1
|
Ding J, Jiang Y, Jiang N, Xing S, Ge F, Ma P, Tang Q, Miao H, Zhou J, Fang Y, Cui D, Liu D, Han Y, Yu W, Wang Y, Zhao G, Cai Y, Wang S, Sun N, Li N. Bridging the gap: unlocking the potential of emerging drug therapies for brain metastasis. Brain 2025; 148:702-722. [PMID: 39512184 DOI: 10.1093/brain/awae366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 11/15/2024] Open
Abstract
Brain metastasis remains an unmet clinical need in advanced cancers with an increasing incidence and poor prognosis. The limited response to various treatments is mainly derived from the presence of the substantive barrier, blood-brain barrier (BBB) and brain-tumour barrier (BTB), which hinders the access of potentially effective therapeutics to the metastatic tumour of the brain. Recently, the understanding of the structural and molecular features of the BBB/BTB has led to the development of efficient strategies to enhance BBB/BTB permeability and deliver drugs across the BBB/BTB to elicit the anti-tumour response against brain metastasis. Meanwhile, novel agents capable of penetrating the BBB have rapidly developed and been evaluated in preclinical studies and clinical trials, with both targeted therapies and immunotherapies demonstrating impressive intracranial activity against brain metastasis. In this review, we summarize the recent advances in the biological properties of the BBB/BTB and the emerging strategies for BBB/BTB permeabilization and drug delivery across the BBB/BTB. We also discuss the emerging targeted therapies and immunotherapies against brain metastasis tested in clinical trials. Additionally, we provide our viewpoints on accelerating clinical translation of novel drugs into clinic for patients of brain metastasis. Although still challenging, we expect this review to benefit the future development of novel therapeutics, specifically from a clinical perspective.
Collapse
Affiliation(s)
- Jiatong Ding
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yale Jiang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Jiang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shujun Xing
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fan Ge
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Peiwen Ma
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qiyu Tang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Huilei Miao
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiawei Zhou
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuan Fang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dandan Cui
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongyan Liu
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yanjie Han
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weijie Yu
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuning Wang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guo Zhao
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuanting Cai
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Li
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
2
|
Schwinghamer K, Kopec BM, Ayewoh E, Tao X, Sadekar S, Sreedhara A, Kelley RF, Tesar DB, Siahaan TJ. Exploring How Antibody Format Drives Clearance from the Brain. Mol Pharm 2024; 21:4416-4429. [PMID: 39058284 PMCID: PMC11368618 DOI: 10.1021/acs.molpharmaceut.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Monoclonal antibodies (mAbs) have high binding specificity and affinity, making them attractive for treating brain diseases. However, their effectiveness is limited by poor blood-brain barrier (BBB) penetration and rapid central nervous system (CNS) clearance. Our group identified blood-brain barrier modulator (BBBM) peptides that improved mAb penetration across the BBB into the brain. In this study, we investigated the pharmacokinetics of a mAb delivered to the brain using BBBMs after intravenous (IV) administration and explored the impact of antibody format (size, neonatal Fc receptor (FcRn) binding, hyaluronic acid binding) on brain clearance following direct injection into the central nervous system (CNS) via intracerebroventricular (ICV) injection. IRDye800CW-labeled antibodies were administered into C57BL/6 mice via ICV or IV injection, and organ concentrations were measured after various time points. When a mAb was coadministered with a BBBM peptide, the permeation of mAb across the BBB was increased compared to mAb alone at early time points; however, the mAb was cleared within 2 h from the brain. ICV experiments revealed that an antibody Fab fragment had a higher brain exposure than a mAb, and that a Fab fused to a hyaluronic acid binding domain (Fab-VG1) showed remarkable improvement in brain exposure. These findings suggest that BBBMs and antibody format optimization may be promising strategies for enhancing brain retention of therapeutic antibodies.
Collapse
Affiliation(s)
- Kelly Schwinghamer
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Ave., Lawrence, Kansas 66046, United States
| | - Brian M Kopec
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Ave., Lawrence, Kansas 66046, United States
| | - Ebehiremen Ayewoh
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xun Tao
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shraddha Sadekar
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Alavattam Sreedhara
- Department of Pharmaceutical Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert F Kelley
- Department of Pharmaceutical Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Devin B Tesar
- Department of Pharmaceutical Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Ave., Lawrence, Kansas 66046, United States
| |
Collapse
|
3
|
Parmaksiz D, Kim Y. Navigating Central Oxytocin Transport: Known Realms and Uncharted Territories. Neuroscientist 2024:10738584241268754. [PMID: 39113465 DOI: 10.1177/10738584241268754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Complex mechanisms govern the transport and action of oxytocin (Oxt), a neuropeptide and hormone that mediates diverse physiologic processes. While Oxt exerts site-specific and rapid effects in the brain via axonal and somatodendritic release, volume transmission via CSF and the neurovascular interface can act as an additional mechanism to distribute Oxt signals across distant brain regions on a slower timescale. This review focuses on modes of Oxt transport and action in the CNS, with particular emphasis on the roles of perivascular spaces, the blood-brain barrier (BBB), and circumventricular organs in coordinating the triadic interaction among circulating blood, CSF, and parenchyma. Perivascular spaces, critical conduits for CSF flow, play a pivotal role in Oxt diffusion and distribution within the CNS and reciprocally undergo Oxt-mediated structural and functional reconstruction. While the BBB modulates the movement of Oxt between systemic and cerebral circulation in a majority of brain regions, circumventricular organs without a functional BBB can allow for diffusion, monitoring, and feedback regulation of bloodborne peripheral signals such as Oxt. Recognition of these additional transport mechanisms provides enhanced insight into the systemic propagation and regulation of Oxt activity.
Collapse
Affiliation(s)
- Deniz Parmaksiz
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
Lahaye E, Fetissov SO. Functional role of immunoglobulin G as an oxytocin-carrier protein. Peptides 2024; 177:171221. [PMID: 38626844 DOI: 10.1016/j.peptides.2024.171221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 06/03/2024]
Abstract
It has been long-time known that oxytocin in plasma is bound to a carrier protein, a common feature of circulating peptide hormones, however, the nature of such protein was uncertain. A recent study revealed that about 60% of oxytocin present in plasma is bound to immunoglobulin G (IgG) and that oxytocin-binding IgG plays a role of a functional oxytocin carrier protein. Here, we review the historical background and methodology leading to this discovery. Moreover, we review the data showing the functional role of oxytocin-binding IgG in the modulation of oxytocin signaling relevant to the regulation of motivated behavior and several neuropsychiatric disorders. Furthermore, the possible role of gut microbiota in the origin of such IgG is discussed and the relevant new therapeutic strategies for the enhancement of oxytocin signaling are presented.
Collapse
Affiliation(s)
- Emilie Lahaye
- Regulatory Peptides - Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, Rouen 76000, France
| | - Sergueï O Fetissov
- Regulatory Peptides - Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, Rouen 76000, France.
| |
Collapse
|
5
|
Dorothee S, Sørensen G, Olsen LR, Bastlund JF, Sotty F, Belling D, Olsen MH, Mathiesen TI, Møller K, Larsen F, Birkeland P. Negligible In Vitro Recovery of Macromolecules from Microdialysis Using 100 kDa Probes and Dextran in Perfusion Fluid. Neurochem Res 2024; 49:1322-1330. [PMID: 38478218 PMCID: PMC10991005 DOI: 10.1007/s11064-024-04119-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024]
Abstract
Microdialysis is applied in neurointensive care to monitor cerebral glucose metabolism. If recoverable, macromolecules may also serve as biomarkers in brain disease and provide clues to their passage across the blood-brain barrier. Our study aimed to investigate the in vitro recovery of human micro- and macromolecules using microdialysis catheters and perfusion fluids approved for clinical use. In vitro microdialysis of a bulk solution containing physiological or supraphysiological concentrations of glucose, lactate, pyruvate, human IgG, serum albumin, and hemoglobin was performed using two different catheters and perfusion fluids. One had a membrane cut-off of 20 kDa and was used with a standard CNS perfusion fluid, and the other had a membrane cut-off of 100 kDa and was perfused with the same solution supplemented with dextran. The flow rate was 0.3 µl/min. We used both push and push-pull methods. Dialysate samples were collected at 2-h intervals for 6 h and analyzed for relative recovery of each substance. The mean relative recovery of glucose, pyruvate, and lactate was > 90% in all but two sets of experiments. In contrast, the relative recovery of human IgG, serum albumin, and hemoglobin from both bulk solutions was below the lower limit of quantification (LLOQ). Using a push-pull method, recovery of human IgG, serum albumin, and hemoglobin from a bulk solution with supraphysiological concentrations were above LLOQ but with low relative recovery (range 0.9%-1.6%). In summary, exchanging the microdialysis setup from a 20 kDa catheter with a standard perfusion fluid for a 100 kDa catheter with a perfusion solution containing dextran did not affect the relative recovery of glucose and its metabolites. However, it did not result in any useful recovery of the investigated macromolecules at physiological levels, either with or without a push-pull pump system.
Collapse
Affiliation(s)
- Spille Dorothee
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - G Sørensen
- H. Lundbeck A/S, Ottiliavej 9, 2500, Copenhagen, Denmark
| | - L R Olsen
- H. Lundbeck A/S, Ottiliavej 9, 2500, Copenhagen, Denmark
| | - J F Bastlund
- H. Lundbeck A/S, Ottiliavej 9, 2500, Copenhagen, Denmark
| | - F Sotty
- H. Lundbeck A/S, Ottiliavej 9, 2500, Copenhagen, Denmark
| | - D Belling
- H. Lundbeck A/S, Ottiliavej 9, 2500, Copenhagen, Denmark
| | - M H Olsen
- Department of Clinical Medicine, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| | - T I Mathiesen
- Department of Neurosurgery, Rigshospitalet, Inge Lehmannsvej 6, 2100, Copenhagen Ø, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - K Møller
- Department of Clinical Medicine, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| | - F Larsen
- H. Lundbeck A/S, Ottiliavej 9, 2500, Copenhagen, Denmark
| | - P Birkeland
- Department of Neurosurgery, Rigshospitalet, Inge Lehmannsvej 6, 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
6
|
Schwinghamer K, Line S, Tesar DB, Miller DW, Sreedhara A, Siahaan TJ. Selective Uptake of Macromolecules to the Brain in Microfluidics and Animal Models Using the HAVN1 Peptide as a Blood-Brain Barrier Modulator. Mol Pharm 2024; 21:1639-1652. [PMID: 38395041 PMCID: PMC10984760 DOI: 10.1021/acs.molpharmaceut.3c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Monoclonal antibodies (mAbs) possess favorable pharmacokinetic properties, high binding specificity and affinity, and minimal off-target effects, making them promising therapeutic agents for central nervous system (CNS) disorders. However, their development as effective therapeutic and diagnostic agents for brain disorders is hindered by their limited ability to efficiently penetrate the blood-brain barrier (BBB). Therefore, it is crucial to develop efficient delivery methods that enhance the penetration of antibodies into the brain. Previous studies have demonstrated the potential of cadherin-derived peptides (i.e., ADTC5, HAVN1 peptides) as BBB modulators (BBBMs) to increase paracellular porosities for penetration of molecules across the BBB. Here, we test the effectiveness of the leading BBBM peptide, HAVN1 (Cyclo(1,6)SHAVSS), in enhancing the permeation of various monoclonal antibodies through the BBB using both in vitro and in vivo systems. In vitro, HAVN1 has been shown to increase the permeability of fluorescently labeled macromolecules, such as a 70 kDa dextran, 50 kDa Fab1, and 150 kDa mAb1, by 4- to 9-fold in a three-dimensional blood-brain barrier (3D-BBB) microfluidics model using a human BBB endothelial cell line (i.e., hCMEC/D3). HAVN1 was selective in modulating the BBB endothelial cell, compared to the pulmonary vascular endothelial (PVE) cell barrier. Co-administration of HAVN1 significantly improved brain depositions of mAb1, mAb2, and Fab1 in C57BL/6 mice after 15 min in the systemic circulation. Furthermore, HAVN1 still significantly enhanced brain deposition of mAb2 when it was administered 24 h after the administration of the mAb. Lastly, we observed that multiple doses of HAVN1 may have a cumulative effect on the brain deposition of mAb2 within a 24-h period. These findings offer promising insights into optimizing HAVN1 and mAb dosing regimens to control or modulate mAb brain deposition for achieving desired mAb dose in the brain to provide its therapeutic effects.
Collapse
Affiliation(s)
- Kelly Schwinghamer
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Ave., Lawrence, KS 66047, USA
| | - Stacey Line
- Department of Pharmacology and Therapeutics, University of Manitoba, 753 McDermot Avenue Winnipeg, MB, R3E 0T6, Canada
| | - Devin B. Tesar
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Donald W. Miller
- Department of Pharmacology and Therapeutics, University of Manitoba, 753 McDermot Avenue Winnipeg, MB, R3E 0T6, Canada
| | - Alavattam Sreedhara
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Ave., Lawrence, KS 66047, USA
| |
Collapse
|
7
|
Wu S, Chang HY, Chowdhury EA, Huang HW, Shah DK. Investigation of Antibody Pharmacokinetics in the Brain Following Intra-CNS Administration and Development of PBPK Model to Characterize the Data. AAPS J 2024; 26:29. [PMID: 38443635 DOI: 10.1208/s12248-024-00898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024] Open
Abstract
Despite the promising potential of direct central nervous system (CNS) antibody administration to enhance brain exposure, there remains a significant gap in understanding the disposition of antibodies following different intra-CNS injection routes. To bridge this knowledge gap, this study quantitatively investigated the brain pharmacokinetics (PK) of antibodies following intra-CNS administration. The microdialysis samples from the striatum (ST), cerebrospinal fluid (CSF) samples through cisterna magna (CM) puncture, plasma, and brain homogenate samples were collected to characterize the pharmacokinetics (PK) profiles of a non-targeting antibody, trastuzumab, following intracerebroventricular (ICV), intracisternal (ICM), and intrastriatal (IST) administration. For a comprehensive analysis, these intra-CNS injection datasets were juxtaposed against our previously acquired intravenous (IV) injection data obtained under analogous experimental conditions. Our findings highlighted that direct CSF injections, either through ICV or ICM, resulted in ~ 5-6-fold higher interstitial fluid (ISF) drug exposure than IV administration. Additionally, the low bioavailability observed following IST administration indicates the existence of a local degradation process for antibody elimination in the brain ISF along with the ISF bulk flow. The study further refined a physiologically based pharmacokinetic (PBPK) model based on new observations by adding the perivascular compartments, oscillated CSF flow, and the nonspecific uptake and degradation of antibodies by brain parenchymal cells. The updated model can well characterize the antibody PK following systemic and intra-CNS administration. Thus, our research offers quantitative insight into antibody brain disposition pathways and paves the way for determining optimal dosing and administration strategies for antibodies targeting CNS disorders.
Collapse
Affiliation(s)
- Shengjia Wu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Hsueh-Yuan Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Hsien Wei Huang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
8
|
Chowdhury EA, Ahuja M, Wu S, Liu S, Huang HW, Kumar M, Sunkara KS, Ghobrial A, Chandran J, Jamier T, Perkinton M, Meno-Tetang G, Shah DK. Pharmacokinetics of AAV9 Mediated Trastuzumab Expression in Rat Brain Following Systemic and Local Administration. J Pharm Sci 2024; 113:131-140. [PMID: 37659717 DOI: 10.1016/j.xphs.2023.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
INTRODUCTION Recombinant adeno-associated viruses(rAAVs) are an attractive tool to ensure long-term expression monoclonal antibody(mAb) in the central nervous system(CNS). It is still unclear whether systemic injection or local CNS administration of AAV9 is more beneficial for the exposure of the expressed mAb in the brain. Hence, we compared the biodistribution and transgene expression following AAV9-Trastuzumab administration through different routes. METHODS AND RESULT In-house generated AAV9-Trastuzumab vectors were administered at 5E+11 Vgs/rat through intravenous(IV), intracerebroventricular(ICV), intra-cisterna magna(ICM) and intrastriatal(IST) routes. Vector and trastuzumab blood/plasma concentrations were assessed at different time points up to the terminal time point of 21 days. Different brain regions in addition to the spinal cord, cerebrospinal fluid(CSF) and interstitial fluid(ISF), were also analyzed at the terminal time point. Our results show that vector biodistribution and Trastuzumab expression in the brain could the ranked as follows: IST>ICM>ICV>IV. Rapid clearance of vector was observed after administration via the ICM and ICV routes. The ICV route produced similar expression levels across different brain regions, while the ICM route had better expression in the hindbrain and spinal cord region. The IST route had higher expression in the forebrain region compared to the hindbrain region. A sharp decline in trastuzumab plasma concentration was observed across all routes of administration due to anti-trastuzumab antibody response. CONCLUSION In this study we have characterized vector biodistribution and transgene mAb expression after AAV9 vector administration through different routes in rats. IST and ICM represent the best administration routes to deliver antibody genes to the brain.
Collapse
Affiliation(s)
- Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA
| | - Manuj Ahuja
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA
| | - Shengjia Wu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA
| | - Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA
| | - Hsien Wei Huang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA
| | - Mokshada Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA
| | - Kiran Sai Sunkara
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA
| | - Avanobe Ghobrial
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA
| | - Jayanth Chandran
- Biologic Therapeutics, Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Tanguy Jamier
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Guy Meno-Tetang
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA.
| |
Collapse
|
9
|
van Noort JM, Baker D, Kipp M, Amor S. The pathogenesis of multiple sclerosis: a series of unfortunate events. Clin Exp Immunol 2023; 214:1-17. [PMID: 37410892 PMCID: PMC10711360 DOI: 10.1093/cei/uxad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/10/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023] Open
Abstract
Multiple sclerosis (MS) is characterized by the chronic inflammatory destruction of myelinated axons in the central nervous system. Several ideas have been put forward to clarify the roles of the peripheral immune system and neurodegenerative events in such destruction. Yet, none of the resulting models appears to be consistent with all the experimental evidence. They also do not answer the question of why MS is exclusively seen in humans, how Epstein-Barr virus contributes to its development but does not immediately trigger it, and why optic neuritis is such a frequent early manifestation in MS. Here we describe a scenario for the development of MS that unifies existing experimental evidence as well as answers the above questions. We propose that all manifestations of MS are caused by a series of unfortunate events that usually unfold over a longer period of time after a primary EBV infection and involve periodic weakening of the blood-brain barrier, antibody-mediated CNS disturbances, accumulation of the oligodendrocyte stress protein αB-crystallin and self-sustaining inflammatory damage.
Collapse
Affiliation(s)
- Johannes M van Noort
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - David Baker
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
10
|
Schwinghamer K, Siahaan TJ. Enhancing Antibody Exposure in the Central Nervous System: Mechanisms of Uptake, Clearance, and Strategies for Improved Brain Delivery. JOURNAL OF NANOTHERANOSTICS 2023; 4:463-479. [PMID: 39897432 PMCID: PMC11784990 DOI: 10.3390/jnt4040020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Antibodies (mAbs) are attractive molecules for their application as a diagnostic and therapeutic agent for diseases of the central nervous system (CNS). mAbs can be generated to have high affinity and specificity to target molecules in the CNS. Unfortunately, only a very small number of mAbs have been specifically developed and approved for neurological indications. This is primarily attributed to their low exposure within the CNS, hindering their ability to reach and effectively engage their potential targets in the brain. This review discusses aspects of various barriers such as the blood-brain barrier (BBB) and blood-cerebrospinal fluid (CSF) barrier (BCSFB) that regulate the entry and clearance of mAbs into and from the brain. The roles of the glymphatic system on brain exposure and clearance are being described. We also discuss the proposed mechanisms of the uptake of mAbs into the brain and for clearance. Finally, several methods of enhancing the exposure of mAbs in the CNS were discussed, including receptor-mediated transcytosis, osmotic BBB opening, focused ultrasound (FUS), BBB-modulating peptides, and enhancement of mAb brain retention.
Collapse
Affiliation(s)
- Kelly Schwinghamer
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66046, USA
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66046, USA
| |
Collapse
|
11
|
Værøy H, Lahaye E, Dubessy C, Benard M, Nicol M, Cherifi Y, Takhlidjt S, do Rego JL, do Rego JC, Chartrel N, Fetissov SO. Immunoglobulin G is a natural oxytocin carrier which modulates oxytocin receptor signaling: relevance to aggressive behavior in humans. DISCOVER MENTAL HEALTH 2023; 3:21. [PMID: 37983005 PMCID: PMC10587035 DOI: 10.1007/s44192-023-00048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023]
Abstract
Oxytocin is a neuropeptide produced mainly in the hypothalamus and secreted in the CNS and blood. In the brain, it plays a major role in promoting social interactions. Here we show that in human plasma about 60% of oxytocin is naturally bound to IgG which modulates oxytocin receptor signaling. Further, we found that IgG of violent aggressive inmates were characterized by lower affinity for oxytocin, causing decreased oxytocin carrier capacity and reduced receptor activation as compared to men from the general population. Moreover, peripheral administration of oxytocin together with human oxytocin-reactive IgG to resident mice in a resident-intruder test, reduced c-fos activation in several brain regions involved in the regulation of aggressive/defensive behavior correlating with the attack number and duration. We conclude that IgG is a natural oxytocin carrier protein modulating oxytocin receptor signaling which can be relevant to the biological mechanisms of aggressive behavior.
Collapse
Affiliation(s)
- Henning Værøy
- Department of Psychiatric Research, Akershus University Hospital, 1478, Nordbyhagen, Norway.
| | - Emilie Lahaye
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Christophe Dubessy
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
- INSERM US51, CNRS UAR 2026, Imagine Platform PRIMACEN- HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Magalie Benard
- INSERM US51, CNRS UAR 2026, Imagine Platform PRIMACEN- HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Marion Nicol
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Yamina Cherifi
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Saloua Takhlidjt
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Jean-Luc do Rego
- INSERM US51, CNRS UAR 2026, Behavioral Analysis Platform SCAC-HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Jean-Claude do Rego
- INSERM US51, CNRS UAR 2026, Behavioral Analysis Platform SCAC-HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Nicolas Chartrel
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Sergueï O Fetissov
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France.
| |
Collapse
|
12
|
Pardridge WM. Receptor-mediated drug delivery of bispecific therapeutic antibodies through the blood-brain barrier. FRONTIERS IN DRUG DELIVERY 2023; 3:1227816. [PMID: 37583474 PMCID: PMC10426772 DOI: 10.3389/fddev.2023.1227816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Therapeutic antibody drug development is a rapidly growing sector of the pharmaceutical industry. However, antibody drug development for the brain is a technical challenge, and therapeutic antibodies for the central nervous system account for ~3% of all such agents. The principal obstacle to antibody drug development for brain or spinal cord is the lack of transport of large molecule biologics across the blood-brain barrier (BBB). Therapeutic antibodies can be made transportable through the blood-brain barrier by the re-engineering of the therapeutic antibody as a BBB-penetrating bispecific antibody (BSA). One arm of the BSA is the therapeutic antibody and the other arm of the BSA is a transporting antibody. The transporting antibody targets an exofacial epitope on a BBB receptor, and this enables receptor-mediated transcytosis (RMT) of the BSA across the BBB. Following BBB transport, the therapeutic antibody then engages the target receptor in brain. RMT systems at the BBB that are potential conduits to the brain include the insulin receptor (IR), the transferrin receptor (TfR), the insulin-like growth factor receptor (IGFR) and the leptin receptor. Therapeutic antibodies have been re-engineered as BSAs that target the insulin receptor, TfR, or IGFR RMT systems at the BBB for the treatment of Alzheimer's disease and Parkinson's disease.
Collapse
|
13
|
Altendorfer-Kroath T, Hummer J, Kollmann D, Boulgaropoulos B, Raml R, Birngruber T. Quantification of the Therapeutic Antibody Ocrelizumab in Mouse Brain Interstitial Fluid Using Cerebral Open Flow Microperfusion and Simultaneous Monitoring of the Blood-Brain Barrier Integrity. Pharmaceutics 2023; 15:1880. [PMID: 37514066 PMCID: PMC10383368 DOI: 10.3390/pharmaceutics15071880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The increasing relevance of improved therapeutic monoclonal antibodies (mAbs) to treat neurodegenerative diseases has strengthened the need to reliably measure their brain pharmacokinetic (PK) profiles. The aim of this study was, therefore, to absolutely quantify the therapeutic antibody ocrelizumab (OCR) as a model antibody in mouse brain interstitial fluid (ISF), and to record its PK profile by using cerebral open flow microperfusion (cOFM). Further, to monitor the blood-brain barrier (BBB) integrity using an endogenous antibody with a similar molecular size as OCR. The study was conducted on 13 male mice. Direct and absolute OCR quantification was performed with cOFM in combination with zero flow rate, and subsequent bioanalysis of the obtained cerebral ISF samples. For PK profile recording, cerebral ISF samples were collected bi-hourly, and brain tissue and plasma were collected once at the end of the sampling period. The BBB integrity was monitored during the entire PK profile recording by using endogenous mouse immunoglobulin G1. We directly and absolutely quantified OCR and recorded its brain PK profile over 96 h. The BBB remained intact during the PK profile recording. The resulting data provide the basis for reliable PK assessment of therapeutic antibodies in the brain thus favoring the further development of therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- Thomas Altendorfer-Kroath
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Joanna Hummer
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Denise Kollmann
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Beate Boulgaropoulos
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Reingard Raml
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Thomas Birngruber
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| |
Collapse
|
14
|
Bruce MR, Couch ACM, Grant S, McLellan J, Ku K, Chang C, Bachman A, Matson M, Berman RF, Maddock RJ, Rowland D, Kim E, Ponzini MD, Harvey D, Taylor SL, Vernon AC, Bauman MD, Van de Water J. Altered behavior, brain structure, and neurometabolites in a rat model of autism-specific maternal autoantibody exposure. Mol Psychiatry 2023; 28:2136-2147. [PMID: 36973347 PMCID: PMC10575787 DOI: 10.1038/s41380-023-02020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Maternal immune dysregulation is a prenatal risk factor for autism spectrum disorder (ASD). Importantly, a clinically relevant connection exists between inflammation and metabolic stress that can result in aberrant cytokine signaling and autoimmunity. In this study we examined the potential for maternal autoantibodies (aAbs) to disrupt metabolic signaling and induce neuroanatomical changes in the brains of exposed offspring. To accomplish this, we developed a model of maternal aAb exposure in rats based on the clinical phenomenon of maternal autoantibody-related ASD (MAR-ASD). Following confirmation of aAb production in rat dams and antigen-specific immunoglobulin G (IgG) transfer to offspring, we assessed offspring behavior and brain structure longitudinally. MAR-ASD rat offspring displayed a reduction in pup ultrasonic vocalizations and a pronounced deficit in social play behavior when allowed to freely interact with a novel partner. Additionally, longitudinal in vivo structural magnetic resonance imaging (sMRI) at postnatal day 30 (PND30) and PND70, conducted in a separate cohort of animals, revealed sex-specific differences in total and regional brain volume. Treatment-specific effects by region appeared to converge on midbrain and cerebellar structures in MAR-ASD offspring. Simultaneously, in vivo 1H magnetic resonance spectroscopy (1H-MRS) data were collected to examine brain metabolite levels in the medial prefrontal cortex. Results showed that MAR-ASD offspring displayed decreased levels of choline-containing compounds and glutathione, accompanied by increased taurine compared to control animals. Overall, we found that rats exposed to MAR-ASD aAbs present with alterations in behavior, brain structure, and neurometabolites; reminiscent of findings observed in clinical ASD.
Collapse
Affiliation(s)
- Matthew R Bruce
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Amalie C M Couch
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Simone Grant
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Janna McLellan
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Katherine Ku
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Christina Chang
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Angelica Bachman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Matthew Matson
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Robert F Berman
- Department of Neurological Surgery, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Douglas Rowland
- Center for Molecular and Genomic Imaging, University of California, Davis, CA, USA
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Matthew D Ponzini
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Danielle Harvey
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Sandra L Taylor
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Judy Van de Water
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA.
- MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
15
|
Akbar L, Castillo VCG, Olorocisimo JP, Ohta Y, Kawahara M, Takehara H, Haruta M, Tashiro H, Sasagawa K, Ohsawa M, Akay YM, Akay M, Ohta J. Multi-Region Microdialysis Imaging Platform Revealed Dorsal Raphe Nucleus Calcium Signaling and Serotonin Dynamics during Nociceptive Pain. Int J Mol Sci 2023; 24:ijms24076654. [PMID: 37047627 PMCID: PMC10094999 DOI: 10.3390/ijms24076654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
In this research, we combined our ultralight micro-imaging device for calcium imaging with microdialysis to simultaneously visualize neural activity in the dorsal raphe nucleus (DRN) and measure serotonin release in the central nucleus of the amygdala (CeA) and the anterior cingulate cortex (ACC). Using this platform, we observed brain activity following nociception induced by formalin injection in the mouse’s hind paw. Our device showed that DRN fluorescence intensity increased after formalin injection, and the increase was highly correlated with the elevation in serotonin release in both the CeA and ACC. The increase in calcium fluorescence intensity occurred during the acute and inflammatory phases, which suggests the biphasic response of nociceptive pain. Furthermore, we found that the increase in fluorescence intensity was positively correlated with mouse licking behavior. Lastly, we compared the laterality of pain stimulation and found that DRN fluorescence activity was higher for contralateral stimulation. Microdialysis showed that CeA serotonin concentration increased only after contralateral stimulation, while ACC serotonin release responded bilaterally. In conclusion, our study not only revealed the inter-regional serotonergic connection among the DRN, the CeA, and the ACC, but also demonstrated that our device is feasible for multi-site implantation in conjunction with a microdialysis system, allowing the simultaneous multi-modal observation of different regions in the brain.
Collapse
Affiliation(s)
- Latiful Akbar
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Virgil Christian Garcia Castillo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Joshua Philippe Olorocisimo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Yasumi Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Mamiko Kawahara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Hironari Takehara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Makito Haruta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Hiroyuki Tashiro
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kiyotaka Sasagawa
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Yasemin M. Akay
- Biomedical Engineering Department, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| | - Metin Akay
- Biomedical Engineering Department, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| | - Jun Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| |
Collapse
|
16
|
Chandran J, Chowdhury EA, Perkinton M, Jamier T, Sutton D, Wu S, Dobson C, Shah DK, Chessell I, Meno-Tetang GML. Assessment of AAV9 distribution and transduction in rats after administration through Intrastriatal, Intracisterna magna and Lumbar Intrathecal routes. Gene Ther 2023; 30:132-141. [PMID: 35637286 DOI: 10.1038/s41434-022-00346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/12/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Challenges in obtaining efficient transduction of brain and spinal cord following systemic AAV delivery have led to alternative administration routes being used in clinical trials that directly infuse the virus into the CNS. However, data comparing different direct AAV injections into the brain remain limited making it difficult to choose optimal routes. Here we tested both AAV9-egfp and AAV9-fLuc delivery via intrastriatal (IST), intracisterna magna (ICM) and lumbar intrathecal (LIT) routes in adult rats and assessed vector distribution and transduction in brain, spinal cord and peripheral tissues. We find that IST infusion leads to robust transgene expression in the striatum, thalamus and cortex with lower peripheral tissue transduction and anti-AAV9 capsid titers compared to ICM or LIT. ICM delivery provided strong GFP and luciferase expression across more brain regions than the other routes and similar expression in the spinal cord to LIT injections, which itself largely failed to transduce the rat brain. Our data highlight the strengths and weaknesses of each direct CNS delivery route which will help with future clinical targeting.
Collapse
Affiliation(s)
- Jayanth Chandran
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | | | - Tanguy Jamier
- Neuroscience, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Daniel Sutton
- Clinical Pharmacology and Safety Science, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Shengjia Wu
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Claire Dobson
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Iain Chessell
- Neuroscience, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | |
Collapse
|
17
|
Altendorfer-Kroath T, Hummer J, Birngruber T. In vivo monitoring of brain pharmacokinetics and pharmacodynamics with cerebral open flow microperfusion. Biopharm Drug Dispos 2023; 44:84-93. [PMID: 36650922 DOI: 10.1002/bdd.2343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 01/19/2023]
Abstract
In vivo investigation of brain pharmacokinetics and pharmacodynamics (PK/PD) is an integral part of neurological drug development. However, drugs intended to act in the brain may reach it at very low concentrations due to the protective effect of the blood-brain barrier (BBB). Consequently, very sensitive measurement methods are required to investigate PK/PD of drugs in the brain. Also, these methods must be capable of continuously assessing cerebral drug concentrations with verifiable intact BBB, as disrupted BBB may lead to compound efflux from blood into brain and to biased results. To date, only a few techniques are available that can sensitively measure drug concentrations in the brain over time; one of which is cerebral open flow microperfusion (cOFM). cOFM's key features are that it enables measurement of cerebral compound concentrations with intact BBB, induces only minor tissue reactions, and that no scar formation occurs around the probe. The membrane-free cOFM probes collect diluted cerebral interstitial fluid (ISF) samples that are containing the whole molecule spectrum of the ISF. Further, combining cOFM with an in vivo calibration protocol (e.g. Zero Flow Rate) enables absolute quantification of compounds in cerebral ISF. In general, three critical aspects have to be considered when measuring cerebral drug concentrations and recording PK/PD profiles with cOFM: (a) the BBB integrity during sampling, (b) the status of the brain tissue next to the cOFM probe during sampling, and (c) the strategy to absolutely quantify drugs in cerebral ISF. This work aims to review recent applications of cOFM for PK/PD assessment with a special focus on these critical aspects.
Collapse
Affiliation(s)
| | - Joanna Hummer
- Institute for Biomedical Research and Technologies, JOANNEUM RESEARCH - HEALTH, Graz, Austria
| | - Thomas Birngruber
- Institute for Biomedical Research and Technologies, JOANNEUM RESEARCH - HEALTH, Graz, Austria
| |
Collapse
|
18
|
Tsitokana ME, Lafon PA, Prézeau L, Pin JP, Rondard P. Targeting the Brain with Single-Domain Antibodies: Greater Potential Than Stated So Far? Int J Mol Sci 2023; 24:ijms24032632. [PMID: 36768953 PMCID: PMC9916958 DOI: 10.3390/ijms24032632] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Treatments for central nervous system diseases with therapeutic antibodies have been increasingly investigated over the last decades, leading to some approved monoclonal antibodies for brain disease therapies. The detection of biomarkers for diagnosis purposes with non-invasive antibody-based imaging approaches has also been explored in brain cancers. However, antibodies generally display a low capability of reaching the brain, as they do not efficiently cross the blood-brain barrier. As an alternative, recent studies have focused on single-domain antibodies (sdAbs) that correspond to the antigen-binding fragment. While some reports indicate that the brain uptake of these small antibodies is still low, the number of studies reporting brain-penetrating sdAbs is increasing. In this review, we provide an overview of methods used to assess or evaluate brain penetration of sdAbs and discuss the pros and cons that could affect the identification of brain-penetrating sdAbs of therapeutic or diagnostic interest.
Collapse
|
19
|
Grimm HP, Schumacher V, Schäfer M, Imhof-Jung S, Freskgård PO, Brady K, Hofmann C, Rüger P, Schlothauer T, Göpfert U, Hartl M, Rottach S, Zwick A, Seger S, Neff R, Niewoehner J, Janssen N. Delivery of the Brainshuttle™ amyloid-beta antibody fusion trontinemab to non-human primate brain and projected efficacious dose regimens in humans. MAbs 2023; 15:2261509. [PMID: 37823690 PMCID: PMC10572082 DOI: 10.1080/19420862.2023.2261509] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
There are few treatments that slow neurodegeneration in Alzheimer's disease (AD), and while therapeutic antibodies are being investigated in clinical trials for AD treatment, their access to the central nervous system is restricted by the blood-brain barrier. This study investigates a bispecific modular fusion protein composed of gantenerumab, a fully human monoclonal anti- amyloid-beta (Aβ) antibody under investigation for AD treatment, with a human transferrin receptor 1-directed Brainshuttle™ module (trontinemab; RG6102, INN trontinemab). In vitro, trontinemab showed a similar binding affinity to fibrillar Aβ40 and Aβ plaques in human AD brain sections to gantenerumab. A single intravenous administration of trontinemab (10 mg/kg) or gantenerumab (20 mg/kg) to non-human primates (NHPs, Macaca fascicularis), was well tolerated in both groups. Immunohistochemistry indicated increased trontinemab uptake into the brain endothelial cell layer and parenchyma, and more homogeneous distribution, compared with gantenerumab. Brain and plasma pharmacokinetic (PK) parameters for trontinemab were estimated by nonlinear mixed-effects modeling with correction for tissue residual blood, indicating a 4-18-fold increase in brain exposure. A previously developed clinical PK/pharmacodynamic model of gantenerumab was adapted to include a brain compartment as a driver of plaque removal and linked to the allometrically scaled above model from NHP. The new brain exposure-based model was used to predict trontinemab dosing regimens for effective amyloid reduction. Simulations from these models were used to inform dosing of trontinemab in the first-in-human clinical trial.
Collapse
Affiliation(s)
- Hans Peter Grimm
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Vanessa Schumacher
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Martin Schäfer
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Sabine Imhof-Jung
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Per-Ola Freskgård
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Kevin Brady
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Carsten Hofmann
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Petra Rüger
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Tilman Schlothauer
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Ulrich Göpfert
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Maximilian Hartl
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Sylvia Rottach
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Adrian Zwick
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Shanon Seger
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Rachel Neff
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Jens Niewoehner
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Niels Janssen
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
20
|
Julku U, Xiong M, Wik E, Roshanbin S, Sehlin D, Syvänen S. Brain pharmacokinetics of mono- and bispecific amyloid-β antibodies in wild-type and Alzheimer's disease mice measured by high cut-off microdialysis. Fluids Barriers CNS 2022; 19:99. [PMID: 36510227 PMCID: PMC9743601 DOI: 10.1186/s12987-022-00398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Treatment with amyloid-β (Aβ) targeting antibodies is a promising approach to remove Aβ brain pathology in Alzheimer's disease (AD) and possibly even slow down or stop progression of the disease. One of the main challenges of brain immunotherapy is the restricted delivery of antibodies to the brain. However, bispecific antibodies that utilize the transferrin receptor (TfR) as a shuttle for transport across the blood-brain barrier (BBB) can access the brain better than traditional monospecific antibodies. Previous studies have shown that bispecific Aβ targeting antibodies have higher brain distribution, and can remove Aβ pathology more efficiently than monospecific antibodies. Yet, there is only limited information available on brain pharmacokinetics, especially regarding differences between mono- and bispecific antibodies. METHODS The aim of the study was to compare brain pharmacokinetics of Aβ-targeting monospecific mAb3D6 and its bispecific version mAb3D6-scFv8D3 that also targets TfR. High cut-off microdialysis was used to measure intravenously injected radiolabelled mAb3D6 and mAb3D6-scFv8D3 antibodies in the interstitial fluid (ISF) of hippocampus in wild-type mice and the AppNL-G-F mouse model of AD. Distribution of the antibodies in the brain and the peripheral tissue was examined by ex vivo autoradiography and biodistribution studies. RESULTS Brain concentrations of the bispecific antibody were elevated compared to the monospecific antibody in the hippocampal ISF measured by microdialysis and in the brain tissue at 4-6 h after an intravenous injection. The concentration of the bispecific antibody was approximately twofold higher in the ISF dialysate compared to the concentration of monospecific antibody and eightfold higher in brain tissue 6 h post-injection. The ISF dialysate concentrations for both antibodies were similar in both wild-type and AppNL-G-F mice 24 h post-injection, although the total brain tissue concentration of the bispecific antibody was higher than that of the monospecific antibody at this time point. Some accumulation of radioactivity around the probe area was observed especially for the monospecific antibody indicating that the probe compromised the BBB to some extent at the probe insertion site. CONCLUSION The BBB-penetrating bispecific antibody displayed higher ISF concentrations than the monospecific antibody. The concentration difference between the two antibodies was even larger in the whole brain than in the ISF. Further, the bispecific antibody, but not the monospecific antibody, displayed higher total brain concentrations than ISF concentrations, indicating association to brain tissue.
Collapse
Affiliation(s)
- Ulrika Julku
- grid.8993.b0000 0004 1936 9457Rudbeck Laboratory, Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjölds Väg 20, 751 85 Uppsala, Sweden
| | - Mengfei Xiong
- grid.8993.b0000 0004 1936 9457Rudbeck Laboratory, Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjölds Väg 20, 751 85 Uppsala, Sweden
| | - Elin Wik
- grid.8993.b0000 0004 1936 9457Rudbeck Laboratory, Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjölds Väg 20, 751 85 Uppsala, Sweden
| | - Sahar Roshanbin
- grid.8993.b0000 0004 1936 9457Rudbeck Laboratory, Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjölds Väg 20, 751 85 Uppsala, Sweden
| | - Dag Sehlin
- grid.8993.b0000 0004 1936 9457Rudbeck Laboratory, Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjölds Väg 20, 751 85 Uppsala, Sweden
| | - Stina Syvänen
- grid.8993.b0000 0004 1936 9457Rudbeck Laboratory, Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjölds Väg 20, 751 85 Uppsala, Sweden
| |
Collapse
|
21
|
Shin JW, An S, Kim D, Kim H, Ahn J, Eom J, You WK, Yun H, Lee B, Sung B, Jung J, Kim S, Son Y, Sung E, Lee H, Lee S, Song D, Pak Y, Sandhu JK, Haqqani AS, Stanimirovic DB, Yoo J, Kim D, Maeng S, Lee J, Lee SH. Grabody B, an IGF1 receptor-based shuttle, mediates efficient delivery of biologics across the blood-brain barrier. CELL REPORTS METHODS 2022; 2:100338. [PMID: 36452865 PMCID: PMC9701613 DOI: 10.1016/j.crmeth.2022.100338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/26/2021] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Effective delivery of therapeutics to the brain is challenging. Molecular shuttles use receptors expressed on brain endothelial cells to deliver therapeutics. Antibodies targeting transferrin receptor (TfR) have been widely developed as molecular shuttles. However, the TfR-based approach raises concerns about safety and developmental burden. Here, we report insulin-like growth factor 1 receptor (IGF1R) as an ideal target for the molecular shuttle. We also describe Grabody B, an antibody against IGF1R, as a molecular shuttle. Grabody B has broad cross-species reactivity and does not interfere with IGF1R-mediated signaling. We demonstrate that administration of Grabody B-fused anti-alpha-synuclein (α-Syn) antibody induces better improvement in neuropathology and behavior in a Parkinson's disease animal model than the therapeutic antibody alone due to its superior serum pharmacokinetics and enhanced brain exposure. The results indicate that IGF1R is an ideal shuttle target and Grabody B is a safe and efficient molecular shuttle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hyesu Yun
- ABL Bio, Inc., Seongnam-si, South Korea
| | - Bora Lee
- ABL Bio, Inc., Seongnam-si, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sungho Maeng
- Department of Comprehensive Health Science, Kyung Hee University, Yongin-si, South Korea
| | - Jeonghun Lee
- Department of Comprehensive Health Science, Kyung Hee University, Yongin-si, South Korea
| | | |
Collapse
|
22
|
Bespalov A, Courade JP, Khiroug L, Terstappen GC, Wang Y. A call for better understanding of target engagement in Tau antibody development. Drug Discov Today 2022; 27:103338. [PMID: 35973661 DOI: 10.1016/j.drudis.2022.103338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/08/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Significant efforts have been channeled into developing antibodies for the treatment of CNS indications. Disappointment with the first generation of clinical Tau antibodies in Alzheimer's disease has highlighted the challenges in understanding whether an antibody can reach or affect the target in the compartment where it is involved in pathological processes. Here, we highlight different aspects essential for improving translatability of Tau-based immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Yipeng Wang
- Shanghai Qiangrui Biotech, Shanghai, PR China
| |
Collapse
|
23
|
PBPK model for antibody disposition in mouse brain: validation using large-pore microdialysis data. J Pharmacokinet Pharmacodyn 2022; 49:579-592. [DOI: 10.1007/s10928-022-09823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
|
24
|
Van De Vyver AJ, Walz AC, Heins MS, Abdolzade-Bavil A, Kraft TE, Waldhauer I, Otteneder MB. Investigating brain uptake of a non-targeting monoclonal antibody after intravenous and intracerebroventricular administration. Front Pharmacol 2022; 13:958543. [PMID: 36105215 PMCID: PMC9465605 DOI: 10.3389/fphar.2022.958543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Monoclonal antibodies play an important role in the treatment of various diseases. However, the development of these drugs against neurological disorders where the drug target is located in the brain is challenging and requires a good understanding of the local drug concentration in the brain. In this original research, we investigated the systemic and local pharmacokinetics in the brain of healthy rats after either intravenous (IV) or intracerebroventricular (ICV) administration of EGFRvIII-T-Cell bispecific (TCB), a bispecific monoclonal antibody. We established an experimental protocol that allows serial sampling in serum, cerebrospinal fluid (CSF) and interstitial fluid (ISF) of the prefrontal cortex in freely moving rats. For detection of drug concentration in ISF, a push-pull microdialysis technique with large pore membranes was applied. Brain uptake into CSF and ISF was characterized and quantified with a reduced brain physiologically-based pharmacokinetic model. The model allowed us to interpret the pharmacokinetic processes of brain uptake after different routes of administration. The proposed model capturing the pharmacokinetics in serum, CSF and ISF of the prefrontal cortex suggests a barrier function between the CSF and ISF that impedes free antibody transfer. This finding suggests that ICV administration may not be better suited to reach higher local drug exposure as compared to IV administration. The model enabled us to quantify the relative contribution of the blood-brain barrier (BBB) and Blood-CSF-Barrier to the uptake into the interstitial fluid of the brain. In addition, we compared the brain uptake of three monoclonal antibodies after IV dosing. In summary, the presented approach can be applied to profile compounds based on their relative uptake in the brain and provides quantitative insights into which pathways are contributing to the net exposure in the brain.
Collapse
Affiliation(s)
- Arthur J. Van De Vyver
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Antje-Christine Walz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
- *Correspondence: Antje-Christine Walz,
| | | | - Afsaneh Abdolzade-Bavil
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Penzberg, Germany
| | - Thomas E. Kraft
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Penzberg, Germany
| | - Inja Waldhauer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Zurich (RICZ), Schlieren, Switzerland
| | - Michael B. Otteneder
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
25
|
Roshanbin S, Julku U, Xiong M, Eriksson J, Masliah E, Hultqvist G, Bergström J, Ingelsson M, Syvänen S, Sehlin D. Reduction of αSYN Pathology in a Mouse Model of PD Using a Brain-Penetrating Bispecific Antibody. Pharmaceutics 2022; 14:pharmaceutics14071412. [PMID: 35890306 PMCID: PMC9318263 DOI: 10.3390/pharmaceutics14071412] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Immunotherapy targeting aggregated alpha-synuclein (αSYN) is a promising approach for the treatment of Parkinson’s disease. However, brain penetration of antibodies is hampered by their large size. Here, RmAbSynO2-scFv8D3, a modified bispecific antibody that targets aggregated αSYN and binds to the transferrin receptor for facilitated brain uptake, was investigated to treat αSYN pathology in transgenic mice. Ex vivo analyses of the blood and brain distribution of RmAbSynO2-scFv8D3 and the unmodified variant RmAbSynO2, as well as in vivo analyses with microdialysis and PET, confirmed fast and efficient brain uptake of the bispecific format. In addition, intravenous administration was shown to be superior to intraperitoneal injections in terms of brain uptake and distribution. Next, aged female αSYN transgenic mice (L61) were administered either RmAbSynO2-scFv8D3, RmAbSynO2, or PBS intravenously three times over five days. Levels of TBS-T soluble aggregated αSYN in the brain following treatment with RmAbSynO2-scFv8D3 were decreased in the cortex and midbrain compared to RmAbSynO2 or PBS controls. Taken together, our results indicate that facilitated brain uptake of αSYN antibodies can improve treatment of αSYN pathology.
Collapse
Affiliation(s)
- Sahar Roshanbin
- Department of Public Health and Caring Sciences, Uppsala University, 751 85 Uppsala, Sweden; (U.J.); (M.X.); (J.B.); (M.I.); (S.S.)
- Correspondence: (S.R.); (D.S.)
| | - Ulrika Julku
- Department of Public Health and Caring Sciences, Uppsala University, 751 85 Uppsala, Sweden; (U.J.); (M.X.); (J.B.); (M.I.); (S.S.)
| | - Mengfei Xiong
- Department of Public Health and Caring Sciences, Uppsala University, 751 85 Uppsala, Sweden; (U.J.); (M.X.); (J.B.); (M.I.); (S.S.)
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden;
- PET Centre, Uppsala University Hospital, 751 85 Uppsala, Sweden
| | - Eliezer Masliah
- Division of Neuroscience and Laboratory of Neurogenetics, NIA-NIH, Bethesda, MD 20814, USA;
| | - Greta Hultqvist
- Department of Pharmacy, Uppsala University, 752 37 Uppsala, Sweden;
| | - Joakim Bergström
- Department of Public Health and Caring Sciences, Uppsala University, 751 85 Uppsala, Sweden; (U.J.); (M.X.); (J.B.); (M.I.); (S.S.)
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Uppsala University, 751 85 Uppsala, Sweden; (U.J.); (M.X.); (J.B.); (M.I.); (S.S.)
- Krembil Brain Institute, University Health Network, Toronto, ON M5T 1M8, Canada
- Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 1M8, Canada
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, 751 85 Uppsala, Sweden; (U.J.); (M.X.); (J.B.); (M.I.); (S.S.)
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, 751 85 Uppsala, Sweden; (U.J.); (M.X.); (J.B.); (M.I.); (S.S.)
- Correspondence: (S.R.); (D.S.)
| |
Collapse
|
26
|
Pharmacokinetics and Pharmacodynamic Effect of a Blood-Brain Barrier-Crossing Fusion Protein Therapeutic for Alzheimer's Disease in Rat and Dog. Pharm Res 2022; 39:1497-1507. [PMID: 35704250 PMCID: PMC9246806 DOI: 10.1007/s11095-022-03285-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/01/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE We have recently demonstrated the brain-delivery of an Amyloid-ß oligomer (Aßo)-binding peptide-therapeutic fused to the BBB-crossing single domain antibody FC5. The bi-functional fusion protein, FC5-mFc-ABP (KG207-M) lowered both CSF and brain Aß levels after systemic dosing in transgenic mouse and rat models of Alzheimer's disease (AD). For development as a human therapeutic, we have humanized and further engineered the fusion protein named KG207-H. The purpose of the present study was to carry out comparative PK/PD studies of KG207-H in wild type rat and beagle dogs (middle-aged and older) to determine comparability of systemic PK and CSF exposure between rodent species and larger animals with more complex brain structure such as dogs. METHOD Beagle dogs were used in this study as they accumulate cerebral Aß with age, as seen in human AD patients, and can serve as a model of sporadic AD. KG207-H (5 to 50 mg/kg) was administered intravenously and serum and CSF samples were serially collected for PK studies and to assess target engagement. KG207-H and Aβ levels were quantified using multiplexed selected reaction monitoring mass spectrometry. RESULTS After systemic dosing, KG207-H demonstrated similar serum pharmacokinetics in rats and dogs. KG207-H appeared in the CSF in a time- and dose-dependent manner with similar kinetics, indicating CNS exposure. Further analyses revealed a dose-dependent inverse relationship between CSF KG207-H and Aß levels in both species indicating target engagement. CONCLUSION This study demonstrates translational attributes of BBB-crossing Aβ-targeting biotherapeutic KG207-H in eliciting a pharmacodynamic response, from rodents to larger animal species.
Collapse
|
27
|
2021 White Paper on Recent Issues in Bioanalysis: ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry ( Part 2 - Recommendations on Biomarkers/CDx Assays Development & Validation, Cytometry Validation & Innovation, Biotherapeutics PK LBA Regulated Bioanalysis, Critical Reagents & Positive Controls Generation). Bioanalysis 2022; 14:627-692. [PMID: 35578974 DOI: 10.4155/bio-2022-0080] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included three Main Workshops and seven Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "context of use" [COU]); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations on ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry. Part 1A (Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC), Part 1B (Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine) and Part 3 (TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparability & Cut Point Appropriateness) are published in volume 14 of Bioanalysis, issues 9 and 11 (2022), respectively.
Collapse
|
28
|
Custers ML, Nestor L, De Bundel D, Van Eeckhaut A, Smolders I. Current Approaches to Monitor Macromolecules Directly from the Cerebral Interstitial Fluid. Pharmaceutics 2022; 14:pharmaceutics14051051. [PMID: 35631637 PMCID: PMC9146401 DOI: 10.3390/pharmaceutics14051051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
Gaining insights into the pharmacokinetic and pharmacodynamic properties of lead compounds is crucial during drug development processes. When it comes to the treatment of brain diseases, collecting information at the site of action is challenging. There are only a few techniques available that allow for the direct sampling from the cerebral interstitial space. This review concerns the applicability of microdialysis and other approaches, such as cerebral open flow microperfusion and electrochemical biosensors, to monitor macromolecules (neuropeptides, proteins, …) in the brain. Microdialysis and cerebral open flow microperfusion can also be used to locally apply molecules at the same time at the site of sampling. Innovations in the field are discussed, together with the pitfalls. Moreover, the ‘nuts and bolts’ of the techniques and the current research gaps are addressed. The implementation of these techniques could help to improve drug development of brain-targeted drugs.
Collapse
|
29
|
Chang HY, Wu S, Li Y, Guo L, Li Y, Shah DK. Effect of the Size of Protein Therapeutics on Brain Pharmacokinetics Following Systematic Administration. AAPS J 2022; 24:62. [DOI: 10.1208/s12248-022-00701-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
|
30
|
de Lange ECM, Hammarlund Udenaes M. Understanding the Blood-Brain Barrier and Beyond: Challenges and Opportunities for Novel CNS Therapeutics. Clin Pharmacol Ther 2022; 111:758-773. [PMID: 35220577 PMCID: PMC9305478 DOI: 10.1002/cpt.2545] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
This review addresses questions on how to accomplish successful central nervous system (CNS) drug delivery (i.e., having the right concentration at the right CNS site, at the right time), by understanding the rate and extent of blood‐brain barrier (BBB) transport and intra‐CNS distribution in relation to CNS target site(s) exposure. To this end, we need to obtain and integrate quantitative and connected data on BBB using the Combinatory Mapping Approach that includes in vivo and ex vivo animal measurements, and the physiologically based comprehensive LEICNSPK3.0 mathematical model that can translate from animals to humans. For small molecules, slow diffusional BBB transport and active influx and efflux BBB transport determine the differences between plasma and CNS pharmacokinetics. Obviously, active efflux is important for limiting CNS drug delivery. Furthermore, liposomal formulations of small molecules may to a certain extent circumvent active influx and efflux at the BBB. Interestingly, for CNS pathologies, despite all reported disease associated BBB and CNS functional changes in animals and humans, integrative studies typically show a lack of changes on CNS drug delivery for the small molecules. In contrast, the understanding of the complex vesicle‐based BBB transport modes that are important for CNS delivery of large molecules is in progress, and their BBB transport seems to be significantly affected by CNS diseases. In conclusion, today, CNS drug delivery of small drugs can be well assessed and understood by integrative approaches, although there is still quite a long way to go to understand CNS drug delivery of large molecules.
Collapse
Affiliation(s)
- Elizabeth C M de Lange
- Predictive Pharmacology Group, Systems Pharmacology and Pharmacy, LACDR, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
31
|
Exploring ITM2A as a new potential target for brain delivery. Fluids Barriers CNS 2022; 19:25. [PMID: 35313913 PMCID: PMC8935840 DOI: 10.1186/s12987-022-00321-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background Integral membrane protein 2A (ITM2A) is a transmembrane protein expressed in a variety of tissues; little is known about its function, particularly in the brain. ITM2A was found to be highly enriched in human brain versus peripheral endothelial cells by transcriptomic and proteomic studies conducted within the European Collaboration on the Optimization of Macromolecular Pharmaceutical (COMPACT) Innovative Medicines Initiative (IMI) consortium. Here, we report the work that was undertaken to determine whether ITM2A could represent a potential target for delivering drugs to the brain. Methods A series of ITM2A constructs, cell lines and specific anti-human and mouse ITM2A antibodies were generated. Binding and internalization studies in Human Embryonic Kidney 293 (HEK293) cells overexpressing ITM2A and in brain microvascular endothelial cells from mouse and non-human primate (NHP) were performed with these tools. The best ITM2A antibody was evaluated in an in vitro human blood brain barrier (BBB) model and in an in vivo mouse pharmacokinetic study to investigate its ability to cross the BBB. Results Antibodies specifically recognizing extracellular parts of ITM2A or tags inserted in its extracellular domain showed selective binding and uptake in ITM2A-overexpressing cells. However, despite high RNA expression in mouse and human microvessels, the ITM2A protein was rapidly downregulated when endothelial cells were grown in culture, probably explaining why transcytosis could not be observed in vitro. An attempt to directly demonstrate in vivo transcytosis in mice was inconclusive, using either a cross-reactive anti-ITM2A antibody or in vivo phage panning of an anti-ITM2A phage library. Conclusions The present work describes our efforts to explore the potential of ITM2A as a target mediating transcytosis through the BBB, and highlights the multiple challenges linked to the identification of new brain delivery targets. Our data provide evidence that antibodies against ITM2A are internalized in ITM2A-overexpressing HEK293 cells, and that ITM2A is expressed in brain microvessels, but further investigations will be needed to demonstrate that ITM2A is a potential target for brain delivery. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00321-3.
Collapse
|
32
|
Chang HY, Wu S, Chowdhury EA, Shah DK. Towards a translational physiologically-based pharmacokinetic (PBPK) model for receptor-mediated transcytosis of anti-transferrin receptor monoclonal antibodies in the central nervous system. J Pharmacokinet Pharmacodyn 2022; 49:337-362. [DOI: 10.1007/s10928-021-09800-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022]
|
33
|
Mousa AM, Soliman KEA, Alhumaydhi F, Almatroudi A, Al Rugaie O, Allemailem KS, Alrumaihi F, Khan A, Rezk MY, Aljasir M, Alwashmi ASS, Aba Alkhayl FF, Albutti AS, Seleem HS. Garlic Extract Alleviates Trastuzumab-Induced Hepatotoxicity in Rats Through Its Antioxidant, Anti-Inflammatory, and Antihyperlipidemic Effects. J Inflamm Res 2021; 14:6305-6316. [PMID: 34866928 PMCID: PMC8636847 DOI: 10.2147/jir.s339092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Trastuzumab is a new biological drug that has been used to treat breast and gastric cancer; however, its cardiotoxicity and hepatotoxicity limit its use. Garlic has antioxidant, anti-inflammatory, antihyperlipidemic, and anticancer effects. The present study aimed to evaluate the effects of garlic on trastuzumab-induced hepatotoxicity in a rat model. METHODS Twenty rats were divided into four equal groups as vehicle control (G1), garlic (G2), trastuzumab (G3), and trastuzumab+garlic (G4). All rats were sacrificed after eight weeks of treatment, followed by blood collection and excision of liver tissues for further analyses. The liver specimens were processed for histopathological (HP), immunohistochemical (expression of TNF-α and PCNA), immunofluorescent expression of Chk2 and p53, biochemical, and flow cytometry investigations to evaluate the extent of hepatocyte injury. The biochemical analysis was conducted for the activity of tissue antioxidants (GPX1, CAT, and SOD2), serum lipid profile, and liver enzymes, whereas ROS was performed by flow cytometry. RESULTS The results revealed remarkable structural changes in hepatocytes of G3 with significant increases in the numbers of inflammatory cells and positive PCNA cells, area % of collagen fibers, and immuno-expression of TNF-α, as well as a significant reduction in the nuclear expression of Chk2. In addition, significant reductions were noticed in the antioxidant enzymes (SOD2, CAT, and GPX1) activity of G3. In contrast, the levels of lipid profile tests (triglycerides, total cholesterol, LDLC, and HDLC), liver enzymes (ALT, AST, and ALP), and ROS revealed significant increases in rats of G3. Likewise, garlic administration in G4 restored all mentioned changes to their average levels deviated by trastuzumab. CONCLUSION Based on the current results, garlic demonstrates hepatoprotective effects against trastuzumab-induced toxicity in rats. The study suggested for the first time that the coadministration of garlic with trastuzumab for treating breast or gastric cancer can augment their efficacy with minimal toxicity.
Collapse
Affiliation(s)
- Ayman M Mousa
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Khaled E A Soliman
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, 51452, Saudi Arabia
- Department of Forensic Medicine and Clinical Toxicology, Sohag Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Fahad Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, 51452, Saudi Arabia
| | - Khaled S Allemailem
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mohamad Y Rezk
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, 51452, Saudi Arabia
- Department of Medical Physiology, College of Medicine, Zagazig University, Al-Sharquia, 44519, Egypt
| | - Mohammad Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Aqel S Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Hanan S Seleem
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, 51452, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shebin Elkoum, Egypt
| |
Collapse
|
34
|
Bussing D, Li Z, Li Y, Chang HP, Chang HY, Guo L, Verma A, Shah DK. Pharmacokinetics of Monoclonal Antibody and Antibody Fragments in the Mouse Eye Following Systemic Administration. AAPS JOURNAL 2021; 23:116. [PMID: 34750690 PMCID: PMC8575492 DOI: 10.1208/s12248-021-00647-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
The ocular pharmacokinetics (PK) of antibody-based therapies are infrequently studied in mice due to the technical difficulties in working with the small murine eye. This study is the first of its kind to quantitatively measure the PK of variously sized proteins in the plasma, cornea/ICB, vitreous humor, retina, and posterior cup (including choroid) of the mouse and to evaluate the relationship between molecular weight (MW) and antibody biodistribution coefficient (BC) to the eye. Proteins analyzed include trastuzumab (150 kDa), trastuzumab-vc-MMAE (T-vc-MMAE, 155 kDa), F(ab)2 (100 kDa), Fab (50 kDa), and scFv (27 kDa). As expected, ocular PK mirrored the systemic PK as plasma was the driving force for ocular exposure. For trastuzumab, T-vc-MMAE, F(ab)2, Fab, and scFv, respectively, the BCs in the cornea/ICB were 0.610%, 0.475%, 1.74%, 3.39%, and 13.7%; the BCs in the vitreous humor were 0.0198%, 0.0427%, 0.0934%, 0.234%, and 5.56%; the BCs for the retina were 0.539%, 0.230%, 0.704%, 2.44%, and 20.4%; the BCs for the posterior cup were 0.557%, 0.650%, 1.47%, 4.06%, and 13.9%. The relationship between BC and MW was best characterized by a log–log regression in which BC decreased as MW increased, with every doubling in MW leading to a decrease in BC by a factor of 3.44 × , 6.76 × , 4.74 × , and 3.43 × in cornea/ICB, vitreous humor, retina, and posterior cup, respectively. In analyzing the disposition of protein therapeutics to the eye, these findings enhance our understanding of the potential for ocular toxicity of systemically administered protein therapeutics and may aid in the discovery of systemically administered protein therapeutics for ocular disorders.
Collapse
Affiliation(s)
- David Bussing
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Zhe Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Yingyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Hsuan-Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Hsueh-Yuan Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Leiming Guo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Ashwni Verma
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA.
| |
Collapse
|
35
|
Bjorkli C, Louet C, Flo TH, Hemler M, Sandvig A, Sandvig I. In Vivo Microdialysis in Mice Captures Changes in Alzheimer's Disease Cerebrospinal Fluid Biomarkers Consistent with Developing Pathology. J Alzheimers Dis 2021; 84:1781-1794. [PMID: 34719495 DOI: 10.3233/jad-210715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Preclinical models of Alzheimer's disease (AD) can provide valuable insights into the onset and progression of the disease, such as changes in concentrations of amyloid-β (Aβ) and tau in cerebrospinal fluid (CSF). However, such models are currently underutilized due to limited advancement in techniques that allow for longitudinal CSF monitoring. OBJECTIVE An elegant way to understand the biochemical environment in the diseased brain is intracerebral microdialysis, a method that has until now been limited to short-term observations, or snapshots, of the brain microenvironment. Here we draw upon patient-based findings to characterize CSF biomarkers in a commonly used preclinical mouse model for AD. METHODS Our modified push-pull microdialysis method was first validated ex vivo with human CSF samples, and then in vivo in an AD mouse model, permitting assessment of dynamic changes of CSF Aβ and tau and allowing for better translational understanding of CSF biomarkers. RESULTS We demonstrate that CSF biomarker changes in preclinical models capture what is observed in the brain; with a decrease in CSF Aβ observed when plaques are deposited, and an increase in CSF tau once tau pathology is present in the brain parenchyma. We found that a high molecular weight cut-off membrane allowed for simultaneous sampling of Aβ and tau, comparable to CSF collection by lumbar puncture in patients. CONCLUSION Our approach can further advance AD and other neurodegenerative research by following evolving neuropathology along the disease cascade via consecutive sampling from the same animal and can additionally be used to administer pharmaceutical compounds and assess their efficacy (Bjorkli, unpublished data).
Collapse
Affiliation(s)
- Christiana Bjorkli
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Claire Louet
- Center for Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trude Helen Flo
- Center for Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mary Hemler
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical Neuroscience, Neuro, Head and Neck, Umeå University Hospital, Umeå, Sweden.,Department of Community Medicine and Rehabilitation, Neuro, Head and Neck, Umeå University Hospital, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
36
|
Chowdhury EA, Noorani B, Alqahtani F, Bhalerao A, Raut S, Sivandzade F, Cucullo L. Understanding the brain uptake and permeability of small molecules through the BBB: A technical overview. J Cereb Blood Flow Metab 2021; 41:1797-1820. [PMID: 33444097 PMCID: PMC8327119 DOI: 10.1177/0271678x20985946] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The brain is the most important organ in our body requiring its unique microenvironment. By the virtue of its function, the blood-brain barrier poses a significant hurdle in drug delivery for the treatment of neurological diseases. There are also different theories regarding how molecules are typically effluxed from the brain. In this review, we comprehensively discuss how the different pharmacokinetic techniques used for measuring brain uptake/permeability of small molecules have evolved with time. We also discuss the advantages and disadvantages associated with these different techniques as well as the importance to utilize the right method to properly assess CNS exposure to drug molecules. Even though very strong advances have been made we still have a long way to go to ensure a reduction in failures in central nervous system drug development programs.
Collapse
Affiliation(s)
- Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, USA
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, USA
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aditya Bhalerao
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, USA
| | - Snehal Raut
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, USA
| | - Farzane Sivandzade
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, USA
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, USA
| |
Collapse
|
37
|
Kouhi A, Pachipulusu V, Kapenstein T, Hu P, Epstein AL, Khawli LA. Brain Disposition of Antibody-Based Therapeutics: Dogma, Approaches and Perspectives. Int J Mol Sci 2021; 22:ijms22126442. [PMID: 34208575 PMCID: PMC8235515 DOI: 10.3390/ijms22126442] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Due to their high specificity, monoclonal antibodies have been widely investigated for their application in drug delivery to the central nervous system (CNS) for the treatment of neurological diseases such as stroke, Alzheimer’s, and Parkinson’s disease. Research in the past few decades has revealed that one of the biggest challenges in the development of antibodies for drug delivery to the CNS is the presence of blood–brain barrier (BBB), which acts to restrict drug delivery and contributes to the limited uptake (0.1–0.2% of injected dose) of circulating antibodies into the brain. This article reviews the various methods currently used for antibody delivery to the CNS at the preclinical stage of development and the underlying mechanisms of BBB penetration. It also describes efforts to improve or modulate the physicochemical and biochemical properties of antibodies (e.g., charge, Fc receptor binding affinity, and target affinity), to adapt their pharmacokinetics (PK), and to influence their distribution and disposition into the brain. Finally, a distinction is made between approaches that seek to modify BBB permeability and those that use a physiological approach or antibody engineering to increase uptake in the CNS. Although there are currently inherent difficulties in developing safe and efficacious antibodies that will cross the BBB, the future prospects of brain-targeted delivery of antibody-based agents are believed to be excellent.
Collapse
|
38
|
Faresjö R, Bonvicini G, Fang XT, Aguilar X, Sehlin D, Syvänen S. Brain pharmacokinetics of two BBB penetrating bispecific antibodies of different size. Fluids Barriers CNS 2021; 18:26. [PMID: 34078410 PMCID: PMC8170802 DOI: 10.1186/s12987-021-00257-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Background Transferrin receptor (TfR1) mediated enhanced brain delivery of antibodies have been studied extensively in preclinical settings. However, the brain pharmacokinetics, i.e. brain entry, distribution and elimination are still not fully understood for this class of antibodies. The overall aim of the study was to compare the brain pharmacokinetics of two BBB-penetrating bispecific antibodies of different size (210 vs 58 kDa). Specifically, we wanted to investigate if the faster systemic clearance of the smaller non-IgG antibody di-scFv3D6-8D3, in comparison with the IgG-based bispecific antibody mAb3D6-scFv8D3, was also reflected in the brain. Methods Wild-type (C57/Bl6) mice were injected with 125I-iodinated ([125I]) mAb3D6-scFv8D3 (n = 46) or [125I]di-scFv3D6-8D3 (n = 32) and euthanized 2, 4, 6, 8, 10, 12, 16, or 24 h post injection. Ex vivo radioactivity in whole blood, peripheral organs and brain was measured by γ-counting. Ex vivo autoradiography and nuclear track emulsion were performed on brain sections to investigate brain and parenchymal distribution. Capillary depletion was carried out at 2, 6, and 24 h after injection of [125I]mAb3D6-scFv8D3 (n = 12) or [125I]di-scFv3D6-8D3 (n = 12), to estimate the relative levels of radiolabelled antibody in brain capillaries versus brain parenchyma. In vitro binding kinetics for [125I]mAb3D6-scFv8D3 or [125I]di-scFv3D6-8D3 to murine TfR were determined by LigandTracer. Results [125I]di-scFv3D6-8D3 showed faster elimination from blood, lower brain Cmax, and Tmax, a larger parenchymal-to-capillary concentration ratio, and a net elimination from brain at an earlier time point after injection compared with the larger [125I]mAb3D6-scFv8D3. However, the elimination rate from brain did not differ between the antibodies. The study also indicated that [125I]di-scFv3D6-8D3 displayed lower avidity than [125I]mAb3D6-scFv8D3 towards TfR1 in vitro and potentially in vivo, at least at the BBB. Conclusion A smaller size and lower TfR1 avidity are likely important for fast parenchymal delivery, while elimination of brain-associated bispecific antibodies may not be dependent on these characteristics. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00257-0.
Collapse
Affiliation(s)
- Rebecca Faresjö
- Department of Public Healt and Caring Sciences, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Gillian Bonvicini
- Department of Public Healt and Caring Sciences, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden.,BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden
| | - Xiaotian T Fang
- Department of Radiology and Biomedical Imaging, Yale University, Yale PET Center, 801 Howard Avenue, New Haven, CT, 06520, USA
| | - Ximena Aguilar
- Department of Public Healt and Caring Sciences, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Healt and Caring Sciences, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Healt and Caring Sciences, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden.
| |
Collapse
|
39
|
Naseri Kouzehgarani G, Feldsien T, Engelhard HH, Mirakhur KK, Phipps C, Nimmrich V, Clausznitzer D, Lefebvre DR. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv Drug Deliv Rev 2021; 173:20-59. [PMID: 33705875 DOI: 10.1016/j.addr.2021.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Initially thought to be useful only to reach tissues in the immediate vicinity of the CSF circulatory system, CSF circulation is now increasingly viewed as a viable pathway to deliver certain therapeutics deeper into brain tissues. There is emerging evidence that this goal is achievable in the case of large therapeutic proteins, provided conditions are met that are described herein. We show how fluid dynamic modeling helps predict infusion rate and duration to overcome high CSF turnover. We posit that despite model limitations and controversies, fluid dynamic models, pharmacokinetic models, preclinical testing, and a qualitative understanding of the glymphatic system circulation can be used to estimate drug penetration in brain tissues. Lastly, in addition to highlighting landmark scientific and medical literature, we provide practical advice on formulation development, device selection, and pharmacokinetic modeling. Our review of clinical studies suggests a growing interest for intra-CSF delivery, particularly for targeted proteins.
Collapse
|
40
|
Le Prieult F, Barini E, Laplanche L, Schlegel K, Mezler M. Collecting antibodies and large molecule biomarkers in mouse interstitial brain fluid: a comparison of microdialysis and cerebral open flow microperfusion. MAbs 2021; 13:1918819. [PMID: 33993834 PMCID: PMC8128180 DOI: 10.1080/19420862.2021.1918819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The determination of concentrations of large therapeutic molecules, like monoclonal antibodies (mAbs), in the interstitial brain fluid (ISF) is one of the cornerstones for the translation from preclinical species to humans of treatments for neurodegenerative diseases. Microdialysis (MD) and cerebral open flow microperfusion (cOFM) are the only currently available methods for extracting ISF, and their use and characterization for the collection of large molecules in rodents have barely started. For the first time, we compared both methods at a technical and performance level for measuring ISF concentrations of a non-target-binding mAb, trastuzumab, in awake and freely moving mice. Without correction of the data for recovery, concentrations of samples are over 10-fold higher through cOFM compared to MD. The overall similar pharmacokinetic profile and ISF exposure between MD (corrected for recovery) and cOFM indicate an underestimation of the absolute concentrations calculated with in vitro recovery. In vivo recovery (zero-flow rate method) revealed an increased extraction of trastuzumab at low flow rates and a 6-fold higher absolute concentration at steady state than initially calculated with the in vitro recovery. Technical optimizations have significantly increased the performance of both systems, resulting in the possibility of sampling up to 12 mice simultaneously. Moreover, strict aseptic conditions have played an important role in improving data quality. The standardization of these complex methods makes the unraveling of ISF concentrations attainable for various diseases and modalities, starting in this study with mAbs, but extending further in the future to RNA therapeutics, antibody-drug conjugates, and even cell therapies.
Collapse
Affiliation(s)
- Florie Le Prieult
- Drug Metabolism and Pharmacokinetics, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| | - Erica Barini
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| | - Loic Laplanche
- Drug Metabolism and Pharmacokinetics, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| | - Kerstin Schlegel
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| | - Mario Mezler
- Drug Metabolism and Pharmacokinetics, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| |
Collapse
|
41
|
Wang D, Zhao Y, Yang Y, Xie H. Safety assessment of multiple repeated percutaneous punctures for the collection of cerebrospinal fluid in rats. ACTA ACUST UNITED AC 2021; 54:e10032. [PMID: 33909853 PMCID: PMC8075127 DOI: 10.1590/1414-431x202010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022]
Abstract
The objective of this study was to examine the safety of multiple repeated percutaneous punctures of cisterna magna for collecting cerebrospinal fluid (CSF) and preliminarily determine the optimal time interval and volume at each collection. Sixty Wistar rats were randomly assigned to six groups: 10 d-0 μL, 10 d-100 μL (100 μL CSF collected at an interval of 10 days), 10 d-150 μL, 15 d-0 μL, 15 d-100 μL, and 15 d-150 μL. CSF was collected by percutaneous puncture of the cisterna magna at four time-points. Simultaneously, locomotor activity, cisterna magna pressure, and acetylcholine levels in the CSF were monitored. Compared with the 10 d-0 μL group, the escape latency by Morris water maze was significantly prolonged in the 10 d-100 μL and 10 d-150 μL groups (P<0.05). Compared with the 15 d-0 μL group, the indices of 15 d-100 μL and 15 d-150 μL groups had no significant differences. When compared with that at the first training, the exception of the 10 d-150 μL and 15 d-150 μL groups, significant differences in escape latency were found at the 6th attempt (P<0.05). Compared with baseline readings for each group, the cisterna magna pressure in the 10 d-150 μL group began to decrease significantly from the third measurement (P<0.05). The optimal time interval during four CSF collections (100 μL per collection) via cisterna magna percutaneous puncture was determined to be 15 days. The procedure did not significantly affect learning processes, performance, or other related indices.
Collapse
Affiliation(s)
- Dongxue Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.,College of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Ying Zhao
- College of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Yang Yang
- College of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Hailong Xie
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
42
|
Le Tilly O, Azzopardi N, Bonneau C, Desvignes C, Oberkampf F, Ezzalfani M, Ternant D, Turbiez I, Gutierrez M, Paintaud G. Antigen Mass May Influence Trastuzumab Concentrations in Cerebrospinal Fluid After Intrathecal Administration. Clin Pharmacol Ther 2021; 110:210-219. [PMID: 33547646 DOI: 10.1002/cpt.2188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/25/2021] [Indexed: 11/11/2022]
Abstract
Intravenous administration of monoclonal antibodies leads to low concentrations in the central nervous system, which is a serious concern in neuro-oncology, especially in leptomeningeal carcinomatosis of HER2-overexpressing breast cancer. Case reports of i.t. administrations of trastuzumab have shown promising results in these patients but dosing regimens are empirical in absence of pharmacokinetic (PK) study. With a population PK approach, we described the fate of trastuzumab after i.t. administration in 21 women included in a phase I-II clinical trial. Trastuzumab was administered by i.t. route every week for 8 weeks and both cerebrospinal fluid (CSF) and serum were sampled to measure trough concentrations. Some patients showed noticeable CSF concentration fluctuations predicted using a target-mediated drug disposition. This target was latent and produced with a delayed feedback. Apparent volumes of distribution were close to physiological volumes (V1 = 3.25 L, V2 = 0.644 L, for serum and CSF, respectively). Estimated (constant) transfer from serum to CSF was very slow (k12 = 0.264 mg/day) whereas estimated half-life of transfer from CSF to serum was rapid (2.2 days). From the individual parameters of patients, a single i.t. administration of 150 mg of trastuzumab corresponded to median mean residence times of 3.8 days and 15.6 days in CSF and serum, respectively. Survival without neurological relapse was not related to trastuzumab exposure. This study confirms that transfer of trastuzumab from serum to CSF is very limited and that this monoclonal antibody, when administered by i.t. route, is rapidly transferred to the serum.
Collapse
Affiliation(s)
- Olivier Le Tilly
- EA 4245 Transplantation, Immunologie, Inflammation, Université de Tours, Tours, France.,Department of Medical Pharmacology, CHRU de Tours, Tours, France
| | - Nicolas Azzopardi
- EA 7501 Groupe Innovation et Ciblage Cellulaire, Université de Tours, Tours, France
| | - Claire Bonneau
- Department of Surgery, Institut Curie, Hôpital René Huguenin, Saint Cloud, France
| | - Céline Desvignes
- EA 4245 Transplantation, Immunologie, Inflammation, Université de Tours, Tours, France.,Pilot Centre for Therapeutic Antibodies Monitoring (PiTAM), CHRU de Tours, Tours, France
| | - Florence Oberkampf
- Department of Oncology, Institut Curie, Hôpital René Huguenin, Saint Cloud, France
| | - Monia Ezzalfani
- Biometry Unit, Institut Curie, PSL Research University, Paris, France
| | - David Ternant
- EA 4245 Transplantation, Immunologie, Inflammation, Université de Tours, Tours, France.,Department of Medical Pharmacology, CHRU de Tours, Tours, France.,Pilot Centre for Therapeutic Antibodies Monitoring (PiTAM), CHRU de Tours, Tours, France
| | - Isabelle Turbiez
- Department of Clinical Research, Institut Curie, Hôpital René Huguenin, Saint Cloud, France
| | - Maya Gutierrez
- Department of Oncology, Institut Curie, Hôpital René Huguenin, Saint Cloud, France
| | - Gilles Paintaud
- EA 4245 Transplantation, Immunologie, Inflammation, Université de Tours, Tours, France.,Department of Medical Pharmacology, CHRU de Tours, Tours, France.,Pilot Centre for Therapeutic Antibodies Monitoring (PiTAM), CHRU de Tours, Tours, France
| |
Collapse
|
43
|
Modeling Pharmacokinetics and Pharmacodynamics of Therapeutic Antibodies: Progress, Challenges, and Future Directions. Pharmaceutics 2021; 13:pharmaceutics13030422. [PMID: 33800976 PMCID: PMC8003994 DOI: 10.3390/pharmaceutics13030422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
With more than 90 approved drugs by 2020, therapeutic antibodies have played a central role in shifting the treatment landscape of many diseases, including autoimmune disorders and cancers. While showing many therapeutic advantages such as long half-life and highly selective actions, therapeutic antibodies still face many outstanding issues associated with their pharmacokinetics (PK) and pharmacodynamics (PD), including high variabilities, low tissue distributions, poorly-defined PK/PD characteristics for novel antibody formats, and high rates of treatment resistance. We have witnessed many successful cases applying PK/PD modeling to answer critical questions in therapeutic antibodies’ development and regulations. These models have yielded substantial insights into antibody PK/PD properties. This review summarized the progress, challenges, and future directions in modeling antibody PK/PD and highlighted the potential of applying mechanistic models addressing the development questions.
Collapse
|
44
|
Chowdhury EA, Meno-Tetang G, Chang HY, Wu S, Huang HW, Jamier T, Chandran J, Shah DK. Current progress and limitations of AAV mediated delivery of protein therapeutic genes and the importance of developing quantitative pharmacokinetic/pharmacodynamic (PK/PD) models. Adv Drug Deliv Rev 2021; 170:214-237. [PMID: 33486008 DOI: 10.1016/j.addr.2021.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/17/2022]
Abstract
While protein therapeutics are one of the most successful class of drug molecules, they are expensive and not suited for treating chronic disorders that require long-term dosing. Adeno-associated virus (AAV) mediated in vivo gene therapy represents a viable alternative, which can deliver the genes of protein therapeutics to produce long-term expression of proteins in target tissues. Ongoing clinical trials and recent regulatory approvals demonstrate great interest in these therapeutics, however, there is a lack of understanding regarding their cellular disposition, whole-body disposition, dose-exposure relationship, exposure-response relationship, and how product quality and immunogenicity affects these important properties. In addition, there is a lack of quantitative studies to support the development of pharmacokinetic-pharmacodynamic models, which can support the discovery, development, and clinical translation of this delivery system. In this review, we have provided a state-of-the-art overview of current progress and limitations related to AAV mediated delivery of protein therapeutic genes, along with our perspective on the steps that need to be taken to improve clinical translation of this therapeutic modality.
Collapse
|
45
|
Han L, Pan C, Ni Q, Yu T. Case Report: Herceptin as a Potentially Valuable Adjuvant Therapy for a Patient With Human Epidermal Growth Factor Receptor 2-Positive Advanced Esophageal Squamous Cell Carcinoma. Front Oncol 2021; 10:600459. [PMID: 33598429 PMCID: PMC7883677 DOI: 10.3389/fonc.2020.600459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/11/2020] [Indexed: 11/29/2022] Open
Abstract
Esophageal cancer is one of the most common cancers with a low overall 5-year relative survival rate of approximately 20%. Trastuzumab (Herceptin®) targets HER2 and is an effective therapeutic strategy in HER2-positive breast cancer. However, few reports have described targeted therapy for treating esophageal squamous cell carcinoma (ESCC). A patient with advanced ESCC who had received chemotherapy, radiotherapy, and had undergone a clinical study is described here. The tumor had not been controlled. Herceptin and chemotherapy were used as salvage therapy in this patient because of high HER2 expression. Good therapeutic results were observed in this patient. Therefore, Herceptin is a potential target therapy for patients with HER2-positive advanced ESCC. A study with a large population and a prospective random study are necessary to validate these results.
Collapse
Affiliation(s)
- Li Han
- Department of Medical Oncology, Xuzhou first People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chi Pan
- Department of General Surgery, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Qingtao Ni
- Department of Oncology, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Tao Yu
- Department of Medical Oncology, Xuzhou first People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
46
|
Masmudi-Martín M, Zhu L, Sanchez-Navarro M, Priego N, Casanova-Acebes M, Ruiz-Rodado V, Giralt E, Valiente M. Brain metastasis models: What should we aim to achieve better treatments? Adv Drug Deliv Rev 2021; 169:79-99. [PMID: 33321154 DOI: 10.1016/j.addr.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Brain metastasis is emerging as a unique entity in oncology based on its particular biology and, consequently, the pharmacological approaches that should be considered. We discuss the current state of modelling this specific progression of cancer and how these experimental models have been used to test multiple pharmacologic strategies over the years. In spite of pre-clinical evidences demonstrating brain metastasis vulnerabilities, many clinical trials have excluded patients with brain metastasis. Fortunately, this trend is getting to an end given the increasing importance of secondary brain tumors in the clinic and a better knowledge of the underlying biology. We discuss emerging trends and unsolved issues that will shape how we will study experimental brain metastasis in the years to come.
Collapse
|
47
|
Chang HY, Wu S, Li Y, Zhang W, Burrell M, Webster CI, Shah DK. Brain pharmacokinetics of anti-transferrin receptor antibody affinity variants in rats determined using microdialysis. MAbs 2021; 13:1874121. [PMID: 33499723 PMCID: PMC7849817 DOI: 10.1080/19420862.2021.1874121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 01/10/2023] Open
Abstract
Receptor-mediated transcytosis (RMT) is used to enhance the delivery of monoclonal antibodies (mAb) into the central nervous system (CNS). While the binding to endogenous receptors on the brain capillary endothelial cells (BCECs) may facilitate the uptake of mAbs in the brain, a strong affinity for the receptor may hinder the efficiency of transcytosis. To quantitatively investigate the effect of binding affinity on the pharmacokinetics (PK) of anti-transferrin receptor (TfR) mAbs in different regions of the rat brain, we conducted a microdialysis study to directly measure the concentration of free mAbs at different sites of interest. Our results confirmed that bivalent anti-TfR mAb with an optimal dissociation constant (KD) value (76 nM) among four affinity variants can have up to 10-fold higher transcytosed free mAb exposure in the brain interstitial fluid (bISF) compared to lower and higher affinity mAbs (5 and 174 nM). This bell-shaped relationship between KD values and the increased brain exposure of mAbs was also visible when using whole-brain PK data. However, we found that mAb concentrations in postvascular brain supernatant (obtained after capillary depletion) were almost always higher than the concentrations measured in bISF using microdialysis. We also observed that the increase in mAb area under the concentration curve in CSF compartments was less significant, which highlights the challenge in using CSF measurement as a surrogate for estimating the efficiency of RMT delivery. Our results also suggest that the determination of mAb concentrations in the brain using microdialysis may be necessary to accurately measure the PK of CNS-targeted antibodies at the site-of-actions in the brain.
Collapse
Affiliation(s)
- Hsueh-Yuan Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Shengjia Wu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Yingyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Wanying Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Matthew Burrell
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Carl I. Webster
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Dhaval K. Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
48
|
Stocki P, Szary J, Rasmussen CLM, Demydchuk M, Northall L, Logan DB, Gauhar A, Thei L, Moos T, Walsh FS, Rutkowski JL. Blood-brain barrier transport using a high affinity, brain-selective VNAR antibody targeting transferrin receptor 1. FASEB J 2020; 35:e21172. [PMID: 33241587 DOI: 10.1096/fj.202001787r] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Transfer across the blood-brain barrier (BBB) remains a significant hurdle for the development of biopharmaceuticals with therapeutic effects within the central nervous system. We established a functional selection method to identify high affinity single domain antibodies to the transferrin receptor 1 (TfR1) with efficient biotherapeutic delivery across the BBB. A synthetic phage display library based on the variable domain of new antigen receptor (VNAR) was used for in vitro selection against recombinant human TfR1 ectodomain (rh-TfR1-ECD) followed by in vivo selection in mouse for brain parenchyma penetrating antibodies. TXB2 VNAR was identified as a high affinity, species cross-reactive VNAR antibody against TfR1-ECD that does not compete with transferrin or ferritin for receptor binding. IV dosing of TXB2 when fused to human Fc domain (TXB2-hFc) at 25 nmol/kg (1.875 mg/kg) in mice resulted in rapid binding to brain capillaries with subsequent transport into the brain parenchyma and specific uptake into TfR1-positive neurons. Likewise, IV dosing of TXB2-hFc fused with neurotensin (TXB2-hFc-NT) at 25 nmol/kg resulted in a rapid and reversible pharmacological response as measured by body temperature reduction. TXB2-hFc did not elicit any acute adverse reactions, bind, or deplete circulating reticulocytes or reduce BBB-expressed endogenous TfR1 in mice. There was no evidence of target-mediated clearance or accumulation in peripheral organs except lung. In conclusion, TXB2 is a high affinity, species cross-reactive, and brain-selective VNAR antibody to TfR1 that rapidly crosses the BBB and exhibits a favorable pharmacokinetic and safety profile and can be readily adapted to carry a wide variety of biotherapeutics from blood to brain.
Collapse
Affiliation(s)
- Pawel Stocki
- Ossianix, Inc, Stevenage Bioscience Catalyst, Stevenage, UK.,Ossianix, Inc, Philadelphia, PA, USA
| | - Jaroslaw Szary
- Ossianix, Inc, Stevenage Bioscience Catalyst, Stevenage, UK.,Ossianix, Inc, Philadelphia, PA, USA
| | - Charlotte L M Rasmussen
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Mykhaylo Demydchuk
- Ossianix, Inc, Stevenage Bioscience Catalyst, Stevenage, UK.,Ossianix, Inc, Philadelphia, PA, USA
| | - Leandra Northall
- Ossianix, Inc, Stevenage Bioscience Catalyst, Stevenage, UK.,Ossianix, Inc, Philadelphia, PA, USA
| | - Diana Bahu Logan
- Ossianix, Inc, Stevenage Bioscience Catalyst, Stevenage, UK.,Ossianix, Inc, Philadelphia, PA, USA
| | - Aziz Gauhar
- Ossianix, Inc, Stevenage Bioscience Catalyst, Stevenage, UK.,Ossianix, Inc, Philadelphia, PA, USA
| | - Laura Thei
- Ossianix, Inc, Stevenage Bioscience Catalyst, Stevenage, UK.,Ossianix, Inc, Philadelphia, PA, USA
| | - Torben Moos
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Frank S Walsh
- Ossianix, Inc, Stevenage Bioscience Catalyst, Stevenage, UK.,Ossianix, Inc, Philadelphia, PA, USA
| | - J Lynn Rutkowski
- Ossianix, Inc, Stevenage Bioscience Catalyst, Stevenage, UK.,Ossianix, Inc, Philadelphia, PA, USA
| |
Collapse
|
49
|
Pardridge WM. Treatment of Alzheimer's Disease and Blood-Brain Barrier Drug Delivery. Pharmaceuticals (Basel) 2020; 13:E394. [PMID: 33207605 PMCID: PMC7697739 DOI: 10.3390/ph13110394] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the enormity of the societal and health burdens caused by Alzheimer's disease (AD), there have been no FDA approvals for new therapeutics for AD since 2003. This profound lack of progress in treatment of AD is due to dual problems, both related to the blood-brain barrier (BBB). First, 98% of small molecule drugs do not cross the BBB, and ~100% of biologic drugs do not cross the BBB, so BBB drug delivery technology is needed in AD drug development. Second, the pharmaceutical industry has not developed BBB drug delivery technology, which would enable industry to invent new therapeutics for AD that actually penetrate into brain parenchyma from blood. In 2020, less than 1% of all AD drug development projects use a BBB drug delivery technology. The pathogenesis of AD involves chronic neuro-inflammation, the progressive deposition of insoluble amyloid-beta or tau aggregates, and neural degeneration. New drugs that both attack these multiple sites in AD, and that have been coupled with BBB drug delivery technology, can lead to new and effective treatments of this serious disorder.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
50
|
Chang HP, Kim SJ, Shah DK. Whole-Body Pharmacokinetics of Antibody in Mice Determined using Enzyme-Linked Immunosorbent Assay and Derivation of Tissue Interstitial Concentrations. J Pharm Sci 2020; 110:446-457. [PMID: 32502472 DOI: 10.1016/j.xphs.2020.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
Abstract
Here we have reported whole-body disposition of wild-type IgG and FcRn non-binding IgG in mice, determined using Enzyme-Linked Immunosorbent Assay (ELISA). The disposition data generated using ELISA are compared with previously published biodistribution data generated using radiolabelled IgG. In addition, we introduce a novel concept of ABCIS values, which are defined as percentage ratios of tissue interstitial and plasma AUC values. These values can help in predicting tissue interstitial concentrations of monoclonal antibodies (mAbs) based on the plasma concentrations. Tissue interstitial concentrations derived from our study are also compared with previously reported values measured using microdialysis or centrifugation method. Lastly, the new set of biodistribution data generated using ELISA are used to refine the PBPK model for mAbs.
Collapse
Affiliation(s)
- Hsuan-Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Se Jin Kim
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|