1
|
Schumacher VL, Pichereau S, Bessa J, Bachl J, Herter S, Weber FC, Auer J, Kipar A, Winter M, Stirn M, Otteneder MB, Brady K, Eichinger-Chapelon A, Roth A, Stokar-Regenscheit N, Clemann N, Seger S, Senn C, Hönig J, Jany C, Lenarda ED, Tissot AC, Klein C, von Büdingen HC, Mader R, Ullah M, Janssen N, Urich E. Preclinical B cell depletion and safety profile of a brain-shuttled crystallizable fragment-silenced CD20 antibody. Clin Transl Med 2025; 15:e70178. [PMID: 40118783 PMCID: PMC11928292 DOI: 10.1002/ctm2.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/30/2024] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) presents a major challenge for the development of monoclonal antibody (mAb)-based therapies for brain disorders. To improve the likelihood of success of such therapies, Roche Brainshuttle technology utilizes a single anti-transferrin receptor 1 (TfR1)-antigen-binding antibody fragment linked to a therapeutic antibody, allowing engagement with TfR1 to transport the therapeutic antibody into the brain via receptor-mediated transcytosis. METHODS We compared Fc-silenced and Fc-competent variants of the Brainshuttle and the parental (non-shuttled) type II CD20 mAb, obinutuzumab in in vitro and in vivo (mouse and cynomolgus macaque) models. Endpoints assessed included B cell binding, B cell killing, tolerability, and ability to cross the BBB. RESULTS The Fc-silenced Brainshuttle construct showed a superior safety profile compared with the Fc-competent construct while maintaining the ability to cross the BBB and to deplete B cells in head-to-head comparisons in human and mouse in vitro and in mouse and cynomolgus macaque in vivo models. CONCLUSION Together, our data provide a path forward for the future development of safe and efficacious brain-targeted B-cell-depleting therapies. KEY POINTS The BBB hinders mAb-based brain disorder therapies A brain-targeted B-cell-depleting mAb for MS that efficiently crosses the BBB via hTfR1 was developed using Brainshuttle™ technology (1a and 1b) The Brainshuttle™-CD20 mAb was well tolerated (2a and 2b) and displayed B-cell-killing properties (1c), paving the way for future development and clinical translation of TfR1-targetingtherapies for increased brain penetration.
Collapse
Affiliation(s)
- Vanessa L Schumacher
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Solen Pichereau
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Juliana Bessa
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Juergen Bachl
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Sylvia Herter
- Roche Pharma Research and Early Development, Roche Innovation Center, Zurich, Switzerland
| | - Felix C Weber
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Johannes Auer
- Roche Pharma Research and Early Development, Roche Innovation Center, Munich, Germany
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Michael Winter
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Martina Stirn
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Michael B Otteneder
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Kevin Brady
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | | | - Adrian Roth
- Personalized Healthcare Safety, Product Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Nicole Clemann
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Shanon Seger
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Claudia Senn
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Juliane Hönig
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Cordula Jany
- Roche Pharma Research and Early Development, Roche Innovation Center, Munich, Germany
| | - Elisa Di Lenarda
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Alain C Tissot
- Roche Pharma Research and Early Development, Roche Innovation Center, Munich, Germany
| | - Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center, Zurich, Switzerland
| | - H-Christian von Büdingen
- Clinical Science, Neuroscience, Product Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Robert Mader
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Mohammed Ullah
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Niels Janssen
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Eduard Urich
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| |
Collapse
|
2
|
Bhatnagar K, Raju S, Patki N, Motiani RK, Chaudhary S. Targeting mineral metabolism in cancer: Insights into signaling pathways and therapeutic strategies. Semin Cancer Biol 2025:S1044-579X(25)00039-2. [PMID: 40024314 DOI: 10.1016/j.semcancer.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/29/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Cancer remains the second leading cause of death worldwide, emphasizing the critical need for effective treatment and control strategies. Essential minerals such as copper, iron, zinc, selenium, phosphorous, calcium, and magnesium are integral to various biological processes and significantly influence cancer progression through altered metabolic pathways. For example, dysregulated copper levels promote tumor growth, while cancer cells exhibit an increased dependency on iron for signaling and redox reactions. Zinc influences tumor development through pathways such as Akt-p21. Selenium, primarily through its role in selenoproteins, exhibits anticancer potential but may also contribute to tumor progression. Similarly, dietary phosphate exacerbates tumorigenesis, metastasis, and angiogenesis through signaling pathway activation. Calcium, the most abundant mineral in the body, is tightly regulated within cells, and its dysregulation is a hallmark of various cancers. Magnesium deficiency, on the other hand, promotes cancer progression by fostering inflammation and free radical-induced DNA mutations. Interestingly, magnesium also plays a dual role, with low levels enhancing epithelial-mesenchymal transition (EMT), a critical process in cancer metastasis. This complex interplay of essential minerals underscores their potential as therapeutic targets. Dysregulation of these minerals and their pathways could be exploited to selectively target cancer cells, offering novel therapeutic strategies. This review summarizes current research on the abnormal accumulation or depletion of these microelements in tumor biology, drawing evidence from animal models, cell lines, and clinical samples. We also highlight the potential of these minerals as biomarkers for cancer diagnosis and prognosis, as well as therapeutic approaches involving metal chelators, pharmacological agents, and nanotechnology. By highlighting the intricate roles of these minerals in cancer biology, we aim to inspire further research in this critical yet underexplored area of oncology.
Collapse
Affiliation(s)
- Kartik Bhatnagar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh, 201310, India.
| | - Sharon Raju
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-Gurugram Expressway, Faridabad, Haryana, 121001, India.
| | - Ninad Patki
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh, 201310, India.
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-Gurugram Expressway, Faridabad, Haryana, 121001, India.
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh, 201310, India.
| |
Collapse
|
3
|
Zhang R, Shen Y, Zhou X, Li J, Zhao H, Zhang Z, Zhao J, Jin H, Guo S, Ding H, Nie G, Zhang Z, Wang Y, Yan X, Fan K. Hypoxia-tropic delivery of nanozymes targeting transferrin receptor 1 for nasopharyngeal carcinoma radiotherapy sensitization. Nat Commun 2025; 16:890. [PMID: 39837820 PMCID: PMC11751138 DOI: 10.1038/s41467-025-56134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
Nasopharyngeal carcinoma (NPC), a malignancy highly prevalent in East and Southeast Asia, is primarily treated with radiotherapy (RT). However, hypoxia-induced radioresistance presents a significant challenge. Nanozymes, nanomaterials with catalase-like activity, have emerged as a promising strategy for radiosensitization by converting elevated hydrogen peroxide in the tumor microenvironment into oxygen. Despite their potential, effectively targeting hypoxic lesions has been difficult. Here, we identify transferrin receptor 1 (TfR1) as an upregulated target in NPC, with its expression levels positively correlated with hypoxia. Human heavy-chain ferritin, a specific ligand of TfR1, selectively recognizes hypoxic NPC lesions in preclinical models. Based on these findings, we design a hypoxia-targeted nanozyme by loading platinum nanoparticles into ferritin. This nanozyme exhibits enhanced catalase-like activity and effectively alleviates tumor hypoxia in NPC xenografts. When combined with RT, a single injection of the nanozyme significantly inhibits tumor growth and prolongs mouse survival, outperforming sodium glycididazole, a clinically used radiosensitizer. In summary, our findings highlight TfR1 as an accessible cell surface target in hypoxic NPC lesions. The nanozyme targeting TfR1 holds promise for enhancing the therapeutic effectiveness of RT in NPC through an in situ oxygen-generation mechanism.
Collapse
Affiliation(s)
- Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanfang Shen
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiaoying Zhou
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Jianru Li
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hanqing Zhao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zixia Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Hongjun Jin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Shuanshuan Guo
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Hui Ding
- Shenzhen Key Laboratory of nanozymes and Translational Cancer Research, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Guohui Nie
- Shenzhen Key Laboratory of nanozymes and Translational Cancer Research, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Ying Wang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
5
|
Pornnoppadol G, Bond LG, Lucas MJ, Zupancic JM, Kuo YH, Zhang B, Greineder CF, Tessier PM. Bispecific antibody shuttles targeting CD98hc mediate efficient and long-lived brain delivery of IgGs. Cell Chem Biol 2024; 31:361-372.e8. [PMID: 37890480 PMCID: PMC10922565 DOI: 10.1016/j.chembiol.2023.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023]
Abstract
The inability of antibodies to penetrate the blood-brain barrier (BBB) is a key limitation to their use in diverse applications. One promising strategy is to deliver IgGs using a bispecific BBB shuttle, which involves fusing an IgG to a second affinity ligand that engages a cerebrovascular endothelial target and facilitates transport across the BBB. Nearly all prior efforts have focused on shuttles that target transferrin receptor (TfR-1) despite inherent delivery and safety challenges. Here, we report bispecific antibody shuttles that engage CD98hc, the heavy chain of the large neutral amino acid transporter (LAT1), and efficiently transport IgGs into the brain. Notably, CD98hc shuttles lead to much longer-lived brain retention of IgGs than TfR-1 shuttles while enabling more specific targeting due to limited CD98hc engagement in the brain parenchyma, which we demonstrate for IgGs that either agonize a neuronal receptor (TrkB) or target other endogenous cell-surface proteins on neurons and astrocytes.
Collapse
Affiliation(s)
- Ghasidit Pornnoppadol
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Layne G Bond
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael J Lucas
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer M Zupancic
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yun-Huai Kuo
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Boya Zhang
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Colin F Greineder
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Peter M Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Hjelm LC, Lindberg H, Ståhl S, Löfblom J. Affibody Molecules Intended for Receptor-Mediated Transcytosis via the Transferrin Receptor. Pharmaceuticals (Basel) 2023; 16:956. [PMID: 37513868 PMCID: PMC10383291 DOI: 10.3390/ph16070956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
The development of biologics for diseases affecting the central nervous system has been less successful compared to other disease areas, in part due to the challenge of delivering drugs to the brain. The most well-investigated and successful strategy for increasing brain uptake of biological drugs is using receptor-mediated transcytosis over the blood-brain barrier and, in particular, targeting the transferrin receptor-1 (TfR). Here, affibody molecules are selected for TfR using phage display technology. The two most interesting candidates demonstrated binding to human TfR, cross-reactivity to the murine orthologue, non-competitive binding with human transferrin, and binding to TfR-expressing brain endothelial cell lines. Single amino acid mutagenesis of the affibody molecules revealed the binding contribution of individual residues and was used to develop second-generation variants with improved properties. The second-generation variants were further analyzed and showed an ability for transcytosis in an in vitro transwell assay. The new TfR-specific affibody molecules have the potential for the development of small brain shuttles for increasing the uptake of various compounds to the central nervous system and thus warrant further investigations.
Collapse
Affiliation(s)
- Linnea Charlotta Hjelm
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Hanna Lindberg
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| |
Collapse
|
7
|
Pornnoppadol G, Bond LG, Lucas MJ, Zupancic JM, Kuo YH, Zhang B, Greineder CF, Tessier PM. Bispecific antibody shuttles targeting CD98hc mediate efficient and long-lived brain delivery of IgGs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.29.538811. [PMID: 37162883 PMCID: PMC10168297 DOI: 10.1101/2023.04.29.538811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The inability of antibodies and other biologics to penetrate the blood-brain barrier (BBB) is a key limitation to their use in diagnostic, imaging, and therapeutic applications. One promising strategy is to deliver IgGs using a bispecific BBB shuttle, which involves fusing an IgG with a second affinity ligand that engages a cerebrovascular endothelial target and facilitates transport across the BBB. Nearly all prior efforts have focused on the transferrin receptor (TfR-1) as the prototypical endothelial target despite inherent delivery and safety challenges. Here we report bispecific antibody shuttles that engage CD98hc (also known as 4F2 and SLC3A2), the heavy chain of the large neutral amino acid transporter (LAT1), and efficiently transport IgGs into the brain parenchyma. Notably, CD98hc shuttles lead to much longer-lived brain retention of IgGs than TfR-1 shuttles while enabling more specific brain targeting due to limited CD98hc engagement in the brain parenchyma. We demonstrate the broad utility of the CD98hc shuttles by reformatting three existing IgGs as CD98hc bispecific shuttles and delivering them to the mouse brain parenchyma that either agonize a neuronal receptor (TrkB) or target other endogenous antigens on specific types of brain cells (neurons and astrocytes).
Collapse
|
8
|
Mojarad-Jabali S, Mahdinloo S, Farshbaf M, Sarfraz M, Fatahi Y, Atyabi F, Valizadeh H. Transferrin receptor-mediated liposomal drug delivery: recent trends in targeted therapy of cancer. Expert Opin Drug Deliv 2022; 19:685-705. [PMID: 35698794 DOI: 10.1080/17425247.2022.2083106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Compared to normal cells, malignant cancer cells require more iron for their growth and rapid proliferation, which can be supplied by a high expression level of transferrin receptor (TfR). It is well known that the expression of TfR on the tumor cells is considerably higher than that of normal cells, which makes TfR an attractive target in cancer therapy. AREAS COVERED In this review, the primary focus is on the role of TfR as a valuable tool for cancer-targeted drug delivery, followed by the full coverage of available TfR ligands and their conjugation chemistry to the surface of liposomes. Finally, the most recent studies investigating the potential of TfR-targeted liposomes as promising drug delivery vehicles to different cancer cells are highlighted with emphasis on their improvement possibilities to become a part of future cancer medicines. EXPERT OPINION Liposomes as a valuable class of nanocarriers have gained much attention toward cancer therapy. From all the studies that have exploited the therapeutic and diagnostic potential of TfR on cancer cells, it can be realized that the systematic assessment of TfR ligands applied for liposomal targeted delivery has yet to be entirely accomplished.
Collapse
Affiliation(s)
- Solmaz Mojarad-Jabali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Mahdinloo
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Farshbaf
- Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Valizadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Liu S, Cao X, Wang D, Zhu H. Iron metabolism: State of the art in hypoxic cancer cell biology. Arch Biochem Biophys 2022; 723:109199. [DOI: 10.1016/j.abb.2022.109199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/08/2023]
|
10
|
Zhang L, Zhang J, Jin Y, Yao G, Zhao H, Qiao P, Wu S. Nrf2 Is a Potential Modulator for Orchestrating Iron Homeostasis and Redox Balance in Cancer Cells. Front Cell Dev Biol 2021; 9:728172. [PMID: 34589492 PMCID: PMC8473703 DOI: 10.3389/fcell.2021.728172] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Iron is an essential trace mineral element in almost all living cells and organisms. However, cellular iron metabolism pathways are disturbed in most cancer cell types. Cancer cells have a high demand of iron. To maintain rapid growth and proliferation, cancer cells absorb large amounts of iron by altering expression of iron metabolism related proteins. However, iron can catalyze the production of reactive oxygen species (ROS) through Fenton reaction. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an important player in the resistance to oxidative damage by inducing the transcription of antioxidant genes. Aberrant activation of Nrf2 is observed in most cancer cell types. It has been revealed that the over-activation of Nrf2 promotes cell proliferation, suppresses cell apoptosis, enhances the self-renewal capability of cancer stem cells, and even increases the chemoresistance and radioresistance of cancer cells. Recently, several genes involving cellular iron homeostasis are identified under the control of Nrf2. Since cancer cells require amounts of iron and Nrf2 plays pivotal roles in oxidative defense and iron metabolism, it is highly probable that Nrf2 is a potential modulator orchestrating iron homeostasis and redox balance in cancer cells. In this hypothesis, we summarize the recent findings of the role of iron and Nrf2 in cancer cells and demonstrate how Nrf2 balances the oxidative stress induced by iron through regulating antioxidant enzymes and iron metabolism. This hypothesis provides new insights into the role of Nrf2 in cancer progression. Since ferroptosis is dependent on lipid peroxide and iron accumulation, Nrf2 inhibition may dramatically increase sensitivity to ferroptosis. The combination of Nrf2 inhibitors with ferroptosis inducers may exert greater efficacy on cancer therapy.
Collapse
Affiliation(s)
- Lingyan Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanqing Jin
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gang Yao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hai Zhao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Penghai Qiao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuguang Wu
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
11
|
Antibody-Based Inhibition of Pathogenic New World Hemorrhagic Fever Mammarenaviruses by Steric Occlusion of the Human Transferrin Receptor 1 Apical Domain. J Virol 2021; 95:e0186820. [PMID: 34132574 PMCID: PMC8354235 DOI: 10.1128/jvi.01868-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pathogenic clade B New World mammarenaviruses (NWM) can cause Argentine, Venezuelan, Brazilian, and Bolivian hemorrhagic fevers. Sequence variability among NWM glycoproteins (GP) poses a challenge to the development of broadly neutralizing therapeutics against the entire clade of viruses. However, blockade of their shared binding site on the apical domain of human transferrin receptor 1 (hTfR1/CD71) presents an opportunity for the development of effective and broadly neutralizing therapeutics. Here, we demonstrate that the murine monoclonal antibody OKT9, which targets the apical domain of hTfR1, can sterically block cellular entry by viral particles presenting clade B NWM glycoproteins (GP1-GP2). OKT9 blockade is also effective against viral particles pseudotyped with glycoproteins of a recently identified pathogenic Sabia-like virus. With nanomolar affinity for hTfR1, the OKT9 antigen binding fragment (OKT9-Fab) sterically blocks clade B NWM-GP1s and reduces infectivity of an attenuated strain of Junin virus. Binding of OKT9 to the hTfR1 ectodomain in its soluble, dimeric state produces stable assemblies that are observable by negative-stain electron microscopy. A model of the OKT9-sTfR1 complex, informed by the known crystallographic structure of sTfR1 and a newly determined structure of the OKT9 antigen binding fragment (Fab), suggests that OKT9 and the Machupo virus GP1 share a binding site on the hTfR1 apical domain. The structural basis for this interaction presents a framework for the design and development of high-affinity, broadly acting agents targeting clade B NWMs. IMPORTANCE Pathogenic clade B NWMs cause grave infectious diseases, the South American hemorrhagic fevers. Their etiological agents are Junin (JUNV), Guanarito (GTOV), Sabiá (SABV), Machupo (MACV), Chapare (CHAV), and a new Sabiá-like (SABV-L) virus recently identified in Brazil. These are priority A pathogens due to their high infectivity and mortality, their potential for person-to-person transmission, and the limited availability of effective therapeutics and vaccines to curb their effects. While low homology between surface glycoproteins of NWMs foils efforts to develop broadly neutralizing therapies targeting NWMs, this work provides structural evidence that OKT9, a monoclonal antibody targeting a single NWM glycoprotein binding site on hTfR1, can efficiently prevent their entry into cells.
Collapse
|
12
|
Morales M, Xue X. Targeting iron metabolism in cancer therapy. Am J Cancer Res 2021; 11:8412-8429. [PMID: 34373750 PMCID: PMC8344014 DOI: 10.7150/thno.59092] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
Iron is a critical component of many cellular functions including DNA replication and repair, and it is essential for cell vitality. As an essential element, iron is critical for maintaining human health. However, excess iron can be highly toxic, resulting in oxidative DNA damage. Many studies have observed significant associations between iron and cancer, and the association appears to be more than just coincidental. The chief characteristic of cancers, hyper-proliferation, makes them even more dependent on iron than normal cells. Cancer therapeutics are becoming as diverse as the disease itself. Targeting iron metabolism in cancer cells is an emerging, formidable field of therapeutics. It is a strategy that is highly diverse with regard to specific targets and the various ways to reach them. This review will discuss the importance of iron metabolism in cancer and highlight the ways in which it is being explored as the medicine of tomorrow.
Collapse
|
13
|
Tang M, Zeng L, Zeng Z, Liu J, Yuan J, Wu D, Lu Y, Zi J, Ye M. Proteomics study of colorectal cancer and adenomatous polyps identifies TFR1, SAHH, and HV307 as potential biomarkers for screening. J Proteomics 2021; 243:104246. [PMID: 33915303 DOI: 10.1016/j.jprot.2021.104246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/05/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a malignant tumour with high morbidity and mortality worldwide. Efficient screening strategies for CRC and pre-cancerous lesions can promote early medical intervention and treatment, thereby reducing morbidity and mortality. Proteins are generally considered key biomarkers of cancer. Herein, we performed a quantitative, original-tissue proteomics study in a cohort of ninety patients from pre-cancerous to cancerous conditions via liquid chromatography-tandem mass spectrometry. In total, 134,812 peptides, 8697 proteins, 2355 union differentially expressed proteins (DEPs), and 409 shared DEPs (compared with adjacent tissues) were identified. The number of DEPs indicated a positive correlation with increasing severity of illness. The union and shared DEPs were both enriched in the KEGG pathway of focal adhesion, metabolism of xenobiotics by cytochrome P450, and drug metabolism by cytochrome P450. Among the 2355 union DEPs, 32 were selected for identification and validation by multiple reaction monitoring from twenty plasma specimens. Of these, three proteins, transferrin receptor protein 1 (TFR1), adenosylhomocysteinase (SAHH), and immunoglobulin heavy variable 3-7 (HV307), were significantly differentially expressed and displayed the same expression pattern in plasma as observed in the tissue data. In conclusion, TFR1, SAHH, and HV307 may be considered as potential biomarkers for CRC screening. SIGNIFICANCE: Although CRC is a malignant tumour with high morbidity and mortality worldwide, efficient screening strategies for CRC and pre-cancerous lesions can play an important role in addressing these issues. Screening of molecular biomarkers provide a non-invasive, cost-effective, and efficient approach. Proteins are generally considered key molecular biomarkers of cancer. Our study reports a quantitative proteomics analysis of protein biomarkers for colorectal cancer (CRC) and adenomatous polyps, and identifies TFR1, SAHH, and HV307 as potential biomarkers for screening. This research makes a significant contribution to the literature as although mass spectrometry-based proteomics research has been widely used for clinical research, its application to clinical translation as parallel specimens ranging from pre-cancerous to cancerous tissues-according to the degree of disease progression-has not been readily assessed.
Collapse
Affiliation(s)
- Meifang Tang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Liuhong Zeng
- Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhaolei Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, PR China
| | - Jie Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Jie Yuan
- Department of General Surgery, the Fifth Affiliated Hospital, Southern Medical University, China
| | - Dongjie Wu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Ying Lu
- Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen 518083, China
| | - Jin Zi
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Mingzhi Ye
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; BGI-Guangzhou Medical Laboratory, BGI-Shenzhen, Guangzhou 510006, China.
| |
Collapse
|
14
|
Zhong X, D’Antona AM. Recent Advances in the Molecular Design and Applications of Multispecific Biotherapeutics. Antibodies (Basel) 2021; 10:13. [PMID: 33808165 PMCID: PMC8103270 DOI: 10.3390/antib10020013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Recombinant protein-based biotherapeutics drugs have transformed clinical pipelines of the biopharmaceutical industry since the launch of recombinant insulin nearly four decades ago. These biologic drugs are structurally more complex than small molecules, and yet share a similar principle for rational drug discovery and development: That is to start with a pre-defined target and follow with the functional modulation with a therapeutic agent. Despite these tremendous successes, this "one target one drug" paradigm has been challenged by complex disease mechanisms that involve multiple pathways and demand new therapeutic routes. A rapidly evolving wave of multispecific biotherapeutics is coming into focus. These new therapeutic drugs are able to engage two or more protein targets via distinct binding interfaces with or without the chemical conjugation to large or small molecules. They possess the potential to not only address disease intricacy but also exploit new therapeutic mechanisms and assess undruggable targets for conventional monospecific biologics. This review focuses on the recent advances in molecular design and applications of major classes of multispecific biotherapeutics drugs, which include immune cells engagers, antibody-drug conjugates, multispecific tetherbodies, biologic matchmakers, and small-scaffold multispecific modalities. Challenges posed by the multispecific biotherapeutics drugs and their future outlooks are also discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- Department of BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA;
| | | |
Collapse
|
15
|
Guo Z, Zhang Y, Fu M, Zhao L, Wang Z, Xu Z, Zhu H, Lan X, Shen G, He Y, Lei P. The Transferrin Receptor-Directed CAR for the Therapy of Hematologic Malignancies. Front Immunol 2021; 12:652924. [PMID: 33854512 PMCID: PMC8039461 DOI: 10.3389/fimmu.2021.652924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
As many patients ultimately relapse after chimeric antigen receptor (CAR) T-cell therapy, identification of alternative targets is currently being evaluated. Substantial research efforts are underway to develop new targets. The transferrin receptor (TfR) is prevalently expressed on rapidly proliferating tumor cells and holds the potential to be the alternative target. In order to investigate the efficacy and challenges of TfR-targeting on the CAR-based therapy strategy, we generated a TfR-specific CAR and established the TfR-CAR–modified T cells. To take the advantage of TfR being widely shared by multiple tumors, TfR-CAR T cells were assessed against several TfR+ hematological malignant cell lines. Data showed that TfR-CAR T cells were powerfully potent in killing all these types of cells in vitro and in killing T-ALL cells in vivo. These findings suggest that TfR could be a universal target to broaden and improve the therapeutic efficacy of CAR T cells and warrant further efforts to use these cells as an alternative CAR T cell product for the therapy of hematological malignancies.
Collapse
Affiliation(s)
- Zilong Guo
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yirui Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingpeng Fu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Liang Zhao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoshuo Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifen Zhu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong He
- Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Candelaria PV, Leoh LS, Penichet ML, Daniels-Wells TR. Antibodies Targeting the Transferrin Receptor 1 (TfR1) as Direct Anti-cancer Agents. Front Immunol 2021; 12:607692. [PMID: 33815364 PMCID: PMC8010148 DOI: 10.3389/fimmu.2021.607692] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
The transferrin receptor 1 (TfR1), also known as cluster of differentiation 71 (CD71), is a type II transmembrane glycoprotein that binds transferrin (Tf) and performs a critical role in cellular iron uptake through the interaction with iron-bound Tf. Iron is required for multiple cellular processes and is essential for DNA synthesis and, thus, cellular proliferation. Due to its central role in cancer cell pathology, malignant cells often overexpress TfR1 and this increased expression can be associated with poor prognosis in different types of cancer. The elevated levels of TfR1 expression on malignant cells, together with its extracellular accessibility, ability to internalize, and central role in cancer cell pathology make this receptor an attractive target for antibody-mediated therapy. The TfR1 can be targeted by antibodies for cancer therapy in two distinct ways: (1) indirectly through the use of antibodies conjugated to anti-cancer agents that are internalized by receptor-mediated endocytosis or (2) directly through the use of antibodies that disrupt the function of the receptor and/or induce Fc effector functions, such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP), or complement-dependent cytotoxicity (CDC). Although TfR1 has been used extensively as a target for antibody-mediated cancer therapy over the years, interest continues to increase for both targeting the receptor for delivery purposes and for its use as direct anti-cancer agents. This review focuses on the developments in the use of antibodies targeting TfR1 as direct anti-tumor agents.
Collapse
Affiliation(s)
- Pierre V. Candelaria
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Lai Sum Leoh
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Manuel L. Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, United States
- The Molecular Biology Institute, UCLA, Los Angeles, CA, United States
- UCLA AIDS Institute, UCLA, Los Angeles, CA, United States
| | - Tracy R. Daniels-Wells
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
17
|
Weber S, Parmon A, Kurrle N, Schnütgen F, Serve H. The Clinical Significance of Iron Overload and Iron Metabolism in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Front Immunol 2021; 11:627662. [PMID: 33679722 PMCID: PMC7933218 DOI: 10.3389/fimmu.2020.627662] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Myelodysplasticsyndrome (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell diseases leading to an insufficient formation of functional blood cells. Disease-immanent factors as insufficient erythropoiesis and treatment-related factors as recurrent treatment with red blood cell transfusions frequently lead to systemic iron overload in MDS and AML patients. In addition, alterations of function and expression of proteins associated with iron metabolism are increasingly recognized to be pathogenetic factors and potential vulnerabilities of these diseases. Iron is known to be involved in multiple intracellular and extracellular processes. It is essential for cell metabolism as well as for cell proliferation and closely linked to the formation of reactive oxygen species. Therefore, iron can influence the course of clonal myeloid disorders, the leukemic environment and the occurrence as well as the defense of infections. Imbalances of iron homeostasis may induce cell death of normal but also of malignant cells. New potential treatment strategies utilizing the importance of the iron homeostasis include iron chelation, modulation of proteins involved in iron metabolism, induction of leukemic cell death via ferroptosis and exploitation of iron proteins for the delivery of antileukemic drugs. Here, we provide an overview of some of the latest findings about the function, the prognostic impact and potential treatment strategies of iron in patients with MDS and AML.
Collapse
Affiliation(s)
- Sarah Weber
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anastasia Parmon
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Nina Kurrle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
18
|
Mihăilă RG. Monoclonal Antibodies, Bispecific Antibodies and Antibody-Drug Conjugates in Oncohematology. Recent Pat Anticancer Drug Discov 2020; 15:272-292. [DOI: 10.2174/1574892815666200925120717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
Abstract
Background:
The therapeutic outcomes and the prognosis of patients with various hematologic
malignancies are not always ideal with the current standard of care.
Objective:
The aim of this study is to analyze the results of the use of monoclonal antibodies, bispecific
antibodies and antibody-drug conjugates for the therapy of malignant hemopathies.
Methods:
A mini-review was achieved using the articles published in Web of Science and PubMed
between January 2017 and January 2020 and the new patents were made in this field.
Results:
Naked monoclonal antibodies have improved the therapeutic results obtained with standard
of care, but they also have side effects and the use of some of them can lead to the loss of the
target antigen through trogocytosis, which explains the resistance that occurs during therapy. The
results obtained with naked monoclonal antibodies have been improved by a better monoclonal
antibody preparation, the use of bispecific antibodies (against two antigens on the target cell surface
or by binding both surface antigen on target cells and T-cell receptor complex, followed by cytotoxic
T-lymphocytes activation and subsequent cytolysis of the target cell), the use of monoclonal
or bispecific constructs in frontline regimens, combining immunotherapy with chemotherapy, including
through the use of antibody-drug conjugates (which provides a targeted release of a chemotherapeutic
agent).
Conclusion:
Immunotherapy and immuno-chemotherapy have improved the outcome of the patients
with malignant hemopathies through a targeted, personalized therapy, with reduced systemic
toxicity, which in some cases can even induce deep complete remissions, including minimal residual
disease negativity.
Collapse
Affiliation(s)
- Romeo G. Mihăilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, Hematology Department, Emergency County Clinical Hospital Sibiu, Sibiu 550169, Romania
| |
Collapse
|