1
|
Aranda C, Rodriguez R, Fernández-Baldo MA, Durán P. Mycotoxins in Cheese: Assessing Risks, Fungal Contaminants, and Control Strategies for Food Safety. Foods 2025; 14:351. [PMID: 39941944 PMCID: PMC11816839 DOI: 10.3390/foods14030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/09/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
According to the scientific information reviewed, cheese is highly susceptible to contamination by mycotoxin-producing fungi, primarily species from the genera Aspergillus (A. niger, A. flavus) and Penicillium (P. commune, P. solitum, P. palitans, and P. crustosum). Studies on various types of cheese made from cow's milk report an average concentration of Aflatoxin M1 (AFM1) at 13,000 ng kg-1, which is alarming since the regulatory limits for AFM1 in cheese range from 250 to 500 ng kg-1. For instance, limits set by Codex Alimentarius, the European Commission (EC), Turkey, and Iran are 250 ng kg-1. In the Netherlands, the limit is 200 ng kg-1, and in Italy, it is 450 ng kg-1. However, the concentration of mycotoxins frequently exceeds these regulatory limits, including critical mycotoxins such as ochratoxin A, citrinin, and cyclopiazonic acid, which pose significant global health concerns. Therefore, this study aims to review the mycobiota responsible for producing key mycotoxins in cheese and to assess the influence of physicochemical factors on fungal growth and mycotoxin production. By incorporating control strategies such as hygiene practices, pasteurization, and the use of preservatives, this study seeks to improve methodologies in the cheese production chain and mitigate contamination by fungi and mycotoxins.
Collapse
Affiliation(s)
- Camila Aranda
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Rodrigo Rodriguez
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile;
- AgroDNA SpA, Pedro de Valdivia 0380, Temuco 4811230, Chile
| | - Martín A. Fernández-Baldo
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis, CONICET, Ejército de los Andes 950, San Luis D5700BWS, Argentina;
| | - Paola Durán
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile;
- AgroDNA SpA, Pedro de Valdivia 0380, Temuco 4811230, Chile
- Facultad de Ciencias Agropecuarias y Medio Ambiente, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
2
|
Crequer E, Coton E, Cueff G, Cristiansen JV, Frisvad JC, Rodríguez de la Vega RC, Giraud T, Jany JL, Coton M. Different metabolite profiles across Penicillium roqueforti populations associated with ecological niche specialisation and domestication. IMA Fungus 2024; 15:38. [PMID: 39609866 PMCID: PMC11605963 DOI: 10.1186/s43008-024-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/19/2024] [Indexed: 11/30/2024] Open
Abstract
Fungi are known to produce many chemically diversified metabolites, yet their ecological roles are not always fully understood. The blue cheese fungus Penicillium roqueforti thrives in different ecological niches and is known to produce a wide range of metabolites, including mycotoxins. Three P. roqueforti populations have been domesticated for cheese production and two populations thrive in other anthropized environments, i.e., food, lumber and silage. In this study, we looked for differences in targeted and untargeted metabolite production profiles between populations using HPLC-HR-Q-TOF and UHPLC-Q-TOF-HR-MS/MS. The non-cheese populations produced several fatty acids and different terpenoids, lacking in cheese strains. The Termignon cheese population displayed intermediate metabolite profiles between cheese and non-cheese populations, as previously shown for other traits. The non-Roquefort cheese population with the strongest domestication syndrome, produced the lowest quantities of measured metabolites, including mycophenolic acid (MPA), andrastin A and PR toxin. Its inability to produce MPA was due to a deletion in the mpaC gene, while a premature stop codon in ORF 11 of the PR toxin gene cluster explained PR toxin absence and the accumulation of its intermediates, i.e., eremofortins A and B. In the Roquefort population, we detected no PR toxin nor eremofortins A or B, but found no indel or frameshift mutation, suggesting downregulation. The hypotoxigenic trait of domesticated cheese populations can be hypothesized to be linked to the loss of this ability through trait degeneration and/or the selection of low toxin producers. It may also be due to the fact that populations from other anthropized environments maintained high metabolite diversity as the bioactivities of these compounds are likely important in these ecological niches.
Collapse
Affiliation(s)
- E Crequer
- Laboratoire Universitaire de Biodiversité Et Ecologie Microbienne, Univ. Brest, INRAE, 29280, Plouzane, France
- Laboratoire Ecologie Systématique et Evolution, UMR 8079, AgroParisTech, Université Paris-Saclay, CNRS, Bâtiment 680, 12 Route RD 128, 91190, Gif-Sur-Yvette, France
| | - E Coton
- Laboratoire Universitaire de Biodiversité Et Ecologie Microbienne, Univ. Brest, INRAE, 29280, Plouzane, France
| | - G Cueff
- Laboratoire Universitaire de Biodiversité Et Ecologie Microbienne, Univ. Brest, INRAE, 29280, Plouzane, France
| | - J V Cristiansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - R C Rodríguez de la Vega
- Laboratoire Ecologie Systématique et Evolution, UMR 8079, AgroParisTech, Université Paris-Saclay, CNRS, Bâtiment 680, 12 Route RD 128, 91190, Gif-Sur-Yvette, France
| | - T Giraud
- Laboratoire Ecologie Systématique et Evolution, UMR 8079, AgroParisTech, Université Paris-Saclay, CNRS, Bâtiment 680, 12 Route RD 128, 91190, Gif-Sur-Yvette, France
| | - J-L Jany
- Laboratoire Universitaire de Biodiversité Et Ecologie Microbienne, Univ. Brest, INRAE, 29280, Plouzane, France
| | - M Coton
- Laboratoire Universitaire de Biodiversité Et Ecologie Microbienne, Univ. Brest, INRAE, 29280, Plouzane, France.
| |
Collapse
|
3
|
Tuzi A, Carbone M, Ciavatta ML, Evidente A. Structure Revision of the Fungal Phytotoxin Cavoxin and of Its Corresponding Chroman-4-one Cavoxone by X-ray Crystallography. JOURNAL OF NATURAL PRODUCTS 2024; 87:1888-1892. [PMID: 38967603 DOI: 10.1021/acs.jnatprod.4c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Cavoxin (1) was isolated as the main phytotoxin produced by Phoma cava Schulzer, a toxigenic fungus isolated from Castanea spp. Its structure was determined by 1D NMR and MS in 1985 along with that of the corresponding chroman-4-one cavoxone (2), an artifact formed by acid treatment of 1. Since that time cavoxin was shown to be phytotoxic, antifungal, antifeedant, herbicidal, and antirust with potential application in agriculture and medicine. During a study aimed at improving cavoxin's production by P. cava, single crystals for X-ray diffractometric analysis were obtained. The X-ray crystallography characterization confirmed only in part the structure proposed for cavoxin (1), revealing a different substitution pattern on the aromatic ring, as depicted in the revised structure 3.
Collapse
Affiliation(s)
- Angela Tuzi
- Dipartimento di Scienze Chimiche, Università di Napoli "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Marianna Carbone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Maria Letizia Ciavatta
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Antonio Evidente
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| |
Collapse
|
4
|
Jafarzadeh S, Hadidi M, Forough M, Nafchi AM, Mousavi Khaneghah A. The control of fungi and mycotoxins by food active packaging: a review. Crit Rev Food Sci Nutr 2022; 63:6393-6411. [PMID: 35089844 DOI: 10.1080/10408398.2022.2031099] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Conventionally used petrochemical-based plastics are poorly degradable and cause severe environmental pollution. Alternatively, biopolymers (e.g., polysaccharides, proteins, lipids, and their blends) are biodegradable and environment-friendly, and thus their use in packaging technologies has been on the rise. Spoilage of food by mycotoxigenic fungi poses a severe threat to human and animal health. Hence, because of the adverse effects of synthetic preservatives, active packaging as an effective technique for controlling and decontaminating fungi and related mycotoxins has attracted considerable interest. The current review aims to provide an overview of the prevention of fungi and mycotoxins through active packaging. The impact of different additives on the antifungal and anti-mycotoxigenic functionality of packaging incorporating active films/coatings is also investigated. In addition, active packaging applications to control and decontaminate common fungi and mycotoxins in bakery products, cereal grains, fruits, nuts, and dairy products are also introduced. The results of recent studies have confirmed that biopolymer films and coatings incorporating antimicrobial agents provide great potential for controlling common fungi and mycotoxins and enhancing food quality and safety.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, Çankaya, Ankara, Turkey
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
- Department of Food Science and Technology, Islamic Azad University, Damghan Branch, Damghan, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
5
|
Agregán R, Echegaray N, Nawaz A, Hano C, Gohari G, Pateiro M, Lorenzo JM. Foodomic-Based Approach for the Control and Quality Improvement of Dairy Products. Metabolites 2021; 11:818. [PMID: 34940577 PMCID: PMC8709215 DOI: 10.3390/metabo11120818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
The food quality assurance before selling is a needed requirement intended for protecting consumer interests. In the same way, it is also indispensable to promote continuous improvement of sensory and nutritional properties. In this regard, food research has recently contributed with studies focused on the use of 'foodomics'. This review focuses on the use of this technology, represented by transcriptomics, proteomics, and metabolomics, for the control and quality improvement of dairy products. The complex matrix of these foods requires sophisticated technology able to extract large amounts of information with which to influence their aptitude for consumption. Thus, throughout the article, different applications of the aforementioned technologies are described and discussed in essential matters related to food quality, such as the detection of fraud and/or adulterations, microbiological safety, and the assessment and improvement of transformation industrial processes (e.g., fermentation and ripening). The magnitude of the reported results may open the door to an in-depth transformation of the most conventional analytical processes, with the introduction of new techniques that allow a greater understanding of the biochemical phenomena occurred in this type of food.
Collapse
Affiliation(s)
- Rubén Agregán
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (M.P.)
| | - Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (M.P.)
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China;
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Orleans University, CEDEX 2, 45067 Orléans, France;
| | - Gholamreza Gohari
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh 83111-55181, Iran;
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (M.P.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (M.P.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
6
|
Doğan M, Tekiner İH. Evaluating starter culture potential of wild Penicillium roqueforti strains from moldy cheeses of artisanal origin. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Production of Mycophenolic Acid by a Newly Isolated Indigenous Penicillium glabrum. Curr Microbiol 2021; 78:2420-2428. [PMID: 34019120 PMCID: PMC8138112 DOI: 10.1007/s00284-021-02509-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/25/2021] [Indexed: 11/03/2022]
Abstract
Soil-occupant fungi produce a variety of mycotoxins as secondary metabolites, one of which is mycophenolic acid (MPA), an antibiotic and immunosuppressive agent. MPA is mainly produced by several species of Penicillium, especially Penicillium brevicompactum. Here, we present the first report of MPA production by a local strain belonging to Penicillium glabrum species. We screened ascomycete cultures isolated from moldy food and fruits, as well as soils, collected from different parts of Iran. MPA production of one hundred and forty Penicillium isolates was analyzed using HPLC. Three MPA producer isolates were identified, among which the most producer was subjected to further characterization, based on morphological and microscopic analysis, as well as molecular approach (ITS, rDNA and beta-tubulin gene sequences). The results revealed that the best MPA producer belongs to P. glabrum IBRC-M 30518, and can produce 1079 mg/L MPA in Czapek-Dox medium.
Collapse
|
8
|
Moeini A, Cimmino A, Masi M, Evidente A, Van Reenen A. The incorporation and release of ungeremine, an antifungal Amaryllidaceae alkaloid, in poly(lactic acid)/poly(ethylene glycol) nanofibers. J Appl Polym Sci 2020. [DOI: 10.1002/app.49098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arash Moeini
- Department of Chemical SciencesUniversity of Naples “Federico II” Naples Italy
- Department of Chemistry and Polymer ScienceUniversity of Stellenbosch Stellenbosch South Africa
| | - Alessio Cimmino
- Department of Chemical SciencesUniversity of Naples “Federico II” Naples Italy
| | - Marco Masi
- Department of Chemical SciencesUniversity of Naples “Federico II” Naples Italy
| | - Antonio Evidente
- Department of Chemical SciencesUniversity of Naples “Federico II” Naples Italy
| | - Albert Van Reenen
- Department of Chemistry and Polymer ScienceUniversity of Stellenbosch Stellenbosch South Africa
| |
Collapse
|
9
|
Reinholds I, Rusko J, Pugajeva I, Berzina Z, Jansons M, Kirilina-Gutmane O, Tihomirova K, Bartkevics V. The Occurrence and Dietary Exposure Assessment of Mycotoxins, Biogenic Amines, and Heavy Metals in Mould-Ripened Blue Cheeses. Foods 2020; 9:E93. [PMID: 31963130 PMCID: PMC7023506 DOI: 10.3390/foods9010093] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 11/24/2022] Open
Abstract
The occurrence and dietary exposure assessment of 16 mycotoxins, 6 biogenic amines (BAs), and 13 metallic elements in blue-veined cheeses (n = 46) is reported. Co-occurrence of mycophenolic acid (≤599 µg·kg-1) with roquefortine C (≤5454 µg·kg-1) was observed in 63% of the tested cheeses, while BAs were frequently present at concentrations between 0.2 and 717 mg kg-1. The concentrations of heavy metals in cheeses were very low. Chronic/acute exposure assessment based on consumption data from different European populations indicated that the levels of mycotoxins and heavy metals are safe to consumers, whereas, rather high hazard indexes (HI up to 0.77) were determined for BAs according to the worst-case scenario based on high consumption and 95th percentile occurrence. A more detailed acute dietary intake study indicated that histamine and tyramine were predominant among these BAs, reaching 27 and 41% of the acute oral intake reference doses.
Collapse
Affiliation(s)
- Ingars Reinholds
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076 Riga, Latvia
- Faculty of Chemistry, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia
| | - Janis Rusko
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076 Riga, Latvia
- Faculty of Chemistry, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076 Riga, Latvia
| | - Zane Berzina
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076 Riga, Latvia
- Faculty of Chemistry, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia
| | - Martins Jansons
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076 Riga, Latvia
- Faculty of Chemistry, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia
| | - Olga Kirilina-Gutmane
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076 Riga, Latvia
| | - Kristina Tihomirova
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076 Riga, Latvia
- Water Research Laboratory, Research Centre for Civil Engineering, Faculty of Civil Engineering, Riga Technical University, Kipsalas iela 6a-263, LV-1048 Riga, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076 Riga, Latvia
- Faculty of Chemistry, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia
| |
Collapse
|
10
|
Hammerl R, Frank O, Dietz M, Hirschmann J, Hofmann T. Tyrosine Induced Metabolome Alterations of Penicillium roqueforti and Quantitation of Secondary Key Metabolites in Blue-Mold Cheese. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8500-8509. [PMID: 31298534 DOI: 10.1021/acs.jafc.9b03237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To map qualitative and quantitative metabolome alterations when Penicillium roqueforti is grown in an environment where l-tyrosine levels are perturbed, the recently established differential off-line LC-NMR (DOLC-NMR) approach was successfully applied in connection with an absolute metabolite quantitation using a quantitative 1H NMR protocol following the ERETIC 2 (Electronic REference To access In vivo Concentrations) methodology. Among the 23 influenced metabolites, amino acid degradation products like 2-(4-hydroxyphenyl)acetic acid and 2-(3,4-dihydroxyphenyl)acetic acid underwent a tremendous upregulation in the amino acid perturbed approach. Moreover, the output of secondary metabolites like andrastin A, eremofortin B, and the tetrapeptide d-Phe-l-Val-d-Val-l-Tyr was affected in the case of the presence or absence of the added aromatic amino acid. Furthermore, the isolated secondary metabolites of P. roqueforti have been quantified for the first time in five divergent Penicillium isolates by means of a validated LC-ECHO-MS/MS method. This technique is used to compensate the effect of co-extracted matrix compounds during the analysis and to utilize quasi-internal standards to quantify all metabolites of interest accurately. This screening outlined the great variety between the different fungi of the same species. The metabolite spectra of wild-type fungi included more toxic intermediates compared to a selected fungi used as a starter culture for blue-mold cheese production. In addition, these secondary metabolites were quantified in commercially available white- and blue-mold cheese samples. The main differences between the analyte profiles of white and blue cheeses were linked to the impact of the used starter culture. Specific metabolites detected from P. roqueforti like andrastin A and B or roquefortine C could not be detected in white cheese. Among the blue cheese samples, different metabolite pattern could be observed regarding various P. roqueforti starter cultures.
Collapse
Affiliation(s)
- Richard Hammerl
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner-Strasse 34 , D-85354 Freising-Weihenstephan , Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner-Strasse 34 , D-85354 Freising-Weihenstephan , Germany
| | - Maximilian Dietz
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner-Strasse 34 , D-85354 Freising-Weihenstephan , Germany
| | - Julia Hirschmann
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner-Strasse 34 , D-85354 Freising-Weihenstephan , Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner-Strasse 34 , D-85354 Freising-Weihenstephan , Germany
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich , Lise-Meitner-Strasse 34 , D-85354 Freising-Weihenstephan , Germany
| |
Collapse
|
11
|
Gurkan H, Yilmaztekin M, Cakmakci S, Hayaloglu AA. Volatile compounds and biogenic amines during the ripening of mold‐ripened Civil cheese manufactured using three different strains of
Penicillium roqueforti. J Food Saf 2018. [DOI: 10.1111/jfs.12568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- H. Gurkan
- Department of Food EngineeringInonu University Malatya Turkey
| | - M. Yilmaztekin
- Department of Food EngineeringInonu University Malatya Turkey
| | - S. Cakmakci
- Department of Food EngineeringAtaturk University Erzurum Turkey
| | - A. A. Hayaloglu
- Department of Food EngineeringInonu University Malatya Turkey
| |
Collapse
|
12
|
Masi M, Moeini SA, Boari A, Cimmino A, Vurro M, Evidente A. Development of a rapid and sensitive HPLC method for the identification and quantification of cavoxin and cavoxone in Phoma cava culture filtrates. Nat Prod Res 2017; 32:1611-1615. [PMID: 29058503 DOI: 10.1080/14786419.2017.1392950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cavoxin is a tetrasubstituted phytotoxic chalcone and cavoxone is the corresponding chroman-4-one, both produced in vitro by Phoma cava, a fungus isolated from chestnut. Cavoxin showed biofungicide potential against fungal species responsible for food moulding. Therefore, cavoxin has potential to be incorporated into biopolymer to generate 'intelligent food packaging'. To reach this objective, large-scale production of cavoxin by P. cava fermentation needs to be optimized. A rapid and efficient method for cavoxin analysis, as well as of cavoxone, in the fungal culture filtrates and the corresponding organic extracts is the first experimental step. Thus, a HPLC method was developed and applied to quantify cavoxin and cavoxone production in two different fungal culture conditions. The analysis proved that cavoxin production in stirred culture filtrates is significantly higher than in static ones.
Collapse
Affiliation(s)
- Marco Masi
- a Department of Chemical Sciences , University of Naples "Federico II", Complesso Universitario Monte S. Angelo , Napoli , Italy
| | - Seyed Arash Moeini
- a Department of Chemical Sciences , University of Naples "Federico II", Complesso Universitario Monte S. Angelo , Napoli , Italy
| | - Angela Boari
- b Institute of Sciences of Food Production , National Research Council , Bari , Italy
| | - Alessio Cimmino
- a Department of Chemical Sciences , University of Naples "Federico II", Complesso Universitario Monte S. Angelo , Napoli , Italy
| | - Maurizio Vurro
- b Institute of Sciences of Food Production , National Research Council , Bari , Italy
| | - Antonio Evidente
- a Department of Chemical Sciences , University of Naples "Federico II", Complesso Universitario Monte S. Angelo , Napoli , Italy
| |
Collapse
|
13
|
Valerio F, Masi M, Cimmino A, Moeini SA, Lavermicocca P, Evidente A. Antimould microbial and plant metabolites with potential use in intelligent food packaging. Nat Prod Res 2017; 32:1605-1610. [DOI: 10.1080/14786419.2017.1385018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Francesca Valerio
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Seyed Arash Moeini
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Paola Lavermicocca
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
14
|
Chemico-physical and antifungal properties of poly(butylene succinate)/cavoxin blend: Study of a novel bioactive polymeric based system. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Abstract
The basic raw materials for the production of processed cheese are natural cheese which is treated by heat with the addition of emulsifying salts. From a point of view of the melting temperatures used (and the pH-value of the product), the course of processed cheese production can be considered "pasteurisation of cheese." During the melting process, the majority of vegetative forms of microorganisms, including bacteria of the family Enterobacteriaceae, are inactivated. The melting temperatures are not sufficient to kill the endospores, which survive the process but are often weakened. From a microbiological point of view, the biggest contamination problem of processed cheese is caused by gram-positive spore-forming rod-shaped bacteria of the genera Bacillus, Geobacillus, and Clostridium. Other factors affecting the shelf-life and quality of processed cheese are mainly the microbiological quality of the raw materials used, strict hygienic conditions during the manufacturing process as well as the type of packaging materials and storage conditions. The quality of processed cheese is not only dependent on the ingredients used but also on other parameters such as the value of water activity of the processed cheese, its pH-value, the presence of salts and emulsifying salts and the amount of fat in the product.
Collapse
Affiliation(s)
- Leona Buňková
- a Department of Environmental Protection Engineering , Faculty of Technology, Tomas Bata University in Zlín , Zlín , Czech Republic
| | - František Buňka
- b Department of Food Technology , Faculty of Technology, Tomas Bata University in Zlín , Zlín , Czech Republic
| |
Collapse
|
16
|
Camardo Leggieri M, Decontardi S, Bertuzzi T, Pietri A, Battilani P. Modeling Growth and Toxin Production of Toxigenic Fungi Signaled in Cheese under Different Temperature and Water Activity Regimes. Toxins (Basel) 2016; 9:E4. [PMID: 28029129 PMCID: PMC5308237 DOI: 10.3390/toxins9010004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate in vitro and model the effect of temperature (T) and water activity (aw) conditions on growth and toxin production by some toxigenic fungi signaled in cheese. Aspergillus versicolor, Penicillium camemberti, P. citrinum, P. crustosum, P. nalgiovense, P. nordicum, P. roqueforti, P. verrucosum were considered they were grown under different T (0-40 °C) and aw (0.78-0.99) regimes. The highest relative growth occurred around 25 °C; all the fungi were very susceptible to aw and 0.99 was optimal for almost all species (except for A. versicolor, awopt = 0.96). The highest toxin production occurred between 15 and 25 °C and 0.96-0.99 aw. Therefore, during grana cheese ripening, managed between 15 and 22 °C, ochratoxin A (OTA), penitrem A (PA), roquefortine-C (ROQ-C) and mycophenolic acid (MPA) are apparently at the highest production risk. Bete and logistic function described fungal growth under different T and aw regimes well, respectively. Bete function described also STC, PA, ROQ-C and OTA production as well as function of T. These models would be very useful as starting point to develop a mechanistic model to predict fungal growth and toxin production during cheese ripening and to help advising the most proper setting of environmental factors to minimize the contamination risk.
Collapse
Affiliation(s)
- Marco Camardo Leggieri
- Department of Sustainable Crop Production-Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy.
| | - Simone Decontardi
- Department of Sustainable Crop Production-Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy.
| | - Terenzio Bertuzzi
- Institute of Food & Feed Science and Nutrition-Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy.
| | - Amedeo Pietri
- Institute of Food & Feed Science and Nutrition-Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy.
| | - Paola Battilani
- Department of Sustainable Crop Production-Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy.
| |
Collapse
|
17
|
García-Estrada C, Martín JF. Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses. Appl Microbiol Biotechnol 2016; 100:8303-13. [PMID: 27554495 DOI: 10.1007/s00253-016-7788-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
Abstract
Ripening of blue-veined cheeses, such as the French Bleu and Roquefort, the Italian Gorgonzola, the English Stilton, the Danish Danablu or the Spanish Cabrales, Picón Bejes-Tresviso, and Valdeón, requires the growth and enzymatic activity of the mold Penicillium roqueforti, which is responsible for the characteristic texture, blue-green spots, and aroma of these types of cheeses. This filamentous fungus is able to synthesize different secondary metabolites, including andrastins, mycophenolic acid, and several mycotoxins, such as roquefortines C and D, PR-toxin and eremofortins, isofumigaclavines A and B, and festuclavine. This review provides a detailed description of the main secondary metabolites produced by P. roqueforti in blue cheese, giving a special emphasis to roquefortine, PR-toxin and mycophenolic acid, and their biosynthetic gene clusters and pathways. The knowledge of these clusters and secondary metabolism pathways, together with the ability of P. roqueforti to produce beneficial secondary metabolites, is of interest for commercial purposes.
Collapse
Affiliation(s)
| | - Juan-Francisco Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071, León, Spain
| |
Collapse
|
18
|
Del-Cid A, Gil-Durán C, Vaca I, Rojas-Aedo JF, García-Rico RO, Levicán G, Chávez R. Identification and Functional Analysis of the Mycophenolic Acid Gene Cluster of Penicillium roqueforti. PLoS One 2016; 11:e0147047. [PMID: 26751579 PMCID: PMC4708987 DOI: 10.1371/journal.pone.0147047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/28/2015] [Indexed: 11/18/2022] Open
Abstract
The filamentous fungus Penicillium roqueforti is widely known as the ripening agent of blue-veined cheeses. Additionally, this fungus is able to produce several secondary metabolites, including the meroterpenoid compound mycophenolic acid (MPA). Cheeses ripened with P. roqueforti are usually contaminated with MPA. On the other hand, MPA is a commercially valuable immunosuppressant. However, to date the molecular basis of the production of MPA by P. roqueforti is still unknown. Using a bioinformatic approach, we have identified a genomic region of approximately 24.4 kbp containing a seven-gene cluster that may be involved in the MPA biosynthesis in P. roqueforti. Gene silencing of each of these seven genes (named mpaA, mpaB, mpaC, mpaDE, mpaF, mpaG and mpaH) resulted in dramatic reductions in MPA production, confirming that all of these genes are involved in the biosynthesis of the compound. Interestingly, the mpaF gene, originally described in P. brevicompactum as a MPA self-resistance gene, also exerts the same function in P. roqueforti, suggesting that this gene has a dual function in MPA metabolism. The knowledge of the biosynthetic pathway of MPA in P. roqueforti will be important for the future control of MPA contamination in cheeses and the improvement of MPA production for commercial purposes.
Collapse
Affiliation(s)
- Abdiel Del-Cid
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Carlos Gil-Durán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Juan F. Rojas-Aedo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Ramón O. García-Rico
- GIMBIO Group, Department of Microbiology, Faculty of Basic Sciences, Universidad de Pamplona, Pamplona, Colombia
| | - Gloria Levicán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
19
|
Dietrich R, Märtlbauer E. Development and application of monoclonal antibodies against the mycotoxin mycophenolic acid. Mycotoxin Res 2015; 31:185-90. [PMID: 26382857 DOI: 10.1007/s12550-015-0229-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 11/25/2022]
Abstract
Mycophenolic acid (MPA) is frequently found, often in high concentrations, in a broad range of food and feed matrices. Apart from the well-known contamination of blue-veined cheeses caused by the use of toxinogenic Penicillium roqueforti strains for manufacturing, a broad range of other Penicillium spp. is able to produce this immunosuppressive toxin. Therefore, MPA has been proposed to be a suitable marker for Penicillium-infected food commodities. In the present work, a high-affinity monoclonal antibody (mAb) for the specific detection of MPA was developed by immunizing mice with a MPA-protein conjugate coupled by an activated ester method. Under the conditions of a direct competitive enzyme immunoassay (EIA), 50% inhibition and detection limits of MPA standard curves were 1.2 and 0.3 ng/ml, respectively. Furthermore, the mAb could be successfully employed for the production of an immunoaffinity (IA) column enabling the efficient enrichment of MPA from processed foodstuffs. By combining the IA clean-up with a polyclonal antibody-based EIA, an ultrasensitive analysis method could be established which allowed the reliable and reproducible detection of MPA in artificially contaminated tomato ketchup as a model matrix at concentrations as low as 0.1 ng/g.
Collapse
Affiliation(s)
- Richard Dietrich
- Department of Veterinary Sciences, Ludwig Maximilians-Universität München, Schönleutnerstraße 8, 85764, Oberschleißheim, Germany.
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Ludwig Maximilians-Universität München, Schönleutnerstraße 8, 85764, Oberschleißheim, Germany
| |
Collapse
|