen Y, Wu D. FGFR-TKI resistance in cancer: current status and perspectives. J Hematol Oncol 2021; 14:23. [PMID: 33568192 PMCID: PMC7876795 DOI: 10.1186/s13045-021-01040-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor receptors (FGFRs) play key roles in promoting the proliferation, differentiation, and migration of cancer cell. Inactivation of FGFRs by tyrosine kinase inhibitors (TKI) has achieved great success in tumor-targeted therapy. However, resistance to FGFR-TKI has become a concern. Here, we review the mechanisms of FGFR-TKI resistance in cancer, including gatekeeper mutations, alternative signaling pathway activation, lysosome-mediated TKI sequestration, and gene fusion. In addition, we summarize strategies to overcome resistance, including developing covalent inhibitors, developing dual-target inhibitors, adopting combination therapy, and targeting lysosomes, which will facilitate the transition to precision medicine and individualized treatment.
Collapse
Affiliation(s)
- Sitong Yue
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yukun Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China
| | - Xiaojuan Chen
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Juan Wang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China
| | - Meixiang Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China
| | - Yongheng Chen
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Daichao Wu
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
| |
Collapse
|
46
|
Peng M, Xiao D, Bu Y, Long J, Yang X, Lv S, Yang X. Novel Combination Therapies for the Treatment of Bladder Cancer. Front Oncol 2021; 10:539527. [PMID: 33585182 PMCID: PMC7873600 DOI: 10.3389/fonc.2020.539527] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022] Open
Abstract
Bladder cancer is the ninth most frequently diagnosed cancer world-wide and ranks 13th in cancer-related deaths. Two tremendous breakthroughs in bladder cancer therapy over the last decades are the approval of immune checkpoint inhibitors(ICIs)and the fibroblast growth factor receptor tyrosine kinase inhibitor (FGFR-TKI) erdafitinib for treating this deadly disease. Despite the beneficial effects of these approaches, the low response rate and the potential resistance of the cancer are major concerns. Hence, novel combination therapies to overcome these limitations have been investigated. In this context, combining immunotherapy with targeted drugs is an appealing therapeutic option to improve response and reduce the emergence of resistance in the management of bladder cancer. In this review, the rationale of using different therapeutic combinations is discussed according to the mechanistic differences, emphasizing the efficacy and safety based on evidence collected from preclinical and clinical studies. Finally, we highlight the limitations of these combinations and provide suggestions for further efforts in this challenging field.
Collapse
Affiliation(s)
- Mei Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Yizhi Bu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Jiahui Long
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Shuhe Lv
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
47
|
Torres-Jiménez J, Albarrán-Fernández V, Pozas J, Román-Gil MS, Esteban-Villarrubia J, Carrato A, Rosero A, Grande E, Alonso-Gordoa T, Molina-Cerrillo J. Novel Tyrosine Kinase Targets in Urothelial Carcinoma. Int J Mol Sci 2021; 22:E747. [PMID: 33451055 PMCID: PMC7828553 DOI: 10.3390/ijms22020747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/03/2023] Open
Abstract
Urothelial carcinoma represents one of the most prevalent types of cancer worldwide, and its incidence is expected to grow. Although the treatment of the advanced disease was based on chemotherapy for decades, the developments of different therapies, such as immune checkpoint inhibitors, antibody drug conjugates and tyrosine kinase inhibitors, are revolutionizing the therapeutic landscape of this tumor. This development coincides with the increasing knowledge of the pathogenesis and genetic alterations in urothelial carcinoma, from the non-muscle invasive setting to the metastatic one. The purpose of this article is to provide a comprehensive review of the different tyrosine kinase targets and their roles in the therapeutic scene of urothelial carcinoma.
Collapse
Affiliation(s)
- Javier Torres-Jiménez
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.T.-J.); (V.A.-F.); (J.P.); (M.S.R.-G.); (J.E.-V.)
| | - Víctor Albarrán-Fernández
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.T.-J.); (V.A.-F.); (J.P.); (M.S.R.-G.); (J.E.-V.)
| | - Javier Pozas
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.T.-J.); (V.A.-F.); (J.P.); (M.S.R.-G.); (J.E.-V.)
| | - María San Román-Gil
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.T.-J.); (V.A.-F.); (J.P.); (M.S.R.-G.); (J.E.-V.)
| | - Jorge Esteban-Villarrubia
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.T.-J.); (V.A.-F.); (J.P.); (M.S.R.-G.); (J.E.-V.)
| | - Alfredo Carrato
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain;
| | - Adriana Rosero
- Medical Oncology Department, Infanta Cristina Hospital, 28607 Madrid, Spain;
| | - Enrique Grande
- Department of Medical Oncology, MD Anderson Cancer Center, 28033 Madrid, Spain
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain;
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain;
| |
Collapse
|
48
|
Abstract
The identification of mutations in FGFR3 in bladder tumors in 1999 led to major interest in this receptor and during the subsequent 20 years much has been learnt about the mutational profiles found in bladder cancer, the phenotypes associated with these and the potential of this mutated protein as a target for therapy. Based on mutational and expression data, it is estimated that >80% of non-muscle-invasive bladder cancers (NMIBC) and ∼40% of muscle-invasive bladder cancers (MIBC) have upregulated FGFR3 signalling, and these frequencies are likely to be even higher if alternative splicing of the receptor, expression of ligands and changes in regulatory mechanisms are taken into account. Major efforts by the pharmaceutical industry have led to development of a range of agents targeting FGFR3 and other FGF receptors. Several of these have entered clinical trials, and some have presented very encouraging early results in advanced bladder cancer. Recent reviews have summarised the drugs and related clinical trials in this area. This review will summarise what is known about the effects of FGFR3 and its mutant forms in normal urothelium and bladder tumors, will suggest when and how this protein contributes to urothelial cancer pathogenesis and will highlight areas that may benefit from further study.
Collapse
Affiliation(s)
- Margaret A. Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James’s, St James’s University Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
49
|
Erben P, Becker C, Tsaur I, Stope MB, Todenhöfer T. [Molecular subtypes of urothelial carcinoma of the bladder-background and clinical relevance]. Urologe A 2020; 60:81-88. [PMID: 33242119 DOI: 10.1007/s00120-020-01396-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Advanced and metastatic stages of bladder cancer are associated with a poor prognosis. Therapy options are currently limited to systemic therapy with chemo- and immunotherapeutics. In order to improve individual therapy and especially to achieve a more favorable prognosis for these patients, intrinsic molecular subtypes have recently been identified in urothelial carcinoma of the bladder. This review article presents the latest developments, background, and clinical relevance of molecular subtypes in urothelial carcinoma of the bladder. The existing literature and current study data were analyzed to present and evaluate the different molecular classification systems. A focus was placed on the possible therapeutic implications of these molecular subtypes. Although promising progress has been made in the molecular subtyping of urothelial carcinoma, this classification has not yet found its way into clinical application. Multicenter prospective studies with standardized study protocols are still lacking. Previous studies differ in molecular markers, sample collection and preparation procedures, and analytical protocols. Standardization is urgently needed before guidelines can be established and targeted treatment regimens implemented. In principle, the aim should be to develop a stable and as simple as possible methodology, enabling personalized treatment based on molecular subtypes to be broadly applied, and not just in specialized expert centers.
Collapse
Affiliation(s)
- Philipp Erben
- Klinik für Urologie und Urochirurgie, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland.,Fachgruppe Molekulare Urologie der Arbeitsgruppe urologische Forschung (AuF) der Deutschen Gesellschaft für Urologie, Berlin, Deutschland
| | - Christoph Becker
- Fachgruppe Molekulare Urologie der Arbeitsgruppe urologische Forschung (AuF) der Deutschen Gesellschaft für Urologie, Berlin, Deutschland. .,Forschungskoordination, Deutsche Gesellschaft für Urologie (DGU) e. V., Uerdinger Straße 64, 40474, Düsseldorf, Deutschland.
| | - Igor Tsaur
- Fachgruppe Molekulare Urologie der Arbeitsgruppe urologische Forschung (AuF) der Deutschen Gesellschaft für Urologie, Berlin, Deutschland.,Klinik für Urologie und Kinderurologie, Universitätsmedizin Mainz, Mainz, Deutschland
| | - Matthias B Stope
- Fachgruppe Molekulare Urologie der Arbeitsgruppe urologische Forschung (AuF) der Deutschen Gesellschaft für Urologie, Berlin, Deutschland.,Klinik für Gynäkologie und Gynäkologische Onkologie, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Tilman Todenhöfer
- Fachgruppe Molekulare Urologie der Arbeitsgruppe urologische Forschung (AuF) der Deutschen Gesellschaft für Urologie, Berlin, Deutschland.,Studienpraxis Urologie, Nürtingen, Deutschland
| | | |
Collapse
|
50
|
Mutant Kras as a Biomarker Plays a Favorable Role in FL118-Induced Apoptosis, Reactive Oxygen Species (ROS) Production and Modulation of Survivin, Mcl-1 and XIAP in Human Bladder Cancer. Cancers (Basel) 2020; 12:cancers12113413. [PMID: 33217967 PMCID: PMC7698790 DOI: 10.3390/cancers12113413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary FL118 is a novel orally available small molecule anticancer drug. We found that bladder cancer cells with a mutant Kras is highly sensitive to FL118-induced cell growth inhibition and cell death induction through inhibiting the anti-cancer cell death and drug resistance factors (survivin, Mcl-1, XIAP). In the Kras-mutation bladder cancer cells, FL118 can stimulate the reactive oxygen species (ROS) over-production for killing bladder cancer cells and inhibiting bladder cancer cell-established tumor growth. Elimination of mutant Kras by Kras-specific shRNA technology in mutant Kras-containing bladder cancer cell-established tumor decreased FL118 effectiveness to inhibit bladder cancer tumor growth. In this regard, mutant Kras is a potential favorable biomarker for FL118. This finding is significant because mutant Kras is known to be a formidable challenge treatment resistant factor in various types of cancer. Thus, FL118 could use mutant Kras as favorable biomarker for patient selection to carry out precision medicine. Abstract Tumor heterogeneity in key gene mutations in bladder cancer (BC) is a major hurdle for the development of effective treatments. Using molecular, cellular, proteomics and animal models, we demonstrated that FL118, an innovative small molecule, is highly effective at killing T24 and UMUC3 high-grade BC cells, which have Hras and Kras mutations, respectively. In contrast, HT1376 BC cells with wild-type Ras are insensitive to FL118. This concept was further demonstrated in additional BC and colorectal cancer cells with mutant Kras versus those with wild-type Kras. FL118 strongly induced PARP cleavage (apoptosis hallmark) and inhibited survivin, XIAP and/or Mcl-1 in both T24 and UMUC3 cells, but not in the HT1376 cells. Silencing mutant Kras reduced both FL118-induced PARP cleavage and downregulation of survivin, XIAP and Mcl-1 in UMUC3 cells, suggesting mutant Kras is required for FL118 to exhibit higher anticancer efficacy. FL118 increased reactive oxygen species (ROS) production in T24 and UMUC3 cells, but not in HT1376 cells. Silencing mutant Kras in UMUC3 cells reduced FL118-mediated ROS generation. Proteomics analysis revealed that a profound and opposing Kras-relevant signaling protein is changed in UMUC3 cells and not in HT1376 cells. Consistently, in vivo studies indicated that UMUC3 tumors are highly sensitive to FL118 treatment, while HT1376 tumors are highly resistant to this agent. Silencing mutant Kras in UMUC3 cell-derived tumors decreases UMUC3 tumor sensitivity to FL118 treatment. Together, our studies revealed that mutant Kras is a favorable biomarker for FL118 targeted treatment.
Collapse
|