1
|
Guo Y, Chen X, Fang G, Cao X, Wan J. A Convenient Strategy for Studying Antibody Aggregation and Inhibition of Aggregation: Characterization and Simulation. Pharmaceutics 2025; 17:534. [PMID: 40284529 PMCID: PMC12030238 DOI: 10.3390/pharmaceutics17040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Protein aggregation, particularly the aggregation of antibody-based drugs, has long been a significant challenge in downstream processes and formulation. While the inhibitory effects of excipients on aggregation have been extensively studied using early experimental characterization methods, complete formulation research requires significant amounts of antibodies and time, resulting in high research costs. Methods: This study proposed a quick and small-scale position-restrained simulation method which elucidated the mechanism of the reversible self-association (RSA) of antibodies and the influence of excipients on RSA under different conditions. We also validated the rationality of rapid and small-scale simulations through long-term (>1 μs) and large-scale (>1,000,000 atoms) simulations. Results: Through combing with simple stability characterization, the effects of different excipients on monomer residual content and the trend shown with concentration changes after thermal incubation were found to be similar to those observed in the simulations. Additionally, the formulation proposed by the simulations was validated using experimental characterization. Conclusions: Simulations and experiments revealed the mechanism and showed consistent trends, providing better understanding for aggregation research.
Collapse
Affiliation(s)
| | | | | | | | - Junfen Wan
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; (Y.G.); (X.C.); (G.F.); (X.C.)
| |
Collapse
|
2
|
Zajac JWP, Muralikrishnan P, Tohidian I, Zeng X, Heldt CL, Perry SL, Sarupria S. Flipping out: role of arginine in hydrophobic interactions and biological formulation design. Chem Sci 2025; 16:6780-6792. [PMID: 40110519 PMCID: PMC11915020 DOI: 10.1039/d4sc08672d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/09/2025] [Indexed: 03/22/2025] Open
Abstract
Arginine has been a mainstay in biological formulation development for decades. To date, the way arginine modulates protein stability has been widely studied and debated. Here, we employed a hydrophobic polymer to decouple hydrophobic effects from other interactions relevant to protein folding. While existing hypotheses for the effects of arginine can generally be categorized as either direct or indirect, our results indicate that direct and indirect mechanisms of arginine co-exist and oppose each other. At low concentrations, arginine was observed to stabilize hydrophobic polymer folding via a sidechain-dominated direct mechanism, while at high concentrations, arginine stabilized polymer folding via a backbone-dominated indirect mechanism. Upon introducing partially charged polymer sites, arginine destabilized polymer folding. Further, we found arginine-induced destabilization of a model virus similar to direct-mechanism destabilization of the charged polymer and concentration-dependent stabilization of a model protein similar to the indirect mechanism of hydrophobic polymer stabilization. These findings highlight the modular nature of the widely used additive arginine, with relevance in the information-driven design of stable biological formulations.
Collapse
Affiliation(s)
- Jonathan W P Zajac
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
- Chemical Theory Center, University of Minnesota Minneapolis MN 55455 USA
| | - Praveen Muralikrishnan
- Department of Chemical Engineering and Materials Science, University of Minnesota Minneapolis MN 55455 USA
- Chemical Theory Center, University of Minnesota Minneapolis MN 55455 USA
| | - Idris Tohidian
- Department of Chemical Engineering, Michigan Technological University Houghton MI 49931 USA
| | - Xianci Zeng
- Department of Chemical Engineering, University of Massachusetts Amherst MA 01003 USA
| | - Caryn L Heldt
- Department of Chemical Engineering, Michigan Technological University Houghton MI 49931 USA
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst MA 01003 USA
| | - Sapna Sarupria
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
- Chemical Theory Center, University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
3
|
Prass TM, Lindorff-Larsen K, Garidel P, Blech M, Schäfer LV. Optimized Protein-Excipient Interactions in the Martini 3 Force Field. J Chem Inf Model 2025; 65:3581-3592. [PMID: 40129029 DOI: 10.1021/acs.jcim.4c02338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The high doses of drugs required for biotherapeutics, such as monoclonal antibodies (mAbs), and the small volumes that can be administered to patients by subcutaneous injections pose challenges due to high-concentration formulations. The addition of excipients, such as arginine and glutamate, to high-concentration protein formulations can increase solubility and reduce the tendency of protein particle formation. Molecular dynamics (MD) simulations can provide microscopic insights into the mode of action of excipients in mAb formulations but require large system sizes and long time scales that are currently beyond reach at the fully atomistic level. Computationally efficient coarse-grained models such as the Martini 3 force field can tackle this challenge but require careful parametrization, testing, and validation. This study extends the popular Martini 3 force field toward realistic protein-excipient interactions of arginine and glutamate excipients, using the Fab domains of the therapeutic mAbs trastuzumab and omalizumab as model systems. A novel all-atom to coarse-grained mapping of the amino acid excipients is introduced, which explicitly captures the zwitterionic character of the backbone. The Fab-excipient interactions of arginine and glutamate are characterized concerning molecular contacts with the Fabs at the single-residue level. The Martini 3 simulations are compared with results from all-atom simulations as a reference. Our findings reveal an overestimation of Fab-excipient contacts with the default interaction parameters of Martini 3, suggesting a too strong attraction between protein residues and excipients. Therefore, we reparametrized the protein-excipient interaction parameters in Martini 3 against all-atom simulations. The excipient interactions obtained with the new Martini 3 mapping and Lennard-Jones (LJ) interaction parameters, coined Martini 3-exc, agree closely with the all-atom reference data. This work presents an improved parameter set for mAb-arginine and mAb-glutamate interactions in the Martini 3 coarse-grained force field, a key step toward large-scale coarse-grained MD simulations of high-concentration mAb formulations and the stabilizing effects of excipients.
Collapse
Affiliation(s)
- Tobias M Prass
- Center for Theoretical Chemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Patrick Garidel
- Innovation Unit, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, D-88397 Biberach an der Riss, Germany
| | - Michaela Blech
- Innovation Unit, Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, D-88397 Biberach an der Riss, Germany
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
4
|
Lebar B, Orehova M, Japelj B, Šprager E, Podlipec R, Knaflič T, Urbančič I, Knez B, Zidar M, Cerar J, Mravljak J, Žula A, Arčon D, Plavec J, Pajk S. A multifaceted approach to understanding protein-buffer interactions in biopharmaceuticals. Eur J Pharm Biopharm 2025; 206:114582. [PMID: 39571949 DOI: 10.1016/j.ejpb.2024.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/15/2024]
Abstract
The excipient selection process plays a crucial role in biopharmaceutical formulation development to ensure the long-term stability of the drug product. Though there are numerous options approved by regulatory authorities, only a subset is commonly utilized. Previous research has proposed various stabilization mechanisms, including protein-excipient interactions. However, identifying these interactions remains challenging due to their weak and transient nature. In this study, we present a comprehensive approach to identify such interactions. Using the 1HT2 CPMG (Carr-Purcel-Meiboom-Gill) filter experiment we identified interactions of rituximab with certain buffers and amino acids, shedding light on its Fc fragment instability that manifested during the enzymatic cleavage of the antibody. Moreover, chemometric analyses of 2D NMR fingerprints revealed interactions of selected excipients with antibody fragments. Furthermore, molecular dynamics simulations revealed potential interacting hotspots without NMR spectra assignment. Our results highlight the importance of an orthogonal methods approach to uncovering these critical interactions, advancing our understanding of excipient stabilization mechanisms and rational formulation design in biopharmaceutics.
Collapse
Affiliation(s)
- Blaž Lebar
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia; Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Maria Orehova
- National Institute of Chemistry, Slovenian NMR Centre, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia
| | - Boštjan Japelj
- Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Ernest Šprager
- Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Rok Podlipec
- Jožef Stefan Institute, Laboratory of Biophysics & Quantum Materials Group, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Tilen Knaflič
- Jožef Stefan Institute, Laboratory of Biophysics & Quantum Materials Group, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Iztok Urbančič
- Jožef Stefan Institute, Laboratory of Biophysics & Quantum Materials Group, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Benjamin Knez
- Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Mitja Zidar
- Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Jure Cerar
- Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Janez Mravljak
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Aleš Žula
- Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Denis Arčon
- Jožef Stefan Institute, Laboratory of Biophysics & Quantum Materials Group, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Janez Plavec
- National Institute of Chemistry, Slovenian NMR Centre, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia
| | - Stane Pajk
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Xin L, Prorok M, Zhang Z, Barboza G, More R, Bonfiglio M, Cheng L, Robbie K, Ren S, Li Y. Rapid Development of High Concentration Protein Formulation Driven by High-Throughput Technologies. Pharm Res 2025; 42:151-171. [PMID: 39824982 DOI: 10.1007/s11095-024-03801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/01/2024] [Indexed: 01/20/2025]
Abstract
BACKGROUND High concentration protein formulation (HCPF) development needs to balance protein stability attributes such as conformational/colloidal stability, chemical stability, and solution properties such as viscosity and osmolality. METHODOLOGY A three-phase design is established in this work. In Phase 1, conformational and colloidal stability are measured by 384-well-based high-throughput (HT) biophysical screening while viscosity reduction screening is performed with HT viscosity screening. Collectively, the biophysical and viscosity screening data are leveraged to design the phase 2 of short-term stability study, executed using 96-well plates under thermal and freeze/thaw stresses. In phase 2, samples are analyzed by stability-indicating assays and processed with pair-wise Student's t-test analyses to choose the final formulations. In phase 3, the final formulations are then confirmed through a one-month accelerated stability in glass vials. RESULTS Using a model antibody A (mAb-A), the initial HT screening successfully established the 384-well based platform. A lead formulation was chosen from the second round based on statistical analyses and subsequently tested against the commercial formulation of mAb-A as a control. Compared to the control, the lead formulation reduced the viscosity of mAb-A by 30% and decreased subvisible particles after thermal stress by 80%. CONCLUSIONS HT biophysical screening in 384-well plates was demonstrated to effectively guide the rational design of a high-throughput stability screening study using 96-well plates. This platform enables the identification of a high concentration formulation within seven weeks within the first two phases of study that strategically balance stability with solution properties, thus achieving a rapid development of HCPF.
Collapse
Affiliation(s)
- Lun Xin
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Monika Prorok
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Zhe Zhang
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Guilherme Barboza
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Rahul More
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Michael Bonfiglio
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Lv Cheng
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Kevin Robbie
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | - Steven Ren
- CMC Management, WuXi Biologics, Cranbury, NJ, USA
| | - Yunsong Li
- BioDev Department WuXi Biologics USA, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA.
| |
Collapse
|
6
|
Yang JE, Mitchell JM, Bingman CA, Mosher DF, Wright ER. In situ crystalline structure of the human eosinophil major basic protein-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617336. [PMID: 39416224 PMCID: PMC11483036 DOI: 10.1101/2024.10.09.617336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Eosinophils are white blood cells that participate in innate immune responses and have an essential role in the pathogenesis of inflammatory and neoplastic disorders. Upon activation, eosinophils release cytotoxic proteins such as major basic protein-1 (MBP-1) from cytoplasmic secretory granules (SGr) wherein MBP-1 is stored as nanocrystals. How the MBP-1 nanocrystalline core is formed, stabilized, and subsequently mobilized remains unknown. Here, we report the in-situ structure of crystalline MBP-1 within SGrs of human eosinophils. The structure reveals a mechanism for intragranular crystal packing and stabilization of MBP-1 via a structurally conserved loop region that is associated with calcium-dependent carbohydrate binding in other C-type lectin (CTL) proteins. Single-cell and single-SGr profiling correlating real-space three-dimensional information from cellular montage cryo-electron tomography (cryo-ET) and microcrystal electron diffraction (MicroED) data obtained from non-activated and IL33-activated eosinophils revealed activation-dependent crystal expansion and extrusion of expanded crystals from SGr. These results suggest that MBP-1 crystals play a dynamic role in the release of SGr contents. Collectively, this research demonstrates the importance of in-situ macromolecular structure determination.
Collapse
Affiliation(s)
- Jie E Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI USA
| | - Joshua M Mitchell
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Collaborative Crystallography Core, University of Wisconsin, Madison, WI USA
| | - Deane F Mosher
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Elizabeth R Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI USA
- Morgridge Institute for Research, Madison, WI, USA
| |
Collapse
|
7
|
Wang X, Ingavat N, Liew JM, Dzulkiflie N, Loh HP, Kok YJ, Bi X, Yang Y, Zhang W. Effects of molecule hydrophobicity and structural flexibility of appended bispecific antibody on Protein A chromatography. J Chromatogr A 2024; 1731:465206. [PMID: 39053253 DOI: 10.1016/j.chroma.2024.465206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Appended bispecific antibody (aBsAb) with two single chain variable fragments (scFv) linked at the c-terminus of its heavy chains is one of the promising formats in bispecific therapeutics. The presence of hydrophobic and flexible scFv fragments render aBsAb molecules higher molecule hydrophobicity and structural flexibility compared to monoclonal antibody (mAb), thus making its purification more challenging. We set out to investigate how the unique molecular properties of aBsAb affect its performance on Protein A chromatography. We showed that aBsAb has a high propensity for chromatography-induced aggregation due to its high molecule hydrophobicity, and this couldn't be improved by the addition of common chaotropic salts. Moreover, the presence of chaotropic salts, such as arginine hydrochloride (Arg-HCl), retarded aBsAb elution during Protein A chromatography rather than facilitating which was widely observed in mAb Protein A elution. Nevertheless, we were able to overcome the aggregation issue by optimizing elution condition and improved aBsAb purity from 29 % to 93 % in Protein A eluate with a high molecular weight (HMW) species of less than 5 %. We also showed that the high molecular flexibility of aBsAb leads to different hydrodynamic sizes of the aBsAb molecule post Protein A elution, neutralization, and re-acidification, which are pH dependent. This is different from mAbs where their sizes do not change post neutralization even with re-exposure to acid. The above unique observations of aBsAb in Protein A chromatography were clearly explained from the perspectives of its high molecular hydrophobicity and structural flexibility.
Collapse
Affiliation(s)
- Xinhui Wang
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Nattha Ingavat
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Jia Min Liew
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Nuruljannah Dzulkiflie
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Han Ping Loh
- Cell Line Development, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Yee Jiun Kok
- Analytical Science & Technology (Protein Analytics), Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Xuezhi Bi
- Analytical Science & Technology (Protein Analytics), Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Yuansheng Yang
- Cell Line Development, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Wei Zhang
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.
| |
Collapse
|
8
|
Shi W, Zhang TY, Fang CY, Zhang SQ, Li KB, Zhang XB, Han DM. Transforming waste into valuables: Preparation and evaluation of dual-ligand hydrophobic charge-induction chromatography using two poor performing ligands. J Chromatogr A 2024; 1726:464975. [PMID: 38735118 DOI: 10.1016/j.chroma.2024.464975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
In conventional chromatographic ligand screening, underperforming ligands are often dismissed. However, this practice may inadvertently overlook potential opportunities. This study aims to investigate whether these underperforming ligands can be repurposed as valuable assets. Hydrophobic charge-induction chromatography (HCIC) is chosen as the validation target for its potential as an innovative chromatographic mode. A novel dual-ligand approach is employed, combining two suboptimal ligands (5-Aminobenzimidazole and Tryptamine) to explore enhanced performance and optimization prospects. Various dual-ligand HCIC resins with different ligand densities were synthesized by adjusting the ligand ratio and concentration. The resins were characterized to assess appearance, functional groups, and pore features using SEM, FTIR, and ISEC techniques. Performance assessments were conducted using single-ligand mode resins as controls, evaluating the selectivity against human immunoglobulin G and human serum albumin. Static adsorption experiments were performed to understand pH and salt influence on adsorption. Breakthrough experiments were conducted to assess dynamic adsorption capacity of the novel resin. Finally, chromatographic separation using human serum was performed to evaluate the purity and yield of the resin. Results indicated that the dual-ligand HCIC resin designed for human antibodies demonstrates exceptional selectivity, surpassing not only single ligand states but also outperforming certain high-performing ligand types, particularly under specific salt and pH conditions. Ultimately, a high yield of 83.9 % and purity of 96.7 % were achieved in the separation of hIgG from human serum with the dual-ligand HCIC, significantly superior to the single-ligand resins. In conclusion, through rational design and proper operational conditions, the dual-ligand mode can revitalize underutilized ligands, potentially introducing novel and promising chromatographic modes.
Collapse
Affiliation(s)
- Wei Shi
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China; Taizhou Research Institute of Bio-Medical and Chemical Industry CO., LTD, Jiaojiang 318000, China
| | - Tian-Yi Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Chao-Ying Fang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Si-Qi Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Kai-Bin Li
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Xiao-Bin Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - De-Man Han
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China.
| |
Collapse
|
9
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
10
|
Gavade A, Nagraj AK, Patel R, Pais R, Dhanure P, Scheele J, Seiz W, Patil J. Understanding the Specific Implications of Amino Acids in the Antibody Development. Protein J 2024; 43:405-424. [PMID: 38724751 DOI: 10.1007/s10930-024-10201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 06/01/2024]
Abstract
As the demand for immunotherapy to treat and manage cancers, infectious diseases and other disorders grows, a comprehensive understanding of amino acids and their intricate role in antibody engineering has become a prime requirement. Naturally produced antibodies may not have the most suitable amino acids at the complementarity determining regions (CDR) and framework regions, for therapeutic purposes. Therefore, to enhance the binding affinity and therapeutic properties of an antibody, the specific impact of certain amino acids on the antibody's architecture must be thoroughly studied. In antibody engineering, it is crucial to identify the key amino acid residues that significantly contribute to improving antibody properties. Therapeutic antibodies with higher binding affinity and improved functionality can be achieved through modifications or substitutions with highly suitable amino acid residues. Here, we have indicated the frequency of amino acids and their association with the binding free energy in CDRs. The review also analyzes the experimental outcome of two studies that reveal the frequency of amino acids in CDRs and provides their significant correlation between the outcomes. Additionally, it discusses the various bond interactions within the antibody structure and antigen binding. A detailed understanding of these amino acid properties should assist in the analysis of antibody sequences and structures needed for designing and enhancing the overall performance of therapeutic antibodies.
Collapse
Affiliation(s)
- Akshata Gavade
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Anil Kumar Nagraj
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Riya Patel
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Roylan Pais
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Pratiksha Dhanure
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | | | | | - Jaspal Patil
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India.
| |
Collapse
|
11
|
Floyd JA, Gillespie AJ, Nightlinger NS, Siska C, Kerwin BA. The Development of a Novel Aflibercept Formulation for Ocular Delivery. J Pharm Sci 2024; 113:366-376. [PMID: 38042344 DOI: 10.1016/j.xphs.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Aflibercept is a recombinant fusion protein that is commercially available for several ocular diseases impacting millions of people worldwide. Here, we use a case study approach to examine alternative liquid formulations for aflibercept for ocular delivery, utilizing different stabilizers, buffering agents, and surfactants with the goal of improving the thermostability to allow for limited storage outside the cold chain. The formulations were developed by studying the effects of pH changes, substituting amino acids for sucrose and salt, and using polysorbate 80 or poloxamer 188 instead of polysorbate 20. A formulation containing acetate, proline, and poloxamer 188 had lower rates of aggregate formation at 4, 30, and 40°C when compared to the marketed commercial formulation containing phosphate, sucrose, sodium chloride, and polysorbate 20. Further studies examining subvisible particles after exposure to a transport stress and long-term stability at 4°C, post-translational modifications by multi-attribute method, purity by reduced and non-reduced capillary electrophoresis, and potency by cell proliferation also demonstrated a comparable or improved stability for the enhanced formulation of acetate, proline, and poloxamer 188. This enhanced stability could enable limited storage outside of the cold chain, allowing for easier distribution in low to middle income countries.
Collapse
Affiliation(s)
- J Alaina Floyd
- Just- Evotec Biologics, 401 Terry Ave N., Seattle, WA 98109, USA.
| | | | | | - Christine Siska
- Just- Evotec Biologics, 401 Terry Ave N., Seattle, WA 98109, USA
| | - Bruce A Kerwin
- Just- Evotec Biologics, 401 Terry Ave N., Seattle, WA 98109, USA.
| |
Collapse
|
12
|
Prass TM, Garidel P, Schäfer LV, Blech M. Residue-resolved insights into the stabilization of therapeutic proteins by excipients: A case study of two monoclonal antibodies with arginine and glutamate. MAbs 2024; 16:2427771. [PMID: 39540607 PMCID: PMC11572152 DOI: 10.1080/19420862.2024.2427771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Protein formulation development relies on the selection of excipients that inhibit protein-protein interactions preventing aggregation. Empirical strategies involve screening many excipient and buffer combinations by physicochemical characterization using forced degradation or temperature-induced stress, mostly under accelerated conditions. Such methods do not readily provide information on the inter- and intramolecular interactions responsible for the effects of excipients. Here, we describe a combined experimental and computational approach for investigating the effect of protein-excipient interactions on formulation stability, which allows the identification of preferential interaction sites and thus can aid in the selection of excipients to be experimentally screened. Model systems composed of two marketed therapeutic IgG1 monoclonal antibodies with identical Fc domain sequences, trastuzumab and omalizumab, were investigated with commonly used excipients arginine, glutamate, and equimolar arginine/glutamate mixtures. Protein-excipient interactions were studied using all-atom molecular dynamics (MD) simulations, which show accumulation of the excipients at specific antibody regions. Preferential excipient-interaction sites were particularly found for charged and aromatic residues and in the complementary-determining regions, with more pronounced arginine contacts for omalizumab than trastuzumab. These computational findings are in line with the more pronounced stabilizing effects of arginine observed in the long-term storage stability study. Furthermore, the aggregation and solubility propensity predicted by commonly used in silico tools do not align with the preferential excipient-interaction sites identified by the MD simulations, suggesting that different physicochemical mechanisms are at play.
Collapse
Affiliation(s)
- Tobias M. Prass
- Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany
| | - Patrick Garidel
- Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Biberach and der Riss, Germany
| | - Lars V. Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany
| | - Michaela Blech
- Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Biberach and der Riss, Germany
| |
Collapse
|
13
|
Dai J, Izadi S, Zarzar J, Wu P, Oh A, Carter PJ. Variable domain mutational analysis to probe the molecular mechanisms of high viscosity of an IgG 1 antibody. MAbs 2024; 16:2304282. [PMID: 38269489 PMCID: PMC10813588 DOI: 10.1080/19420862.2024.2304282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Subcutaneous injection is the preferred route of administration for many antibody therapeutics for reasons that include its speed and convenience. However, the small volume limit (typically ≤ 2 mL) for subcutaneous delivery often necessitates antibody formulations at high concentrations (commonly ≥100 mg/mL), which may lead to physicochemical problems. For example, antibodies with large hydrophobic or charged patches can be prone to self-interaction giving rise to high viscosity. Here, we combined X-ray crystallography with computational modeling to predict regions of an anti-glucagon receptor (GCGR) IgG1 antibody prone to self-interaction. An extensive mutational analysis was undertaken of the complementarity-determining region residues residing in hydrophobic surface patches predicted by spatial aggregation propensity, in conjunction with residue-level solvent accessibility, averaged over conformational ensembles from molecular dynamics simulations. Dynamic light scattering (DLS) was used as a medium throughput screen for self-interaction of ~ 200 anti-GCGR IgG1 variants. A negative correlation was found between the viscosity determined at high concentration (180 mg/mL) and the DLS interaction parameter measured at low concentration (2-10 mg/mL). Additionally, anti-GCGR variants were readily identified with reduced viscosity and antigen-binding affinity within a few fold of the parent antibody, with no identified impact on overall developability. The methods described here may be useful in the optimization of other antibodies to facilitate their therapeutic administration at high concentration.
Collapse
Affiliation(s)
- Jing Dai
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| | - Saeed Izadi
- Department of Pharmaceutical Development, Genentech, Inc, South San Francisco, CA, USA
| | - Jonathan Zarzar
- Department of Pharmaceutical Development, Genentech, Inc, South San Francisco, CA, USA
| | - Patrick Wu
- Department of Bioanalytical Sciences, Genentech, Inc, South San Francisco, CA, USA
| | - Angela Oh
- Department of Structural Biology, Genentech, Inc, South San Francisco, CA, USA
| | - Paul J. Carter
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
14
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
15
|
Pang KT, Yang YS, Zhang W, Ho YS, Sormanni P, Michaels TCT, Walsh I, Chia S. Understanding and controlling the molecular mechanisms of protein aggregation in mAb therapeutics. Biotechnol Adv 2023; 67:108192. [PMID: 37290583 DOI: 10.1016/j.biotechadv.2023.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
In antibody development and manufacturing, protein aggregation is a common challenge that can lead to serious efficacy and safety issues. To mitigate this problem, it is important to investigate its molecular origins. This review discusses (1) our current molecular understanding and theoretical models of antibody aggregation, (2) how various stress conditions related to antibody upstream and downstream bioprocesses can trigger aggregation, and (3) current mitigation strategies employed towards inhibiting aggregation. We discuss the relevance of the aggregation phenomenon in the context of novel antibody modalities and highlight how in silico approaches can be exploited to mitigate it.
Collapse
Affiliation(s)
- Kuin Tian Pang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore; School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technology University, Singapore
| | - Yuan Sheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Wei Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Pietro Sormanni
- Chemistry of Health, Yusuf Hamied Department of Chemistry, University of Cambridge, United Kingdom
| | - Thomas C T Michaels
- Department of Biology, Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland; Bringing Materials to Life Initiative, ETH Zurich, Switzerland
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Sean Chia
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
16
|
Ren S. Effects of arginine in therapeutic protein formulations: a decade review and perspectives. Antib Ther 2023; 6:265-276. [PMID: 38075239 PMCID: PMC10702853 DOI: 10.1093/abt/tbad022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2024] Open
Abstract
Arginine (Arg) is a natural amino acid with an acceptable safety profile and a unique chemical structure. Arg and its salts are highly effective in enhancing protein refolding and solubilization, suppressing protein-protein interaction and aggregation and reducing viscosity of high concentration protein formulations. Arg and its salts have been used in research and 20 approved protein injectables. This review summarizes the effects of Arg as an excipient in therapeutic protein formulations with the focus on its physicochemical properties, safety, applications in approved protein products, beneficial and detrimental effects in liquid and lyophilized protein formulations when combined with different counterions and mechanism on protein stabilization and destabilization. The decade literature review indicates that the benefits of Arg overweigh its risks when it is used appropriately. It is recommended to add Arg along with glutamate as a counterion to high concentration protein formulations on top of sugars or polyols to counterbalance the negative effects of Arg hydrochloride. The use of Arg as a viscosity reducer and protein stabilizer in high concentration formulations will be the inevitable future trend of the biopharmaceutical industry for subcutaneous administration.
Collapse
Affiliation(s)
- Steven Ren
- CMC Management, WuXi Biologics, 7 Clarke Drive, Cranbury, NJ 08512, USA
| |
Collapse
|
17
|
Chowdhury AA, Manohar N, Witek MA, Woldeyes MA, Majumdar R, Qian KK, Kimball WD, Xu S, Lanzaro A, Truskett TM, Johnston KP. Subclass Effects on Self-Association and Viscosity of Monoclonal Antibodies at High Concentrations. Mol Pharm 2023; 20:2991-3008. [PMID: 37191356 DOI: 10.1021/acs.molpharmaceut.3c00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The effects of a subclass of monoclonal antibodies (mAbs) on protein-protein interactions, formation of reversible oligomers (clusters), and viscosity (η) are not well understood at high concentrations. Herein, we quantify a short-range anisotropic attraction between the complementarity-determining region (CDR) and CH3 domains (KCDR-CH3) for vedolizumab IgG1, IgG2, or IgG4 subclasses by fitting small-angle X-ray scattering (SAXS) structure factor Seff(q) data with an extensive library of 12-bead coarse-grained (CG) molecular dynamics simulations. The KCDR-CH3 bead attraction strength was isolated from the strength of long-range electrostatic repulsion for the full mAb, which was determined from the theoretical net charge and a scaling parameter ψ to account for solvent accessibility and ion pairing. At low ionic strength (IS), the strongest short-range attraction (KCDR-CH3) and consequently the largest clusters and highest η were observed with IgG1, the subclass with the most positively charged CH3 domain. Furthermore, the trend in KCDR-CH3 with the subclass followed the electrostatic interaction energy between the CDR and CH3 regions calculated with the BioLuminate software using the 3D mAb structure and molecular interaction potentials. Whereas the equilibrium cluster size distributions and fractal dimensions were determined from fits of SAXS with the MD simulations, the degree of cluster rigidity under flow was estimated from the experimental η with a phenomenological model. For the systems with the largest clusters, especially IgG1, the inefficient packing of mAbs in the clusters played the largest role in increasing η, whereas for other systems, the relative contribution from stress produced by the clusters was more significant. The ability to relate η to short-range attraction from SAXS measurements at high concentrations and to theoretical characterization of electrostatic patches on the 3D surface is not only of fundamental interest but also of practical value for mAb discovery, processing, formulation, and subcutaneous delivery.
Collapse
Affiliation(s)
- Amjad A Chowdhury
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Neha Manohar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Marta A Witek
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | | | - Ranajoy Majumdar
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Ken K Qian
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - William D Kimball
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Shifeng Xu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alfredo Lanzaro
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Keith P Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Kulakova A, Augustijn D, El Bialy I, Gentiluomo L, Greco ML, Hervø-Hansen S, Indrakumar S, Mahapatra S, Martinez Morales M, Pohl C, Polimeni M, Roche A, Svilenov HL, Tosstorff A, Zalar M, Curtis R, Derrick JP, Frieß W, Golovanov AP, Lund M, Nørgaard A, Khan TA, Peters GHJ, Pluen A, Roessner D, Streicher WW, van der Walle CF, Warwicker J, Uddin S, Winter G, Bukrinski JT, Rinnan Å, Harris P. Chemometrics in Protein Formulation: Stability Governed by Repulsion and Protein Unfolding. Mol Pharm 2023. [PMID: 37146162 DOI: 10.1021/acs.molpharmaceut.3c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Therapeutic proteins can be challenging to develop due to their complexity and the requirement of an acceptable formulation to ensure patient safety and efficacy. To date, there is no universal formulation development strategy that can identify optimal formulation conditions for all types of proteins in a fast and reliable manner. In this work, high-throughput characterization, employing a toolbox of five techniques, was performed on 14 structurally different proteins formulated in 6 different buffer conditions and in the presence of 4 different excipients. Multivariate data analysis and chemometrics were used to analyze the data in an unbiased way. First, observed changes in stability were primarily determined by the individual protein. Second, pH and ionic strength are the two most important factors determining the physical stability of proteins, where there exists a significant statistical interaction between protein and pH/ionic strength. Additionally, we developed prediction methods by partial least-squares regression. Colloidal stability indicators are important for prediction of real-time stability, while conformational stability indicators are important for prediction of stability under accelerated stress conditions at 40 °C. In order to predict real-time storage stability, protein-protein repulsion and the initial monomer fraction are the most important properties to monitor.
Collapse
Affiliation(s)
- Alina Kulakova
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kongens, Lyngby 2800, Denmark
| | - Dillen Augustijn
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg 1958, Denmark
| | - Inas El Bialy
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5, Munich 81377, Germany
| | - Lorenzo Gentiluomo
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5, Munich 81377, Germany
- Wyatt Technology Europe GmbH, Hochstrasse 18, Dernbach 56307, Germany
| | - Maria Laura Greco
- Dosage Form Design and Development, AstraZeneca, Sir Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - Stefan Hervø-Hansen
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| | - Sowmya Indrakumar
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kongens, Lyngby 2800, Denmark
| | | | - Marcello Martinez Morales
- Dosage Form Design and Development, AstraZeneca, Sir Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - Christin Pohl
- Novozymes A/S, Krogshoejvej 36, Bagsvaerd 2880, Denmark
| | - Marco Polimeni
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| | - Aisling Roche
- Department of Chemical Engineering, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Hristo L Svilenov
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5, Munich 81377, Germany
| | - Andreas Tosstorff
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5, Munich 81377, Germany
| | - Matja Zalar
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, and Manchester Institute of Biotechnology, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Robin Curtis
- Department of Chemical Engineering, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Jeremy P Derrick
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Wolfgang Frieß
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5, Munich 81377, Germany
| | - Alexander P Golovanov
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, and Manchester Institute of Biotechnology, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Mikael Lund
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund 22100, Sweden
| | | | - Tarik A Khan
- Pharmaceutical Development & Supplies, Pharma Technical Development Biologics Europe, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kongens, Lyngby 2800, Denmark
| | - Alain Pluen
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, U.K
| | - Dierk Roessner
- Wyatt Technology Europe GmbH, Hochstrasse 18, Dernbach 56307, Germany
| | | | - Christopher F van der Walle
- Dosage Form Design and Development, AstraZeneca, Sir Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - Jim Warwicker
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Shahid Uddin
- Dosage Form Design and Development, AstraZeneca, Sir Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5, Munich 81377, Germany
| | | | - Åsmund Rinnan
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg 1958, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kongens, Lyngby 2800, Denmark
| |
Collapse
|
19
|
Tuning charge density of chimeric antigen receptor optimizes tonic signaling and CAR-T cell fitness. Cell Res 2023; 33:341-354. [PMID: 36882513 PMCID: PMC10156745 DOI: 10.1038/s41422-023-00789-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Tonic signaling of chimeric antigen receptor (CAR), i.e., the spontaneous CAR activation in the absence of tumor antigen stimulation, is considered to be a pivotal event controlling CAR-T efficacy. However, the molecular mechanism underlying the spontaneous CAR signals remains elusive. Here, we unveil that positively charged patches (PCPs) on the surface of the CAR antigen-binding domain mediate CAR clustering and result in CAR tonic signaling. For CARs with high tonic signaling (e.g., GD2.CAR and CSPG4.CAR), reducing PCPs on CARs or boosting ionic strength in the culture medium during ex vivo CAR-T cell expansion minimizes spontaneous CAR activation and alleviates CAR-T cell exhaustion. In contrast, introducing PCPs into the CAR with weak tonic signaling, such as CD19.CAR, results in improved in vivo persistence and superior antitumor function. These results demonstrate that CAR tonic signaling is induced and maintained by PCP-mediated CAR clustering. Notably, the mutations we generated to alter the PCPs maintain the antigen-binding affinity and specificity of the CAR. Therefore, our findings suggest that the rational tuning of PCPs to optimize tonic signaling and in vivo fitness of CAR-T cells is a promising design strategy for the next-generation CAR.
Collapse
|
20
|
Two peak elution behavior of a monoclonal antibody in cation exchange chromatography as a screening tool for excipients. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1214:123563. [PMID: 36525885 DOI: 10.1016/j.jchromb.2022.123563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Aggregation of proteins is a critical quality attribute and a major concern during the purification of therapeutic proteins, like monoclonal antibodies. In-solution experiments applying different stress scenarios, e.g., mechanical, or physical stresses, can determine the overall conformational stability of the protein to enhance drug product shelf-life. Several groups have reported surface-induced unfolding and aggregation of monoclonal antibodies and their derivatives during cation exchange chromatography, which results in a two-peak elution behavior of the protein and its species. We have investigated universal influencing factors, like temperature and hold time, on this phenomenon. The formation of the second peak is a kinetic process, which is strongly influenced by temperature during the hold time. However, our main focus was the application of excipients and their influence on the two-peak elution behavior. We compared the on-column screening results with results obtained through a "traditional" in-solution screening using nanoDSF. Mostly, stabilizing excipients, like Sucrose, show their stabilizing abilities in both systems, but some discrepancies, e.g., using Arginine, between the two orthogonal techniques show the potential of the on-column screening system to lead to unexpected results, which would not necessarily be visible in in-solution experiments.
Collapse
|
21
|
Shmool T, Martin LK, Matthews RP, Hallett JP. Ionic Liquid-Based Strategy for Predicting Protein Aggregation Propensity and Thermodynamic Stability. JACS AU 2022; 2:2068-2080. [PMID: 36186557 PMCID: PMC9516703 DOI: 10.1021/jacsau.2c00356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 05/26/2023]
Abstract
Novel drug candidates are continuously being developed to combat the most life-threatening diseases; however, many promising protein therapeutics are dropped from the pipeline. During biological and industrial processes, protein therapeutics are exposed to various stresses such as fluctuations in temperature, solvent pH, and ionic strength. These can lead to enhanced protein aggregation propensity, one of the greatest challenges in drug development. Recently, ionic liquids (ILs), in particular, biocompatible choline chloride ([Cho]Cl)-based ILs, have been used to hinder stress-induced protein conformational changes. Herein, we develop an IL-based strategy to predict protein aggregation propensity and thermodynamic stability. We examine three key variables influencing protein misfolding: pH, ionic strength, and temperature. Using dynamic light scattering, zeta potential, and variable temperature circular dichroism measurements, we systematically evaluate the structural, thermal, and thermodynamic stability of fresh immunoglobin G4 (IgG4) antibody in water and 10, 30, and 50 wt % [Cho]Cl. Additionally, we conduct molecular dynamics simulations to examine IgG4 aggregation propensity in each system and the relative favorability of different [Cho]Cl-IgG4 packing interactions. We re-evaluate each system following 365 days of storage at 4 °C and demonstrate how to predict the thermodynamic properties and protein aggregation propensity over extended storage, even under stress conditions. We find that increasing [Cho]Cl concentration reduced IgG4 aggregation propensity both fresh and following 365 days of storage and demonstrate the potential of using our predictive IL-based strategy and formulations to radically increase protein stability and storage.
Collapse
Affiliation(s)
- Talia
A. Shmool
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Laura K. Martin
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.
| | - Richard P. Matthews
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Jason P. Hallett
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| |
Collapse
|
22
|
Blanco MA. Computational models for studying physical instabilities in high concentration biotherapeutic formulations. MAbs 2022; 14:2044744. [PMID: 35282775 PMCID: PMC8928847 DOI: 10.1080/19420862.2022.2044744] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Computational prediction of the behavior of concentrated protein solutions is particularly advantageous in early development stages of biotherapeutics when material availability is limited and a large set of formulation conditions needs to be explored. This review provides an overview of the different computational paradigms that have been successfully used in modeling undesirable physical behaviors of protein solutions with a particular emphasis on high-concentration drug formulations. This includes models ranging from all-atom simulations, coarse-grained representations to macro-scale mathematical descriptions used to study physical instability phenomena of protein solutions such as aggregation, elevated viscosity, and phase separation. These models are compared and summarized in the context of the physical processes and their underlying assumptions and limitations. A detailed analysis is also given for identifying protein interaction processes that are explicitly or implicitly considered in the different modeling approaches and particularly their relations to various formulation parameters. Lastly, many of the shortcomings of existing computational models are discussed, providing perspectives and possible directions toward an efficient computational framework for designing effective protein formulations.
Collapse
Affiliation(s)
- Marco A. Blanco
- Materials and Biophysical Characterization, Analytical R & D, Merck & Co., Inc, Kenilworth, NJ USA
| |
Collapse
|
23
|
Catching Speedy Gonzales: Driving forces for protein film formation on silicone rubber tubing during pumping. J Pharm Sci 2022; 111:1577-1586. [DOI: 10.1016/j.xphs.2022.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022]
|
24
|
Shmool TA, Martin LK, Bui-Le L, Moya-Ramirez I, Kotidis P, Matthews RP, Venter GA, Kontoravdi C, Polizzi KM, Hallett JP. An experimental approach probing the conformational transitions and energy landscape of antibodies: a glimmer of hope for reviving lost therapeutic candidates using ionic liquid. Chem Sci 2021; 12:9528-9545. [PMID: 34349928 PMCID: PMC8278930 DOI: 10.1039/d1sc02520a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022] Open
Abstract
Understanding protein folding in different environmental conditions is fundamentally important for predicting protein structures and developing innovative antibody formulations. While the thermodynamics and kinetics of folding and unfolding have been extensively studied by computational methods, experimental methods for determining antibody conformational transition pathways are lacking. Motivated to fill this gap, we prepared a series of unique formulations containing a high concentration of a chimeric immunoglobin G4 (IgG4) antibody with different excipients in the presence and absence of the ionic liquid (IL) choline dihydrogen phosphate. We determined the effects of different excipients and IL on protein thermal and structural stability by performing variable temperature circular dichroism and bio-layer interferometry analyses. To further rationalise the observations of conformational changes with temperature, we carried out molecular dynamics simulations on a single antibody binding fragment from IgG4 in the different formulations, at low and high temperatures. We developed a methodology to study the conformational transitions and associated thermodynamics of biomolecules, and we showed IL-induced conformational transitions. We showed that the increased propensity for conformational change was driven by preferential binding of the dihydrogen phosphate anion to the antibody fragment. Finally, we found that a formulation containing IL with sugar, amino acids and surfactant is a promising candidate for stabilising proteins against conformational destabilisation and aggregation. We hope that ultimately, we can help in the quest to understand the molecular basis of the stability of antibodies and protein misfolding phenomena and offer new candidate formulations with the potential to revive lost therapeutic candidates.
Collapse
Affiliation(s)
- Talia A Shmool
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Laura K Martin
- Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
| | - Liem Bui-Le
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Ignacio Moya-Ramirez
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Pavlos Kotidis
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Richard P Matthews
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Gerhard A Venter
- Scientific Computing Research Unit, Department of Chemistry, University of Cape Town Rondebosch Cape Town 7701 South Africa
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| | - Jason P Hallett
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK +44 (0)20 7594 5388
| |
Collapse
|
25
|
Ye Y, Huo X, Yin Z. Protein-protein interactions at high concentrations: Effects of ArgHCl and NaCl on the stability, viscosity and aggregation mechanisms of protein solution. Int J Pharm 2021; 601:120535. [PMID: 33811966 DOI: 10.1016/j.ijpharm.2021.120535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The aim of this work was to use the diffusion coefficient ration (Dm/Dline) as a parameter to characterize the stability of protein at high concentration, to compare the effects of ArgHCl and NaCl on the interaction of highly concentrated proteins under different pH conditions, and to explore the correlation with protein stability. For this purpose, a high-concentration bovine serum albumin solution (BSA) was selected as the model system, and the diffusion coefficient, aggregation degree, conformational stability, and solution viscosity of the protein were studied by dynamic light scattering (DLS) and spectral detection techniques. The result showed that there was a significant correlation between the Dm/Dline and the protein aggregation. The Dm/Dline of the protein was minimum at pH 7.4, which corresponded to the maximum degree of aggregation and the highest solution viscosity. At pH 7.4, the hydrophobic interactions and the increased conformational stability of ArgHCl maximized the stability of the protein and reduced the viscosity of the solution by 69.3%. At pH 3.0, the strong charge shielding effect of ArgHCl and NaCl and the decreased conformational stability induced protein aggregation and the gel formation. These findings provided valuable insights into the mechanism of protein aggregation and the diffusion coefficient ration (Dm/Dline) could be a potential tool for the pre-formulation studies.
Collapse
Affiliation(s)
- Yalin Ye
- Key Laboratory of Drug Targeting and Novel Drug Delivery System Ministry of Education, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xingli Huo
- Key Laboratory of Drug Targeting and Novel Drug Delivery System Ministry of Education, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zongning Yin
- Key Laboratory of Drug Targeting and Novel Drug Delivery System Ministry of Education, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
26
|
Santra S, Dhurua S, Jana M. Analyzing the driving forces of insulin stability in the basic amino acid solutions: A perspective from hydration dynamics. J Chem Phys 2021; 154:084901. [PMID: 33639734 DOI: 10.1063/5.0038305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amino acids having basic side chains, as additives, are known to increase the stability of native-folded state of proteins, but their relative efficiency and the molecular mechanism are still controversial and obscure as well. In the present work, extensive atomistic molecular dynamics simulations were performed to investigate the hydration properties of aqueous solutions of concentrated arginine, histidine, and lysine and their comparative efficiency on regulating the conformational stability of the insulin monomer. We identified that in the aqueous solutions of the free amino acids, the nonuniform relaxation of amino acid-water hydrogen bonds was due to the entrapment of water molecules within the amino acid clusters formed in solutions. Insulin, when tested with these solutions, was found to show rigid conformations, relative to that in pure water. We observed that while the salt bridges formed by the lysine as an additive contributed more toward the direct interactions with insulin, the cation-π was more prominent for the insulin-arginine interactions. Importantly, it was observed that the preferentially more excluded arginine, compared to histidine and lysine from the insulin surface, enriches the hydration layer of the protein. Our study reveals that the loss of configurational entropy of insulin in arginine solution, as compared to that in pure water, is more as compared to the entropy loss in the other two amino acid solutions, which, moreover, was found to be due to the presence of motionally bound less entropic hydration water of insulin in arginine solution than in histidine or lysine solution.
Collapse
Affiliation(s)
- Santanu Santra
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Shakuntala Dhurua
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
27
|
Cloutier TK, Sudrik C, Mody N, Sathish HA, Trout BL. Machine Learning Models of Antibody–Excipient Preferential Interactions for Use in Computational Formulation Design. Mol Pharm 2020; 17:3589-3599. [DOI: 10.1021/acs.molpharmaceut.0c00629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Theresa K. Cloutier
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chaitanya Sudrik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Neil Mody
- Dosage Form Design and Development, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Hasige A. Sathish
- Dosage Form Design and Development, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Bernhardt L. Trout
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|