1
|
Szajewska H, Scott KP, de Meij T, Forslund-Startceva SK, Knight R, Koren O, Little P, Johnston BC, Łukasik J, Suez J, Tancredi DJ, Sanders ME. Antibiotic-perturbed microbiota and the role of probiotics. Nat Rev Gastroenterol Hepatol 2025; 22:155-172. [PMID: 39663462 DOI: 10.1038/s41575-024-01023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
The disruptive effect of antibiotics on the composition and function of the human microbiota is well established. However, the hypothesis that probiotics can help restore the antibiotic-disrupted microbiota has been advanced, with little consideration of the strength of evidence supporting it. Some clinical data suggest that probiotics can reduce antibiotic-related side effects, including Clostridioides difficile-associated diarrhoea, but there are no data that causally link these clinical effects to microbiota protection or recovery. Substantial challenges hinder attempts to address this hypothesis, including the absence of consensus on the composition of a 'normal' microbiota, non-standardized and evolving microbiome measurement methods, and substantial inter-individual microbiota variation. In this Review, we explore these complexities. First, we review the known benefits and risks of antibiotics, the effect of antibiotics on the human microbiota, the resilience and adaptability of the microbiota, and how microbiota restoration might be defined and measured. Subsequently, we explore the evidence for the efficacy of probiotics in preventing disruption or aiding microbiota recovery post-antibiotic treatment. Finally, we offer insights into the current state of research and suggest directions for future research.
Collapse
Affiliation(s)
- Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Karen P Scott
- Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Tim de Meij
- Department of Paediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, Academic Medical Centre, Amsterdam, The Netherlands
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, a joint cooperation of Max Delbruck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Department of Computer Science & Engineering, University of California San Diego, San Diego, CA, USA
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA, USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, CA, USA
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Paul Little
- Primary Care Research Centre, University of Southampton, Southampton, UK
| | - Bradley C Johnston
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, USA
| | - Jan Łukasik
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Jotham Suez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel J Tancredi
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Consulting Scientific Advisor, Centennial, CO, USA.
| |
Collapse
|
2
|
Zhong Z, Sun F, Xu S, Lu J, Yang R, Kwok LY, Chen Y. Co-culturing Bifidobacterium animalis ssp. lactis with Lactobacillus helveticus accelerates its growth and fermentation in milk through metabolic interactions. J Dairy Sci 2025; 108:229-241. [PMID: 39265837 DOI: 10.3168/jds.2024-25301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 09/14/2024]
Abstract
This study aimed to investigate the interaction between Lactobacillus helveticus H9 (H9) and Bifidobacterium animalis ssp. lactis Probio-M8 (M8) through metabolomics analysis, focusing on understanding how co-culturing these strains can enhance bacterial growth and metabolism, thereby shortening the fermentation cycle and improving efficiency. The H9 and M8 strains were cultured individually and in combination (1:1 ratio) in milk. The fermented milk metabolomes were analyzed using solid-phase microextraction-gas chromatography-mass spectrometry. In the dual-strain fermentation, the M8 strain exhibited a 2.33-fold increase in viable bacterial count compared with single-strain fermentation. Additionally, the dual-strain fermentation resulted in greater metabolite abundance and diversity. Notably, the dual-strain fermented milk showed significantly elevated levels of metabolites, including 5-methyl-2-hexanone, (E)-3-octen-2-one, acetic acid, alanine, and 3-hydroxy-butanal. Our results demonstrated that co-culturing the M8 and H9 strains accelerated growth and fermentation efficiency. This enhancement effect is likely attributed to the strong proteolytic ability of the H9 strain, which hydrolyzes casein to produce small molecular peptides, alanine, tyrosine, and other growth-promoting factors. The insights gained from this study have significant implications for probiotics and the dairy industry, potentially leading to shorter fermentation cycles, enhanced cost-effectiveness, and improved nutritional and functional properties of future fermented milk products. Additionally, these findings may contribute to advancements in probiotic research and applications.
Collapse
Affiliation(s)
- Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot 010018, China
| | - Fei Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot 010018, China
| | - Sheng Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot 010018, China; College of Food Science and Engineering, Liuzhou Institute of Technology, Liuzhou 545616, China
| | - Jingda Lu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot 010018, China
| | - Rui Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot 010018, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot 010018, China.
| |
Collapse
|
3
|
Yu J, Duan Y, Zhang M, Li Q, Cao M, Song W, Zhao F, Kwok LY, Zhang H, Li R, Sun Z. Effect of combined probiotics and doxycycline therapy on the gut-skin axis in rosacea. mSystems 2024; 9:e0120124. [PMID: 39475254 PMCID: PMC11575305 DOI: 10.1128/msystems.01201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/29/2024] [Indexed: 11/05/2024] Open
Abstract
Rosacea is a chronic inflammatory skin condition marked by facial erythema, telangiectasia, and acne-like eruptions, affecting millions worldwide. While antibiotics remain a common treatment, prolonged use has significant adverse effects and can lead to antibiotic resistance. This study evaluated the impact of combined probiotics and doxycycline treatment on rosacea, emphasizing the gut-skin axis. Sixty rosacea patients were randomly assigned to the probiotic, placebo, or control groups. After a 2-week doxycycline treatment, participants underwent a 3-month intervention with either a placebo, probiotic, or no further treatment. Clinical outcomes were assessed at baseline and after the 14-week intervention. Our results showed that probiotic administration improved facial skin conditions, alleviated inflammation, and reduced facial skin microbiota diversity while enhancing gut microbiota heterogeneity. Multivariate analysis identified microbial markers distinguishing the probiotic group from the control and placebo groups, and some markers were associated with skin health parameters. After the probiotic intervention, some facial skin-associated taxa, such as Aquabacterium sp., UBA4096 sp. 1, UBA4096 sp. 2, and Yimella indica, decreased in abundance. Additionally, the fecal microbiota of the probiotic group was enriched in specific gut microbes, including Streptococcus parasanguinis, Erysipelatoclostridium ramosum, and Coprobacillus cateniformis, while showing a reduced abundance of Bacteroides vulgatus. These changes were associated with reduced facial sebum levels and a lower physician's global assessment score. Finally, fewer antibiotic resistance genes, particularly tetracycline resistance genes, were detected in the probiotic group compared with the control and placebo groups. Our study supports the existence of a gut-skin axis and the application of probiotics in managing rosacea. IMPORTANCE This research elucidates rosacea management with novel insights into probiotic use alongside doxycycline, showing dual benefits in symptom relief and inflammation reduction in patients. The study maps probiotic-induced shifts in gut and skin microbiota, underscoring microbial shifts correlating with skin health improvements. Crucially, it deciphers the gut-skin axis modulation by probiotics, proposing a method to curb antibiotic resistance in rosacea therapies. This study furnishes robust evidence for probiotics in rosacea, advancing our grasp of the gut-skin relationship.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Duan
- Department of Dermatology, Inner Mongolia People’s Hospital, Hohhot, China
| | - Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Miao Cao
- Department of Dermatology, Inner Mongolia People’s Hospital, Hohhot, China
| | - Weixin Song
- Department of Dermatology, Inner Mongolia People’s Hospital, Hohhot, China
| | - Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruiya Li
- Department of Dermatology, Inner Mongolia People’s Hospital, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
4
|
Chandrasekaran P, Weiskirchen S, Weiskirchen R. Effects of Probiotics on Gut Microbiota: An Overview. Int J Mol Sci 2024; 25:6022. [PMID: 38892208 PMCID: PMC11172883 DOI: 10.3390/ijms25116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The role of probiotics in regulating intestinal flora to enhance host immunity has recently received widespread attention. Altering the human gut microbiota may increase the predisposition to several disease phenotypes such as gut inflammation and metabolic disorders. The intestinal microbiota converts dietary nutrients into metabolites that serve as biologically active molecules in modulating regulatory functions in the host. Probiotics, which are active microorganisms, play a versatile role in restoring the composition of the gut microbiota, helping to improve host immunity and prevent intestinal disease phenotypes. This comprehensive review provides firsthand information on the gut microbiota and their influence on human health, the dietary effects of diet on the gut microbiota, and how probiotics alter the composition and function of the human gut microbiota, along with their corresponding effects on host immunity in building a healthy intestine. We also discuss the implications of probiotics in some of the most important human diseases. In summary, probiotics play a significant role in regulating the gut microbiota, boosting overall immunity, increasing the abundance of beneficial bacteria, and helping ameliorate the symptoms of multiple diseases.
Collapse
Affiliation(s)
- Preethi Chandrasekaran
- UT Southwestern Medical Center Dallas, 5323 Harry Hines Blvd. ND10.504, Dallas, TX 75390-9014, USA
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
5
|
Feng C, Peng C, Zhang W, Zhang T, He Q, Kwok LY, Zhang H. Postbiotic Administration Ameliorates Colitis and Inflammation in Rats Possibly through Gut Microbiota Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38596883 DOI: 10.1021/acs.jafc.3c03901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Postbiotics are preparations of inanimate microorganisms and/or their components that are beneficial to host health. Compared with probiotics, the postbiotic dose required for exerting obvious protective effects is unknown. Thus, we conducted a dose-dependent postbiotic intervention study in dextran sulfate sodium (DSS)-induced colitis rats. The trial included five rat groups, including: control without DSS/postbiotic treatment, group C; 7-day DSS treatment, group D; 14-day low, medium, and high probiotic doses (0.1, 0.2, 0.4 g/kg; groups L, M, H, respectively) after DSS induction. We found that postbiotic intervention effectively mitigated the symptoms and inflammation in colitis rats, evidenced by the improved spleen index, less severe colon tissue damage, and changes in serum cytokine levels (decreases in tumor necrosis factor-α and interleukin-1β; increase in interleukin-10) in postbiotic groups compared with group D. Moreover, the therapeutic effect was dose-dependent. Fecal metabolomics analysis revealed that the postbiotic recipients had more anti-inflammatory metabolites, namely, salicyloyl phytophingosine, podophylloxin, securinine, baicalein, and diosmetin. Fecal metagenomics analysis revealed that the postbiotic recipients had more beneficial microbes and less pro-inflammatory bacteria. This study confirmed that postbiotics are effective in alleviating colitis in a dose-dependent manner. Our findings are of interest to food scientists, clinicians, and the health food industry.
Collapse
Affiliation(s)
- Cuijiao Feng
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chuantao Peng
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao, 266109, China
| | - Weiqin Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tao Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qiuwen He
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Heping Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
6
|
Zhang Y, Wang X, Li W, Yang Y, Wu Z, Lyu Y, Yue C. Intestinal microbiota: a new perspective on delaying aging? Front Microbiol 2023; 14:1268142. [PMID: 38098677 PMCID: PMC10720643 DOI: 10.3389/fmicb.2023.1268142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
The global aging situation is severe, and the medical pressures associated with aging issues should not be underestimated. The need and feasibility of studying aging and intervening in aging have been confirmed. Aging is a complex natural physiological progression, which involves the irreversible deterioration of body cells, tissues, and organs with age, leading to enhanced risk of disease and ultimately death. The intestinal microbiota has a significant role in sustaining host dynamic balance, and the study of bidirectional communication networks such as the brain-gut axis provides important directions for human disease research. Moreover, the intestinal microbiota is intimately linked to aging. This review describes the intestinal microbiota changes in human aging and analyzes the causal controversy between gut microbiota changes and aging, which are believed to be mutually causal, mutually reinforcing, and inextricably linked. Finally, from an anti-aging perspective, this study summarizes how to achieve delayed aging by targeting the intestinal microbiota. Accordingly, the study aims to provide guidance for further research on the intestinal microbiota and aging.
Collapse
Affiliation(s)
- Yuemeng Zhang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Xiaomei Wang
- Yan’an University of Physical Education, Yan’an University, Yan’an, Shaanxi, China
| | - Wujuan Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yi Yang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Zhuoxuan Wu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yuhong Lyu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
7
|
Ma T, Huang W, Li Y, Jin H, Kwok LY, Sun Z, Zhang H. Probiotics alleviate constipation and inflammation in late gestating and lactating sows. NPJ Biofilms Microbiomes 2023; 9:70. [PMID: 37741814 PMCID: PMC10517943 DOI: 10.1038/s41522-023-00434-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
Constipation and systemic inflammation are common in late pregnant and lactating sows, which cause health problems like uteritis, mastitis, dystocia, or even stillbirth, further influencing piglets' survival and growth. Probiotic supplementation can improve such issues, but the beneficial mechanism of relieving constipation and enhancing gut motility remains underexplored. This study aimed to investigate the effects and mechanism of probiotic supplementation in drinking water to late pregnant sows on constipation, inflammation, and piglets' growth performance. Seventy-four sows were randomly allocated to probiotic (n = 36) and control (n = 38) groups. Probiotic treatment significantly relieved sow constipation, enhanced serum IL-4 and IL-10 levels while reducing serum IL-1β, IL-12p40, and TNF-α levels, and increased piglet daily gain and weaning weight. Furthermore, probiotic administration reshaped the sow gut bacteriome and phageome structure/diversity, accompanied by increases in some potentially beneficial bacteria. At 113 days of gestation, the probiotic group was enriched in several gut microbial bioactive metabolites, multiple carbohydrate-active enzymes that degrade pectin and starch, fecal butyrate and acetate, and some serum metabolites involved in vitamin and amino acid metabolism. Our integrated correlation network analysis revealed that the alleviation of constipation and inflammation was associated with changes in the sow gut bacteriome, phageome, bioactive metabolic potential, and metabolism.
Collapse
Affiliation(s)
- Teng Ma
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Weiqiang Huang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yalin Li
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hao Jin
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lai-Yu Kwok
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Heping Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
8
|
Klos B, Steinbach C, Ketel J, Lambert C, Penders J, Doré J, Enck P, Mack I. Effects of isolation and confinement on gastrointestinal microbiota-a systematic review. Front Nutr 2023; 10:1214016. [PMID: 37492598 PMCID: PMC10364611 DOI: 10.3389/fnut.2023.1214016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Purpose The gastrointestinal (GI) microbiota is a complex and dynamic ecosystem whose composition and function are influenced by many internal and external factors. Overall, the individual GI microbiota composition appears to be rather stable but can be influenced by extreme shifts in environmental exposures. To date, there is no systematic literature review that examines the effects of extreme environmental conditions, such as strict isolation and confinement, on the GI microbiota. Methods We conducted a systematic review to examine the effects of isolated and confined environments on the human GI microbiota. The literature search was conducted according to PRISMA criteria using PubMed, Web of Science and Cochrane Library. Relevant studies were identified based on exposure to isolated and confined environments, generally being also antigen-limited, for a minimum of 28 days and classified according to the microbiota analysis method (cultivation- or molecular based approaches) and the isolation habitat (space, space- or microgravity simulation such as MARS-500 or natural isolation such as Antarctica). Microbial shifts in abundance, alpha diversity and community structure in response to isolation were assessed. Results Regardless of the study habitat, inconsistent shifts in abundance of 40 different genera, mainly in the phylum Bacillota (formerly Firmicutes) were reported. Overall, the heterogeneity of studies was high. Reducing heterogeneity was neither possible by differentiating the microbiota analysis methods nor by subgrouping according to the isolation habitat. Alpha diversity evolved non-specifically, whereas the microbial community structure remained dissimilar despite partial convergence. The GI ecosystem returned to baseline levels following exposure, showing resilience irrespective of the experiment length. Conclusion An isolated and confined environment has a considerable impact on the GI microbiota composition in terms of diversity and relative abundances of dominant taxa. However, due to a limited number of studies with rather small sample sizes, it is important to approach an in-depth conclusion with caution, and results should be considered as a preliminary trend. The risk of dysbiosis and associated diseases should be considered when planning future projects in extreme environments. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022357589.
Collapse
Affiliation(s)
- Bea Klos
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Christina Steinbach
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Jasmin Ketel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Claude Lambert
- CIRI–Immunology Lab University Hospital, Saint-Étienne, France
- LCOMS/ENOSIS Université de Lorraine, Metz, France
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center, CAPHRI Care and Public Health Research Institute, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center, School of Nutrition and Translational Research in Metabolism, Maastricht, Netherlands
| | - Joël Doré
- UMR Micalis Institut, INRA, Paris-Saclay University, Jouy-En-Josas, France
| | - Paul Enck
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Lopez-Santamarina A, Mondragon ADC, Cardelle-Cobas A, Santos EM, Porto-Arias JJ, Cepeda A, Miranda JM. Effects of Unconventional Work and Shift Work on the Human Gut Microbiota and the Potential of Probiotics to Restore Dysbiosis. Nutrients 2023; 15:3070. [PMID: 37447396 DOI: 10.3390/nu15133070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
The work environment is a factor that can significantly influence the composition and functionality of the gut microbiota of workers, in many cases leading to gut dysbiosis that will result in serious health problems. The aim of this paper was to provide a compilation of the different studies that have examined the influence of jobs with unconventional work schedules and environments on the gut microbiota of workers performing such work. As a possible solution, probiotic supplements, via modulation of the gut microbiota, can moderate the effects of sleep disturbance on the immune system, as well as restore the dysbiosis produced. Rotating shift work has been found to be associated with an increase in the risk of various metabolic diseases, such as obesity, metabolic syndrome, and type 2 diabetes. Sleep disturbance or lack of sleep due to night work is also associated with metabolic diseases. In addition, sleep disturbance induces a stress response, both physiologically and psychologically, and disrupts the healthy functioning of the gut microbiota, thus triggering an inflammatory state. Other workers, including military, healthcare, or metallurgy workers, as well as livestock farmers or long-travel seamen, work in environments and schedules that can significantly affect their gut microbiota.
Collapse
Affiliation(s)
- Aroa Lopez-Santamarina
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alicia Del Carmen Mondragon
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alejandra Cardelle-Cobas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Eva Maria Santos
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km. 4.5, Pachuca 42076, Hidalgo, Mexico
| | - Jose Julio Porto-Arias
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alberto Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Jose Manuel Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
10
|
Yang J, Sun Y, Lei X, Zhao L, Luo R, Liu W. Evaluation of novel isolates of Lacticaseibacillus rhamnosus Probio-M9 derived through space mutagenesis. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Zhang M, Zheng Y, Sun Z, Cao C, Zhao W, Liu Y, Zhang W, Zhang H. Change in the Gut Microbiome and Immunity by Lacticaseibacillus rhamnosus Probio-M9. Microbiol Spectr 2023; 11:e0360922. [PMID: 36912650 PMCID: PMC10100958 DOI: 10.1128/spectrum.03609-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
With the exploding growth of the global market for probiotics and the rapid awakening of public awareness to manage health by probiotic intervention, there is still an active debate about whether the consumption of probiotics is beneficial for nonpatients, which is due to the lack of systematic analysis based on time series multiomics data sets. In this study, we recruited 100 adults from a college in China and performed a random case-control study by using a probiotic (Lacticaseibacillus rhamnosus Probio-M9) as an intervention for 6 weeks, aiming to achieve a comprehensive evaluation and understanding of the beneficial effect of Probio-M9 consumption. By testing advanced blood immunity indicators, sequencing the gut microbiome, and profiling the gut metabolome at baseline and the end of the study, we found that although the probiotic intervention has a limited impact on the human immunity and the gut microbiome and metabolome, the associations between the immunity indicators and multiomics data were strengthened, and further analysis of the gut microbiome's genetic variations revealed inhibited generation of single nucleotide variants (SNVs) by probiotic consumption. Taken together, our findings indicated an underestimated influence of the probiotic, not on altering the microbial composition but on strengthening the association between human immunity and commensal microbes and stabilizing the genetic variations of the gut microbiome. IMPORTANCE Although the global market for probiotics is growing explosively, there is still an active debate about whether the consumption of probiotics is beneficial for nonpatients. In this study, we recruited 100 adults from a college in China and performed 6 weeks of intervention for half of the volunteers. By analyzing the time series multiomics data in this study, we found that the probiotic intervention (i) has a limited effect on human immunity or the global structure of the gut microbiome and metabolome, (ii) can largely influence the correlation of the development between multiomics data and immunity, which was not able to be discovered by conventional differential abundance analysis, and (iii) can inhibit the generation of SNVs in the gut microbiome instead of promoting it.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Yan Zheng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Zheng Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Chenxia Cao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Wei Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Yangshuo Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| |
Collapse
|
12
|
Tang H, Huang W, Yao YF. The metabolites of lactic acid bacteria: classification, biosynthesis and modulation of gut microbiota. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:49-62. [PMID: 36908281 PMCID: PMC9993431 DOI: 10.15698/mic2023.03.792] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 03/14/2023]
Abstract
Lactic acid bacteria (LAB) are ubiquitous microorganisms that can colonize the intestine and participate in the physiological metabolism of the host. LAB can produce a variety of metabolites, including organic acids, bacteriocin, amino acids, exopolysaccharides and vitamins. These metabolites are the basis of LAB function and have a profound impact on host health. The intestine is colonized by a large number of gut microorganisms with high species diversity. Metabolites of LAB can keep the balance and stability of gut microbiota through aiding in the maintenance of the intestinal epithelial barrier, resisting to pathogens and regulating immune responses, which further influence the nutrition, metabolism and behavior of the host. In this review, we summarize the metabolites of LAB and their influence on the intestine. We also discuss the underlying regulatory mechanisms and emphasize the link between LAB and the human gut from the perspective of health promotion.
Collapse
Affiliation(s)
- Huang Tang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wanqiu Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Feng Yao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Infectious Diseases, Shanghai Ruijin Hospital, Shanghai 200025, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases (20dz2261100), Shanghai 200025, China
| |
Collapse
|
13
|
Tian P, Zou R, Wang L, Chen Y, Qian X, Zhao J, Zhang H, Qian L, Wang Q, Wang G, Chen W. Multi-Probiotics ameliorate Major depressive disorder and accompanying gastrointestinal syndromes via serotonergic system regulation. J Adv Res 2023; 45:117-125. [PMID: 35618633 PMCID: PMC10006521 DOI: 10.1016/j.jare.2022.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) is a leading global psychiatric disease. MDD is highly comorbid with gastrointestinal abnormalities, such as gut motility dysfunction. An effective strategy to manage depression and its accompanying gastrointestinal symptoms is warranted. OBJECTIVES Three probiotic strains (Bifidobacterium breve CCFM1025, Bifidobacterium longum CCFM687, and Pediococcus acidilactici CCFM6432) had previously been validated in mice to possess antidepressant-like potential. This study investigated the potential psychotropic effects of a combined three-strain probiotic intervention for human MDD patients. The mechanism of action was further investigated in the stress-induced depression mice model. METHODS MDD patients were given a freeze-dried, mixed probiotic formula for four weeks. The patients' psychometric and gastrointestinal conditions were evaluated using clinical rating scales before and after treatment. Their gut microbiome was also analysed using 16S rRNA gene amplicon sequencing. The mechanisms underlying the beneficial probiotic effects were determined using a chronic stress-induced depressive mouse model. RESULTS Multi-probiotics significantly reduced depression scores, and to a greater extent than the placebo (based on the Hamilton Depression Rating, Montgomery-Asberg Depression Rating, and Brief Psychiatric Rating Scales). Multi-probiotics also significantly improved the patients' gastrointestinal functions (based on self-evaluation using the Gastrointestinal Symptom Rating Scale). Serotonergic system modification was demonstrated as the key mechanism behind the probiotics' benefits for the brain and the gut. CONCLUSION Our findings suggest a novel and promising treatment to manage MDD and accompanying gut motility problems, and provide options for treating other gut-brain axis-related disorders.
Collapse
Affiliation(s)
- Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Renying Zou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luyao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Long Qian
- The Tinghu People's Hospital, Yancheng 224002, China
| | - Qun Wang
- The Tinghu People's Hospital, Yancheng 224002, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
14
|
Adjunctive Probio-X Treatment Enhances the Therapeutic Effect of a Conventional Drug in Managing Type 2 Diabetes Mellitus by Promoting Short-Chain Fatty Acid-Producing Bacteria and Bile Acid Pathways. mSystems 2023; 8:e0130022. [PMID: 36688679 PMCID: PMC9948714 DOI: 10.1128/msystems.01300-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Metformin is a common drug for the management of type 2 diabetes mellitus; however, it causes various adverse gastrointestinal effects, especially after prolonged treatment. It is thus of interest to identify an adjuvant treatment that synergizes with the efficacy of metformin while mitigating its adverse effects. Since previous evidence supports that the gut microbiota is a target of metformin, this study investigated the beneficial effect and mechanism of the coadministration of probiotics with metformin in the management of type 2 diabetes mellitus by conducting a 3-month randomized, double-blind, placebo-controlled clinical trial (n = 27 and 21 in the probiotic and placebo groups, respectively, who completed the trial). Clinical results showed that the coadministration of probiotics with metformin significantly reduced glycated hemoglobin compared with metformin taken alone (P < 0.05). Metagenomic and metabolomic analyses showed that the coadministration of probiotics increased the abundance of gut short-chain fatty acid (SCFA)-producing bacteria and bile acids. Significantly or marginally more bile acids and related metabolites were detected in the probiotic group than in the placebo group postintervention. Taken together, the results of our study showed that the coadministration of probiotics with metformin synergized with the hypoglycemic effect in patients with type 2 diabetes mellitus, which was likely through modulating the gut microbiome and, subsequently, SCFA and bile acid metabolism. Our findings support that cotreatment with probiotics and metformin is beneficial to patients with type 2 diabetes mellitus. IMPORTANCE Metformin causes variable adverse gastrointestinal effects, especially after prolonged treatment. We found that cotreatment with Probio-X and metformin for the management of type 2 diabetes mellitus may promote gut SCFA-producing bacteria and the levels of specific bile acids, thus increasing the secretion of related gastrointestinal hormones and ultimately improving glucose homeostasis.
Collapse
|
15
|
Jun J, Kasumova A, Tussing T, Mackos A, Justice S, McDaniel J. Probiotic supplements and stress-related occupational health outcomes: A scoping review. J Occup Health 2023; 65:e12404. [PMID: 37218068 PMCID: PMC10203357 DOI: 10.1002/1348-9585.12404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/30/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Prolonged and constant stress from work often leads to numerous adverse health effects. In recent years, interest in probiotics, living microorganisms that can benefit their host when consumed in adequate amounts, to aid health and well-being has increased. This scoping review is to systematically evaluate the current state of science on the effects of probiotic supplements on health, stress, and stress-related symptoms among working adults in occupational settings. METHODS We performed a systematic scoping review following the Arksey and O'Malley Framework. Studies that examined the effects of probiotics on workers' health and stress-related indicators/outcomes in occupational settings were included. A comprehensive search was performed from November 2021 to January 2022 using MEDLINE/PubMed, Cochrane Library, CINAHL, PsychInfo, Scopus, and Embase. RESULTS A total of 14 papers met the inclusion and exclusion criteria. Probiotics consisted primarily of Lactobacillus and/or Bifidobacterium strains in various forms and doses. Three out of eight studies reported statistical differences in inflammatory markers or stress hormone levels between probiotic and placebo groups. Three of six reported reduced respiratory tract infection incidents in the probiotic groups and three out of four studies reported no differences in anxiety and depression between groups. Lastly, three studies found that absenteeism and presentism were lower in probiotic groups compared with placebo groups. CONCLUSION The potential benefits of probiotics exist; however, the measurements of outcomes, the types of probiotics used, and the characteristics of the intervention varied across studies. Further research is needed focusing on probiotics' direct and indirect mechanisms of action on the stress response and the standardization of strains and dosing.
Collapse
Affiliation(s)
- Jin Jun
- The Ohio State University College of NursingColumbusOhioUSA
| | | | - Todd Tussing
- The Ohio State University College of NursingColumbusOhioUSA
| | - Amy Mackos
- The Ohio State University College of NursingColumbusOhioUSA
| | - Sheryl Justice
- The Ohio State University College of NursingColumbusOhioUSA
| | - Jodi McDaniel
- The Ohio State University College of NursingColumbusOhioUSA
| |
Collapse
|
16
|
Spraying compound probiotics improves growth performance and immunity and modulates gut microbiota and blood metabolites of suckling piglets. SCIENCE CHINA LIFE SCIENCES 2022; 66:1092-1107. [PMID: 36543996 DOI: 10.1007/s11427-022-2229-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
One factor that shapes the establishment of early neonatal intestinal microbiota is environmental microbial exposure, and probiotic application has been shown to promote health and growth of piglets. Thus, this study hypothesized that environmental probiotic application in early days of life would be beneficial to newborn piglets. This study aimed to investigate the effect of spraying a compound probiotic fermented liquid (CPFL) into the living environment of piglets on their early growth performance and immunity. This work included 68 piglets, which were randomized into probiotic and control groups. Blood and fecal samples were collected at 0, 3, 7, 14, and 21 days of age. Spraying CPFL significantly reshaped the microbiota composition of the delivery room environment, increased piglets' daily weight gain and weaning weight (P<0.001), and modulated piglets' serum cytokine levels (increases in IgA, IgG, and IL-10; decrease in IFN-γ; P<0.05 in each case) in piglets. Additionally, spraying CPFL during early days of life modified piglets' gut microbiota structure and diversity, increased the abundance of some potentially beneficial bacteria (such as Bacteroides uniformis, Butyricimonas virosa, Parabacteroides distasonis, and Phascolarctobacterium succinatutens) and decreased the abundance of Escherichia coli (P<0.05). Interestingly, CPFL application also significantly enhanced the gut microbial bioactive potential and levels of several serum metabolites involved in the metabolism of vitamins (B2, B3, B6, and E), medium/long-chain fatty acids (caproic, tetradecanoic, and peptadecanoic acids), and dicarboxylic acids (azelaic and sebacic acids). Our study demonstrated that spraying CPFL significantly could improve piglets' growth performance and immunity, and the beneficial effects are associated with changes in the gut microbiota and host metabolism. Our study has provided novel data for future development of probiotic-based health-promoting strategies and expanded our knowledge of probiotic application in animal husbandry.
Collapse
|
17
|
Zhang J, Zhao Y, Sun Z, Sun T. Lacticaseibacillus rhamnosus Probio-M9 extends the lifespan of Caenorhabditis elegans. Commun Biol 2022; 5:1139. [PMID: 36302976 PMCID: PMC9613993 DOI: 10.1038/s42003-022-04031-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
Probiotics have been characterized as useful for maintaining the balance of host gut flora and conferring health effects, but few studies have focused on their potential for delaying aging in the host. Here we show that Lacticaseibacillus rhamnosus Probio-M9 (Probio-M9), a healthy breast milk probiotic, enhances the locomotor ability and slows the decline in muscle function of the model organism Caenorhabditis elegans. Live Probio-M9 significantly extends the lifespan of C. elegans in a dietary restriction-independent manner. By screening various aging-related mutants of C. elegans, we find that Probio-M9 extends lifespan via p38 cascade and daf-2 signaling pathways, independent on daf-16 but dependent on skn-1. Probio-M9 protects and repairs damaged mitochondria by activating mitochondrial unfolded protein response. The significant increase of amino acids, sphingolipid, galactose and fatty acids in bacterial metabolites might be involved in extending the lifespan of C. elegans. We reveal that Probio-M9 as a dietary supplementation had the potential to delay aging in C. elegans and also provide new methods and insights for further analyzing probiotics in improving host health and delaying the occurrence of age-related chronic diseases.
Collapse
Affiliation(s)
- Juntao Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yanmei Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Tiansong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
18
|
Jiang CH, Fang X, Huang W, Guo JY, Chen JY, Wu HY, Li ZS, Zou WB, Liao Z. Alterations in the Gut Microbiota and Metabolomics of Seafarers after a Six-Month Sea Voyage. Microbiol Spectr 2022; 10:e0189922. [PMID: 36197290 PMCID: PMC9603232 DOI: 10.1128/spectrum.01899-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022] Open
Abstract
Maintaining the health of seafarers is a difficult task during long-term voyages. Little is known about the corresponding changes in the gut microbiome-host interaction. This study recruited 30 seafarers undertaking a 6-month voyage and analyzed their gut microbiota using 16S rRNA gene sequencing. Fecal untargeted metabolomics analysis was performed using liquid chromatography-mass spectrometry. Significant changes in the composition of the gut microbiota and an increased ratio of Firmicutes/Bacteroidetes at the end (day 180) of the 6-month voyage, relative to the start (day 0), were observed. At the genus level, the abundances of Holdemanella and Plesiomonas were significantly increased, while the abundance of Bacteroides was decreased. Predicted microbial functional analysis revealed significant decreases in folate biosynthesis and biotin metabolism. Furthermore, 20 differential metabolites within six differentially enriched human metabolic pathways (including arginine biosynthesis, lysine degradation, phenylalanine metabolism, sphingolipid metabolism, pentose and glucuronate interconversions, and glycine, serine, and threonine metabolism) were identified by comparing the fecal metabolites at day 0 and day 180. Spearman correlation analysis revealed close relationships between the 14 differential microbiota members and the six differential fecal metabolites that might affect specific human metabolic pathways. This study adopted a multi-omics approach and provides potential targets for maintaining the health of seafarers during long-term voyages. These findings are worthy of more in-depth exploration in future studies. IMPORTANCE Maintaining the health of seafarers undertaking long-term voyages is a difficult task. Apart from the alterations in the gut microbiome and fecal metabolites after a long-term voyage, our study also revealed that 20 differential metabolites within six differentially enriched human metabolic pathways are worthy of attention. Moreover, we found close relationships between the 14 differential microbiota members and the six differential fecal metabolites that might impact specific human metabolic pathways. Accordingly, preventative measures, such as adjusting the gut microbiota by decreasing potential pathobionts or increasing potential probiotics as well as offsetting the decrease in B vitamins and beneficial metabolites (e.g., d-glucuronic acid and citrulline) via dietary adjustment or nutritional supplements, might improve the health of seafarers during long-term sea voyages. These findings provide valuable clues about gut microbiome-host interactions and propose potential targets for maintaining the health of seafarers engaged in long-term sea voyages.
Collapse
Affiliation(s)
- Chun-Hui Jiang
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Xue Fang
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, Shanghai, China
| | - Wen Huang
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, Shanghai, China
| | - Ji-Yao Guo
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, Shanghai, China
| | - Jia-Yun Chen
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, Shanghai, China
| | - Hong-Yu Wu
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Wen-Bin Zou
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Zhuan Liao
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| |
Collapse
|
19
|
Góralczyk-Bińkowska A, Szmajda-Krygier D, Kozłowska E. The Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int J Mol Sci 2022; 23:11245. [PMID: 36232548 PMCID: PMC9570195 DOI: 10.3390/ijms231911245] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Modulating the gut microbiome and its influence on human health is the subject of intense research. The gut microbiota could be associated not only with gastroenterological diseases but also with psychiatric disorders. The importance of factors such as stress, mode of delivery, the role of probiotics, circadian clock system, diet, and occupational and environmental exposure in the relationship between the gut microbiota and brain function through bidirectional communication, described as "the microbiome-gut-brain axis", is especially underlined. In this review, we discuss the link between the intestinal microbiome and the brain and host response involving different pathways between the intestinal microbiota and the nervous system (e.g., neurotransmitters, endocrine system, immunological mechanisms, or bacterial metabolites). We review the microbiota alterations and their results in the development of psychiatric disorders, including major depressive disorder (MDD), schizophrenia (SCZ), bipolar disorder (BD), autism spectrum disorder (ASD), and attention-deficit hyperactivity disorder (ADHD).
Collapse
Affiliation(s)
- Aleksandra Góralczyk-Bińkowska
- Department of Microbiology and Experimental Immunology, MOLecoLAB: Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, 92-215 Lodz, Poland
| | - Dagmara Szmajda-Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Microbiology and Experimental Immunology, MOLecoLAB: Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, 92-215 Lodz, Poland
| |
Collapse
|
20
|
He J, Li W, Deng J, Lin Q, Bai J, Zhang L, Fang Y. An insight into the health beneficial of probiotics dairy products: a critical review. Crit Rev Food Sci Nutr 2022; 63:11290-11309. [PMID: 35730254 DOI: 10.1080/10408398.2022.2090493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Probiotic dairy products satisfy people's pursuit of health, and are widely favored because of their easy absorption, high nutritional value, and various health benefits. However, its effectiveness and safety are still controversial. This proposal aims to analyze the effect of probiotics on the quality characteristics of dairy products, clarify a series of physiological functions of probiotic dairy products and critically evaluate the effectiveness and safety of probiotic dairy products. Also, dairy products containing inactivated microorganisms were compared with probiotic products. The addition of probiotics enables dairy products to obtain unique quality characteristics, and probiotic dairy products have better health-promoting effects. This review will promote the further development of probiotic dairy products, provide directions for the research and development of probiotic-related products, and help guide the general public to choose and purchase probiotic fermentation products.
Collapse
Affiliation(s)
- JinTao He
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| | - QinLu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| | - Jie Bai
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lin Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Crits-Christoph A, Hallowell HA, Koutouvalis K, Suez J. Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. Gut Microbes 2022; 14:2055944. [PMID: 35332832 PMCID: PMC8959533 DOI: 10.1080/19490976.2022.2055944] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A global rise in antimicrobial resistance among pathogenic bacteria has proved to be a major public health threat, with the rate of multidrug-resistant bacterial infections increasing over time. The gut microbiome has been studied as a reservoir of antibiotic resistance genes (ARGs) that can be transferred to bacterial pathogens via horizontal gene transfer (HGT) of conjugative plasmids and mobile genetic elements (the gut resistome). Advances in metagenomic sequencing have facilitated the identification of resistome modulators, including live microbial therapeutics such as probiotics and fecal microbiome transplantation that can either expand or reduce the abundances of ARG-carrying bacteria in the gut. While many different gut microbes encode for ARGs, they are not uniformly distributed across, or transmitted by, various members of the microbiome, and not all are of equal clinical relevance. Both experimental and theoretical approaches in microbial ecology have been applied to understand differing frequencies of ARG horizontal transfer between commensal microbes as well as between commensals and pathogens. In this commentary, we assess the evidence for the role of commensal gut microbes in encoding antimicrobial resistance genes, the degree to which they are shared both with other commensals and with pathogens, and the host and environmental factors that can impact resistome dynamics. We further discuss novel sequencing-based approaches for identifying ARGs and predicting future transfer events of clinically relevant ARGs from commensals to pathogens.
Collapse
Affiliation(s)
- Alexander Crits-Christoph
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Haley Anne Hallowell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kalia Koutouvalis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jotham Suez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA,CONTACT Jotham Suez Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, Maryland, USA, 21205
| |
Collapse
|
22
|
Wang C, Wei S, Liu B, Wang F, Lu Z, Jin M, Wang Y. Maternal consumption of a fermented diet protects offspring against intestinal inflammation by regulating the gut microbiota. Gut Microbes 2022; 14:2057779. [PMID: 35506256 PMCID: PMC9090288 DOI: 10.1080/19490976.2022.2057779] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The neonatal intestinal tract is immature and can be easily infected by pathogens causing inflammation. Maternal diet manipulation is a promising nutritional strategy to enhance the gut health of offspring. A fermented diet is a gut microbiota targeting diet containing live probiotics and their metabolites, which benefit the gut and overall health host. However, it remains unclear how a maternal fermented diet (MFD) affects neonatal intestinal inflammation. Here, in vivo and in vitro models together with multi-omics analysis were applied to investigate the impacts and the underlying mechanism through which an MFD prevents from gut inflammation in neonates. An MFD remarkably improved the performance of both sows and piglets and significantly altered the gut microbiome and milk metabolome of sows. In addition, the MFD significantly accelerated the maturation of the gut microbiota of neonates and increased the abundance of gut Lactobacillus and the microbial functions of amino acid-related enzymes and glucose metabolism on the weaning day. Notably, the MFD reduced susceptibility to colonic inflammation in offspring. The fecal microbiota of sows was then transplanted into mouse dams and it was found that the mouse dams and pups in the MFD group alleviated the LPS-induced decrease in gut Lactobacillus abundance and barrier injury. Milk L-glutamine (GLN) and gut Lactobacillus reuteri (LR) were found as two of the main MFD-induced sow effectors that contributed to the gut health of piglets. The properties of LR and GLN in modulating gut microbiota and alleviating colonic inflammation by inhibiting the phosphorylation of p38 and JNK and activation of Caspase 3 were further verified. These findings provide the first data revealing that an MFD drives neonate gut microbiota development and ameliorates the colonic inflammation by regulating the gut microbiota. This fundamental evidence might provide references for modulating maternal nutrition to enhance early-life gut health and prevent gut inflammation.
Collapse
Affiliation(s)
- Cheng Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China
| | - Siyu Wei
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China
| | - Bojing Liu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China
| | - Fengqin Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China
| | - Zeqing Lu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China
| | - Mingliang Jin
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China
| | - Yizhen Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, 310058, PR China,CONTACT Yizhen Wang National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province; Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou310058, PR China
| |
Collapse
|
23
|
Sun Z, Zhang M, Li M, Bhaskar Y, Zhao J, Ji Y, Cui H, Zhang H, Sun Z. Interactions between Human Gut Microbiome Dynamics and Sub-Optimal Health Symptoms during Seafaring Expeditions. Microbiol Spectr 2022; 10:e0092521. [PMID: 35019672 PMCID: PMC8754112 DOI: 10.1128/spectrum.00925-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
During long ocean voyages, crew members are subject to complex pressures from their living and working environment, which lead to chronic diseases-like sub-optimal health status. Although the association between dysbiotic gut microbiome and chronic diseases has been broadly reported, the correlation between the sub-optimal health status and gut microbiome remains elusive. Here, the health status of 77 crew members (20-35 years old Chinese, male) during a 135-day sea expedition was evaluated using the shotgun metagenomics of stool samples and health questionnaires taken before and after the voyage. We found five core symptoms (e.g., abnormal defecation frequency, insomnia, poor sleep quality, nausea, and overeating) in 55 out of 77 crew members suffering from sub-optimal health status, and this was termed "seafaring syndrome" (SS) in this study. Significant correlation was found between the gut microbiome and SS rather than any single symptom. For example, SS was proven to be associated with individual perturbation in the gut microbiome, and the microbial dynamics between SS and non-SS samples were different during the voyage. Moreover, the microbial signature for SS was identified using the variation of 19 bacterial species and 26 gene families. Furthermore, using a Random Forest model, SS was predicted with high accuracy (84.4%, area under the concentration-time curve = 0.91) based on 28 biomarkers from pre-voyage samples, and the prediction model was further validated by another 30-day voyage cohort (accuracy = 83.3%). The findings in this study provide insights to help us discover potential predictors or even therapeutic targets for dysbiosis-related diseases. IMPORTANCE Systemic and chronic diseases are important health problems today and have been proven to be strongly associated with dysbiotic gut microbiome. Studying the association between the gut microbiome and sub-optimal health status of humans in extreme environments (such as ocean voyages) will give us a better understanding of the interactions between observable health signs and a stable versus dysbiotic gut microbiome states. In this paper, we illustrated that ocean voyages could trigger different symptoms for different crew member cohorts due to individual differences; however, the co-occurrence of high prevalence symptoms indicated widespread perturbation of the gut microbiome. By investigating the microbial signature and gut microbiome dynamics, we demonstrated that such sub-optimal health status can be predicted even before the voyage. We termed this phenomenon as "seafaring syndrome." This study not only provides the potential strategy for health management in extreme environments but also can assist the prediction of other dysbiosis-related diseases.
Collapse
Affiliation(s)
- Zheng Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Single-Cell Center and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, China
| | - Min Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, China
| | - Yogendra Bhaskar
- Single-Cell Center and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Jinshan Zhao
- College of Animal Science, Qingdao University, Qingdao, Shandong, China
| | - Youran Ji
- Medical Department, 971 Hospital, Qingdao, Shandong, China
| | - Hongbing Cui
- Department of Emergency, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, China
| |
Collapse
|
24
|
Bacterial controlled mitigation of dysbiosis in a seaweed disease. THE ISME JOURNAL 2022; 16:378-387. [PMID: 34341505 PMCID: PMC8776837 DOI: 10.1038/s41396-021-01070-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Disease in the marine environment is predicted to increase with anthropogenic stressors and already affects major habitat-formers, such as corals and seaweeds. Solutions to address this issue are urgently needed. The seaweed Delisea pulchra is prone to a bleaching disease, which is caused by opportunistic pathogens and involves bacterial dysbiosis. Bacteria that can inhibit these pathogens and/or counteract dysbiosis are therefore hypothesised to reduce disease. This study aimed to identify such disease-protective bacteria and investigate their protective action. One strain, Phaeobacter sp. BS52, isolated from healthy D. pulchra, was antagonistic towards bleaching pathogens and significantly increased the proportion of healthy individuals when applied before the pathogen challenge (pathogen-only vs. BS52 + pathogen: 41-80%), and to a level similar to the control. However, no significant negative correlations between the relative abundances of pathogens and BS52 on D. pulchra were detected. Instead, inoculation of BS52 mitigated pathogen-induced changes in the epibacterial community. These observations suggest that the protective activity of BS52 was due to its ability to prevent dysbiosis, rather than direct pathogen inhibition. This study demonstrates the feasibility of manipulating bacterial communities in seaweeds to reduce disease and that mitigation of dysbiosis can have positive health outcomes.
Collapse
|
25
|
Mucci N, Tommasi E, Chiarelli A, Lulli LG, Traversini V, Galea RP, Arcangeli G. WORKbiota: A Systematic Review about the Effects of Occupational Exposure on Microbiota and Workers' Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1043. [PMID: 35162072 PMCID: PMC8834335 DOI: 10.3390/ijerph19031043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
The characterization of human microbiota and the impact of its modifications on the health of individuals represent a current topic of great interest for the world scientific community. Scientific evidence is emerging regarding the role that microbiota has in the onset of important chronic illnesses. Since individuals spend most of their life at work, occupational exposures may have an impact on the organism's microbiota. The purpose of this review is to explore the influence that different occupational exposures have on human microbiota in order to set a new basis for workers' health protection and disease prevention. The literature search was performed in PubMed, Cochrane, and Scopus. A total of 5818 references emerged from the online search, and 31 articles were included in the systematic review (26 original articles and 5 reviews). Exposure to biological agents (in particular direct contact with animals) was the most occupational risk factor studied, and it was found involved in modifications of the microbiota of workers. Changes in microbiota were also found in workers exposed to chemical agents or subjected to work-related stress and altered dietary habits caused by specific microclimate characteristics or long trips. Two studies evaluated the role of microbiota changes on the development of occupational lung diseases. Occupational factors can interface with the biological rhythms of the bacteria of the microbiota and can contribute to its modifications and to the possible development of diseases. Future studies are needed to better understand the role of the microbiota and its connection with occupational exposure to promote projects for the prevention and protection of global health.
Collapse
Affiliation(s)
- Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| | - Eleonora Tommasi
- Postgraduate Medical Training Programme in Cardiology, University of Perugia, 1 Piazza dell’Università, 06123 Perugia, Italy;
| | - Annarita Chiarelli
- Occupational Medicine Unit, Careggi University Hospital, 50134 Florence, Italy;
| | | | - Veronica Traversini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| | - Raymond Paul Galea
- Faculty of Medicine & Surgery, University of Malta, MSD 2090 Msida, Malta;
- The Malta Postgraduate Medical Training Programme, Mater Dei Hospital Msida, MSD 2090 Msida, Malta
| | - Giulio Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| |
Collapse
|
26
|
Ma C, Zhang C, Chen D, Jiang S, Shen S, Huo D, Huang S, Zhai Q, Zhang J. Probiotic consumption influences universal adaptive mutations in indigenous human and mouse gut microbiota. Commun Biol 2021; 4:1198. [PMID: 34663913 PMCID: PMC8523657 DOI: 10.1038/s42003-021-02724-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022] Open
Abstract
The adaptive evolution in indigenous intestinal microbes derived from probiotics is critical to safety and efficacy evaluation of probiotics, yet it is still largely underexplored. Here, through 11 publicly accessible datasets, we demonstrated that probiotic consumption can lead to widespread single-nucleotide variants (SNVs) in the native microbiota. Interestingly, the same probiotic strains introduced far more SNVs in mouse gut than humans. Furthermore, the pattern of probiotics-induced SNVs was highly probiotic-strain specific, and 17 common SNVs in Faecalibacterium prausnitzii genome were identified cross studies, which might lead to changes in bacterial protein structure. Further, nearly 50% of F. prausnitzii SNVs can be inherited for six months in an independent human cohort, whereas the other half only transiently occurred. Collectively, our study substantially extended our understanding of co-evolution of the probiotics and the indigenous gut microbiota, highlighting the importance of assessment of probiotics efficacy and safety in an integrated manner. Chenchen Ma, Chengcheng Zhang, and Denghui Chen et al. examine how probiotic consumption impacts gut microbiota composition in human and mice through a global, cross-cohort metagenomic analysis. Their results suggest that probiotic consumption may result in widespread variation among the native microbiota in both the human and mouse gut.
Collapse
Affiliation(s)
- Chenchen Ma
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, 570228, Haikou, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, China
| | - Denghui Chen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shuaiming Jiang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, 570228, Haikou, China
| | - Siyuan Shen
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, 570228, Haikou, China
| | - Dongxue Huo
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, 570228, Haikou, China
| | - Shi Huang
- Department of Pediatrics and Center for Microbiome Innovation at Jacobs School of Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, China.
| | - Jiachao Zhang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, 570228, Haikou, China.
| |
Collapse
|
27
|
Zheng Y, Yu Z, Zhang W, Sun T. Lactobacillus rhamnosus Probio-M9 Improves the Quality of Life in Stressed Adults by Gut Microbiota. Foods 2021; 10:foods10102384. [PMID: 34681433 PMCID: PMC8535744 DOI: 10.3390/foods10102384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: To evaluate the effect of the probiotic, Lactobacillus rhamnosus Probio-M9 (Probio-M9), on the quality of life in stressed adults. Methods: Twelve postgraduate student volunteers were recruited. Six volunteers received oral Probio-M9 for 21 days, while the remaining six received a placebo instead. Fecal samples were collected from the volunteers before and after the intervention. Metagenomic sequencing, nontargeted metabonomics, and quality-of-life follow-up questionnaires were used to evaluate the impact of Probio-M9 consumption on the gut microbiota and life quality of the volunteers. Results: Probio-M9 improved the psychological and physiological quality-of-life symptoms significantly in stressed adults (p < 0.05). The probiotic intervention was beneficial in increasing and maintaining the diversity of gut microbiota. The abundance of Barnesiella and Akkermansia increased in the probiotics group. The feature metabolites of pyridoxamine, dopamine, and 5-hydroxytryptamine (5-HT) were positively correlated with Barnesiella and Akkermansia levels, which might be why the mental state of the volunteers in the probiotic group improved after taking Probio-M9. Conclusions: We identified that oral Probio-M9 can regulate the stability of gut microbiota and affect the related beneficial metabolites, thereby affecting the quality of life (QoL) of stressed adults. Probio-M9 might improve the psychological and physiological quality of life in stressed adults via the gut-brain axis pathway. The causal relationship should be further explored in future studies.
Collapse
Affiliation(s)
- Yan Zheng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (Z.Y.); (W.Z.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhongjie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (Z.Y.); (W.Z.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (Z.Y.); (W.Z.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tiansong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (Z.Y.); (W.Z.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence:
| |
Collapse
|
28
|
Probiotics maintain the gut microbiome homeostasis during Indian Antarctic expedition by ship. Sci Rep 2021; 11:18793. [PMID: 34552104 PMCID: PMC8458292 DOI: 10.1038/s41598-021-97890-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
Ship voyage to Antarctica is a stressful journey for expedition members. The response of human gut microbiota to ship voyage and a feasible approach to maintain gut health, is still unexplored. The present findings describe a 24-day long longitudinal study involving 19 members from 38th Indian Antarctic Expedition, to investigate the impact of ship voyage and effect of probiotic intervention on gut microbiota. Fecal samples collected on day 0 as baseline and at the end of ship voyage (day 24), were analyzed using whole genome shotgun sequencing. Probiotic intervention reduced the sea sickness by 10% compared to 44% in placebo group. The gut microbiome in placebo group members on day 0 and day 24, indicated significant alteration compared to a marginal change in the microbial composition in probiotic group. Functional analysis revealed significant alterations in carbohydrate and amino acid metabolism. Carbohydrate-active enzymes analysis represented functional genes involved in glycoside hydrolases, glycosyltransferases and carbohydrate binding modules, for maintaining gut microbiome homeostasis. Suggesting thereby the possible mechanism of probiotic in stabilizing and restoring gut microflora during stressful ship journey. The present study is first of its kind, providing a feasible approach for protecting gut health during Antarctic expedition involving ship voyage.
Collapse
|
29
|
Probiotics impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner. Nat Microbiol 2021; 6:1043-1054. [PMID: 34226711 PMCID: PMC8318886 DOI: 10.1038/s41564-021-00920-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 05/12/2021] [Indexed: 12/17/2022]
Abstract
Antimicrobial resistance poses a substantial threat to human health. The gut microbiome is considered a reservoir for potential spread of resistance genes from commensals to pathogens, termed the gut resistome. The impact of probiotics, commonly consumed by many in health or in conjunction with the administration of antibiotics, on the gut resistome is elusive. Reanalysis of gut metagenomes from healthy antibiotics-naïve humans supplemented with an 11-probiotic-strain preparation, allowing direct assessment of the gut resistome in situ along the gastrointestinal (GI) tract, demonstrated that probiotics reduce the number of antibiotic resistance genes exclusively in the gut of colonization-permissive individuals. In mice and in a separate cohort of humans, a course of antibiotics resulted in expansion of the lower GI tract resistome, which was mitigated by autologous faecal microbiome transplantation or during spontaneous recovery. In contrast, probiotics further exacerbated resistome expansion in the GI mucosa by supporting the bloom of strains carrying vancomycin resistance genes but not resistance genes encoded by the probiotic strains. Importantly, the aforementioned effects were not reflected in stool samples, highlighting the importance of direct sampling to analyse the effect of probiotics and antibiotics on the gut resistome. Analysing antibiotic resistance gene content in additional published clinical trials with probiotics further highlighted the importance of person-specific metagenomics-based profiling of the gut resistome using direct sampling. Collectively, these findings suggest opposing person-specific and antibiotic-dependent effects of probiotics on the resistome, whose contribution to the spread of antimicrobial resistance genes along the human GI tract merit further studies.
Collapse
|
30
|
Wang J, Zhang J, Liu W, Zhang H, Sun Z. Metagenomic and metatranscriptomic profiling of Lactobacillus casei Zhang in the human gut. NPJ Biofilms Microbiomes 2021; 7:55. [PMID: 34210980 PMCID: PMC8249650 DOI: 10.1038/s41522-021-00227-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Little is known about the replication and dynamic transcription of probiotics during their “passenger” journey in the human GI tract, which has therefore limited the understanding of their probiotic mechanisms. Here, metagenomic and metatranscriptomic sequencing was used to expose the in vivo expression patterns of the probiotic Lactobacillus casei Zhang (LcZ), which was compared with its in vitro growth transcriptomes, as well as the dynamics of the indigenous microbiome response to probiotic consumption. Extraction of the strain-specific reads revealed that replication and transcripts from the ingested LcZ were increased, while those from the resident L. casei strains remained unchanged. Mapping of all sequencing reads to LcZ genome showed that gene expression in vitro and in vivo differed dramatically. Approximately 39% of mRNAs and 45% of sRNAs of LcZ well-expressed were repressed after ingestion into human gut. The expression of ABC transporter genes and amino acid metabolism genes was induced at day 14 of ingestion, and genes for sugar and SCFA metabolism were activated at day 28 of ingestion. Expression of rli28c sRNA with peaked expression during the in vitro stationary phase was also activated in the human gut; this sRNA repressed LcZ growth and lactic acid production in vitro. However, the response of the human gut microbiome to LcZ was limited and heterogeneous. These findings implicate the ingested probiotic has to change its transcription patterns to survive and adapt in the human gut, and the time-dependent activation patterns indicate highly dynamic cross-talk between the probiotic and human gut microbes.
Collapse
Affiliation(s)
- Jicheng Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiachao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot, China.,School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
31
|
Zhang Z, Peng Q, Huo D, Jiang S, Ma C, Chang H, Chen K, Li C, Pan Y, Zhang J. Melatonin Regulates the Neurotransmitter Secretion Disorder Induced by Caffeine Through the Microbiota-Gut-Brain Axis in Zebrafish ( Danio rerio). Front Cell Dev Biol 2021; 9:678190. [PMID: 34095150 PMCID: PMC8172981 DOI: 10.3389/fcell.2021.678190] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Melatonin has been widely used as a “probiotic agent” capable of producing strong neurotransmitter secretion regulatory effects, and the microbiota-gut-brain axis-related studies have also highlighted the role of the gut microbiota in neuromodulation. In the present study, a zebrafish neural hyperactivity model was established using caffeine induction to explore the regulatory effects of melatonin and probiotic on neurotransmitter secretion disorder in zebrafish. Disorders of brain neurotransmitter secretion (dopamine, γ-aminobutyric acid, and 5-hydroxytryptamine) caused by caffeine were improved after interference treatment with melatonin or probiotic. Shotgun metagenomic sequencing demonstrated that the melatonin-treated zebrafish gradually restored their normal intestinal microbiota and metabolic pathways. Germ-free (GF) zebrafish were used to verify the essential role of intestinal microbes in the regulation of neurotransmitter secretion. The results of the neurotransmitter and short-chain fatty acid determination revealed that the effect on the zebrafish in the GF group could not achieve that on the zebrafish in the melatonin group after adding the same dose of melatonin. The present research revealed the potential mode of action of melatonin through the microbiota-gut-brain axis to regulate the disruption of neurotransmitter secretion, supporting the future development of psychotropic drugs targeting the intestinal microbiota.
Collapse
Affiliation(s)
- Zeng Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou, China
| | - Qiannan Peng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou, China.,Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Dongxue Huo
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou, China
| | - Shuaiming Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou, China
| | - Chenchen Ma
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou, China
| | - Haibo Chang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou, China
| | - Kaining Chen
- Hainan Provincial People's Hospital, Haikou, China
| | - Congfa Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou, China
| | - Yonggui Pan
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou, China
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
32
|
Correlation of gut microbiota and neurotransmitters in a rat model of post-traumatic stress disorder. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
33
|
Adjunctive treatment with probiotics partially alleviates symptoms and reduces inflammation in patients with irritable bowel syndrome. Eur J Nutr 2020; 60:2553-2565. [PMID: 33225399 DOI: 10.1007/s00394-020-02437-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/04/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE Irritable bowel syndrome (IBS) is a functional bowel disorder. This study aimed to assess the effect of a probiotic product (containing Lactobacillus casei Zhang, Lactobacillus plantarum P-8, and Bifdobacterium animalis subsp. lactis V9) as an adjunct to a routine regimen in IBS management. METHODS Forty-five patients with IBS were randomized into the probiotic (n = 24) and control (n = 21) groups, receiving the routine regimen with or without probiotics for 28 days, respectively. Serum and fecal samples were collected and analyzed. RESULTS The IBS-symptom severity score (P < 0.01), serum levels of IL-6 (P < 0.01) and TNF-α (P < 0.001) were significantly lower in the probiotic group than the control group at day 28. The probiotic adjunctive treatment resulted in significant decreases in some bacterial genera that worsen IBS, such as Bacteroides (P < 0.01), Escherichia (P < 0.05), and Citrobacter (P < 0.05), significant decreases were also observed in some beneficial genera in the control group, including Bifidobacterium (P < 0.05), Eubacterium (P < 0.05), Dorea (P < 0.01), and Butyricicoccus (P < 0.05). Furthermore, significant correlations were found between some monitored parameters and compositional changes in the fecal microbiota, suggesting that the clinical improvement of IBS was likely associated with gut microbiota modulation. The enterotype analysis revealed that the initial fecal microbiota composition could influence clinical outcomes. CONCLUSIONS The adjunctive use of probiotics with a routine regimen showed additional clinical effectiveness compared to the routine regimen alone in managing IBS. A pretreatment gut microbiome analysis might help tailor a personalized probiotic regimen to optimize treatment effects.
Collapse
|
34
|
Ma C, Wasti S, Huang S, Zhang Z, Mishra R, Jiang S, You Z, Wu Y, Chang H, Wang Y, Huo D, Li C, Sun Z, Sun Z, Zhang J. The gut microbiome stability is altered by probiotic ingestion and improved by the continuous supplementation of galactooligosaccharide. Gut Microbes 2020; 12:1785252. [PMID: 32663059 PMCID: PMC7524268 DOI: 10.1080/19490976.2020.1785252] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The stable gut microbiome plays a key role in sustaining host health, while the instability of gut microbiome also has been found to be a risk factor of various metabolic diseases. At the ecological and evolutionary scales, the inevitable competition between the ingested probiotic and indigenous gut microbiome can lead to an increase in the instability. It remains largely unclear if and how exogenous prebiotic can improve the overall gut microbiome stability in probiotic consumption. In this study, we used Lactobacillus plantarum HNU082 (Lp082) as a model probiotic to examine the impact of the continuous or pulsed supplementation of galactooligosaccharide (GOS) on the gut microbiome stability in mice using shotgun metagenomic sequencing. Only continuous GOS supplement promoted the growth of probiotic and decreased its single-nucleotide polymorphisms (SNPs) mutation under competitive conditions. Besides, persistent GOS supplementation increased the overall stability, reshaped the probiotic competitive interactions with Bacteroides species in the indigenous microbiome, which was also evident by over-abundance of carbohydrate-active enzymes (CAZymes) accordingly. Also, we identified a total of 793 SNPs arisen in probiotic administration in the indigenous microbiome. Over 90% of them derived from Bacteroides species, which involved genes encoding transposase, CAZymes, and membrane proteins. However, neither GOS supplementation here de-escalated the overall adaptive mutations within the indigenous microbes during probiotic intake. Collectively, our study demonstrated the beneficial effect of continuous prebiotic supplementation on the ecological and genetic stability of gut microbiomes.
Collapse
Affiliation(s)
- Chenchen Ma
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Sanjeev Wasti
- Department of Human Nutrition, Food and Animal Science, University of Hawaii, Honolulu, HI, USA
| | - Shi Huang
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Zeng Zhang
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Rajeev Mishra
- Department of Human Nutrition, Food and Animal Science, University of Hawaii, Honolulu, HI, USA
| | - Shuaiming Jiang
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Zhengkai You
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Yixuan Wu
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Haibo Chang
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Yuanyuan Wang
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Dongxue Huo
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Congfa Li
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot, China,Zhihong Sun Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot, Inner mongolia Autonomous Region, 010018, China
| | - Zheng Sun
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China,Zheng Sun Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Jiachao Zhang
- College of Food Science and Engineering, Hainan University, Haikou, China,CONTACT Jiachao Zhang College of Food Science and Engineering, Hainan University, Haikou, Hainan570228, China
| |
Collapse
|
35
|
Wu J, Zhao Y, Wang X, Kong L, Johnston LJ, Lu L, Ma X. Dietary nutrients shape gut microbes and intestinal mucosa via epigenetic modifications. Crit Rev Food Sci Nutr 2020; 62:783-797. [PMID: 33043708 DOI: 10.1080/10408398.2020.1828813] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jianmin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xian Wang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Lingchang Kong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J. Johnston
- West Central Research & Outreach Centre, University of Minnesota, Morris, Minnesota, USA
| | - Lin Lu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|