1
|
Hu Y, Dang M, Zhang X. Influence of physicochemical conditions on liquid-liquid phase separation and stability of immunoglobulin Y for storage and application. Int J Biol Macromol 2025; 306:141393. [PMID: 39993672 DOI: 10.1016/j.ijbiomac.2025.141393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a biological process and can lead to the formation of irreversible aggregates of functional proteins upon storage and administration, making it essential to predict and mitigate this phenomenon. Immunoglobulin Y (IgY), a unique class of antibody derived from egg yolk has broad applications in disease diagnosis, prophylaxis, and treatment. In this study, we observed the formation of droplet-shaped condensates of IgY under crowding conditions with polyethylene glycol 8000 (PEG 8000). To assess the relative contribution of different IgY domains to LLPS, we prepared the fragment antigen binding (Fab), fragment crystallizable (Fc) 3-4, and Escherichia coli-expressed IgY-Fc 2-4 domain. After PEG 8000 addition, the Fab fragments more propensity to aggregate, while Fc 3-4 and E. coli-expressed Fc underwent LLPS. Furthermore, we found that LLPS of IgY is influenced by electrostatic interactions. Recognizing the negative effects of LLPS on antibody efficacy, our study showed that the addition of arginine and lysine at low concentrations could prevent PEG-induced LLPS, enhancing IgY stability. These findings provide valuable insights into the optimization of IgY antibody applications and storage conditions, advancing our understanding of antibody stability in solution and facilitating the development of strategies to protect antibodies from aggregation.
Collapse
Affiliation(s)
- Yuzhang Hu
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Mei Dang
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
2
|
Kimball WD, Lanzaro A, Hurd C, Jhaveri N, Huang J, Lewandowski J, Qian KK, Woldeyes MA, Majumdar R, Witek MA, Feng J, Gillilan RE, Huang Q, Marras AE, Truskett TM, Johnston KP. Growth of Clusters toward Liquid-Liquid Phase Separation of Monoclonal Antibodies as Characterized by Small-Angle X-ray Scattering and Molecular Dynamics Simulation. J Phys Chem B 2025; 129:2856-2871. [PMID: 40053704 DOI: 10.1021/acs.jpcb.4c07064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
In concentrated protein solutions, short-range attractions (SRAs) contribute to liquid-liquid phase separation (LLPS) as a function of temperature and salinity, particularly when the charge and thus long-range repulsions are low near the isoelectric point pI. Herein, we study how SRA and solution morphology vary with the approach to LLPS from increased SRA for two monoclonal antibodies (mAbs) as salt concentration is reduced near the pI. These properties are quantified using small-angle X-ray scattering (SAXS) interpreted via coarse-grained (CG) molecular dynamics (MD) simulations and compared with less descriptive properties from static and dynamic light scattering. Experimental structure factors are fit with a library of MD simulations for a CG 12-bead mAb model to determine the SRA strength (K) and cluster size distributions. Proximity to LLPS and clustering characteristics in mAb solutions are impacted by both net charge, which are modified by pH, and the strength of anisotropic electrostatic SRA (charge-charge, charge-dipole, hydrogen bonding, etc.), which are screened and weakened by added salts. The trends in LLPS are consistent with the reduced diffusion interaction parameter kD/B22ex for dilute solutions. However, greater insight is provided with SAXS along with CG-MD simulations; in particular, the growth of clusters is observed with the approach to LLPS with decreasing salinity over a wide range of concentrations.
Collapse
Affiliation(s)
- William D Kimball
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alfredo Lanzaro
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Christian Hurd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Neel Jhaveri
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jintian Huang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joshua Lewandowski
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ken K Qian
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | | | - Ranajoy Majumdar
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Marta A Witek
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Jiangyan Feng
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Richard E Gillilan
- Center for High Energy X-ray Sciences at CHESS, Cornell University, Ithaca, New York 14853, United States
| | - Qingqiu Huang
- Center for High Energy X-ray Sciences at CHESS, Cornell University, Ithaca, New York 14853, United States
| | - Alexander E Marras
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Keith P Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Iqbal Z, Asim M, Khan UA, Sultan N, Ali I. Computational electrostatic engineering of nanobodies for enhanced SARS-CoV-2 receptor binding domain recognition. Front Mol Biosci 2025; 12:1512788. [PMID: 40129869 PMCID: PMC11931142 DOI: 10.3389/fmolb.2025.1512788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/11/2025] [Indexed: 03/26/2025] Open
Abstract
This study presents a novel computational approach for engineering nanobodies (Nbs) for improved interaction with receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Using Protein Structure Reliability reports, RBD (7VYR_R) was selected and refined for subsequent Nb-RBD interactions. By leveraging electrostatic complementarity (EC) analysis, we engineered and characterized five Electrostatically Complementary Nbs (ECSb1-ECSb5) based on the CeVICA library's SR6c3 Nb. Through targeted modifications in the complementarity-determining regions (CDR) and framework regions (FR), we optimized electrostatic interactions to improve binding affinity and specificity. The engineered Nbs (ECSb3, ECSb4, and ECSb5) demonstrated high binding specificity for AS3, CA1, and CA2 epitopes. Interestingly, ECSb1 and ECSb2 selectively engaged with AS3 and CA1 instead of AS1 and AS2, respectively, due to a preference for residues that conferred superior binding complementarities. Furthermore, ECSbs significantly outperformed SR6c3 Nb in MM/GBSA results, notably, ECSb4 and ECSb3 exhibited superior binding free energies of -182.58 kcal.mol-1 and -119.07 kcal.mol-1, respectively, compared to SR6c3 (-105.50 kcal.mol-1). ECSbs exhibited significantly higher thermostability (100.4-148.3 kcal·mol⁻1) compared to SR6c3 (62.6 kcal·mol⁻1). Similarly, enhanced electrostatic complementarity was also observed for ECSb4-RBD and ECSb3-RBD (0.305 and 0.390, respectively) relative to SR6c3-RBD (0.233). Surface analyses confirmed optimized electrostatic patches and reduced aggregation propensity in the engineered Nb. This integrated EC and structural engineering approach successfully developed engineered Nbs with enhanced binding specificity, increased thermostability, and reduced aggregation, laying the groundwork for novel therapeutic applications targeting the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Zafar Iqbal
- Central Laboratories, King Faisal University, Al Hofuf, Saudi Arabia
| | - Muhammad Asim
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Umair Ahmad Khan
- Medical and Allied Department, Faisalabad Medical University, Faisalabad, Pakistan
| | - Neelam Sultan
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Irfan Ali
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
4
|
Wang F, Chen Z, Zhou Q, Sun Q, Zheng N, Chen Z, Lin J, Li B, Li L. Implications of liquid-liquid phase separation and ferroptosis in Alzheimer's disease. Neuropharmacology 2024; 259:110083. [PMID: 39043267 DOI: 10.1016/j.neuropharm.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Neuronal cell demise represents a prevalent occurrence throughout the advancement of Alzheimer's disease (AD). However, the mechanism of triggering the death of neuronal cells remains unclear. Its potential mechanisms include aggregation of soluble amyloid-beta (Aβ) to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFTs), neuroinflammation, ferroptosis, oxidative stress, liquid-liquid phase separation (LLPS) and metal ion disorders. Among them, ferroptosis is an iron-dependent lipid peroxidation-driven cell death and emerging evidences have demonstrated the involvement of ferroptosis in the pathological process of AD. The sensitivity to ferroptosis is tightly linked to numerous biological processes. Moreover, emerging evidences indicate that LLPS has great impacts on regulating human health and diseases, especially AD. Soluble Aβ can undergo LLPS to form liquid-like droplets, which can lead to the formation of insoluble amyloid plaques. Meanwhile, tau has a high propensity to condensate via the mechanism of LLPS, which can lead to the formation of NFTs. In this review, we summarize the most recent advancements pertaining to LLPS and ferroptosis in AD. Our primary focus is on expounding the influence of Aβ, tau protein, iron ions, and lipid oxidation on the intricate mechanisms underlying ferroptosis and LLPS within the domain of AD pathology. Additionally, we delve into the intricate cross-interactions that occur between LLPS and ferroptosis in the context of AD. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for AD.
Collapse
Affiliation(s)
- Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiong Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jiantao Lin
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
5
|
Dignon G, Dill KA. Computational Procedure for Predicting Excipient Effects on Protein-Protein Affinities. J Chem Theory Comput 2024; 20:1479-1488. [PMID: 38294777 PMCID: PMC10868583 DOI: 10.1021/acs.jctc.3c01197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Protein-protein interactions lie at the center of many biological processes and are a challenge in formulating biological drugs, such as antibodies. A key to mitigating protein association is to use small-molecule additives, i.e., excipients that can weaken protein-protein interactions. Here, we develop a computationally efficient model for predicting the viscosity-reducing effect of different excipient molecules by combining atomic-resolution MD simulations, binding polynomials, and a thermodynamic perturbation theory. In a proof of principle, this method successfully ranks the order of four types of excipients known to reduce the viscosity of solutions of a particular monoclonal antibody. This approach appears useful for predicting the effects of excipients on protein association and phase separation, as well as the effects of buffers on protein solutions.
Collapse
Affiliation(s)
- Gregory
L. Dignon
- Laufer
Center for Physical and Quantitative Biology, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Ken A. Dill
- Laufer
Center for Physical and Quantitative Biology, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
- Department
of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
- Department
of Physics and Astronomy, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| |
Collapse
|
6
|
Dignon GL, Dill KA. A computational procedure for predicting excipient effects on protein-protein affinities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573113. [PMID: 38187552 PMCID: PMC10769426 DOI: 10.1101/2023.12.22.573113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Protein-protein interactions lie at the center of much biology and are a challenge in formulating biological drugs such as antibodies. A key to mitigating protein association is to use small molecule additives, i.e. excipients that can weaken protein-protein interactions. Here, we develop a computationally efficient model for predicting the viscosity-reducing effect of different excipient molecules by combining atomic-resolution MD simulations, binding polynomials and a thermodynamic perturbation theory. In a proof of principle, this method successfully rank orders four types of excipients known to reduce the viscosity of solutions of a particular monoclonal antibody. This approach appears useful for predicting effects of excipients on protein association and phase separation, as well as the effects of buffers on protein solutions.
Collapse
Affiliation(s)
- Gregory L Dignon
- Laufer Center for Physical and Quantitative Biology, Stony Brook University
- Current address: Department of Chemical and Biochemical Engineering, Rutgers University
| | - Ken A Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University
- Department of Chemistry, Stony Brook University
- Department of Physics and Astronomy, Stony Brook University
| |
Collapse
|
7
|
Ausserwöger H, Krainer G, Welsh TJ, Thorsteinson N, de Csilléry E, Sneideris T, Schneider MM, Egebjerg T, Invernizzi G, Herling TW, Lorenzen N, Knowles TPJ. Surface patches induce nonspecific binding and phase separation of antibodies. Proc Natl Acad Sci U S A 2023; 120:e2210332120. [PMID: 37011217 PMCID: PMC10104583 DOI: 10.1073/pnas.2210332120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/06/2023] [Indexed: 04/05/2023] Open
Abstract
Nonspecific interactions are a key challenge in the successful development of therapeutic antibodies. The tendency for nonspecific binding of antibodies is often difficult to reduce by rational design, and instead, it is necessary to rely on comprehensive screening campaigns. To address this issue, we performed a systematic analysis of the impact of surface patch properties on antibody nonspecificity using a designer antibody library as a model system and single-stranded DNA as a nonspecificity ligand. Using an in-solution microfluidic approach, we find that the antibodies tested bind to single-stranded DNA with affinities as high as KD = 1 µM. We show that DNA binding is driven primarily by a hydrophobic patch in the complementarity-determining regions. By quantifying the surface patches across the library, the nonspecific binding affinity is shown to correlate with a trade-off between the hydrophobic and total charged patch areas. Moreover, we show that a change in formulation conditions at low ionic strengths leads to DNA-induced antibody phase separation as a manifestation of nonspecific binding at low micromolar antibody concentrations. We highlight that phase separation is driven by a cooperative electrostatic network assembly mechanism of antibodies with DNA, which correlates with a balance between positive and negative charged patches. Importantly, our study demonstrates that both nonspecific binding and phase separation are controlled by the size of the surface patches. Taken together, these findings highlight the importance of surface patches and their role in conferring antibody nonspecificity and its macroscopic manifestation in phase separation.
Collapse
Affiliation(s)
- Hannes Ausserwöger
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Georg Krainer
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Timothy J. Welsh
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Nels Thorsteinson
- Research and Development, Chemical Computing Group, Montreal, QuebecH3A 2R7, Canada
| | - Ella de Csilléry
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Tomas Sneideris
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Matthias M. Schneider
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Thomas Egebjerg
- Global Research Technologies, Novo Nordisk A/S2760Måløv, Denmark
| | | | - Therese W. Herling
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Nikolai Lorenzen
- Global Research Technologies, Novo Nordisk A/S2760Måløv, Denmark
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Department of Physics, Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| |
Collapse
|
8
|
Ma J, Pathirana C, Liu DQ, Miller SA. NMR spectroscopy as a characterization tool enabling biologics formulation development. J Pharm Biomed Anal 2023; 223:115110. [DOI: 10.1016/j.jpba.2022.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
|
9
|
Ausserwöger H, Schneider MM, Herling TW, Arosio P, Invernizzi G, Knowles TPJ, Lorenzen N. Non-specificity as the sticky problem in therapeutic antibody development. Nat Rev Chem 2022; 6:844-861. [PMID: 37117703 DOI: 10.1038/s41570-022-00438-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
Antibodies are highly potent therapeutic scaffolds with more than a hundred different products approved on the market. Successful development of antibody-based drugs requires a trade-off between high target specificity and target binding affinity. In order to better understand this problem, we here review non-specific interactions and explore their fundamental physicochemical origins. We discuss the role of surface patches - clusters of surface-exposed amino acid residues with similar physicochemical properties - as inducers of non-specific interactions. These patches collectively drive interactions including dipole-dipole, π-stacking and hydrophobic interactions to complementary moieties. We elucidate links between these supramolecular assembly processes and macroscopic development issues, such as decreased physical stability and poor in vivo half-life. Finally, we highlight challenges and opportunities for optimizing protein binding specificity and minimizing non-specificity for future generations of therapeutics.
Collapse
|
10
|
Luo H, Du Q, Qian C, Mlynarczyk M, Pabst TM, Damschroder M, Hunter AK, Wang WK. Formation of Transient Highly-Charged mAb Clusters Strengthens Interactions with Host Cell Proteins and Results in Poor Clearance of Host Cell Proteins by Protein A Chromatography. J Chromatogr A 2022; 1679:463385. [DOI: 10.1016/j.chroma.2022.463385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
|
11
|
Utility of High Resolution 2D NMR Fingerprinting in Assessing Viscosity of Therapeutic Monoclonal Antibodies. Pharm Res 2022; 39:529-539. [PMID: 35174433 PMCID: PMC9043092 DOI: 10.1007/s11095-022-03200-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
Purpose The viscosity of highly concentrated therapeutic monoclonal antibody (mAb) formulations at concentrations ≥ 100 mg/mL can significantly affect the stability, processing, and drug product development for subcutaneous delivery. An early identification of a viscosity prone mAb during candidate selection stages are often beneficial for downstream processes. Higher order structure of mAbs may often dictate their viscosity behavior at high concentration. Thus it is beneficial to gauge or rank-order their viscosity behavior using noninvasive structural fingerprinting methods and to potentially screen for suitable viscosity lowering excipients. Methods In this study, Dynamic Light Scattering (DLS) and 2D NMR based methyl fingerprinting were used to correlate viscosity behavior of a set of Pfizer mAbs. The viscosities of mAbs were determined. Respective Fab and Fc domains were generated for studies. Result Methyl fingerprinting of intact mAbs allows for differentiation of viscosity prone mAbs from well behaved ones even at 30–40 mg/ml, where bulk viscosity of the solutions are near identical. For viscosity prone mAbs, peak broadening and or distinct chemical shift changes were noted in intact and fragment fingerprints, unlike the well-behaved mAbs, indicative of protein protein interactions (PPI). Conclusion Fab-Fab or Fab-Fc interactions may lead to formation of protein networks at high concentration. The early transients to these network formation may be manifested through peak broadening or peak shift in the 2D NMR spectrum of mAb/mAb fragments. Such insights go beyond rank ordering mAbs based on viscosity behavior, which can be obtained by other methods as well.. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-022-03200-6.
Collapse
|
12
|
Bramham JE, Davies SA, Podmore A, Golovanov AP. Stability of a high-concentration monoclonal antibody solution produced by liquid-liquid phase separation. MAbs 2021; 13:1940666. [PMID: 34225583 PMCID: PMC8265796 DOI: 10.1080/19420862.2021.1940666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Subcutaneous injection of a low volume (<2 mL) high concentration (>100 mg/mL) formulation is an attractive administration strategy for monoclonal antibodies (mAbs) and other biopharmaceutical proteins. Using concentrated solutions may also be beneficial at various stages of bioprocessing. However, concentrating proteins by conventional techniques, such as ultrafiltration, can be time consuming and challenging. Isolation of the dense fraction produced by macroscopic liquid–liquid phase separation (LLPS) has been suggested as a means to produce high-concentration solutions, but practicality of this method, and the stability of the resulting protein solution have not previously been demonstrated. In this proof-of-concept study, we demonstrate that LLPS can be used to concentrate a mAb solution to >170 mg/mL. We show that the structure of the mAb is not altered by LLPS, and unperturbed mAb is recoverable following dilution of the dense fraction, as judged by 1H nuclear magnetic resonance spectroscopy. Finally, we show that the physical properties and stability of a model high concentration protein formulation obtained from the dense fraction can be improved, for example through the addition of the excipient arginine·glutamate. This results in a stable high-concentration protein formulation with reduced viscosity and no further macroscopic LLPS. Concentrating mAb solutions by LLPS represents a simple and effective technique to progress toward producing high-concentration protein formulations for bioprocessing or administration. Abbreviations Arginine·glutamate (Arg·Glu), Carr-Purcell-Meiboom-Gill (CPMG), critical temperature (TC), high-performance size-exclusion chromatography (HPSEC), liquid–liquid phase separation (LLPS), monoclonal antibody (mAb), nuclear magnetic resonance (NMR), transverse relaxation rate (R2)
Collapse
Affiliation(s)
- Jack E Bramham
- Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Stephanie A Davies
- Dosage Form Design & Development, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Adrian Podmore
- Dosage Form Design & Development, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Alexander P Golovanov
- Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| |
Collapse
|
13
|
Banks DD, Cordia JF. Suppression of Electrostatic Mediated Antibody Liquid-Liquid Phase Separation by Charged and Noncharged Preferentially Excluded Excipients. Mol Pharm 2021; 18:1285-1292. [PMID: 33555888 DOI: 10.1021/acs.molpharmaceut.0c01138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isotonic concentrations of inert cosolutes or excipients are routinely used in protein therapeutic formulations to minimize physical instabilities including aggregation, particulation, and precipitation that are often manifested during drug substance/product manufacture and long-term storage. Despite their prevalent use within the biopharmaceutical industry, a more detailed understanding for how excipients modulate the specific protein-protein interactions responsible for these instabilities is still needed so that informed formulation decisions can be made at the earliest stages of development when protein supply and time are limited. In the present report, subisotonic concentrations of the five common formulation excipients, sucrose, proline, sorbitol, glycerol, arginine hydrochloride, and the denaturant urea, were studied for their effect on the room temperature liquid-liquid phase separation of a model monoclonal antibody (mAb-B). Although each excipient lowered the onset temperatures of mAb-B liquid-liquid phase separation to different extents, all six were found to be preferentially excluded from the native state monomer by vapor pressure osmometry, and no apparent correlations to the excipient dependence of mAb-B melting temperatures were observed. These results and those of the effects of solution pH, addition of salt, and impact of a small number of charge mutations were most consistent with a mechanism of local excipient accumulation, to an extent dependent on their type, with the specific residues that mediate mAb-B electrostatic protein-protein interactions. These findings suggest that selection of excipients on the basis of their interaction with the solvent exposed residues of the native state may at times be a more effective strategy for limiting protein-protein interactions at pharmaceutically relevant storage conditions than choosing those that are excluded from the residues of the native state interior.
Collapse
Affiliation(s)
- Douglas D Banks
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb, 4242 Campus Point Court, Suite 700, San Diego, California 92121, United States
| | - Jon F Cordia
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb, 4242 Campus Point Court, Suite 700, San Diego, California 92121, United States
| |
Collapse
|
14
|
Kollár É, Balázs B, Tari T, Siró I. Development challenges of high concentration monoclonal antibody formulations. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 37:31-40. [PMID: 34895653 DOI: 10.1016/j.ddtec.2020.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/17/2020] [Accepted: 08/31/2020] [Indexed: 01/09/2023]
Abstract
High concentration monoclonal antibody drug products represent a special segment of biopharmaceuticals. In contrast to other monoclonal antibody products, high concentration monoclonal antibodies are injected subcutaneously helping increase patient compliance and reduce the number of hospital patient visits. It is important to note that a high protein concentration (≥50 mg/mL) poses a challenge from a product development perspective. Colloidal properties, physical and chemical protein stability should be considered during formulation, primary packaging and manufacturing process development as well as optimization of other dosage form-related parameters. The aim of such development work is to obtain a drug product capable of maintaining appropriate protein structure throughout its shelf-life and ensure proper and accurate dosage upon administration.
Collapse
Affiliation(s)
- Éva Kollár
- Department of Biotechnology Development, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary.
| | - Boglárka Balázs
- Department of Biotechnology Development, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary
| | - Tímea Tari
- Department of Biotechnology Development, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary
| | - István Siró
- Department of Biotechnology Development, Gedeon Richter Plc., Gyömrői út 19-21, 1103 Budapest, Hungary
| |
Collapse
|
15
|
Matsuoka T, Miyauchi R, Nagaoka N, Hasegawa J. Mitigation of liquid-liquid phase separation of a monoclonal antibody by mutations of negative charges on the Fab surface. PLoS One 2020; 15:e0240673. [PMID: 33125371 PMCID: PMC7598502 DOI: 10.1371/journal.pone.0240673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023] Open
Abstract
Some monoclonal antibodies undergo liquid-liquid phase separation owing to self-attractive associations involving electrostatic and other soft interactions, thereby rendering monoclonal antibodies unsuitable as therapeutics. To mitigate the phase separation, formulation optimization is often performed. However, this is sometimes unsuccessful because of the limited time for the development of therapeutic antibodies. Thus, protein mutations with appropriate design are required. In this report, we describe a case study involving the design of mutants of negatively charged surface residues to reduce liquid-liquid phase separation propensity. Physicochemical analysis of the resulting mutants demonstrated the mutual correlation between the sign of second virial coefficient B2, the Fab dipole moment, and the reduction of liquid-liquid phase separation propensity. Moreover, both the magnitude and direction of the dipole moment appeared to be essential for liquid-liquid phase separation propensity, where electrostatic interaction was the dominant mechanism. These findings could contribute to a better design of mutants with reduced liquid-liquid phase separation propensity and improved drug-like biophysical properties.
Collapse
Affiliation(s)
- Tatsuji Matsuoka
- Modality Research Laboratories, Daiichi Sankyo, Co., Ltd., Shinagawa, Tokyo, Japan
| | - Ryuki Miyauchi
- Modality Research Laboratories, Daiichi Sankyo, Co., Ltd., Shinagawa, Tokyo, Japan
| | - Nobumi Nagaoka
- Modality Research Laboratories, Daiichi Sankyo, Co., Ltd., Shinagawa, Tokyo, Japan
| | - Jun Hasegawa
- Modality Research Laboratories, Daiichi Sankyo, Co., Ltd., Shinagawa, Tokyo, Japan
| |
Collapse
|
16
|
Sawant MS, Streu CN, Wu L, Tessier PM. Toward Drug-Like Multispecific Antibodies by Design. Int J Mol Sci 2020; 21:E7496. [PMID: 33053650 PMCID: PMC7589779 DOI: 10.3390/ijms21207496] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
The success of antibody therapeutics is strongly influenced by their multifunctional nature that couples antigen recognition mediated by their variable regions with effector functions and half-life extension mediated by a subset of their constant regions. Nevertheless, the monospecific IgG format is not optimal for many therapeutic applications, and this has led to the design of a vast number of unique multispecific antibody formats that enable targeting of multiple antigens or multiple epitopes on the same antigen. Despite the diversity of these formats, a common challenge in generating multispecific antibodies is that they display suboptimal physical and chemical properties relative to conventional IgGs and are more difficult to develop into therapeutics. Here we review advances in the design and engineering of multispecific antibodies with drug-like properties, including favorable stability, solubility, viscosity, specificity and pharmacokinetic properties. We also highlight emerging experimental and computational methods for improving the next generation of multispecific antibodies, as well as their constituent antibody fragments, with natural IgG-like properties. Finally, we identify several outstanding challenges that need to be addressed to increase the success of multispecific antibodies in the clinic.
Collapse
Affiliation(s)
- Manali S. Sawant
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Craig N. Streu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemistry, Albion College, Albion, MI 49224, USA
| | - Lina Wu
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M. Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Resolving Liquid-Liquid Phase Separation for a Peptide Fused Monoclonal Antibody by Formulation Optimization. J Pharm Sci 2020; 110:738-745. [PMID: 32961238 DOI: 10.1016/j.xphs.2020.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/10/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
Liquid-liquid phase separation (LLPS) of protein solutions has been usually related to strong protein-protein interactions (PPI) under certain conditions. For the first time, we observed the LLPS phenomenon for a novel protein modality, peptide-fused monoclonal antibody (pmAb). LLPS emerged within hours between pH 6.0 to 7.0 and disappeared when solution pH values decreased to pH 5.0 or lower. Negative values of interaction parameter (kD) and close to zero values of zeta potential (ζ) were correlated to LLPS appearance. However, between pH 6.0 to 7.0, a strong electrostatic repulsion force was expected to potentially avoid LLPS based on the sequence predicted pI value, 8.35. Surprisingly, this is significantly away from experimentally determined pI, 6.25, which readily attributes the LLPS appearances of pmAb to the attenuated electrostatic repulsion force. Such discrepancy between experiment and prediction reminds the necessity of actual measurement for a complicated modality like pmAb. Furthermore, significant protein degradation took place upon thermal stress at pH 5.0 or lower. Therefore, the effects of pH and selected excipients on the thermal stability of pmAb were further assessed. A formulation consisting of arginine at pH 6.5 successfully prevented the appearance of LLPS and enhanced its thermal stability at 40 °C for pmAb. In conclusion, we have reported LLPS for a pmAb and successfully resolved the issue by optimizing formulation with aids from PPI characterization.
Collapse
|
18
|
Benschop RJ, Chow CK, Tian Y, Nelson J, Barmettler B, Atwell S, Clawson D, Chai Q, Jones B, Fitchett J, Torgerson S, Ji Y, Bina H, Hu N, Ghanem M, Manetta J, Wroblewski VJ, Lu J, Allan BW. Development of tibulizumab, a tetravalent bispecific antibody targeting BAFF and IL-17A for the treatment of autoimmune disease. MAbs 2019; 11:1175-1190. [PMID: 31181988 PMCID: PMC6748573 DOI: 10.1080/19420862.2019.1624463] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/26/2019] [Accepted: 05/22/2019] [Indexed: 12/23/2022] Open
Abstract
We describe a bispecific dual-antagonist antibody against human B cell activating factor (BAFF) and interleukin 17A (IL-17). An anti-IL-17 single-chain variable fragment (scFv) derived from ixekizumab (Taltz®) was fused via a glycine-rich linker to anti-BAFF tabalumab. The IgG-scFv bound both BAFF and IL-17 simultaneously with identical stoichiometry as the parental mAbs. Stability studies of the initial IgG-scFv revealed chemical degradation and aggregation not observed in either parental antibody. The anti-IL-17 scFv showed a high melting temperature (Tm) by differential scanning calorimetry (73.1°C), but also concentration-dependent, initially reversible, protein self-association. To engineer scFv stability, three parallel approaches were taken: labile complementary-determining region (CDR) residues were replaced by stable, affinity-neutral amino acids, CDR charge distribution was balanced, and a H44-L100 interface disulfide bond was introduced. The Tm of the disulfide-stabilized scFv was largely unperturbed, yet it remained monodispersed at high protein concentration. Fluorescent dye binding titrations indicated reduced solvent exposure of hydrophobic residues and decreased proteolytic susceptibility was observed, both indicative of enhanced conformational stability. Superimposition of the H44-L100 scFv (PDB id: 6NOU) and ixekizumab antigen-binding fragment (PDB id: 6NOV) crystal structures revealed nearly identical orientation of the frameworks and CDR loops. The stabilized bispecific molecule LY3090106 (tibulizumab) potently antagonized both BAFF and IL-17 in cell-based and in vivo mouse models. In cynomolgus monkey, it suppressed B cell development and survival and remained functionally intact in circulation, with a prolonged half-life. In summary, we engineered a potent bispecific antibody targeting two key cytokines involved in human autoimmunity amenable to clinical development.
Collapse
Affiliation(s)
- Robert J. Benschop
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | - Chi-Kin Chow
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | - Yu Tian
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | - James Nelson
- Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company, San Diego, CA, USA
| | - Barbra Barmettler
- Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company, San Diego, CA, USA
| | - Shane Atwell
- Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company, San Diego, CA, USA
| | - David Clawson
- Discovery Chemistry Research and Technologies, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | - Qing Chai
- Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company, San Diego, CA, USA
| | - Bryan Jones
- Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company, San Diego, CA, USA
| | - Jon Fitchett
- Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company, San Diego, CA, USA
| | - Stacy Torgerson
- Department of Drug Disposition Development/Commercialization; Lilly Research Laboratories, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | | | - Holly Bina
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | - Ningjie Hu
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | | | - Joseph Manetta
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | - Victor J. Wroblewski
- Department of Drug Disposition Development/Commercialization; Lilly Research Laboratories, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | - Jirong Lu
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company Corporate Center, Indianapolis, IN, USA
| | - Barrett W. Allan
- Biotechnology Discovery Research, Applied Molecular Evolution, Eli Lilly and Company, San Diego, CA, USA
| |
Collapse
|