1
|
Jin H, Noh W, Kyung K, Yeo WS, Song YH, Heo YS, Kim DE. Aptamer- vs Fab-Conjugated Liposomes: A Comparative Study in Targeting Acute Myeloid Leukemia Cells. Bioconjug Chem 2025; 36:815-822. [PMID: 40148126 DOI: 10.1021/acs.bioconjchem.5c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy characterized by uncontrolled proliferation of abnormal myeloid cells with a generally poor prognosis despite advancements in chemotherapy and stem cell transplantation. To enhance therapeutic efficacy and minimize systemic toxicity, we designed liposomal nanoparticles functionalized with two distinct targeting ligands, a DNA aptamer or fragment-antigen-binding (Fab) antibody, targeting the surface marker transmembrane glycoprotein CD33 antigen (CD33) on AML cells. Aptamer- and Fab-conjugated liposomes (Apt-Lipm and Fab-Lipm, respectively) were prepared and tested for cellular uptake by CD33-positive AML cell lines. Comparative studies revealed that Fab-Lipm exhibited significantly superior binding affinity, targeting efficiency, and cellular uptake compared with Apt-Lipm. Furthermore, we demonstrated the intracellular distribution and endocytic pathways of Fab-Lipm during the cellular uptake. This comparative study of aptamer- and Fab-conjugated liposomes suggests that the Fab-conjugated liposomal system offers enhanced precision in targeting AML cells for the development of effective therapeutic strategies against hematologic malignancies.
Collapse
Affiliation(s)
- Hyesoo Jin
- Department of Bioscience and Biotechnology, Konkuk University, Gwangjin-gu, Seoul05029, Republic of Korea
| | - Wooseong Noh
- Department of Bioscience and Biotechnology, Konkuk University, Gwangjin-gu, Seoul05029, Republic of Korea
| | - Kangwuk Kyung
- Department of Bioscience and Biotechnology, Konkuk University, Gwangjin-gu, Seoul05029, Republic of Korea
| | - Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Konkuk University, Gwangjin-gu, Seoul05029, Republic of Korea
| | - Ye Han Song
- Department of Chemistry, Konkuk University, Gwangjin-gu, Seoul05029, Republic of Korea
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, Gwangjin-gu, Seoul05029, Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Gwangjin-gu, Seoul05029, Republic of Korea
- Uniwon PharmGene Inc, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Hernandez-Barry H, dela Cruz-Chuh J, Kajihara KK, Asundi J, Vandlen R, Zhang D, Hazenbos WL, Pillow T, Liu Y, Wu C, Kozak KR, Loyet KM. Mechanistic Characterization of the Potency of THIOMAB Antibody-Drug Conjugates Targeting Staphylococcus aureus and ETbR-Expressing Tumor Cells Using Quantitative LC-MS/MS Analysis of Intracellular Drug Accumulation. Bioconjug Chem 2025; 36:652-661. [PMID: 40179311 PMCID: PMC12007502 DOI: 10.1021/acs.bioconjchem.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
THIOMAB drug conjugate (TDC) technology provides site-specific conjugation of linker drugs to antibodies, allowing for targeted delivery of the payload. While a direct measurement of TDC cytotoxic potency allows efficient screening and confirmation that new drugs conjugated to antibodies result in proper processing in cells, additional mechanistic characterization is often needed to provide information-rich data to guide further optimization of TDC design. For example, a quantitative understanding of how TDCs are processed intracellularly can help determine which processing step is impacting payload delivery and thereby inform the basis of the TDC efficacy. Here, we measure the cellular accumulation of two different TDC drug payloads: MAPK (mitogen-activated protein kinase) pathway inhibitor targeting ETbR-expressing tumor cells and an antibiotic active against Staphylococcus aureus with an in vitro cell-based drug release LC-MS/MS assay in a 96-well format. This assay allowed us to correlate the cellular potency of each unconjugated molecule with the amount of payload that accumulated inside the cell. In the case of the pathway inhibitor drug, the biochemical characterization of TDC processing by cathepsin B and purified human liver enzyme extract demonstrated a correlation between the efficiency of the linker drug cleavage and intracellular payload accumulation. For the antibody-antibiotic conjugate, kinetic analysis of intracellular free drug retention provided valuable insight into the chemistry modifications needed for an efficient TDC. Taken together, we demonstrated the utility of quantitative LC-MS/MS assays as one tool in guiding the design of more effective TDCs via the mechanistic release characterization of two distinct payloads.
Collapse
Affiliation(s)
| | | | | | - Jyoti Asundi
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Richard Vandlen
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Donglu Zhang
- Genentech, Inc., South San Francisco, California 94080, United States
| | | | - Thomas Pillow
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Yichin Liu
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Cong Wu
- Genentech, Inc., South San Francisco, California 94080, United States
| | | | - Kelly M. Loyet
- Genentech, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
3
|
Zhao W, Feng X, Yang S, Yuan G, Huang M, Ding L, He Z, Wu J. Ophthalmotoxicity induced by antibody-drug conjugates: a pharmacovigilance study of the FDA adverse event reporting system (FAERS). Expert Opin Drug Saf 2025:1-11. [PMID: 40202446 DOI: 10.1080/14740338.2025.2491125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) have demonstrated remarkable therapeutic efficacy in refractory cancers, however, ophthalmotoxicity remains a serious concern. This study aimed to investigate the association between ADCs and ophthalmotoxicity. RESEARCH DESIGN AND METHODS A retrospective pharmacovigilance study was conducted utilizing data extracted from the U.S. Food and Drug Administration Adverse Events Reporting System (FAERS) from 2004 to 2023. Disproportionality analyses were performed using the reporting odds ratio (ROR) and information component (IC), with sensitivity analyses and subgroup evaluations by age and sex. RESULTS A total of 1992 cases of ophthalmotoxicity linked to ADCs were identified, with a median latency of 40 days. The correlation between ophthalmotoxicity and ADCs was higher than with other medications (IC = 0.67, 95% CI:0.64-0.70). Signal detection revealed 36 adverse events unreported in product labeling. Sensitivity analyses confirmed the robustness of our results on the association between ADCs and ocular toxicity, with higher reporting in females compared to males (OR = 1.25, 95% CI: 1.11-1.40). CONCLUSIONS ADCs had different profiles of ophthalmotoxicity. Our pharmacovigilance study suggested increased reporting of ophthalmotoxicity associated with ADCs.
Collapse
Affiliation(s)
- Wenxia Zhao
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Xin Feng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shan Yang
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Guosen Yuan
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - LinXiaoxiao Ding
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhichao He
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Junyan Wu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| |
Collapse
|
4
|
Kang S, Kim SB. Toxicities and management strategies of emerging antibody-drug conjugates in breast cancer. Ther Adv Med Oncol 2025; 17:17588359251324889. [PMID: 40151551 PMCID: PMC11946287 DOI: 10.1177/17588359251324889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/14/2025] [Indexed: 03/29/2025] Open
Abstract
Antibody-drug conjugates (ADCs) offer a promising therapeutic approach for various cancers, enhancing the therapeutic window while mitigating systemic adverse effects on healthy tissues. ADCs have achieved remarkable clinical success, particularly in treating breast cancer, becoming a standard therapy across all subtypes, including hormone receptor-positive, human epidermal growth factor receptor 2-positive, and triple-negative breast cancer. Although designed to selectively target antigens via monoclonal antibodies, ADCs can exhibit toxicity in normal tissues, often due to off-target effects of their cytotoxic payloads. Understanding and managing these toxicities according to established guidelines are crucial for enhancing ADC clinical efficacy, minimizing adverse events, and ultimately improving patient outcomes. This review comprehensively examines the toxicities of ADCs employed in breast cancer treatment and explores their management strategies. Furthermore, we investigate novel ADCs beyond trastuzumab deruxtecan and sacituzumab govitecan, evaluating their potential efficacy and corresponding safety profiles.
Collapse
Affiliation(s)
- Sora Kang
- Division of Hemato-Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| |
Collapse
|
5
|
Gong J, Zhang W, Balthasar JP. Camptothein-Based Anti-Cancer Therapies and Strategies to Improve Their Therapeutic Index. Cancers (Basel) 2025; 17:1032. [PMID: 40149365 PMCID: PMC11941615 DOI: 10.3390/cancers17061032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Camptothecin and its derivatives (CPTs) are potent antineoplastic agents that exert their effects by inhibiting DNA topoisomerase I, leading to apoptosis during cell proliferation. Since their discovery in the 1960s, CPTs have faced challenges such as low water solubility, pH-dependent lactone ring instability, and severe off-target toxicities. Despite extensive research, only two CPTs, irinotecan and topotecan, have received health authority approval. Ongoing clinical trials continue to explore the use of CPTs in combination with targeted therapies and immunotherapies to expand their clinical use. Drug delivery systems, including liposomes and antibody-drug conjugates (ADCs), have significantly enhanced the therapeutic index of CPTs. Liposomal irinotecan (Onivyde®, Ipsen, Paris, France) and two ADCs delivering CPT payloads, trastuzumab deruxtecan (Enhertu®, Daiichi Sankyo, Tokyo, Japan) and sacituzumab govitecan (Trodelvy®, Gilead Sciences, Inc., Foster City, CA, USA), have demonstrated substantial efficacy and safety. There is promise that novel strategies such as inverse targeting and co-dosing with anti-idiotypic distribution enhancers may expand the utility of CPT ADCs. This review highlights CPT therapies in clinical use and discusses approaches to further enhance their therapeutic selectivity.
Collapse
Affiliation(s)
| | | | - Joseph P. Balthasar
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA (W.Z.)
| |
Collapse
|
6
|
Bouguerra Zina B, Rousseau F, Fauquier S, Sabatier R, Kfoury M. Practical clinical management of ocular adverse events related to Antibody-Drug Conjugates in gynaecological malignancies. Cancer Treat Rev 2025; 134:102867. [PMID: 39970828 DOI: 10.1016/j.ctrv.2024.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 02/21/2025]
Abstract
BACKGROUND The advent of Antibody-Drug Conjugates (ADC) represents a significant advancement in targeted therapy for gynaecological malignancies. However, the ocular toxicities associated with ADCs, particularly Tisotumab Vedotin (TV) and Mirvetuximab Soravtansine (MIRV) necessitate effective mitigation in order to optimise patient care. METHODS This review synthesises findings from clinical trials to delineate the spectrum of ocular adverse events induced by ADCs. The analysis focuses on the incidence, onset, severity and reversibility of adverse events. It examines the underlying mechanisms of toxicity and provides management strategies based on study protocols. RESULTS Adverse events mainly impact the anterior ocular segment, resulting in conjunctivitis and keratopathy. They affect up to 56 % of patients treated with MIRV and 50 to 60 % of those receiving TV. Symptoms like blurred vision, dryness and pain hinder the patient's quality of life. Events are CTCAE grade 3 or higher in less than 10 % of cases. The median time to onset is 1.3 months. However, ocular toxicity may appear up to 10 months after treatment initiation, indicating a need for prolonged vigilance. Primary prophylaxis calls for local corticotherapy, lubricants and in some cases, vasoconstrictors. Despite the potential for severity, most cases are reversible with local treatment and transient dose reduction and/or delay. Close monitoring is crucial for early detection and subsequent management. CONCLUSIONS Clinicians ought to be cognizant of the potential ocular toxicity of ADCs. Proactive prophylaxis, patient education and a multidisciplinary approach involving ophthalmologists are paramount to minimising the impact of these AEs. Further research is essential to measure the real outcome of preventive strategies and balance their benefits with potential short and long-term risks.
Collapse
Affiliation(s)
- Bochra Bouguerra Zina
- Department of Medical Oncology, Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, Marseille, France
| | - Frédérique Rousseau
- Department of Medical Oncology, Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, Marseille, France
| | | | - Renaud Sabatier
- Department of Medical Oncology, Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, Marseille, France; CRCM, Predictive Oncology Laboratory, Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, Marseille, France
| | - Maria Kfoury
- Department of Medical Oncology, Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, Marseille, France.
| |
Collapse
|
7
|
Bomba HN, Fulton MD, Savoy EA, Langton-Webster B, Berkman CE. A Unique Prodrug Targeting the Prostate-Specific Membrane Antigen for the Delivery of Monomethyl Auristatin E. Bioconjug Chem 2025; 36:169-178. [PMID: 39881600 DOI: 10.1021/acs.bioconjchem.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Monomethyl auristatin E (MMAE) is a promising treatment option for patients diagnosed with prostate cancer (PCa); however, toxicities prevent MMAE from being administered as free drug. No MMAE-based treatment is currently marketed for PCa. Herein, we describe a small-molecule-drug conjugate, CTT2274, for the selective delivery of MMAE. CTT2274 is composed of a prostate-specific membrane antigen (PSMA)-binding scaffold, a biphenyl motif, a pH-sensitive phosphoramidate linker, and MMAE payload. We demonstrate that CTT2274 shows selective binding to PSMA, which is overexpressed on PCa cells, and induces tumor cell death in vitro. In a patient-derived xenograft tumor model of PCa in mice, we show that weekly intravenous dosing of CTT2274 at 3.6 mg/kg for six weeks is superior to treatment with free MMAE at equivalent doses. Mice treated with CTT2274 experienced prolonged tumor suppression and significantly greater overall survival than mice treated with PBS. Additionally, the safety of CTT2274 compared to an equivalent dose of MMAE was assessed in healthy, non-tumor-bearing mice. Our results demonstrate that CTT2274 therapy is as efficacious as MMAE, results in superior overall survival, and has a more favorable safety profile. Together, these data indicate that CTT2274 is a candidate for clinical translation for the treatment of PCa.
Collapse
Affiliation(s)
- Hunter N Bomba
- Cancer Targeted Technology, Woodinville, Washington 98072, United States
| | - Melody D Fulton
- Cancer Targeted Technology, Woodinville, Washington 98072, United States
| | - Emily A Savoy
- Cancer Targeted Technology, Woodinville, Washington 98072, United States
| | | | - Clifford E Berkman
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
8
|
Xu L, Xu P, Wang J, Ji H, Zhang L, Tang Z. Advancements in clinical research and emerging therapies for triple-negative breast cancer treatment. Eur J Pharmacol 2025; 988:177202. [PMID: 39675457 DOI: 10.1016/j.ejphar.2024.177202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Triple-negative breast cancer (TNBC), defined by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) expression, is acknowledged as the most aggressive form of breast cancer (BC), comprising 15%-20% of all primary cases. Despite the prevalence of TNBC, effective and well-tolerated targeted therapies remain limited, with chemotherapy continuing to be the mainstay of treatment. However, the horizon is brightened by recent advancements in immunotherapy and antibody-drug conjugates (ADCs), which have garnered the U.S. Food and Drug Administration (FDA) approval for various stages of TNBC. Poly (ADP-ribose) polymerase inhibitors (PARPi), particularly for TNBC with BRCA mutations, present a promising avenue, albeit with the challenge of resistance that must be addressed. The success of phosphoinositide-3 kinase (PI3K) pathway inhibitors in hormone receptor (HR)-positive BC suggests potential applicability in TNBC, spurring optimism within the research community. This review endeavors to offer a comprehensive synthesis of both established and cutting-edge targeted therapies for TNBC. We delve into the specifics of PARPi, androgen receptor (AR) inhibitors, Cancer stem cells (CSCs), PI3K/Protein Kinase B (AKT)/mammalian target of rapamycin (mTOR), the transforming growth factor-beta (TGF-β), Ntoch, Wnt/β-catenin, hedgehog (Hh) pathway inhibitors, Epigenetic target-mediated drug delivery, ADCs, immune checkpoint inhibitors (ICIs)and novel immunotherapeutic solutions, contextualizing TNBC within current treatment paradigms. By elucidating the mechanisms of these drugs and their prospective clinical applications, we aim to shed light on the challenges and underscore the beacon of hope that translational research and innovative therapies represent for the oncology field.
Collapse
Affiliation(s)
- Lili Xu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Pengtao Xu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Jingsong Wang
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, 628000, China
| | - Hui Ji
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
9
|
He Q, Jiang L, Xu Y, Wang M. Evaluating the safety of antibody-drug conjugates in lung cancer: A systematic review and meta-analysis. Lung Cancer 2025; 201:108425. [PMID: 39923718 DOI: 10.1016/j.lungcan.2025.108425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Antibody-drug conjugates (ADC) have emerged as a promising treatment for lung cancer. However, their safety profile requires further analysis. This study assessed adverse events (AE) in patients with lung cancer treated with ADCs, with particular focus on differences in pathological types, therapeutic options, and drug components. METHODS Prospective trials from various databases up to June 11, 2024, that analyzed treatment-emergent AEs (TEAEs), treatment-related AEs (TRAEs), mortality, and drug discontinuation were identified. Incidence rates were pooled using a random effects model, and their corresponding 95% confidence intervals (CIs) were calculated. RESULTS The analysis included 28 studies with 3,127 participants. The pooled incidence of all-grade TEAEs and TRAEs was 98.9 % and 91.4 %, respectively, whereas that of grade ≥ 3 TEAEs and TRAEs was 65.9 % and 41.7 %, respectively. The gastrointestinal system was frequently involved, albeit predominantly in low grades. Hematological system involvement was prevalent in grade ≥ 3 AEs, with respiratory system disorders being more prevalent in severe AEs. Respiratory system disorders were the primary cause of death and drug discontinuation. Subgroup analyses revealed higher incidences of AEs in SCLC than in NSCLC, in combination therapies than in monotherapies, and in ADCs with cleavable linkers. ADCs targeting delta-like protein 3 or carrying pyrrolobenzodiazepine dimer as payloads exhibit higher incidences of grade ≥ 3 TEAEs than those targeting HER2. CONCLUSION Effective managing ADC toxicities is crucial in lung cancer treatment, with AE incidence and profiles varying by cancer pathology, treatment regimen, and ADC components. Close monitoring of symptoms associated with gastrointestinal, infection, and respiratory systems is essential. PROSPERO registration number: CRD42024546210.
Collapse
Affiliation(s)
- Qi He
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Jiang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Xu R, Zheng Y, Tai W. A single-chain fab derived drug conjugate for HER2 specific delivery. Biomaterials 2025; 313:122798. [PMID: 39244823 DOI: 10.1016/j.biomaterials.2024.122798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Despite the development of antibody-drug conjugates, the fragment Fab-based drug conjugates offer some unique capabilities in terms of safety, clearance, penetration and others. Current methods for preparing Fab drug conjugates are limited by the availability and stability of Fab proteins, leaving reports on this rare. Here, we found that a single-chain scaffold of Fab enables stabilization of the paired structure and supports high-yield expression in bacteria cytoplasm. Furthermore, we conjugated anti-neoplastic agent SN38 to the C-terminus by sortase A ligation and generated a homogenous Fab conjugate with the drug-to-Fab ratio of 1. The resulting anti-HER2 Fab-SN38 conjugate demonstrated potent and antigen-dependent cell-killing ability with the aid of its special cathepsin-triggered cyclization-promoted release mechanism. In vivo, Fab-SN38 can prevent growths of HER2-positive tumors in athymic mice and be well tolerated to the treatment at 7 mg/kg per dose. Anti-tumor activity, high dose tolerance and penetration advantage observed in this study would merit Fab conjugate investigation in target chemotherapy.
Collapse
Affiliation(s)
- Ruolin Xu
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Yan Zheng
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Wanyi Tai
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.
| |
Collapse
|
11
|
Gallin V, Nölle B, Schub N, Roider J. Visualization of Keratopathy Associated With the Antibody-Drug Conjugate Belantamab Mafodotin Using Infrared Imaging in Patients With Multiple Myeloma. Cornea 2025; 44:196-202. [PMID: 38900711 PMCID: PMC11676612 DOI: 10.1097/ico.0000000000003596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/05/2024] [Accepted: 05/07/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE The treatment of patients with relapsed/refractory multiple myeloma (RRMM) with the antibody-drug conjugate belantamab mafodotin is affected by ocular adverse effects, most frequently keratopathy with corneal microcyst-like epithelial changes (MECs). To assess ocular side effects, the Keratopathy and Visual Acuity (KVA) scale, based on the extent of keratopathy subjectively graded on slit-lamp examination and the change in best corrected visual acuity from baseline, was created. Advanced corneal imaging techniques have been explored to further characterize MECs and identify objective imaging biomarkers. We examined whether infrared reflectance imaging of the anterior segment (AS-IR) could contribute to the assessment, monitoring, and documentation of corneal toxicity in patients treated with belantamab mafodotin. METHODS In addition to the KVA examination, AS-IR imaging was performed. AS-IR images were evaluated for presence of visible hyporeflective lesions and their spatial and temporal distribution between visits and compared with keratopathy identified on slit-lamp examination. To standardize the assessment, a scoring system for lesions on AS-IR was implemented for additional analysis. RESULTS Nine patients undergoing treatment with belantamab mafodotin for up to 9 months were examined. All patients exhibited hyporeflective lesions on AS-IR imaging, indicative of corneal toxicity corresponding to MECs observed on slit-lamp examination. AS-IR lesions showed early occurrence, variable quantity and size, and distinct distribution patterns, correlating with clinical findings during treatment. CONCLUSIONS As shown for belantamab mafodotin, AS-IR imaging represents a fast, noninvasive, supplemental method for documentation, monitoring, and assessment of corneal adverse effects during treatment with antibody-drug conjugates, which may enable more standardized analyses.
Collapse
Affiliation(s)
- Vivian Gallin
- Department of Ophthalmology, UKSH Campus Kiel, Kiel, Germany; and
| | - Bernhard Nölle
- Department of Ophthalmology, UKSH Campus Kiel, Kiel, Germany; and
| | - Natalie Schub
- Department of Internal Medicine II, Division of Stem Cell Transplantation and Immunotherapy, UKSH Campus Kiel, Kiel, Germany
| | - Johann Roider
- Department of Ophthalmology, UKSH Campus Kiel, Kiel, Germany; and
| |
Collapse
|
12
|
Wang Y, Li G, Wang H, Qi Q, Wang X, Lu H. Targeted therapeutic strategies for Nectin-4 in breast cancer: Recent advances and future prospects. Breast 2025; 79:103838. [PMID: 39577073 PMCID: PMC11616553 DOI: 10.1016/j.breast.2024.103838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/31/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
Nectin-4 is a cell adhesion molecule which has gained more and more attention as a therapeutic target in cancer recently. Overexpression of Nectin-4 has been observed in various tumors, including breast cancer, and is associated with tumor progression. Enfortumab vedotin(EV)is an antibody-drug conjugate (ADC) targeting Nectin-4, which has been approved by FDA for the treatment of urothelial carcinoma. Notably, Nectin-4 was also investigated as a target for breast cancer in preclinical and clinical settings. Nectin-4-targeted approaches, such as ADCs, oncolytic viruses, photothermal therapy and immunotherapy, have shown promising results in early-phase clinical trials. These therapies offer novel strategies for delivering targeted treatments to Nectin-4-expressing cancer cells, enhancing treatment efficacy and minimizing off-target effects. In conclusion, this review aims to provide an overview of the latest advances in understanding the role of Nectin-4 in breast cancer and discuss the future development prospects of Nectin-4 targeted agents.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Guangliang Li
- Department of Medical Oncology (Breast Cancer), Zhejiang Cancer Hospital, Hangzhou, China
| | - Hanying Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Quan Qi
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Perra M, Castangia I, Aroffu M, Fulgheri F, Abi-Rached R, Manca ML, Cortés H, Del Prado-Audelo ML, Nomura-Contreras C, Romero-Montero A, Büsselberg D, Leyva-Gómez G, Sharifi-Rad J, Calina D. Maytansinoids in cancer therapy: advancements in antibody-drug conjugates and nanotechnology-enhanced drug delivery systems. Discov Oncol 2025; 16:73. [PMID: 39838217 PMCID: PMC11751265 DOI: 10.1007/s12672-025-01820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
Cancer remains the second leading cause of death globally, driving the need for innovative therapies. Among natural compounds, maytansinoids have shown significant promise, contributing to nearly 25% of recently approved anticancer drugs. Despite their potential, early clinical trials faced challenges due to severe side effects, prompting advancements in delivery systems such as antibody-maytansinoid conjugates (AMCs). This review highlights the anticancer activity of maytansinoids, with a focus on AMCs designed to target cancer cells specifically. Preclinical and clinical studies show that AMCs, including FDA-approved drugs like Kadcyla and Elahere, effectively inhibit tumor growth while reducing systemic toxicity. Key developments include improved synthesis methods, linker chemistry and payload design. Ongoing research aims to enhance the safety and efficacy of AMCs, integrate nanotechnology for drug delivery, and identify novel therapeutic targets. These advancements hold potential to transform maytansinoid-based cancer treatments in the future.
Collapse
Affiliation(s)
- Matteo Perra
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Ines Castangia
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Matteo Aroffu
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Federica Fulgheri
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Rita Abi-Rached
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Maria Letizia Manca
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy.
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | | | | | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
14
|
Boos A, Most J, Cahuzac H, Moreira da Silva L, Daubeuf F, Erb S, Cianférani S, Hernandez-Alba O, Semenchenko C, Dovgan I, Kolodych S, Detappe A, Dantzer F, Wagner A, Zeniou M, Chaubet G. Antibody-Vincristine Conjugates as Potent Anticancer Therapeutic Agents. J Med Chem 2025; 68:695-705. [PMID: 39680648 DOI: 10.1021/acs.jmedchem.4c02425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Antibody-drug conjugates (ADCs) are a well-established class of therapeutics primarily used in oncology to selectively deliver highly cytotoxic agents into cancer cells. While ADCs should theoretically spare healthy tissues and diminish side effects in patients, off-target toxicity is still observed, all the more serious, as the drugs are extremely potent. In the quest toward safer payloads, we used the conventional chemotherapeutic drug vincristine to develop antibody-vincristine conjugates. Vincristine was N-alkylated with a cleavable linker and the resulting linker-payload conjugated to free cysteines of antibodies. We show that trastuzumab-vincristine conjugates display subnanomolar potency in vitro on HER2-positive cells, 2 orders of magnitude lower than free vincristine and comparable with marketed ADC. In vivo, trastuzumab-vincristine conjugates led to remarkable efficacy when compared to two standards of care, with complete tumor regression just 9 days after single administration. This highlights the untapped potential of the chemotherapeutic arsenal toward the development of novel ADC.
Collapse
Affiliation(s)
- Agathe Boos
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Julien Most
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- Bio-Functional Chemistry, Laboratoire d'Excellence Medalis, UMR7199, Centre National de la Recherche Scientifique/Université de Strasbourg, Faculté de Pharmacie de Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Héloïse Cahuzac
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- Bio-Functional Chemistry, Laboratoire d'Excellence Medalis, UMR7199, Centre National de la Recherche Scientifique/Université de Strasbourg, Faculté de Pharmacie de Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Louis Moreira da Silva
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- Bio-Functional Chemistry, Laboratoire d'Excellence Medalis, UMR7199, Centre National de la Recherche Scientifique/Université de Strasbourg, Faculté de Pharmacie de Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - François Daubeuf
- PCBIS (CNRS - UAR 3286), ESBS - Pôle API, 300, boulevard Sébastien Brant, CS 10413 67412 Illkirch-Graffenstaden Cedex, France
| | - Stéphane Erb
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- BioOrganic Mass Spectrometry, Laboratoire d'Excellence Medalis, UMR7178, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut pluridisciplinaire Hubert Curien, 23 rue du loess, BP 28 67037, Strasbourg Cedex 2, France
- Infrastructure Nationale de Protéomique ProFI ─ FR2048, 67087 Strasbourg, France
| | - Sarah Cianférani
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- BioOrganic Mass Spectrometry, Laboratoire d'Excellence Medalis, UMR7178, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut pluridisciplinaire Hubert Curien, 23 rue du loess, BP 28 67037, Strasbourg Cedex 2, France
- Infrastructure Nationale de Protéomique ProFI ─ FR2048, 67087 Strasbourg, France
| | - Oscar Hernandez-Alba
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- BioOrganic Mass Spectrometry, Laboratoire d'Excellence Medalis, UMR7178, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut pluridisciplinaire Hubert Curien, 23 rue du loess, BP 28 67037, Strasbourg Cedex 2, France
- Infrastructure Nationale de Protéomique ProFI ─ FR2048, 67087 Strasbourg, France
| | | | - Igor Dovgan
- Carbogen Amcis AG, Hauptstrasse 171, 4416 Bubendorf, Switzerland
| | - Sergii Kolodych
- Syndivia SAS, Syndivia, 8 allée Gaspard Monge, 67083 Strasbourg, France
| | - Alexandre Detappe
- Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
- Équipe labellisée Ligue contre le Cancer, Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Alain Wagner
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- Bio-Functional Chemistry, Laboratoire d'Excellence Medalis, UMR7199, Centre National de la Recherche Scientifique/Université de Strasbourg, Faculté de Pharmacie de Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Maria Zeniou
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
| | - Guilhem Chaubet
- Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- Bio-Functional Chemistry, Laboratoire d'Excellence Medalis, UMR7199, Centre National de la Recherche Scientifique/Université de Strasbourg, Faculté de Pharmacie de Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
15
|
Akram F, Ali AM, Akhtar MT, Fatima T, Shabbir I, Ul Haq I. The journey of antibody-drug conjugates for revolutionizing cancer therapy: A review. Bioorg Med Chem 2025; 117:118010. [PMID: 39586174 DOI: 10.1016/j.bmc.2024.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a powerful class of targeted cancer therapies that harness the specificity of monoclonal antibodies to deliver cytotoxic payloads directly to tumor cells, minimizing off-target effects. This review explores the advancements in ADC technologies, focusing on advancing next-generation ADCs with novel payloads, conjugation strategies, and enhanced pharmacokinetic profiles. In particular, we highlight innovative payloads, including microtubule inhibitors, spliceosome modulators, and RNA polymerase inhibitors, that offer new mechanisms of cytotoxicity beyond traditional apoptosis induction. Additionally, the introduction of sophisticated conjugation techniques, such as site-specific conjugation using engineered cysteines, enzymatic methods, and integration of non-natural amino acids, has greatly improved the homogeneity, efficacy, and safety of ADCs. Furthermore, the review delves into the mechanistic insights into ADC action, detailing the intracellular pathways that facilitate drug release and cell death, and discussing the significance of bioconjugation methods in optimizing drug-antibody ratios (DARs). The establishment of comprehensive databases like ADCdb, which catalog vital pharmacological and biological data for ADCs, is also explored as a critical resource for advancing ADC research and clinical application. Finally, the clinical landscape of ADCs is examined, with a focus on the evolution of FDA-approved ADCs, such as Gemtuzumab Ozogamicin and Trastuzumab Emtansine, as well as emerging candidates in ongoing trials. As ADCs continue to evolve, their potential to revolutionize cancer therapy remains immense, offering new hope for more effective and personalized treatment options. ADCs also offer a significant advancement in targeted cancer therapy by merging the specificity of monoclonal antibodies with cytotoxic potency of chemotherapeutic agents. Hence, this dual mechanism intensifies tumor selectivity while minimizing systemic toxicity, paving the way for more effective and safer cancer treatments.
Collapse
Affiliation(s)
- Fatima Akram
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Department of Biology, Saint Louis University, St. Louis, MO, USA.
| | - Amna Murrawat Ali
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Muhammad Tayyab Akhtar
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Taseer Fatima
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ifrah Shabbir
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ikram Ul Haq
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
16
|
Zhu JY, Jiang RY, Zhang HP, Fang ZR, Zhou HH, Wei Q, Wang X. Advancements in research and clinical management of interstitial lung injury associated with ADC drugs administration in breast cancer. Discov Oncol 2024; 15:843. [PMID: 39729236 DOI: 10.1007/s12672-024-01705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Antibody-drug conjugates (ADCs) represent a novel class of targeted anti-tumor medications that utilize the covalent linkage between monoclonal antibodies and cytotoxic agents. This unique mechanism combines the cytotoxic potency of drugs with the targeting specificity conferred by antigen recognition. However, it is essential to recognize that many ADCs still face challenges related to off-target toxicity akin to cytotoxic payloads, as well as targeted toxicity and other potential life-threatening adverse effects, such as treatment-induced interstitial lung injury. Currently, of the four approved ADC drugs for breast cancer, several reports have documented post-treatment lung injury-related fatalities. As a result, treatment-induced interstitial lung injury due to ADC drugs has become a clinical concern. In this review article, we delve into the factors associated with ADC-induced interstitial lung injury in patients with advanced-stage breast cancer and highlight strategies expected to decrease the incidence of ADC-related interstitial lung injury in the years ahead. These efforts are directed at enhancing treatment outcomes in both advanced and early-stage cancer patients while also providing insights into the development and innovation of ADC drugs and bolstering clinicians' understanding of the diagnosis and management of ADC-associated interstitial lung injury.
Collapse
Affiliation(s)
- Jia-Yu Zhu
- Department of Graduate Student, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Rui-Yuan Jiang
- Department of Graduate Student, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Ping Zhang
- Department of Graduate Student, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Department of Graduate Student, Wenzhou Medical University, No. 270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Zi-Ru Fang
- Department of Graduate Student, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Huan Zhou
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Qing Wei
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
17
|
Almodovar Diaz AA, Alouch SS, Chawla Y, Gonsalves WI. The Antibody Drug Conjugate, Belantamab-Mafodotin, in the Treatment of Multiple Myeloma: A Comprehensive Review. Blood Lymphat Cancer 2024; 14:71-87. [PMID: 39664714 PMCID: PMC11631777 DOI: 10.2147/blctt.s490021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/30/2024] [Indexed: 12/13/2024]
Abstract
Despite recent advancements in treatments, including proteasome inhibitors, immunomodulators, and anti-CD38 monoclonal antibodies, multiple myeloma (MM) remains mostly incurable with patients frequently experiencing disease relapses due to therapy resistance. Hence there is an urgent need for innovative treatments for patients with relapsed and/or refractory MM (RRMM). This review examines Belantamab mafodotin, the first antibody-drug conjugate (ADC) targeting B-cell maturation antigen (BCMA), which has shown efficacy in pre-clinical and clinical settings for RRMM. BCMA, a type III transmembrane glycoprotein critical for B cell functions, is predominantly expressed in malignant plasma cells making it a promising therapeutic target. ADCs, comprising a monoclonal antibody, a cytotoxic payload, and a linker, offer a targeted and potent therapeutic approach to cancer treatment. Belantamab mafodotin integrates an afucosylated monoclonal antibody and monomethyl auristatin F (MMAF) as its cytotoxic agent. It induces apoptosis in MM cells by disrupting microtubule formation and interfering with important signaling pathways. The series of DREAMM (Driving Excellence in Approaches to MM) studies have extensively evaluated Belantamab mafodotin in various clinical settings. This review provides a comprehensive overview of pre-clinical and clinical data supporting Belantamab mafodotin as a future therapeutic option for RRMM.
Collapse
Affiliation(s)
| | | | - Yogesh Chawla
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
18
|
Dimopoulos MA, Migkou M, Bhutani M, Ailawadhi S, Kalff A, Walcott FL, Pore N, Brown M, Wang F, Cheng LI, Kagiampakis I, Williams M, Kinneer K, Wu Y, Jiang Y, Kubiak RJ, Zonder JA, Larsen J, Sirdesai S, Yee AJ, Kumar S. Phase 1 first-in-human study of MEDI2228, a BCMA-targeted ADC, in patients with relapsed refractory multiple myeloma. Leuk Lymphoma 2024; 65:1789-1800. [PMID: 39404476 DOI: 10.1080/10428194.2024.2373331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/23/2024] [Indexed: 11/27/2024]
Abstract
MEDI2228 is an antibody drug conjugate (ADC) comprised of a fully human B-cell maturation antigen (BCMA) antibody conjugated to a pyrrolobenzodiazepine (PBD) dimer. This phase 1 trial evaluated MEDI2228 in patients with relapsed/refractory (R/R) multiple myeloma (MM), who received prior treatment with approved agents from 3 classes of antimyeloma drugs (proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies). Primary endpoint was safety and tolerability; secondary endpoints included efficacy, pharmacokinetics, and immunogenicity. A total of 107 patients were treated and the maximum tolerated dose (MTD) was 0.14 mg/kg Q3W. Two patients had dose-limiting toxicities (DLTs; thrombocytopenia; 0.20 mg/kg Q3W). The most frequent treatment-related adverse events were photophobia (43.9%), rash (29.0%), and thrombocytopenia (19.6%). In MTD cohort A (n = 41), the objective response rate (ORR) was 56.1%, with 1 stringent complete response, 9 very good partial responses, and 13 partial responses. ORR was 53.3% in triple refractory patients. In cohort B (n=25), ORR was 32%. Although MEDI2228 demonstrated efficacy in R/R MM, ocular toxicity precluded further development of this drug.
Collapse
MESH Headings
- Humans
- Multiple Myeloma/drug therapy
- Multiple Myeloma/pathology
- Male
- Middle Aged
- Aged
- Female
- B-Cell Maturation Antigen/antagonists & inhibitors
- B-Cell Maturation Antigen/immunology
- Adult
- Aged, 80 and over
- Immunoconjugates/therapeutic use
- Immunoconjugates/adverse effects
- Immunoconjugates/administration & dosage
- Immunoconjugates/pharmacokinetics
- Maximum Tolerated Dose
- Drug Resistance, Neoplasm
- Treatment Outcome
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Retreatment
Collapse
Affiliation(s)
- Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Magdalini Migkou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Anna Kalff
- The Alfred Hospital, Melbourne, Australia
| | - Farzana L Walcott
- Early Oncology Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | - Nabendu Pore
- Early Oncology Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | - Miranda Brown
- Early Oncology Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | - Fujun Wang
- Early Oncology Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | - Lily I Cheng
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | | | - Marna Williams
- Translational Medicine, AstraZeneca, Gaithersburg, MD, USA
| | - Krista Kinneer
- Translational Medicine, AstraZeneca, Gaithersburg, MD, USA
| | - Yuling Wu
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | - Yu Jiang
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | - Robert J Kubiak
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Gaithersburg, MD, USA
| | | | | | | | | | | |
Collapse
|
19
|
Hovelroud R, Goh Xiu Ming S, McLeod DSA, Donovan PJ, Ng G, Mungomery M. A Case of Enfortumab Vedotin-Associated Diabetic Ketoacidosis With Severe Insulin Resistance in a Nondiabetic Woman. JCEM CASE REPORTS 2024; 2:luae212. [PMID: 39588551 PMCID: PMC11587994 DOI: 10.1210/jcemcr/luae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Indexed: 11/27/2024]
Abstract
Enfortumab vedotin is a novel antibody-drug conjugate (ADC) approved to treat urothelial carcinoma. One rarely reported adverse effect has been life-threatening diabetic ketoacidosis (DKA) driven by profound insulin resistance. We report a case of a 62-year-old nondiabetic woman with metastatic urothelial carcinoma who experienced DKA following her third dose of enfortumab vedotin, with extreme insulin requirements of > 1000 units daily, and full resolution of insulin requirement by day 7 of admission. Including this case, 3 of 9 reported patients with enfortumab vedotin-associated DKA have survived. Monomethyl auristatin E (MMAE), the cytotoxic component of enfortumab vedotin, is the likely cause, although the exact mechanism remains unclear. This rare clinical event challenges the usual protocols and practice surrounding insulin infusion administration, and this case provides evidence to assist in understanding the mechanism by which enfortumab vedotin causes ketoacidosis.
Collapse
Affiliation(s)
- Rachel Hovelroud
- Department of Diabetes and Endocrinology, Townsville University Hospital, Douglas QLD 4814, Australia
| | - Sarah Goh Xiu Ming
- Department of Diabetes and Endocrinology, Royal Brisbane & Women's Hospital, Herston QLD 4006, Australia
| | - Donald S A McLeod
- Department of Diabetes and Endocrinology, Royal Brisbane & Women's Hospital, Herston QLD 4006, Australia
| | - Peter J Donovan
- Department of Diabetes and Endocrinology, Royal Brisbane & Women's Hospital, Herston QLD 4006, Australia
| | - Gary Ng
- Department of Medical Oncology, Royal Brisbane & Women's Hospital, Herston QLD 4006, Australia
| | - Maree Mungomery
- Department of Diabetes and Endocrinology, Royal Brisbane & Women's Hospital, Herston QLD 4006, Australia
| |
Collapse
|
20
|
Dy GK, Farooq AV, Kang JJ. Ocular adverse events associated with antibody-drug conjugates for cancer: evidence and management strategies. Oncologist 2024; 29:e1435-e1451. [PMID: 39046895 PMCID: PMC11546764 DOI: 10.1093/oncolo/oyae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Antibody-drug conjugates (ADCs) are a fast-growing class of cancer drugs designed to selectively deliver cytotoxic payloads through antibody binding to cancer cells with high expression of the target antigen, thus reducing systemic exposure and minimizing off-target effects. However, ADCs are associated with various ocular adverse events (AEs) that may impact treatment administration and patient outcomes. In this review, we provide a summary of ocular AEs associated with approved and investigational ADCs, recommendations for the mitigation and management of ocular AEs, current guidelines and expert opinions, and recommendations for clinical practice. A literature search was performed, using PubMed and Google Scholar, for English-language articles published between January 1985 and January 2023 to identify studies reporting ocular AEs associated with ADC use. Search terms included generic and investigational names of all identified ADCs, and further searches were performed to identify strategies for managing ADC-associated ocular AEs. ADC-associated ocular AEs include symptoms such as blurred vision and foreign-body sensation and signs such as corneal fluorescein staining, corneal pseudomicrocysts, and conjunctivitis. Reported management strategies include ADC dose modification (eg, dose delay or reduction), cool compresses, artificial tears, topical vasoconstrictors, and topical steroids. Although ADC dose modification appears to be beneficial, the preventive and/or therapeutic benefits of the remaining interventions are unclear. Although the exact mechanisms are not fully understood, most ADC-associated ocular AEs are reversible with dose delay or dose reduction. Management of ocular AEs requires a multidisciplinary approach to minimize treatment discontinuation and optimize clinical outcomes.
Collapse
Affiliation(s)
- Grace K Dy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, United States
| | - Asim V Farooq
- Department of Ophthalmology and Visual Science, University of Chicago Medical Center, Chicago, IL 60612, United States
| | - Joann J Kang
- Department of Ophthalmology and Visual Sciences, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| |
Collapse
|
21
|
Fucà G, Sabatucci I, Paderno M, Lorusso D. The clinical landscape of antibody-drug conjugates in endometrial cancer. Int J Gynecol Cancer 2024; 34:1795-1804. [PMID: 39074933 DOI: 10.1136/ijgc-2024-005607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
Clinical outcomes remain challenging in advanced or recurrent endometrial cancer due to tumor heterogeneity and therapy resistance. Antibody-drug conjugates are a novel class of cancer therapeutics, representing a promising treatment option for endometrial cancer. Antibody-drug conjugates consist of a high-affinity antibody linked to a cytotoxic payload through a stable linker. After binding to specific antigens on tumor cells, the drug is internalized, and the payload is released. In addition, the free intracellular drug may be released outside the target cell through a 'bystander effect' and kill neighboring cells, which is crucial in treating malignancies characterized by heterogeneous biomarker expression like endometrial cancer.This article aims to provide a comprehensive overview of the current clinical landscape of antibody-drug conjugates in the treatment of endometrial cancer. We conducted a thorough analysis of recent clinical trials focusing on efficacy, safety profiles, and the mechanisms by which antibody-drug conjugates target endometrial cancer. We focused particularly on the most promising antibody-drug conjugate targets in endometrial cancer under clinical investigation, such as human epidermal growth factor receptor 2 (HER2), folate receptor alpha (FRα), trophoblast cell-surface antigen-2 (TROP2), and B7-H4. We also briefly comment on the challenges, including the emergence of resistance mechanisms, and future development directions (especially agents targeting multiple antigens, combinatorial strategies, and sequential use of agents targeting the same antigen but using different payloads) in antibody-drug conjugate therapy for endometrial cancer.
Collapse
Affiliation(s)
- Giovanni Fucà
- Department of Gynecologic Oncology, Humanitas San Pio X, Milan, Italy
| | - Ilaria Sabatucci
- Department of Gynecologic Oncology, Humanitas San Pio X, Milan, Italy
| | | | - Domenica Lorusso
- Department of Gynecologic Oncology, Humanitas San Pio X, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
22
|
Gabison EE, Rousseau A, Labetoulle M, Gazzah A, Besse B. Ocular adverse events associated with antibody-drug conjugates used in cancer: Focus on pathophysiology and management strategies. Prog Retin Eye Res 2024; 103:101302. [PMID: 39303762 DOI: 10.1016/j.preteyeres.2024.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Antibody-drug conjugates (ADCs) are designed to maximize cancer cell death with lower cytotoxicity toward noncancerous cells and are an increasingly valuable option for targeted cancer therapies. However, anticancer treatment with ADCs may be associated with ocular adverse events (AEs) such as dry eye, conjunctivitis, photophobia, blurred vision, and corneal abnormalities. While the pathophysiology of ADC-related ocular AEs has not been fully elucidated, most ocular AEs are attributed to off-target effects. Product labelling for approved ADCs includes drug-specific guidance for dose modification and management of ocular AEs; however, limited data are available regarding effective strategies to minimize and mitigate ocular AEs. Overall, the majority of ocular AEs are reversible through dose modification or supportive care. Eye care providers play key roles in monitoring patients receiving ADC therapy for ocular signs and symptoms to allow for the early detection of ADC-related ocular AEs and to ensure the timely administration of appropriate treatment. Therefore, awareness is needed to help ophthalmologists to identify treatment-related ocular AEs and provide effective management in collaboration with oncologists as part of the patient's cancer care team. This review provides an overview of ocular AEs that may occur with approved and investigational ADC anticancer treatments, including potential underlying mechanisms for ADC-related ocular AEs. It also discusses clinical management practices relevant to ophthalmologists for prevention, monitoring, and management of ADC-related ocular AEs. In collaboration with oncologists, ophthalmologists play a vital role in caring for patients with cancer by assisting with the prompt recognition, mitigation, and management of treatment-related ocular AEs.
Collapse
Affiliation(s)
- Eric E Gabison
- Service d'Ophtalmologie, Hôpital Fondation Rothschild, Paris, France.
| | - Antoine Rousseau
- Department of Ophthalmology, Bicêtre Hospital, Assistance Publique Hôpitaux de Paris, Centre de Référence Maladies Rares en Ophtalmologie (OPHTARA), Le Kremlin-Bicêtre, France; Ophthalmology Department III, Hôpital des Quinze-Vingts, Paris, France; Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Marc Labetoulle
- Department of Ophthalmology, Bicêtre Hospital, Assistance Publique Hôpitaux de Paris, Centre de Référence Maladies Rares en Ophtalmologie (OPHTARA), Le Kremlin-Bicêtre, France; Ophthalmology Department III, Hôpital des Quinze-Vingts, Paris, France; Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Anas Gazzah
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Paris-Saclay University, Cancer Medicine Department, Gustave Roussy, Villejuif, France
| |
Collapse
|
23
|
Colombo R, Tarantino P, Rich JR, LoRusso PM, de Vries EGE. The Journey of Antibody-Drug Conjugates: Lessons Learned from 40 Years of Development. Cancer Discov 2024; 14:2089-2108. [PMID: 39439290 DOI: 10.1158/2159-8290.cd-24-0708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
Antibody-drug conjugates (ADC) represent one of the most rapidly expanding treatment modalities in oncology, with 11 ADCs approved by the FDA and more than 210 currently being tested in clinical trials. Spanning over 40 years, ADC clinical development has enhanced our understanding of the multifaceted mechanisms of action for this class of therapeutics. In this article, we discuss key insights into the toxicity, efficacy, stability, distribution, and fate of ADCs. Furthermore, we highlight ongoing challenges related to their clinical optimization, the development of rational sequencing strategies, and the identification of predictive biomarkers. Significance: The development and utilization of ADCs have allowed for relevant improvements in the prognosis of multiple cancer types. Concomitantly, the rise of ADCs in oncology has produced several challenges, including the prediction of their activity, their utilization in sequence, and minimization of their side effects, that still too often resemble those of the cytotoxic molecule that they carry. In this review, we retrace 40 years of development in the field of ADCs and delve deep into the mechanisms of action of these complex therapeutics and reasons behind the many achievements and failures observed in the field to date.
Collapse
Affiliation(s)
| | - Paolo Tarantino
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Jamie R Rich
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, Canada
| | - Patricia M LoRusso
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
24
|
Marshall RF, Xu H, Berkenstock M. Ocular toxicities associated with antibody drug conjugates. Curr Opin Ophthalmol 2024; 35:494-498. [PMID: 38814581 DOI: 10.1097/icu.0000000000001063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW To review the structure, mechanism of action, and pathophysiology of antibody-drug conjugates (ADCs) used to treat gynecological malignancies associated with ocular adverse effects. RECENT FINDINGS Recent research shows tisotumab vedotin causes ocular toxicity localized to the conjunctiva, with common adverse effects being conjunctivitis, dry eye, blepharitis, and keratitis. Toxicity is likely due to targeting tissue factor (TF) in the conjunctiva, leading to direct delivery of the cytotoxic payload resulting in apoptosis and bystander killing. Mirvetuximab soravtansine causes blurred vision, keratitis, or dry eye with toxicity often localized in the cornea. Off-target inflammation appears to cause ocular adverse effects, with nonreceptor mediated macropinocytosis by corneal stem cells. SUMMARY Collaboration between oncologists and ophthalmologists with adherence to mitigation protocols can decrease the risk of ocular adverse events.
Collapse
Affiliation(s)
- Rayna F Marshall
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Hannah Xu
- University of California San Diego, San Diego, California
| | - Meghan Berkenstock
- Division of Ocular Immunology, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Saberi SA, Cheng D, Nambudiri VE. Antibody-drug conjugates: A review of cutaneous adverse effects. J Am Acad Dermatol 2024; 91:922-931. [PMID: 39047980 DOI: 10.1016/j.jaad.2024.07.1463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Antibody-drug conjugates (ADCs) are an emerging class of anticancer agents that combine targeting antibodies with potent cytotoxic agents. Their molecular configuration allows for increased therapeutic efficacy and reduced adverse-effect profiles compared to monoclonal antibodies or cytotoxic chemotherapy alone. ADCs cause off-target toxicities through several mechanisms, including premature deconjugation of the cytotoxic agent in the serum and the presence of the targeted antigen on normal tissues. Given cutaneous adverse events comprise 31.3% of all-grade adverse events in clinical trials involving ADCs, dermatologists are increasingly called upon to manage the cutaneous toxicities caused by these drugs. In this review, we summarize known cutaneous toxicities of the ADCs that have been approved for use by the US Food and Drug Administration to date. Dermatologists can play a key role in recognizing cutaneous reactions associated with ADCs, contributing to guidelines for their management, and aiding during clinical trials to generate detailed morphologic and histopathologic descriptions of cutaneous toxicities caused by ADCs.
Collapse
Affiliation(s)
- Shahin A Saberi
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Debby Cheng
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Vinod E Nambudiri
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
26
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
27
|
Xi M, Zhu J, Zhang F, Shen H, Chen J, Xiao Z, Huangfu Y, Wu C, Sun H, Xia G. Antibody-drug conjugates for targeted cancer therapy: Recent advances in potential payloads. Eur J Med Chem 2024; 276:116709. [PMID: 39068862 DOI: 10.1016/j.ejmech.2024.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a promising cancer therapy modality which specifically delivers highly toxic payloads to cancer cells through antigen-specific monoclonal antibodies (mAbs). To date, 15 ADCs have been approved and more than 100 ADC candidates have advanced to clinical trials for the treatment of various cancers. Among these ADCs, microtubule-targeting and DNA-damaging agents are at the forefront of payload development. However, several challenges including toxicity and drug resistance limit the potential of this modality. To tackle these issues, multiple innovative payloads such as immunomodulators and proteolysis targeting chimeras (PROTACs) are incorporated into ADCs to enable multimodal cancer therapy. In this review, we describe the mechanism of ADCs, highlight the importance of ADC payloads and summarize recent progresses of conventional and unconventional ADC payloads, trying to provide an insight into payload diversification as a key step in future ADC development.
Collapse
Affiliation(s)
- Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jingjing Zhu
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| | - Fengxia Zhang
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| | - Hualiang Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jianhui Chen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Ziyan Xiao
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yanping Huangfu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Chunlei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| | - Gang Xia
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| |
Collapse
|
28
|
Ranganathan S, Reddy A, Russo A, Malepelle U, Desai A. Double agents in immunotherapy: Unmasking the role of antibody drug conjugates in immune checkpoint targeting. Crit Rev Oncol Hematol 2024; 202:104472. [PMID: 39111458 DOI: 10.1016/j.critrevonc.2024.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Antibody-drug conjugates (ADCs) have high specificity with lesser off-target effects, thus providing improved efficacy over traditional chemotherapies. A total of 14 ADCs have been approved for use against cancer by the US Food and Drug Administration (FDA), with more than 100 ADCs currently in clinical trials. Of particular interest ADCs targeting immune antigens PD-L1, B7-H3, B7-H4 and integrins. Specifically, we describe ADCs in development along with the gene and protein expression of these immune checkpoints across a wide range of cancer types let url = window.clickTag || window.clickTag1 || window.clickTag2 || window.clickTag3 || window.clickTag4 || window.bsClickTAG || window.bsClickTAG1 || window.bsClickTAG2 || window.url || ''; if(typeof url == 'string'){ document.body.dataset['perxceptAdRedirectUrl'] = url;}.
Collapse
Affiliation(s)
| | | | | | - Umberto Malepelle
- Department of Public Health University Federico II of Naples, Naples, Italy
| | - Aakash Desai
- Division of Hematology and Oncology, Department of Medicine, University of Alabama, Birmingham, United States.
| |
Collapse
|
29
|
Scheuher B, Ghusinga KR, McGirr K, Nowak M, Panday S, Apgar J, Subramanian K, Betts A. Towards a platform quantitative systems pharmacology (QSP) model for preclinical to clinical translation of antibody drug conjugates (ADCs). J Pharmacokinet Pharmacodyn 2024; 51:429-447. [PMID: 37787918 DOI: 10.1007/s10928-023-09884-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/16/2023] [Indexed: 10/04/2023]
Abstract
A next generation multiscale quantitative systems pharmacology (QSP) model for antibody drug conjugates (ADCs) is presented, for preclinical to clinical translation of ADC efficacy. Two HER2 ADCs (trastuzumab-DM1 and trastuzumab-DXd) were used for model development, calibration, and validation. The model integrates drug specific experimental data including in vitro cellular disposition data, pharmacokinetic (PK) and tumor growth inhibition (TGI) data for T-DM1 and T-DXd, as well as system specific data such as properties of HER2, tumor growth rates, and volumes. The model incorporates mechanistic detail at the intracellular level, to account for different mechanisms of ADC processing and payload release. It describes the disposition of the ADC, antibody, and payload inside and outside of the tumor, including binding to off-tumor, on-target sinks. The resulting multiscale PK model predicts plasma and tumor concentrations of ADC and payload. Tumor payload concentrations predicted by the model were linked to a TGI model and used to describe responses following ADC administration to xenograft mice. The model was translated to humans and virtual clinical trial simulations were performed that successfully predicted progression free survival response for T-DM1 and T-DXd for the treatment of HER2+ metastatic breast cancer, including differential efficacy based upon HER2 expression status. In conclusion, the presented model is a step toward a platform QSP model and strategy for ADCs, integrating multiple types of data and knowledge to predict ADC efficacy. The model has potential application to facilitate ADC design, lead candidate selection, and clinical dosing schedule optimization.
Collapse
Affiliation(s)
- Bruna Scheuher
- Applied BioMath, 561 Virginia Road, Concord, MA, 01742, USA
- DMPK and Modeling, Takeda, Boston, MA, United States
| | | | - Kimiko McGirr
- Applied BioMath, 561 Virginia Road, Concord, MA, 01742, USA
| | | | - Sheetal Panday
- Applied BioMath, 561 Virginia Road, Concord, MA, 01742, USA
| | - Joshua Apgar
- Applied BioMath, 561 Virginia Road, Concord, MA, 01742, USA
| | - Kalyanasundaram Subramanian
- Applied BioMath, 561 Virginia Road, Concord, MA, 01742, USA
- Differentia Bio, Pleasanton, California, United States
| | - Alison Betts
- Applied BioMath, 561 Virginia Road, Concord, MA, 01742, USA.
- DMPK and Modeling, Takeda, Boston, MA, United States.
| |
Collapse
|
30
|
Chen R, Ren Z, Bai L, Hu X, Chen Y, Ye Q, Hu Y, Shi J. Novel antibody-drug conjugates based on DXd-ADC technology. Bioorg Chem 2024; 151:107697. [PMID: 39121594 DOI: 10.1016/j.bioorg.2024.107697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
In recent years, antibody-drug conjugate (ADC) technology, which uses monoclonal antibodies (mAbs) to specifically deliver effective cytotoxic payloads to tumor cells, has become a promising method of tumor targeted therapy. ADCs are a powerful class of biopharmaceuticals that link antibodies targeting specific antigens and small molecule drugs with potent cytotoxicity via a linker, thus enabling selective destruction of cancer cells while minimizing systemic toxicity. DXd is a topoisomerase I inhibitor that induces DNA damage leading to cell cycle arrest, making it an option for ADC payloads. The DXd-ADC technology, developed by Daiichi Sankyo, is a cutting-edge platform that produces a new generation of ADCs with improved therapeutic metrics and has shown significant therapeutic potential in various types of cancer. This review provides a comprehensive assessment of drugs developed with DXd-ADC technology, with a focus on mechanisms of action, pharmacokinetics studies, preclinical data, and clinical outcomes for DS-8201a, U3-1402, DS-1062a, DS-7300a, DS-6157a, and DS-6000a. By integrating existing data, we aim to provide valuable insights into the current therapeutic status and future prospects of these novel agents.
Collapse
Affiliation(s)
- Rong Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Zhiwen Ren
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuefang Hu
- Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture, Academy of Agricultural Planning and Engineering Mara, Beijing 100121, China
| | - Yuchen Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Qiang Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Yuan Hu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
31
|
Xu G, Liu W, Wang Y, Wei X, Liu F, He Y, Zhang L, Song Q, Li Z, Wang C, Xu R, Chen B. CMG901, a Claudin18.2-specific antibody-drug conjugate, for the treatment of solid tumors. Cell Rep Med 2024; 5:101710. [PMID: 39232496 PMCID: PMC11528232 DOI: 10.1016/j.xcrm.2024.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/31/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Claudin18.2 has been recently recognized as a potential therapeutic target for gastric/gastroesophageal junction or pancreatic cancer. Here, we develop a Claudin18.2-directed antibody-drug conjugate (ADC), CMG901, with a potent microtubule-targeting agent MMAE (monomethyl auristatin E) and evaluate its preclinical profiles. In vitro studies show that CMG901 binds specifically to Claudin18.2 on the cell surface and kills tumor cells through direct cytotoxicity, antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and bystander killing activity. In vivo pharmacological studies show significant antitumor activity in patient-derived xenograft (PDX) models. Toxicity studies show that the major adverse effects related to CMG901 are reversible hematopoietic changes attributed to MMAE. The highest non-severely toxic dose (HNSTD) is 6 mg/kg in cynomolgus monkeys and 10 mg/kg in rats once every 3 weeks. CMG901's favorable preclinical profile supports its entry into the human clinical study. CMG901 is currently under phase 3 investigation in patients with advanced gastric/gastroesophageal junction adenocarcinoma expressing Claudin18.2 (NCT06346392).
Collapse
Affiliation(s)
- Gang Xu
- Research and Development Department, Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan 610219, China
| | - Wei Liu
- Research and Development Department, Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan 610219, China
| | - Ying Wang
- Research and Development Department, Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan 610219, China
| | - Xiaoli Wei
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Furong Liu
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Yanyun He
- Research and Development Department, Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan 610219, China
| | - Libo Zhang
- Research and Development Department, Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan 610219, China
| | - Qin Song
- Research and Development Department, Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan 610219, China
| | - Zhiyao Li
- School of Biological Sciences, Nanyang Technological University 60 Nanyang Drive, Singapore 637551, Singapore
| | - Changyu Wang
- Research and Development Department, Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan 610219, China
| | - Ruihua Xu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong 510060, China.
| | - Bo Chen
- Research and Development Department, Keymed Biosciences (Chengdu) Limited, Chengdu, Sichuan 610219, China.
| |
Collapse
|
32
|
Siow A, Kowalczyk R, Hong J, Harris PWR. Chemical Modifications on the αvβ6 Integrin Targeting A20FMDV2 Peptide: A Review. ChemMedChem 2024; 19:e202400131. [PMID: 38830829 DOI: 10.1002/cmdc.202400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Integrin proteins have received a significant increase in attention in recent scientific endeavors. The current trend uses the pre-established knowledge that the arginyl-glycyl-aspartic acid (RGD) structural motif present in the A20FMDV2 peptide is highly selective for the integrin class αvβ6 which is overexpressed in many cancer types. This review will provide an extensive overview of the existing literature research to date to the best of our knowledge, highlighting significant improvements and drawbacks of structure-activity relationships (SAR) work undertaken, aiding future research to identify established SAR for an informed design of future A20FMDV2 mimetic inhibitors. Herein, the review aims to collate the existing structural chemical modifications present on A20FMDV2 in the literature to highlight key structural analogues that display more potent biological activity.
Collapse
Affiliation(s)
- Andrew Siow
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Renata Kowalczyk
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Jiwon Hong
- School of Biological Sciences and Surgical and Translational Research Centre, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, School of Biological Sciences and The Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, 23 and 3A Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
33
|
Chen Y, Ren X, Dai Y, Wang Y. Pharmacovigilance study of the association between peripheral neuropathy and antibody-drug conjugates using the FDA adverse event reporting system. Sci Rep 2024; 14:21386. [PMID: 39271716 PMCID: PMC11399297 DOI: 10.1038/s41598-024-71977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Antibody-drug conjugates (ADCs) are among the fastest-growing classes of anticancer drugs, making it crucial to evaluate their potential for causing peripheral neuropathy. We analyzed data from the FAERS database (January 1, 2014, to June 30, 2023) using disproportionality and Bayesian methods. We identified 3076 cases of ADC-associated peripheral neuropathy. Our study revealed significant signals for all ADCs (ROR 1.82, 95% CI 1.76-1.89). ADCs with tubulin-binding payloads showed significant peripheral neuropathy signals (ROR 2.31, 95% CI 2.23-2.40), whereas those with DNA-targeting (ROR 0.48, 95% CI 0.39-0.59) and topoisomerase 1 inhibitor (ROR 0.56, 95% CI 0.48-0.66) payloads exhibited non-significant signals. Signals for peripheral sensory neuropathy were 4.83, 2.44, 2.74, and 2.21 (calculated based on IC025) for brentuximab vedotin, trastuzumab emtansine, enfortumab vedotin, and polatuzumab vedotin, while signals for peripheral motor neuropathy were 5.31, 0.34, 2.27, and 0.03, respectively. The median time to onset for all ADCs was 127 days (interquartile range 40-457). Tisotumab vedotin had the highest hospitalization rate at 26.67%, followed by brentuximab vedotin at 25.5%. Trastuzumab emtansine had the highest mortality rate ,with 80 deaths (11.96%) among 669 cases. Based on FAERS database, only ADCs with tubulin-binding payloads exhibited significant peripheral neuropathy signals. Brentuximab vedotin and enfortumab vedotin showed similar profiles for peripheral sensory neuropathy and motor neuropathy. Given the delayed time to onset and potentially poor outcomes, ADC-related peripheral neuropathy warrants significant attention.
Collapse
Affiliation(s)
- Yuheng Chen
- Party Committee Office, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiayang Ren
- Department of Pharmacy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyuan Dai
- Department of Pharmacy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanfeng Wang
- Department of Comprehensive Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
34
|
Kleinman D, Iqbal S, Ghosh AK, Ogle SD, Kaja S, Mitchnick M, Hakkarainen JJ. PLL-g-PEG Polymer Inhibits Antibody-Drug Conjugate Uptake into Human Corneal Epithelial Cells In Vitro. J Ocul Pharmacol Ther 2024; 40:419-427. [PMID: 38935528 PMCID: PMC11564684 DOI: 10.1089/jop.2024.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/07/2024] [Indexed: 06/29/2024] Open
Abstract
Purpose: Antibody-drug conjugates (ADCs) are a relatively recent advance in the delivery of chemotherapeutics that improve targeting of cytotoxic agents. However, despite their antitumor activity, severe ocular adverse effects, including vision loss, have been reported for several ADCs. The nonspecific uptake of ADCs into human corneal epithelial cells (HCECs) and their precursors via macropinocytosis has been proposed to be the primary mechanism of ocular toxicity. In this study, we evaluated the ability of a novel polymer, poly(l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG), to decrease the ADC rituximab-mc monomethylauristatin F (MMAF) (RIX) uptake into human corneal epithelial (HCE-T) cells. Methods: HCE-T cells were exposed to increasing concentrations of RIX to determine inhibition of cell proliferation. HCE-T cells were treated with PLL-g-PEG, the macropinocytosis inhibitor 5-(N-ethyl-N-isopropyl) amiloride (EIPA), or vehicle. After 30 min of incubation, RIX was added. ADC was detected by fluorescent anti-human immunoglobulin G and fluorescently conjugated dextran as viewed by microscopy. Results: RIX caused dose-dependent inhibition of HCE-T cell proliferation. EIPA significantly reduced RIX uptake and decreased macropinocytosis as assessed by direct quantification of RIX using a fluorescently conjugated anti-human antibody as well as quantification of macropinocytosis using fluorescently conjugated dextran. PLL-g-PEG resulted in a dose-dependent inhibition of RIX uptake with half-maximal inhibitory concentrations of 0.022%-0.023% PLL-g-PEG. Conclusion: The data show PLL-g-PEG to be a potent inhibitor of RIX uptake by corneal epithelial cells and support its use as a novel therapeutic approach for the prevention of ocular adverse events associated with ADC therapy.
Collapse
Affiliation(s)
| | - Sana Iqbal
- Graduate Program in Molecular Pharmacology and Therapeutics, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
- Department of Molecular Pharmacology & Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
- Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Anita K. Ghosh
- Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
- Graduate Program in Biochemistry and Molecular Biology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
- Research & Development Division, Experimentica Ltd, Forest Park, Illinois, USA
| | - Sean D. Ogle
- Research & Development Division, Experimentica Ltd, Forest Park, Illinois, USA
| | - Simon Kaja
- Department of Molecular Pharmacology & Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
- Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | | | | |
Collapse
|
35
|
Yu M, Zhou L, Cao M, Ji C, Zheng Y. Post-marketing drug safety surveillance of enfortumab vedotin: an observational pharmacovigilance study based on a real-world database. Front Immunol 2024; 15:1397692. [PMID: 39234238 PMCID: PMC11372787 DOI: 10.3389/fimmu.2024.1397692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Background Enfortumab vedotin (EV) is an antibody-drug conjugate (ADC) that has been approved by the FDA for patients with locally advanced or metastatic urothelial carcinoma (UC). This study presents a comprehensive pharmacovigilance analysis of the post-marketing safety profile of EV in the real-world based on the US Food and Drug Administration Adverse Event Reporting System (FAERS). Methods Adverse event (AE) reports regarding EV between January 2020 and December 2023 were obtained from the FAERS database. The standardized MedDRA query (SMQ) narrow search AEs on the preferred term (PT) level were used. Disproportionality analysis was performed to identify the AE signals for EV with the reporting odds ratio (ROR), proportional reporting ratio (PRR), multi-item gamma Poisson shrinker (MGPS), and Bayesian confidence propagation neural network (BCPNN). Results A total of 2,216 reports regarding EV were included in the present study. SMQ analysis results indicated that a stronger strength signal was found in severe cutaneous adverse reactions, retroperitoneal fibrosis, and peripheral neuropathy. A total of 116 significant disproportionality PTs referring to 14 system organ classes (SOCs) were retained by disproportionality analysis, with 49 PTs not listed on the EV drug label. Frequently reported EV-related AEs included rash, peripheral neuropathy, decreased appetite, alopecia, and pruritus. The time to onset of the majority of EV-related AEs was within 30 days (66.05%), with only 0.73% events occurring after 1 year. Conclusion The disproportionality analysis highlights that dermatologic toxicity and peripheral neuropathy were the major AEs induced by EV. The potential AEs not listed on the drug label were mainly related to gastrointestinal, hepatic, and pulmonary events. Further research is needed to confirm and explore the EV-related AEs in clinical practice.
Collapse
Affiliation(s)
- Mingming Yu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Lijun Zhou
- Department of Urology, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mengda Cao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chunmei Ji
- Department of Pharmacy, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
36
|
Hengel SM, Topletz-Erickson AR, Kadry H, Alley SC. A modelling approach to compare ADC deconjugation and systemic elimination rates of individual drug-load species using native ADC LC-MS data from human plasma. Xenobiotica 2024; 54:492-501. [PMID: 39329288 DOI: 10.1080/00498254.2024.2340741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 09/28/2024]
Abstract
Native liquid chromatography mass spectrometry (LC-MS) is a commonly used approach for intact analysis of inter-chain cysteine conjugated antibody-drug conjugates (ADCs). Coupling native LC-MS with affinity capture provides a platform for intact ADC analysis from in vivo samples and characterisation of individual drug load species, specifically the impact of drug linker deconjugation, hydrolysis, and differential clearance in a biological system.This manuscript describes data generated from native LC-MS analysis of ADCs from human plasma, both in vitro incubations and clinical samples. It also details the pharmacokinetic (PK) model built to specifically characterise the disposition of individual drug load species from MMAE and MMAF interchain cysteine conjugated ADCs.In vitro deconjugation and hydrolysis rates were similar across both ADCs. Differential clearance of higher loaded species in vivo was pronounced for the MMAE conjugated ADC, while systemic elimination after accounting for deconjugation was similar across drug loads for the MMAF conjugated ADC. This is the first report of affinity capture native LC-MS analysis, and subsequent modelling of deconjugation, hydrolysis and clearance rates of individual drug load species using clinical data from cysteine conjugated ADCs.
Collapse
Affiliation(s)
- Shawna M Hengel
- Clinical Pharmacology and Translational Science, Pfizer Inc, Bothell, Washington, USA
| | | | - Hossam Kadry
- Clinical Pharmacology and Translational Science, Pfizer Inc, Bothell, Washington, USA
| | - Stephen C Alley
- Clinical Pharmacology and Translational Science, Pfizer Inc, Bothell, Washington, USA
| |
Collapse
|
37
|
Yip V, Saad OM, Leipold D, Li C, Kamath A, Shen BQ. Monomethyl auristatin E (MMAE), a payload for multiple antibody drug conjugates (ADCs), demonstrates differential red blood cell partitioning across human and animal species. Xenobiotica 2024; 54:511-520. [PMID: 38647387 DOI: 10.1080/00498254.2024.2345849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Background: Monomethyl auristatin E (MMAE) has been used as a payload for several Food and Drug Administration (FDA) approved antibody-drug conjugates (ADCs). It is known that MMAE is released from the ADC following binding, internalisation and proteolytic degradation in target tissues. A striking discrepancy in systemic MMAE levels has been observed across species with 50-fold higher MMAE levels in human than that in rodents when normalised by ADC dose with unknown mechanism.Hypothesis and purpose: Multiple factors could affect systemic MMAE levels such as production and elimination of unconjugated MMAE following ADC dosing. In this study, we have explored whether MMAE displays differential red blood cell (RBC) partitioning across species that may contribute to the different MMAE levels seen between human and animals.Experiments: To determine MMAE RBC partitioning, tritium labelled MMAE ([3H]-MMAE) was incubated in whole blood from mice, rats, monkeys and humans in vitro, then RBC partitioning was determined and compared across species. To test whether MMAE released from the ADC would show any difference in RBC partitioning, pinatuzumab vedotin or polatuzumab vedotin was administered to mice, rats, and monkeys. MMAE levels were measured in both blood and plasma, and the ratios of MMAE levels were calculated as blood-to-plasma ratio (in vivo RBC partitioning).Results: Our in vitro data showed that unconjugated MMAE has a species-dependent RBC partitioning with strong RBC partitioning in mouse, rat, followed by monkey blood, whereas minimal RBC partitioning was seen in human blood. Incubation of 2 nM of MMAE in mouse blood resulted in a blood-to-plasma ratio of 11.8 ± 0.291, followed by rat, monkey, and human at 2.36 ± 0.0825, 1.57 ± 0.0250, and 0.976 ± 0.0620, respectively. MMAE RBC partitioning is also concentration-dependent, with an inverse relationship between RBC partitioning and MMAE concentration (higher RBC partitioning at lower concentration). In vivo dosing of pinatuzumab vedotin in mouse displayed systemic MMAE at about a 5-fold higher blood concentration compared to plasma concentration once MMAE reached a pseudo-equilibrium, while systemic MMAE from blood and plasma concentration showed a 1.65-fold difference in rat.Implication and conclusion: These data demonstrated that MMAE has a distinct RBC partitioning across different species, which may contribute to, at least in part, to the differential in the systemic MMAE levels observed in vivo between preclinical and clinical studies. These findings highlight the importance of fully characterising the ADME properties of both the ADC and its payload, to enable better translation from animals to human for ADC development.
Collapse
Affiliation(s)
- Victor Yip
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
| | - Ola M Saad
- BioAnalytical Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Doug Leipold
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
| | - Chunze Li
- Clinical Pharmacology, Genentech Inc, South San Francisco, CA, USA
| | - Amrita Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
| | - Ben-Quan Shen
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
38
|
Medina Pérez VM, Baselga M, Schuhmacher AJ. Single-Domain Antibodies as Antibody-Drug Conjugates: From Promise to Practice-A Systematic Review. Cancers (Basel) 2024; 16:2681. [PMID: 39123409 PMCID: PMC11311928 DOI: 10.3390/cancers16152681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) represent potent cancer therapies that deliver highly toxic drugs to tumor cells precisely, thus allowing for targeted treatment and significantly reducing off-target effects. Despite their effectiveness, ADCs can face limitations due to acquired resistance and potential side effects. OBJECTIVES This study focuses on advances in various ADC components to improve both the efficacy and safety of these agents, and includes the analysis of several novel ADC formats. This work assesses whether the unique features of VHHs-such as their small size, enhanced tissue penetration, stability, and cost-effectiveness-make them a viable alternative to conventional antibodies for ADCs and reviews their current status in ADC development. METHODS Following PRISMA guidelines, this study focused on VHHs as components of ADCs, examining advancements and prospects from 1 January 2014 to 30 June 2024. Searches were conducted in PubMed, Cochrane Library, ScienceDirect and LILACS using specific terms related to ADCs and single-domain antibodies. Retrieved articles were rigorously evaluated, excluding duplicates and non-qualifying studies. The selected peer-reviewed articles were analyzed for quality and synthesized to highlight advancements, methods, payloads, and future directions in ADC research. RESULTS VHHs offer significant advantages for drug conjugation over conventional antibodies due to their smaller size and structure, which enhance tissue penetration and enable access to previously inaccessible epitopes. Their superior stability, solubility, and manufacturability facilitate cost-effective production and expand the range of targetable antigens. Additionally, some VHHs can naturally cross the blood-brain barrier or be easily modified to favor their penetration, making them promising for targeting brain tumors and metastases. Although no VHH-drug conjugates (nADC or nanoADC) are currently in the clinical arena, preclinical studies have explored various conjugation methods and linkers. CONCLUSIONS While ADCs are transforming cancer treatment, their unique mechanisms and associated toxicities challenge traditional views on bioavailability and vary with different tumor types. Severe toxicities, often linked to compound instability, off-target effects, and nonspecific blood cell interactions, highlight the need for better understanding. Conversely, the rapid distribution, tumor penetration, and clearance of VHHs could be advantageous, potentially reducing toxicity by minimizing prolonged exposure. These attributes make single-domain antibodies strong candidates for the next generation of ADCs, potentially enhancing both efficacy and safety.
Collapse
Affiliation(s)
- Víctor Manuel Medina Pérez
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Marta Baselga
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Alberto J. Schuhmacher
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Fundación Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| |
Collapse
|
39
|
Zhang B, Wang M, Sun L, Liu J, Yin L, Xia M, Zhang L, Liu X, Cheng Y. Recent Advances in Targeted Cancer Therapy: Are PDCs the Next Generation of ADCs? J Med Chem 2024; 67:11469-11487. [PMID: 38980167 DOI: 10.1021/acs.jmedchem.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Antibody-drug conjugates (ADCs) comprise antibodies, cytotoxic payloads, and linkers, which can integrate the advantages of antibodies and small molecule drugs to achieve targeted cancer treatment. However, ADCs also have some shortcomings, such as non-negligible drug resistance, a low therapeutic index, and payload-related toxicity. Many studies have focused on changing the composition of ADCs, and some have even further extended the concept and types of targeted conjugated drugs by replacing the targeted antibodies in ADCs with peptides, revolutionarily introducing peptide-drug conjugates (PDCs). This Perspective summarizes the current research status of ADCs and PDCs and highlights the structural innovations of ADC components. In particular, PDCs are regarded as the next generation of potential targeted drugs after ADCs, and the current challenges of PDCs are analyzed. Our aim is to offer fresh insights for the efficient design and expedited development of innovative targeted conjugated drugs.
Collapse
Affiliation(s)
- Baochen Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Mo Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Li Sun
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, P.R. China
| | - Jiawei Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Libinghan Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Mingjing Xia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, P.R. China
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Yu Cheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| |
Collapse
|
40
|
Taylor RP, Lindorfer MA. Antibody-drug conjugate adverse effects can be understood and addressed based on immune complex clearance mechanisms. Blood 2024; 144:137-144. [PMID: 38643493 DOI: 10.1182/blood.2024024442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024] Open
Abstract
ABSTRACT Numerous antibody-drug conjugates (ADCs) are being developed for cancer immunotherapy. Although several of these agents have demonstrated considerable clinical efficacy and have won Food and Drug Administration (FDA) approval, in many instances, they have been characterized by adverse side effects (ASEs), which can be quite severe in a fraction of treated patients. The key hypothesis in this perspective is that many of the most serious ASEs associated with the use of ADCs in the treatment of cancer can be most readily explained and understood due to the inappropriate processing of these ADCs via pathways normally followed for immune complex clearance, which include phagocytosis and trogocytosis. We review the key published basic science experiments and clinical observations that support this idea. We propose that it is the interaction of the ADC with Fcγ receptors expressed on off-target cells and tissues that can most readily explain ADC-mediated pathologies, which therefore provides a rationale for the design of protocols to minimize ASEs. We describe measurements that should help identify those patients most likely to experience ASE due to ADC, and we propose readily available treatments as well as therapies under development for other indications that should substantially reduce ASE associated with ADC. Our focus will be on the following FDA-approved ADC for which there are substantial literatures: gemtuzumab ozogamicin and inotuzumab ozogamicin; and trastuzumab emtansine and trastuzumab deruxtecan.
Collapse
Affiliation(s)
- Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA
| | - Margaret A Lindorfer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
41
|
Pang S, Duong A, Siu C, Indorf A. Antibody drug conjugates: Design implications for clinicians. J Oncol Pharm Pract 2024; 30:907-918. [PMID: 38651308 DOI: 10.1177/10781552241228827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
OBJECTIVE There are currently 11 antibody-drug conjugates (ADC) that are FDA approved for use in oncologic disease states, with many more in the pipeline. The authors aim to review the pharmacokinetic profiles of the components of ADCs to engage pharmacist practitioners in practical considerations in the care of patients. This article provides an overview on the use of ADCs in the setting of organ dysfunction, drug-drug interactions, and management of on- and off-target adverse effects. DATA SOURCES A systematic search of the literature on ADCs through September 2023 was conducted. Clinical trials as well as articles on ADC design and functional components, adverse effects, and pharmacokinetics were reviewed. Reviewed literature included prescribing information as well as tertiary sources and primary literature. DATA SUMMARY A total of 11 ADCs were reviewed for the purpose of this article. A description of the mechanism of action and structure of ADCs is outlined, and a table containing description of each currently FDA-approved ADC is included. Various mechanisms of ADC toxicity are reviewed, including how ADC structure may be implicated. CONCLUSION It is imperative that pharmacist clinicians understand the design and function of each component of an ADC to continue to assess new approvals for use in oncology patients. Understanding the design of the ADC can help a pharmacy practitioner compare and contrast adverse effect profiles to support their multidisciplinary teams and to engage patients in education and management of their care.
Collapse
Affiliation(s)
- Stephanie Pang
- Department of Pharmacy, University of Washington, Seattle, WA, USA
| | - Arianne Duong
- Department of Pharmacy, University of Washington, Seattle, WA, USA
| | - Chloe Siu
- Department of Pharmacy, University of Washington, Seattle, WA, USA
| | - Amy Indorf
- Department of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
42
|
Chis AA, Dobrea CM, Arseniu AM, Frum A, Rus LL, Cormos G, Georgescu C, Morgovan C, Butuca A, Gligor FG, Vonica-Tincu AL. Antibody-Drug Conjugates-Evolution and Perspectives. Int J Mol Sci 2024; 25:6969. [PMID: 39000079 PMCID: PMC11241239 DOI: 10.3390/ijms25136969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Antineoplastic therapy is one of the main research themes of this century. Modern approaches have been implemented to target and heighten the effect of cytostatic drugs on tumors and diminish their general/unspecific toxicity. In this context, antibody-drug conjugates (ADCs) represent a promising and successful strategy. The aim of this review was to assess different aspects regarding ADCs. They were presented from a chemical and a pharmacological perspective and aspects like structure, conjugation and development particularities alongside effects, clinical trials, safety issues and perspectives and challenges for future use of these drugs were discussed. Representative examples include but are not limited to the following main structural components of ADCs: monoclonal antibodies (trastuzumab, brentuximab), linkers (pH-sensitive, reduction-sensitive, peptide-based, phosphate-based, and others), and payloads (doxorubicin, emtansine, ravtansine, calicheamicin). Regarding pharmacotherapy success, the high effectiveness expectation associated with ADC treatment is supported by the large number of ongoing clinical trials. Major aspects such as development strategies are first discussed, advantages and disadvantages, safety and efficacy, offering a retrospective insight on the subject. The second part of the review is prospective, focusing on various plans to overcome the previously identified difficulties.
Collapse
Affiliation(s)
| | | | - Anca Maria Arseniu
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Adina Frum
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Luca-Liviu Rus
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Gabriela Cormos
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Cecilia Georgescu
- Faculty of Agriculture Science, Food Industry and Environmental Protection, "Lucian Blaga" University of Sibiu, 550012 Sibiu, Romania
| | - Claudiu Morgovan
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Anca Butuca
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | | | | |
Collapse
|
43
|
Ren JW, Chen ZY, Bai YJ, Han P. Efficacy and safety of antibody-drug conjugates in the treatment of urothelial cell carcinoma: a systematic review and meta-analysis of prospective clinical trials. Front Pharmacol 2024; 15:1377924. [PMID: 38933670 PMCID: PMC11199396 DOI: 10.3389/fphar.2024.1377924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction: Urothelial carcinoma (UC) is a refractory disease for which achieving satisfactory outcomes remains challenging with current surgical interventions. Antibody-drug conjugates (ADCs) are a novel class of targeted therapeutics that have demonstrated encouraging results for UC. Although there is a limited number of high-quality randomized control trials (RCTs) examining the use of ADCs in patients with UC, some prospective non-randomized studies of interventions (NRSIs) provide valuable insights and pertinent information. We aim to assess the efficacy and safety of ADCs in patients with UC, particularly those with locally advanced and metastatic diseases. Methods: A systematic search was conducted across PubMed, Embase, the Cochrane Library, and Web of Science databases to identify pertinent studies. Outcomes, such as the overall response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), adverse events (AEs), and treatment-related adverse events (TRAEs), were extracted for further analyses. Results: Twelve studies involving 1,311 patients were included in this meta-analysis. In terms of tumor responses, the pooled ORR and DCR were 40% and 74%, respectively. Regarding survival analysis, the pooled median PFS and OS were 5.66 months and 12.63 months, respectively. The pooled 6-month PFS and OS were 47% and 80%, while the pooled 1-year PFS and OS were 22% and 55%, respectively. The most common TRAEs of the ADCs were alopecia (all grades: 45%, grades ≥ III: 0%), decreased appetite (all grades: 34%, grades ≥ III: 3%), dysgeusia (all grades: 40%, grades ≥ III: 0%), fatigue (all grades: 39%, grades ≥ III: 5%), nausea (all grades: 45%, grades ≥ III: 2%), peripheral sensory neuropathy (all grades: 37%, grades ≥ III: 2%), and pruritus (all grades: 32%, grades ≥ III: 1%). Conclusion: The meta-analysis in this study demonstrates that ADCs have promising efficacies and safety for patients with advanced or metastatic UC. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier: CRD42023460232.
Collapse
Affiliation(s)
- Jun-Wei Ren
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ze-Yu Chen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Jin Bai
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Han
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Lindgren ES, Yan R, Cil O, Verkman AS, Chan MF, Seitzman GD, Farooq AV, Huppert LA, Rugo HS, Pohlmann PR, Lu J, Esserman LJ, Pasricha ND. Incidence and Mitigation of Corneal Pseudomicrocysts Induced by Antibody-Drug Conjugates (ADCs). CURRENT OPHTHALMOLOGY REPORTS 2024; 12:13-22. [PMID: 38756824 PMCID: PMC11095972 DOI: 10.1007/s40135-024-00322-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 05/18/2024]
Abstract
Purpose of Review This study is to highlight the incidence of corneal pseudomicrocysts in FDA-approved antibody-drug conjugates (ADCs), and success of preventive therapies for pseudomicrocysts and related ocular surface adverse events (AEs). Recent Findings ADCs are an emerging class of selective cancer therapies that consist of a potent cytotoxin connected to a monoclonal antibody (mAb) that targets antigens expressed on malignant cells. Currently, there are 11 FDA-approved ADCs with over 164 in clinical trials. Various AEs have been attributed to ADCs, including ocular surface AEs (keratitis/keratopathy, dry eye, conjunctivitis, blurred vision, corneal pseudomicrocysts). While the severity and prevalence of ADC-induced ocular surface AEs are well reported, the reporting of corneal pseudomicrocysts is limited, complicating the development of therapies to prevent or treat ADC-related ocular surface toxicity. Summary Three of 11 FDA-approved ADCs have been implicated with corneal pseudomicrocysts, with incidence ranging from 41 to 100% of patients. Of the six ADCs that reported ocular surface AEs, only three had ocular substudies to investigate the benefit of preventive therapies including topical steroids, vasoconstrictors, and preservative-free lubricants. Current preventive therapies demonstrate limited efficacy at mitigating pseudomicrocysts and other ocular surface AEs.
Collapse
Affiliation(s)
- Ethan S. Lindgren
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Rongshan Yan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Onur Cil
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Alan S. Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Matilda F. Chan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, CA, USA
| | - Gerami D. Seitzman
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, CA, USA
| | - Asim V. Farooq
- Department of Ophthalmology and Visual Science, University of Chicago Medical Center, Chicago, IL, USA
| | - Laura A. Huppert
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Hope S. Rugo
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Paula R. Pohlmann
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Janice Lu
- Department of Medical Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Laura J. Esserman
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Neel D. Pasricha
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
45
|
Lami I, Wiemer AJ. Antibody-Drug Conjugates in the Pipeline for Treatment of Melanoma: Target and Pharmacokinetic Considerations. Drugs R D 2024; 24:129-144. [PMID: 38951479 PMCID: PMC11315830 DOI: 10.1007/s40268-024-00473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
Melanoma is an aggressive, rapidly developing form of skin cancer that affects about 22 per 100,000 individuals. Treatment options for melanoma patients are limited and typically involve surgical excision of moles and chemotherapy. Survival has been improved in recent years through targeted small molecule inhibitors and antibody-based immunotherapies. However, the long-term side effects that arise from taking chemotherapies can negatively impact the lives of patients because they lack specificity and impact healthy cells along with the cancer cells. Antibody-drug conjugates are a promising new class of drugs for the treatment of melanoma. This review focuses on the development of antibody-drug conjugates for melanoma and discusses the existing clinical trials of antibody-drug conjugates and their use as a melanoma treatment. So far, the antibody-drug conjugates have struggled from efficacy problems, with modest effects at best, leading many to be discontinued for melanoma. At the same time, conjugates such as AMT-253, targeting melanoma cell adhesion molecule, and mecbotamab vedotin targeting AXL receptor tyrosine kinase, are among the most exciting for melanoma treatment in the future.
Collapse
Affiliation(s)
- Ina Lami
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Road, Storrs, CT, 06269, USA
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N Eagleville Road, Storrs, CT, 06269, USA.
| |
Collapse
|
46
|
Deng R, Gibiansky L, Lu T, Flowers CR, Sehn LH, Liu Q, Agarwal P, Liao MZ, Dere R, Lee C, Man G, Hirata J, Li C, Miles D. Population pharmacokinetics and exposure-response analyses of polatuzumab vedotin in patients with previously untreated DLBCL from the POLARIX study. CPT Pharmacometrics Syst Pharmacol 2024; 13:1055-1066. [PMID: 38622879 PMCID: PMC11179702 DOI: 10.1002/psp4.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Polatuzumab vedotin is a CD79b-directed antibody-drug conjugate that targets B cells and delivers the cytotoxic payload monomethyl auristatin E (MMAE). The phase III POLARIX study (NCT03274492) evaluated polatuzumab vedotin in combination with rituximab, cyclophosphamide, doxorubicin, and prednisone (R-CHP) as first-line treatment of diffuse large B-cell lymphoma (DLBCL). To examine dosing decisions for this regimen, population pharmacokinetic (popPK) analysis, using a previously developed popPK model, and exposure-response (ER) analysis, were performed. The popPK analysis showed no clinically meaningful relationship between cycle 6 (C6) antibody-conjugated (acMMAE)/unconjugated MMAE area under the concentration-time curve (AUC) or maximum concentration, and weight, sex, ethnicity, region, mild or moderate renal impairment, mild hepatic impairment, or other patient and disease characteristics. In the ER analysis, C6 acMMAE AUC was significantly associated with longer progression-free and event-free survival (both p = 0.01). An increase of <50% in acMMAE/unconjugated MMAE exposure did not lead to a clinically meaningful increase in adverse events of special interest. ER data and the benefit-risk profile support the use of polatuzumab vedotin 1.8 mg/kg once every 3 weeks with R-CHP for six cycles in patients with previously untreated DLBCL.
Collapse
Affiliation(s)
- Rong Deng
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | | | - Tong Lu
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | | | - Laurie H. Sehn
- BC Cancer Centre for Lymphoid Cancer and The University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Qi Liu
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | | | | | | | - Calvin Lee
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | - Gabriel Man
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | | | - Chunze Li
- Genentech, Inc.South San FranciscoCaliforniaUSA
| | - Dale Miles
- Genentech, Inc.South San FranciscoCaliforniaUSA
| |
Collapse
|
47
|
Calopiz MC, Linderman JJ, Thurber GM. Optimizing Solid Tumor Treatment with Antibody-drug Conjugates Using Agent-Based Modeling: Considering the Role of a Carrier Dose and Payload Class. Pharm Res 2024; 41:1109-1120. [PMID: 38806889 DOI: 10.1007/s11095-024-03715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION Antibody-drug conjugates (ADCs) show significant clinical efficacy in the treatment of solid tumors, but a major limitation to their success is poor intratumoral distribution. Adding a carrier dose improves both distribution and overall drug efficacy of ADCs, but the optimal carrier dose has not been outlined for different payload classes. OBJECTIVE In this work, we study two carrier dose regimens: 1) matching payload potency to cellular delivery but potentially not reaching cells farther away from blood vessels, or 2) dosing to tumor saturation but risking a reduction in cell killing from a lower amount of payload delivered per cell. METHODS We use a validated computational model to test four different payloads conjugated to trastuzumab to determine the optimal carrier dose as a function of target expression, ADC dose, and payload potency. RESULTS We find that dosing to tumor saturation is more efficacious than matching payload potency to cellular delivery for all payloads because the increase in the number of cells targeted by the ADC outweighs the loss in cell killing on targeted cells. An important exception exists if the carrier dose reduces the payload uptake per cell to the point where all cell killing is lost. Likewise, receptor downregulation can mitigate the benefits of a carrier dose. CONCLUSIONS Because tumor saturation and in vitro potency can be measured early in ADC design, these results provide insight into maximizing ADC efficacy and demonstrate the benefits of using simulation to guide ADC design.
Collapse
Affiliation(s)
- Melissa C Calopiz
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
48
|
Rubahamya B, Dong S, Thurber GM. Clinical translation of antibody drug conjugate dosing in solid tumors from preclinical mouse data. SCIENCE ADVANCES 2024; 10:eadk1894. [PMID: 38820153 PMCID: PMC11141632 DOI: 10.1126/sciadv.adk1894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
Antibody drug conjugates (ADCs) have made impressive strides in the clinic in recent years with 11 Food and Drug Administration approvals, including 6 for the treatment of patients with solid tumors. Despite this success, the development of new agents remains challenging with a high failure rate in the clinic. Here, we show that current approved ADCs for the treatment of patients with solid tumors can all show substantial efficacy in some mouse models when administered at a similar weight-based [milligrams per kilogram (mg/kg)] dosing in mice that is tolerated in the clinic. Mechanistically, equivalent mg/kg dosing results in a similar drug concentration in the tumor and a similar tissue penetration into the tumor due to the unique delivery features of ADCs. Combined with computational approaches, which can account for the complex distribution within the tumor microenvironment, these scaling concepts may aid in the evaluation of new agents and help design therapeutics with maximum clinical efficacy.
Collapse
Affiliation(s)
- Baron Rubahamya
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shujun Dong
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Greg M. Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
49
|
Cheng CN, Liao HW, Lin CH, Chang WC, Chen IC, Lu YS, Kuo CH. Quantifying payloads of antibody‒drug conjugates using a postcolumn infused-internal standard strategy with LC‒MS. Anal Chim Acta 2024; 1303:342537. [PMID: 38609272 DOI: 10.1016/j.aca.2024.342537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Antibody‒drug conjugates (ADCs) are innovative biopharmaceutics consisting of a monoclonal antibody, linkers, and cytotoxic payloads. Monitoring circulating payload concentrations has the potential to identify ADC toxicity; however, accurate quantification faces challenges, including low plasma concentrations, severe matrix effects, and the absence of stable isotope-labeled internal standards (SIL-IS) for payloads and their derivatives. Previous studies used structural analogs as internal standards, but different retention times between structural analogs and target analytes may hinder effective matrix correction. Therefore, a more flexible approach is required for precise payload quantification. RESULTS We developed an LC‒MS/MS method incorporating a postcolumn-infused internal standard (PCI-IS) strategy for quantifying payloads and their derivatives of trastuzumab emtansine, trastuzumab deruxtecan, and sacituzumab govitecan, including DM1, MCC-DM1, DXd, SN-38, and SN-38G. Structural analogs (maytansine, Lys-MCC-DM1, and exatecan) were selected as PCI-IS candidates, and their accuracy performance was evaluated based on the percentage of samples within 80%-120% quantification accuracy. Compared to the approach without PCI-IS correction, exatecan enhanced the accuracy performance from 30-40%-100% for SN-38 and DXd, while maytansine and Lys-MCC-DM1 showed comparable accuracy for DM1 and MCC-DM1. This validated PCI-IS analytical method showed superior normalization of matrix effect in all analytes compared to the conventional internal standard approach. The clinical application of this approach showed pronounced differences in DXd and SN-38 concentrations before and after PCI-IS correction. Moreover, only DXd concentrations after PCI-IS correction were significantly higher in patients with thrombocytopenia (p = 0.037). SIGNIFICANCE This approach effectively addressed the issue of unavailability of SIL-IS for novel ADC payloads and provided more accurate quantification, potentially yielding more robust statistical outcomes for understanding the exposure-toxicity relationship in ADCs. It is anticipated that this PCI-IS strategy may be extrapolated to quantify payloads and derivatives in diverse ADCs, thereby providing invaluable insights into drug toxicity and fortifying patient safety in ADC usage.
Collapse
Affiliation(s)
- Chih-Ning Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Wei Liao
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Hung Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Oncology, National Taiwan University Hospital, Cancer Center Branch, Taipei, Taiwan
| | - Wen-Chi Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Chun Chen
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Oncology, National Taiwan University Hospital, Cancer Center Branch, Taipei, Taiwan
| | - Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taiwan; Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
50
|
Xiao D, Liu L, Xie F, Dong J, Wang Y, Xu X, Zhong W, Deng H, Zhou X, Li S. Azobenzene-Based Linker Strategy for Selective Activation of Antibody-Drug Conjugates. Angew Chem Int Ed Engl 2024; 63:e202310318. [PMID: 38369681 DOI: 10.1002/anie.202310318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Existing antibody-drug conjugate (ADC) linkers, whether cleavable or non-cleavable, are designed to release highly toxic payloads or payload derivatives upon internalisation of the ADCs into cells. However, clinical studies have shown that only <1 % of the dosed ADCs accumulate in tumour cells. The remaining >99 % of ADCs are nonspecifically distributed in healthy tissue cells, thus inevitably leading to off-target toxicity. Herein, we describe an intelligent tumour-specific linker strategy to address these limitations. A tumour-specific linker is constructed by introducing a hypoxia-activated azobenzene group as a toxicity controller. We show that this azobenzene-based linker is non-cleavable in healthy tissues (O2 >10 %), and the corresponding payload derivative, cysteine-appended azobenzene-linker-monomethyl auristatin E (MMAE), can serve as a safe prodrug to mask the toxicity of MMAE (switched off). Upon exposure to the hypoxic tumour microenvironment (O2<1 %), this linker is cleaved to release MMAE and fully restores the high cytotoxicity of the ADC (switched on). Notably, the azobenzene linker-containing ADC exhibits satisfactory antitumour efficacy in vivo and a larger therapeutic window compared with ADCs containing traditional cleavable or non-cleavable linkers. Thus, our azobenzene-based linker sheds new light on the development of next-generation ADC linkers.
Collapse
Affiliation(s)
- Dian Xiao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Lianqi Liu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Fei Xie
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jingwen Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanming Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xin Xu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Song Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| |
Collapse
|