1
|
Quigley EMM. Microbial Influences on Irritable Bowel Syndrome. Gastroenterol Clin North Am 2025; 54:351-365. [PMID: 40348492 DOI: 10.1016/j.gtc.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Since the description of postinfection irritable bowel syndrome (IBS), a role for gut microbes in the pathogenesis of IBS has been proposed. Molecular microbiological tools have now been applied to IBS, though data are largely derived from fecal samples with attendant limitations. Metagenomics, metabolomics, and other 'omics facilitate a comprehensive picture of the microbiome and its metabolic activity. Has a microbial signature characteristic of IBS been identified? The answer is no; this should not be a surprise given the heterogeneity of the phenotype and each individual's microbiome profile.
Collapse
Affiliation(s)
- Eamonn M M Quigley
- Lynda K and David M Underwood Center for Digestive Health, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA.
| |
Collapse
|
2
|
Lin H, Shao X, Gu H, Yu X, He L, Zhou J, Zhong Z, Guo S, Li D, Chen F, Song Y, Xu L, Wang P, Meng L, Chi J, Lian J. Akkermansia muciniphila ameliorates doxorubicin-induced cardiotoxicity by regulating PPARα-dependent mitochondrial biogenesis. NPJ Biofilms Microbiomes 2025; 11:86. [PMID: 40410194 PMCID: PMC12102390 DOI: 10.1038/s41522-025-00712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/26/2025] [Indexed: 05/25/2025] Open
Abstract
Doxorubicin (DOX) is a key chemotherapeutic agent but is also a leading cause of DOX-induced cardiotoxicity (DIC), limiting its clinical use. Akkermansia muciniphila (A. muciniphila), known for its benefits as a probiotic in treating metabolic syndrome, has uncertain effects in the context of DIC. Here, 16S rRNA sequencing of fecal samples from anthracycline-treated patients and DIC mice revealed marked depletion of A. muciniphila. Cardiac transcriptomics, supported by in vitro experiments, showed that A. muciniphila colonization improved mitochondrial function and alleviated DIC by activating the PPARα/PGC1α signaling pathway in both normal and antibiotic-treated C57BL/6 mice. Further analysis uncovered a restructured microbiome-metabolome network following A. muciniphila administration, which contributed to DIC protection. Notably, A. muciniphila supplementation increased serum levels of the tryptophan metabolite indole-3-propionic acid (IPA), which binds to the cardiac aryl hydrocarbon receptor (AhR), leading to the activation of the PPARα/PGC1α signaling pathway. In conclusion, our study sheds light on the potential of A. muciniphila as a probiotic in mitigating DIC.
Collapse
Affiliation(s)
- Hui Lin
- Department of Cardiology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Xian Shao
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, China
| | - Haodi Gu
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Xinrou Yu
- Department of Cardiology, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, China
| | - Lingyan He
- Department of Traditional Chinese Medicine, Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, China
| | - Jiedong Zhou
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zuoquan Zhong
- Department of Respiratory Medicine, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Shitian Guo
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Li
- Department of Haematology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Fei Chen
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Yongfei Song
- Department of Cardiology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Lili Xu
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, China
| | - Ping Wang
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China.
| | - Jufang Chi
- Department of Cardiology, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, China.
| | - Jiangfang Lian
- Department of Cardiology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
3
|
Li C, Xu X, Zhao X, Du B. The inconsistent pathogenesis of endometriosis and adenomyosis: insights from endometrial metabolome and microbiome. mSystems 2025; 10:e0020225. [PMID: 40261026 PMCID: PMC12090731 DOI: 10.1128/msystems.00202-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
Endometriosis (EM) and adenomyosis (AM) are interrelated gynecological disorders characterized by the aberrant presence of endometrial tissue and are frequently linked with chronic pelvic pain and infertility, yet their pathogenetic mechanisms remain largely unclear. In this cross-sectional study, we analyzed endometrial samples from 244 participants, split into 91 EM patients, 56 AM patients, and 97 healthy controls (HC). We conducted untargeted liquid chromatography-mass spectrometry (LC-MS) and 5R 16S rRNA sequencing to examine endometrial metabolome and microbiome profiles. Additionally, we integrated transcriptomic analysis using nine transcriptomic data sets to investigate the biological basis of these conditions. Metabolomic profiling and 16S rRNA sequencing revealed distinct metabolic and microbial signatures. Specific pathways, including linoleic acid and glycerophospholipid metabolism, show significant alterations in both conditions. Notably, four metabolites, including phosphatidylcholine 40:8 [PC(40:8)], exhibited marked changes in both EM and AM, suggesting shared pathological features. Furthermore, taxonomic analysis identified unique bacterial species associated with each condition, particularly those belonging to the phylum Proteobacteria, which correlated with altered metabolic signatures. Machine learning models demonstrated high predictive accuracy for differentiating between AM, EM, and HC based on metabolic and microbial signatures. Integrative analysis with transcriptomic data highlighted distinct pathways related to immune response and signaling transduction for each condition. Our study provides fresh insights into the pathogenesis of AM and EM through a multi-omic approach, suggesting potential inconsistencies in the underlying pathogenetic mechanisms. IMPORTANCE Existing research highlighted a connection between endometriosis (EM) and adenomyosis (AM), underscoring their overlapping symptoms and potential shared pathophysiological mechanisms. Although the role of microbiota in inflammatory conditions has been acknowledged, comprehensive investigations into the endometrial microbiota in cases of EM and AM have been limited. Previous studies identified distinct microbial communities associated with these conditions; however, they were constrained by small sample sizes and a lack of integrated analyses of microbiota and metabolomics. Furthermore, the ongoing debate over whether EM and AM should be classified as separate diseases or related phenotypes emphasizes the necessity for further exploration of their molecular interactions. Our study uncovers distinct microbial and metabolic signatures associated with each condition, revealing both shared and unique pathways that may contribute to their pathogenesis. Furthermore, the integration of transcriptomic data offers valuable insights into the complex interactions underlying these disorders.
Collapse
Affiliation(s)
- Chao Li
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinxin Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaojie Zhao
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Du
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Xu J, Zhao X, Yang S, Tang M, Zhao R, Hu S. Chlorogenic acid and intestinal health: mechanistic insights and therapeutic applications. Food Funct 2025. [PMID: 40357998 DOI: 10.1039/d5fo00853k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Chlorogenic acid (CGA), a polyphenolic compound found in various plant species, has shown considerable potential in the treatment and management of several diseases due to its potent bioactive properties. Increasing evidence indicates that CGA exerts significant antioxidant, anti-inflammatory, and immunomodulatory effects by modulating key signaling pathways, including MAPK, PTEN/Akt, STAT3, and NF-κB/NLRP3. Furthermore, CGA enhances intestinal barrier function and positively influences the gut microbiota composition, making it a promising natural therapeutic agent for conditions such as inflammatory bowel disease, irritable bowel syndrome, and colorectal cancer. This review provides a comprehensive summary of the most recent research on CGA's role in managing intestinal disorders. It first discusses CGA's chemical structure and pharmacokinetics (including absorption and metabolism), followed by an in-depth analysis of the mechanisms through which CGA mediates its therapeutic effects. These insights aim to advance our understanding of CGA's therapeutic potential in treating intestinal diseases.
Collapse
Affiliation(s)
- Jinzhao Xu
- College of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, P. R. China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130018, P. R. China.
| | - Xiao Zhao
- College of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, P. R. China.
- College of Equipment Management and Support, Engineering University of PAP, Xi'an, 710086, P. R. China
| | - Shuo Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130018, P. R. China.
| | - Mengqi Tang
- College of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, P. R. China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130018, P. R. China.
| | - Runan Zhao
- College of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, P. R. China.
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shumeng Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130018, P. R. China.
| |
Collapse
|
5
|
Li G, Dong S, Liu C, Yang J, Rensen PCN, Wang Y. Serotonin signaling to regulate energy metabolism: a gut microbiota perspective. LIFE METABOLISM 2025; 4:loae039. [PMID: 39926388 PMCID: PMC11803461 DOI: 10.1093/lifemeta/loae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 02/11/2025]
Abstract
Serotonin is one of the most potent gastrointestinal, peripheral, and neuronal signaling molecules and plays a key role in regulating energy metabolism. Accumulating evidence has shown the complex interplay between gut microbiota and host energy metabolism. In this review, we summarize recent findings on the role of gut microbiota in serotonin metabolism and discuss the complicated mechanisms by which serotonin, working in conjunction with the gut microbiota, affects total body energy metabolism in the host. Gut microbiota affects serotonin synthesis, storage, release, transport, and catabolism. In addition, serotonin plays an indispensable role in regulating host energy homeostasis through organ crosstalk and microbe-host communication, particularly with a wide array of serotonergic effects mediated by diverse serotonin receptors with unique tissue specificity. This fresh perspective will help broaden the understanding of serotonergic signaling in modulating energy metabolism, thus shedding light on the design of innovative serotonin-targeting strategies to treat metabolic diseases.
Collapse
Affiliation(s)
- Guoli Li
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Sijing Dong
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Chunhao Liu
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jing Yang
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Patrick C N Rensen
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Yanan Wang
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
6
|
Chen Y, Fang JY. The role of colonic microbiota amino acid metabolism in gut health regulation. CELL INSIGHT 2025; 4:100227. [PMID: 39926315 PMCID: PMC11803165 DOI: 10.1016/j.cellin.2025.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/05/2025] [Accepted: 01/05/2025] [Indexed: 02/11/2025]
Abstract
The human gut microbiota plays a critical role in maintaining host homeostasis through metabolic activities. Among these, amino acid (AA) metabolism by the microbiota in the large intestine is highly heterogeneous and relevant to host health. Despite increasing interest, microbial AA metabolism remains relatively unexplored. This review highlights recent advances in colonic microbial AA metabolism, including auxotrophies, AA synthesis, and dissimilatory AA metabolites, and their implications in gut health, focusing on major gastrointestinal diseases including colorectal cancer, inflammatory bowel disease, and irritable bowel syndrome.
Collapse
Affiliation(s)
- Youli Chen
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Jing-Yuan Fang
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| |
Collapse
|
7
|
Pich EM, Tarnanas I, Brigidi P, Collo G. Gut Microbiome-Liver-Brain axis in Alcohol Use Disorder. The role of gut dysbiosis and stress in alcohol-related cognitive impairment progression: possible therapeutic approaches. Neurobiol Stress 2025; 35:100713. [PMID: 40092632 PMCID: PMC11909761 DOI: 10.1016/j.ynstr.2025.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
The Gut Microbiome-Liver-Brain Axis is a relatively novel construct with promising potential to enhance our understanding of Alcohol Use Disorder (AUD), and its therapeutic approaches. Significant alterations in the gut microbiome occur in AUD even before any other systemic signs or symptoms manifest. Prolonged and inappropriate alcohol consumption, by affecting the gut microbiota and gut mucosa permeability, is thought to contribute to the development of behavioral and cognitive impairments, leading to Alcohol-Related Liver Disorders and potentially progressing into alcoholic cirrhosis, which is often associated with severe cognitive impairment related to neurodegeneration, such as hepatic encephalopathy and alcoholic dementia. The critical role of the gut microbiota is further supported by the efficacy of FDA-approved treatments for hepatic encephalopathy in alcoholic cirrhosis (i.e., lactulose and rifaximin). To stimulate new research, we hypothesize that interactions between a maladaptive stress response and a constitutional predisposition to neurodegeneration underlie the progression of AUD to conditions of Alcohol-Related Clinical Concerns with severe cognitive impairment, which represent a significant and costly burden to society. Early identification of AUD individuals at risk for developing these conditions could help to prioritize integrated therapeutic interventions targeting different substrates of the Gut Microbiome-Liver-Brain axis. Specifically, addiction medications, microbiome modulators, stress-reducing interventions, and, possibly soon, novel agents that reduce hepatic steatosis/fibrosis will be discussed in the context of digitally supported integrated therapeutic approaches. The explicit goal of this AUD treatment performed on the early stage of the disorder would be to reduce the transition from AUD to those conditions of Alcohol-Related Common Clinical Concerns associated with severe cognitive impairment, a strategy recommended for most neurological neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Ioannis Tarnanas
- Trinity College Dublin, Global Brain Health Institute, Dublin, Ireland
- Altoida Inc., Washington DC, USA
| | - Patrizia Brigidi
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Ginetta Collo
- Human Neuropharmacology Unit, Department of Molecular & Translational Medicine, University of Brescia, Italy
| |
Collapse
|
8
|
Oh CK, Chung HH, Kim YJ, Kim JB. Comparison of Rifaximin Monotherapy and Rifaximin Combined with Probiotics in Patients with Irritable Bowel Syndrome: A Randomized Controlled Trial. Nutrients 2025; 17:763. [PMID: 40077633 PMCID: PMC11901931 DOI: 10.3390/nu17050763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objective: Rifaximin is a nonabsorbable antibiotic used to treat irritable bowel syndrome (IBS). Recent studies on Helicobacter pylori eradication treatment have reported synergistic effects and low adverse effects when antibiotics are used in combination with probiotics; yet, such studies have not been conducted in IBS. Probiotics can enhance gut microbiota modulation, inhibition of pathogen adhesion to the gut epithelia, improvement in gut barrier function, anti-inflammatory effects, and improvement of gut immunity. Therefore, this study aimed to investigate the efficacy and safety of rifaximin in combination with probiotics compared to rifaximin monotherapy in patients with IBS. Methods: Patients with IBS were randomly allocated to receive rifaximin monotherapy or a combination of rifaximin and probiotics. The primary outcome was the response rate of the total IBS severity scoring system (IBS-SSS) score (>50-point decrease). Secondary outcomes were based on the response rate of the IBS quality of life (IBS-QOL) score and the IBS-SSS1 subscore (>10-point decrease in both scores). Results: Among 70 patients, the responder rates for the total IBS-SSS score were 65.7% in the combination therapy group and 31.4% in the monotherapy group at weeks 4 and 8, respectively (p = 0.004). The responder rates for IBS-QOL were 65.7% versus (vs.) 37.1% and 65.7% vs. 34.2% at weeks 4 and 8, respectively (p = 0.017 and p = 0.009, respectively). The IBS-SSS1 subscore responder rates were 65.7% vs. 40.0% at week 4 and 68.6% vs. 37.1% at 8 weeks (p = 0.031 and p = 0.017, respectively). Conclusions: Rifaximin combined with probiotics was superior to rifaximin monotherapy in patients with IBS. This combination therapy is considered an effective and safe treatment option for patients with IBS. However, further studies are needed to investigate the mechanisms of therapy and long-term outcomes.
Collapse
Affiliation(s)
- Chang Kyo Oh
- Division of Gastroenterology, Department of Internal Medicine, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University of Korea, Seoul 07441, Republic of Korea; (H.H.C.); (Y.J.K.); (J.B.K.)
| | | | | | | |
Collapse
|
9
|
He C, Zhang J, Liang Y, Li H. A unified framework harnessing multi-scale feature ensemble and attention mechanism for gastric polyp and protrusion identification in gastroscope imaging. Sci Rep 2025; 15:5734. [PMID: 39962226 PMCID: PMC11833082 DOI: 10.1038/s41598-025-90034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
This study aims to address the diagnostic challenges in distinguishing gastric polyps from protrusions, emphasizing the need for accurate and cost-effective diagnosis strategies. It explores the application of Convolutional Neural Networks (CNNs) to improve diagnostic accuracy. This research introduces MultiAttentiveScopeNet, a deep learning model that incorporates multi-layer feature ensemble and attention mechanisms to enhance gastroscopy image analysis accuracy. A weakly supervised labeling strategy was employed to construct a large multi-class gastroscopy image dataset for training and validation. MultiAttentiveScopeNet demonstrates significant improvements in prediction accuracy and interpretability. The integrated attention mechanism effectively identifies critical areas in images to aid clinical decisions. Its multi-layer feature ensemble enables robust analysis of complex gastroscopy images. Comparative testing against human experts shows exceptional diagnostic performance, with accuracy, micro and macro precision, micro and macro recall, and micro and macro AUC reaching 0.9308, 0.9312, 0.9325, 0.9283, 0.9308, 0.9847 and 0.9853 respectively. This highlights its potential as an effective tool for primary healthcare settings. This study provides a comprehensive solution to address diagnostic challenges differentiating gastric polyps and protrusions. MultiAttentiveScopeNet improves accuracy and interpretability, demonstrating the potential of deep learning for gastroscopy image analysis. The constructed dataset facilitates continued model optimization and validation. The model shows promise in enhancing diagnostic outcomes in primary care.
Collapse
Affiliation(s)
- Chunyou He
- People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, China
| | - Jingda Zhang
- People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, China
| | - Yunxiao Liang
- People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, China.
| | - Hao Li
- People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530016, China.
| |
Collapse
|
10
|
Kirk D, Louca P, Attaye I, Zhang X, Wong KE, Michelotti GA, Falchi M, Valdes AM, Williams FMK, Menni C. Multifluid Metabolomics Identifies Novel Biomarkers for Irritable Bowel Syndrome. Metabolites 2025; 15:121. [PMID: 39997746 PMCID: PMC11857683 DOI: 10.3390/metabo15020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: Irritable bowel syndrome (IBS) is a complex disorder affecting 10% of the global population, but the underlying mechanisms remain poorly understood. By integrating multifluid metabolomics, we aimed to identify metabolite markers of IBS in a large population-based cohort. Methods: We included individuals from TwinsUK with and without IBS, ascertained using the Rome III criteria, and analysed serum (232 cases, 1707 controls), urine (185 cases, 1341 controls), and stool (186 cases, 1284 controls) metabolites (Metabolon Inc.). Results: After adjusting for covariates, and multiple testing, 44 unique metabolites (25 novel) were associated with IBS, including lipids, amino acids, and xenobiotics. Androsterone sulphate, a sulfated steroid hormone precursor, was associated with lower odds of IBS in both urine (0.69 [95% confidence interval = 0.56-0.85], p = 2.34 × 10-4) and serum (0.75 [0.63-0.90], p = 1.54 × 10-3. Moreover, suberate (C8-DC) was associated with higher odds of IBS in serum (1.36 [1.15-1.61]; p = 1.84 × 10-4) and lower odds of IBS in stool (0.76 [0.63-0.91]; p = 2.30 × 10-3). On the contrary, 32 metabolites appeared to be fluid-specific, including indole, 13-HODE + 9-HODE, pterin, bilirubin (E,Z or Z,Z), and urolithin. The remaining 10 metabolites were associated with IBS in one fluid with suggestive evidence (p < 0.05) in another fluid. Finally, we identified androgenic signalling, dicarboxylates, haemoglobin, and porphyrin metabolism to be significantly over-represented in individuals with IBS compared to controls. Conclusions: Our results highlight the utility of a multi-fluid approach in IBS research, revealing distinct metabolic signatures across biofluids.
Collapse
Affiliation(s)
- Daniel Kirk
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
| | - Panayiotis Louca
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
| | - Ilias Attaye
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, 1105 AZ Amsterdam, The Netherlands
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Xinyuan Zhang
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
| | - Kari E. Wong
- Metabolon Inc., Research Triangle Park, Morrisville, NC 27560, USA; (K.E.W.); (G.A.M.)
| | - Gregory A. Michelotti
- Metabolon Inc., Research Triangle Park, Morrisville, NC 27560, USA; (K.E.W.); (G.A.M.)
| | - Mario Falchi
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
| | - Ana M. Valdes
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
- Nottingham NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
- Inflammation, Recovery and Injury Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Frances M. K. Williams
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
| | - Cristina Menni
- Department of Twin Research & Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (D.K.); (P.L.); (I.A.); (X.Z.); (M.F.); (A.M.V.); (F.M.K.W.)
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
11
|
Dowrick JM, Roy NC, Bayer S, Frampton CMA, Talley NJ, Gearry RB, Angeli-Gordon TR. Unsupervised machine learning highlights the challenges of subtyping disorders of gut-brain interaction. Neurogastroenterol Motil 2024; 36:e14898. [PMID: 39119757 DOI: 10.1111/nmo.14898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Unsupervised machine learning describes a collection of powerful techniques that seek to identify hidden patterns in unlabeled data. These techniques can be broadly categorized into dimension reduction, which transforms and combines the original set of measurements to simplify data, and cluster analysis, which seeks to group subjects based on some measure of similarity. Unsupervised machine learning can be used to explore alternative subtyping of disorders of gut-brain interaction (DGBI) compared to the existing gastrointestinal symptom-based definitions of Rome IV. PURPOSE This present review aims to familiarize the reader with fundamental concepts of unsupervised machine learning using accessible definitions and provide a critical summary of their application to the evaluation of DGBI subtyping. By considering the overlap between Rome IV clinical definitions and identified clusters, along with clinical and physiological insights, this paper speculates on the possible implications for DGBI. Also considered are algorithmic developments in the unsupervised machine learning community that may help leverage increasingly available omics data to explore biologically informed definitions. Unsupervised machine learning challenges the modern subtyping of DGBI and, with the necessary clinical validation, has the potential to enhance future iterations of the Rome criteria to identify more homogeneous, diagnosable, and treatable patient populations.
Collapse
Affiliation(s)
- Jarrah M Dowrick
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Simone Bayer
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Chris M A Frampton
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Nicholas J Talley
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Richard B Gearry
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Timothy R Angeli-Gordon
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Department of Surgery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Dezfouli MA, Rashidi SK, Yazdanfar N, Khalili H, Goudarzi M, Saadi A, Kiani Deh Kiani A. The emerging roles of neuroactive components produced by gut microbiota. Mol Biol Rep 2024; 52:1. [PMID: 39570444 DOI: 10.1007/s11033-024-10097-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND As a multifunctional ecosystem, the human digestive system contains a complex network of microorganisms, collectively known as gut microbiota. This consortium composed of more than 1013 microorganisms and Firmicutes and Bacteroidetes are the dominant microbes. Gut microbiota is increasingly recognized for its critical role in physiological processes beyond digestion. Gut microbiota participates in a symbiotic relationship with the host and takes advantage of intestinal nutrients and mutually participates in the digestion of complex carbohydrates and maintaining intestinal functions. METHOD AND RESULT We reviewed the neuroactive components produced by gut microbiota. Interestingly, microbiota plays a crucial role in regulating the activity of the intestinal lymphatic system, regulation of the intestinal epithelial barrier, and maintaining the tolerance to food immunostimulating molecules. The gut-brain axis is a two-way communication pathway that links the gut microbiota to the central nervous system (CNS) and importantly is involved in neurodevelopment, cognition, emotion and synaptic transmissions. The connections between gut microbiota and CNS are via endocrine system, immune system and vagus nerve. CONCLUSION The gut microbiota produces common neurotransmitters and neuromodulators of the nervous system. These compounds play a role in neuronal functions, immune system regulation, gastrointestinal homeostasis, permeability of the blood brain barrier and other physiological processes. This review investigates the essential aspects of the neurotransmitters and neuromodulators produced by gut microbiota and their implications in health and disease.
Collapse
Affiliation(s)
- Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Khalil Rashidi
- Department of Medical Biotechnology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nada Yazdanfar
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamidreza Khalili
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Saadi
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Kiani Deh Kiani
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
13
|
Pastras P, Aggeletopoulou I, Triantos C. Impact of Enteric Nervous Cells on Irritable Bowel Syndrome: Potential Treatment Options. Microorganisms 2024; 12:2036. [PMID: 39458345 PMCID: PMC11510338 DOI: 10.3390/microorganisms12102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a condition that significantly impacts the lifestyle, health, and habits of numerous individuals worldwide. Its diagnosis and classification are based on the Rome criteria, updated periodically to reflect new research findings in this field. IBS can be classified into different types based on symptoms, each with distinct treatment approaches and some differences in their pathophysiology. The exact pathological background of IBS remains unclear, with many aspects still unknown. Recent research developments suggest that disorders in the brain-gut-microbiota axis are key contributors to the symptoms and severity of IBS. The central nervous system (CNS) interacts bidirectionally with intestinal processes within the lumen and the intestinal wall, with the autonomic nervous system, particularly the vagus nerve, playing an important role. However, the enteric nervous system (ENS) is also crucial in the pathophysiological pathway of IBS. The apeline-corticotropin-releasing factor (CRF)-toll-like receptor 4 (TLR4) signaling route via enteric glia and serotonin production in enteroendocrine cells at the enteric barrier are among the most well-understood new findings that affect IBS through the ENS. Additionally, the microbiota regulates neuronal signals, modifying enteric function by altering the number of enteric bacteria and other mechanisms. Given the limited therapeutic options currently available, it is essential to identify new treatment targets, with the brain-gut axis, particularly the enteric nervous system, being a promising focus. This study aims to delineate the molecular mechanisms that induce IBS and to suggest potential targets for future research and treatment of this potentially debilitating disease.
Collapse
Affiliation(s)
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (C.T.)
| | | |
Collapse
|
14
|
Liu R, Luo Y, Ma J, Zhang Q, Sheng Y, Li J, Li H, Zhao T. Traditional Chinese medicine for functional gastrointestinal disorders and inflammatory bowel disease: narrative review of the evidence and potential mechanisms involving the brain-gut axis. Front Pharmacol 2024; 15:1444922. [PMID: 39355776 PMCID: PMC11443704 DOI: 10.3389/fphar.2024.1444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) are common clinical disorders characterized by recurrent diarrhea and abdominal pain. Although their pathogenesis has not been fully clarified, disruptions in intestinal motility and immune function are widely accepted as contributing factors to both conditions, and the brain-gut axis plays a key role in these processes. Traditional Chinese Medicine (TCM) employs a holistic approach to treatment, considers spleen and stomach impairments and liver abnormality the main pathogenesis of these two diseases, and offers a unique therapeutic strategy that targets these interconnected pathways. Clinical evidence shows the great potential of TCM in treating FGIDs and IBD. This study presents a systematic description of the pathological mechanisms of FGIDs and IBD in the context of the brain-gut axis, discusses clinical and preclinical studies on TCM and acupuncture for the treatment of these diseases, and summarizes TCM targets and pathways for the treatment of FGIDs and IBD, integrating ancient wisdom with contemporary biomedical insights. The alleviating effects of TCM on FGID and IBD symptoms are mainly mediated through the modulation of intestinal immunity and inflammation, sensory transmission, neuroendocrine-immune network, and microbiota and their metabolism through brain-gut axis mechanisms. TCM may be a promising treatment option in controlling FGIDs and IBD; however, further high-quality research is required. This review provides a reference for an in-depth exploration of the interventional effects and mechanisms of TCM in FGIDs and IBD, underscoring TCM's potential to recalibrate the dysregulated brain-gut axis in FGIDs and IBD.
Collapse
Affiliation(s)
- RuiXuan Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YunTian Luo
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JinYing Ma
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Sheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashan Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongjiao Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - TianYi Zhao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
15
|
Chen XL, Jiang MZ. [Research progress of metabolomics in children with irritable bowel syndrome]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:989-994. [PMID: 39267517 PMCID: PMC11404471 DOI: 10.7499/j.issn.1008-8830.2404130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder characterized by symptoms such as abdominal pain, diarrhea, constipation, and indigestion. Given its unclear etiology and pathogenesis, and the absence of specific biomarkers, clinical diagnosis and treatment of IBS continue to pose significant challenges. In recent years, metabolomics technology, known for its non-invasive, high-throughput, high-precision, and highly reproducible features, has been widely applied in the diagnosis, treatment, and prognosis of various diseases. Therefore, metabolomics technology is expected to offer novel insights and methodologies for the biological mechanism research, diagnosis, and treatment of IBS. This article reviews recent advancements in the application of metabolomics to IBS, exploring its potential value in the clinical diagnosis and treatment of children with this condition.
Collapse
Affiliation(s)
- Xiao-Long Chen
- Department of Gastroenterology and Pediatric Endoscopy Center, Children's Hospital, Zhejiang University School of Medicine/National Clinical Research Center for Child Health/National Children's Regional Medical Center, Hangzhou 310052, China
| | | |
Collapse
|
16
|
Potter K, Gayle EJ, Deb S. Effect of gut microbiome on serotonin metabolism: a personalized treatment approach. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2589-2602. [PMID: 37922012 DOI: 10.1007/s00210-023-02762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2023]
Abstract
Several factors including diet, exercise, and medications influence the makeup of the resilient but adaptable gut microbiome. Bacteria in the gut have a significant role in the homeostasis of the neurotransmitter serotonin, also known as 5-hydroxytryptamine, involved in mood and behavior. The goal of the current work is to review the effect of the gut microbiome on serotonin metabolism, and how it can potentially contribute to the development of a personalized treatment approach for depression and anxiety. Bacterial strains provide innovative therapeutic targets that can be used for disorders, such as depression, that involve dysregulation of serotonin. Advances in bacterial genomic sequencing have increased the accessibility and affordability of microbiome testing, which unlocks a new targeted pathway to modulate serotonin metabolism by targeting the gut-brain axis. Microbiome testing can facilitate the recommendation of strain-specific probiotic supplements based on patient-specific microbial profiles. Several studies have shown that supplementation with probiotics containing specific species of bacteria, such as Bifidobacterium and Lactobacillus, can improve symptoms of depression. Further research is needed to improve the process and interpretation of microbiome testing and how to successfully incorporate testing results into guiding clinical decision-making. This targeted approach centered around the gut-brain axis can provide a novel way to personalize therapy for mental health disorders.
Collapse
Affiliation(s)
- Kristal Potter
- College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, USA
| | - Erysa J Gayle
- College of Biomedical Sciences, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, USA
| | - Subrata Deb
- College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, USA.
| |
Collapse
|
17
|
Zhou Y, Tang J, Du W, Zhang Y, Ye BC. Screening potential biomarkers associated with insulin resistance in high-fat diet-fed mice by integrating metagenomics and untargeted metabolomics. Microbiol Spectr 2024; 12:e0409423. [PMID: 38411058 PMCID: PMC10986473 DOI: 10.1128/spectrum.04094-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
Insulin resistance is the primary pathophysiological basis for metabolic syndrome and type 2 diabetes. Gut microbiota and microbiota-derived metabolites are pivotal in insulin resistance. However, identifying the specific microbes and key metabolites with causal roles is a challenging task, and the underlying mechanisms require further exploration. Here, we successfully constructed a model of insulin resistance in mice induced by a high-fat diet (HFD) and screened potential biomarkers associated with insulin resistance by integrating metagenomics and untargeted metabolomics. Our findings showed a significant increase in the abundance of 30 species of Alistipes in HFD mice compared to normal diet (ND) mice, while the abundance of Desulfovibrio and Candidatus Amulumruptor was significantly lower in HFD mice than in ND mice. Non-targeted metabolomics analysis identified 21 insulin resistance-associated metabolites, originating from the microbiota or co-metabolized by both the microbiota and the host. These metabolites were primarily enriched in aromatic amino acid metabolism (tryptophan metabolism, tyrosine metabolism, and phenylalanine metabolism) and arginine biosynthesis. Further analysis revealed a significant association between the three distinct genera and 21 differentiated metabolites in the HFD and ND mice. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of representative genomes from 12 species of the three distinct genera further revealed the functional potential in aromatic amino acid metabolism and arginine biosynthesis. This study lays the groundwork for future investigations into the mechanisms through which the gut microbiota and its metabolites impact insulin resistance. IMPORTANCE In this study, we aim to identify the microbes and metabolites linked to insulin resistance, some of which have not been previously reported in insulin resistance-related studies. This adds a complementary dimension to existing research. Furthermore, we establish a correlation between alterations in the gut microbiota and metabolite levels. These findings serve as a foundation for identifying the causal bacterial species and metabolites. They also offer insights that guide further exploration into the mechanisms through which these factors influence host insulin resistance.
Collapse
Affiliation(s)
- Yunyan Zhou
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Jiahui Tang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wei Du
- Laboratory of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yong Zhang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Laboratory of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
18
|
Kasapi M, Xu K, Ebbels TMD, O’Regan DP, Ware JS, Posma JM. LAVASET: Latent Variable Stochastic Ensemble of Trees. An ensemble method for correlated datasets with spatial, spectral, and temporal dependencies. Bioinformatics 2024; 40:btae101. [PMID: 38383048 PMCID: PMC11212485 DOI: 10.1093/bioinformatics/btae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024] Open
Abstract
MOTIVATION Random forests (RFs) can deal with a large number of variables, achieve reasonable prediction scores, and yield highly interpretable feature importance values. As such, RFs are appropriate models for feature selection and further dimension reduction. However, RFs are often not appropriate for correlated datasets due to their mode of selecting individual features for splitting. Addressing correlation relationships in high-dimensional datasets is imperative for reducing the number of variables that are assigned high importance, hence making the dimension reduction most efficient. Here, we propose the LAtent VAriable Stochastic Ensemble of Trees (LAVASET) method that derives latent variables based on the distance characteristics of each feature and aims to incorporate the correlation factor in the splitting step. RESULTS Without compromising on performance in the majority of examples, LAVASET outperforms RF by accurately determining feature importance across all correlated variables and ensuring proper distribution of importance values. LAVASET yields mostly non-inferior prediction accuracies to traditional RFs when tested in simulated and real 1D datasets, as well as more complex and high-dimensional 3D datatypes. Unlike traditional RFs, LAVASET is unaffected by single 'important' noisy features (false positives), as it considers the local neighbourhood. LAVASET, therefore, highlights neighbourhoods of features, reflecting real signals that collectively impact the model's predictive ability. AVAILABILITY AND IMPLEMENTATION LAVASET is freely available as a standalone package from https://github.com/melkasapi/LAVASET.
Collapse
Affiliation(s)
- Melpomeni Kasapi
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London W12 0NN, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, London W12 0HS, United Kingdom
| | - Kexin Xu
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Timothy M D Ebbels
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Declan P O’Regan
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London W12 0NN, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, London W12 0HS, United Kingdom
| | - James S Ware
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London W12 0NN, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, London W12 0HS, United Kingdom
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, United Kingdom
- Program in Medical & Population Genetics, Broad Institute of MIT & Harvard, Cambridge, MA 02142, United States
| | - Joram M Posma
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
19
|
Iribarren C, Savolainen O, Sapnara M, Törnblom H, Simrén M, Magnusson MK, Öhman L. Temporal stability of fecal metabolomic profiles in irritable bowel syndrome. Neurogastroenterol Motil 2024; 36:e14741. [PMID: 38243381 DOI: 10.1111/nmo.14741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/15/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND The potential of the fecal metabolome to serve as a biomarker for irritable bowel syndrome (IBS) depends on its stability over time. Therefore, this study aimed to determine the temporal dynamics of the fecal metabolome, and the potential relationship with stool consistency, in patients with IBS and healthy subjects. METHODS Fecal samples were collected in two cohorts comprising patients with IBS and healthy subjects. For Cohort A, fecal samples collected during 5 consecutive days were analyzed by gas chromatography-tandem mass spectrometry (GC-MS/MS). For Cohort B, liquid chromatography-MS (LC-MS) was used to analyze fecal samples collected at week 0 (healthy and IBS) and at week 4 (patients only). Stool consistency was determined by the Bristol Stool Form scale. KEY RESULTS Fecal samples were collected from Cohort A (seven healthy subjects and eight IBS patients), and Cohort B (seven healthy subjects and 11 IBS patients). The fecal metabolome of IBS patients was stable short-term (Cohort A, 5 days and within the same day) and long-term (Cohort B, 4 weeks). A similar trend was observed over 5 days in the healthy subjects of Cohort A. The metabolome dissimilarity was larger between than within participants over time in both healthy subjects and IBS patients. Further analyses showed that patients had greater range of stool forms (types) than healthy subjects, with no apparent influence on metabolomic dynamics. CONCLUSION & INFERENCES The fecal metabolome is stable over time within IBS patients as well as healthy subjects. This supports the concept of a stable fecal metabolome in IBS despite fluctuations in stool consistency, and the use of single timepoint sampling to further explore how the fecal metabolome is related to IBS pathogenesis.
Collapse
Affiliation(s)
- Cristina Iribarren
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Otto Savolainen
- Chalmers Mass Spectrometry Infrastructure, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Maria Sapnara
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans Törnblom
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Functional Gastrointestinal and Motility Disorders, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Maria K Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Luan J, Zhang F, Suo L, Zhang W, Li Y, Yu X, Liu B, Cao H. Analyzing lung cancer risks in patients with impaired pulmonary function through characterization of gut microbiome and metabolites. BMC Pulm Med 2024; 24:1. [PMID: 38166904 PMCID: PMC10759599 DOI: 10.1186/s12890-023-02825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Lung cancer (LC) is one of the most devastating diseases worldwide, there is growing studies confirm the role of impaired lung function in LC susceptibility. Moreover, gut microbiota dysbiosis is associated with LC severity. Whether alterations in gut microbiota and metabolites are associated with long-term lung dysfunction in LC patients remain unclear. Our study aimed to analyze the risk factors in LC patients with impaired pulmonary function based on the characteristics of the gut microbiome and metabolites. METHODS Fecal samples from 55 LC patients and 28 benign pulmonary nodules patients were collected. Pulmonary ventilation function was graded according to the American Thoracic Society/ European Respiratory Society (ATS/ERS) method. LC patients were divided into 3 groups, including 20 patients with normal lung ventilation, 23 patients with mild pulmonary ventilation dysfunction and 12 patients with moderate or above pulmonary ventilation dysfunction. The fecal samples were analyzed using 16 S rRNA gene amplicon sequencing and metabolomics. RESULTS The gut microbiome composition between LC patients and benign pulmonary nodules patients presented clearly differences based on Partial Least Squares Discriminant Analysis (PLS-DA). Pulmonary ventilation function was positively correlated with LC tumor stage, the richness and diversity of the gut microbiota in LC patients with moderate or above pulmonary ventilation dysfunction increased significantly, characterized by increased abundance of Subdoligranulum and Romboutsia. The metabolomics analysis revealed 69 differential metabolites, which were mainly enriched in beta-Alanine metabolism, styrene degradation and pyrimidine metabolism pathway. The area under the curve (AUC) combining the gut microbiome and metabolites was 90% (95% CI: 79-100%), indicating that the two species and four metabolites might regarded as biomarkers to assess the prediction of LC patients with impaired pulmonary function. CONCLUSIONS Our results showed that microbiome and metabolomics analyses provide important candidate to be used as clinically diagnostic biomarkers and therapeutic targets related to lung cancer with impaired pulmonary function.
Collapse
Affiliation(s)
- Jiahui Luan
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Fuxin Zhang
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Lijun Suo
- Department of Pulmonary and Critical Care Medicine, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Wei Zhang
- Department of General Thoracic Surgery, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Yige Li
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaofeng Yu
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Bo Liu
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China.
- Department of Pulmonary and Critical Care Medicine, Zibo Municipal Hospital, Zibo, 255400, China.
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Hongyun Cao
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China.
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China.
| |
Collapse
|
21
|
Kraimi N, Ross T, Pujo J, De Palma G. The gut microbiome in disorders of gut-brain interaction. Gut Microbes 2024; 16:2360233. [PMID: 38949979 PMCID: PMC11218806 DOI: 10.1080/19490976.2024.2360233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 07/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs), chronic disorders characterized by either abdominal pain, altered intestinal motility, or their combination, have a worldwide prevalence of more than 40% and impose a high socioeconomic burden with a significant decline in quality of life. Recently, FGIDs have been reclassified as disorders of gut-brain interaction (DGBI), reflecting the key role of the gut-brain bidirectional communication in these disorders and their impact on psychological comorbidities. Although, during the past decades, the field of DGBIs has advanced significantly, the molecular mechanisms underlying DGBIs pathogenesis and pathophysiology, and the role of the gut microbiome in these processes are not fully understood. This review aims to discuss the latest body of literature on the complex microbiota-gut-brain interactions and their implications in the pathogenesis of DGBIs. A better understanding of the existing communication pathways between the gut microbiome and the brain holds promise in developing effective therapeutic interventions for DGBIs.
Collapse
Affiliation(s)
- Narjis Kraimi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Taylor Ross
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Julien Pujo
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| |
Collapse
|
22
|
Sun L, Pang Y, Wang Z, Liu J, Peng R, Yan Y, Yang Y, Tang L. Effect of traditional Chinese medicine combined group psychotherapy on psychological distress management and gut micro-biome regulation for colorectal cancer survivors: a single-arm phase I clinical trial. Support Care Cancer 2023; 31:698. [PMID: 37964024 DOI: 10.1007/s00520-023-08131-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVE To evaluate the efficacy and feasibility of utilizing Traditional Chinese Medicine (TCM) combined group psychotherapy intervention on psychological distress management and gut micro-biome regulation for colorectal (CRC) survivors. METHODS A single-arm phase I clinical trial was conducted between December 2020 and December 2021 in Xiyuan Hospital and Beijing Cancer Hospital in China. Inclusion criteria included stage I-III CRC survivors after radical surgery with age between 18 and 75. The intervention was a 6-week online TCM combined group psychotherapy intervention including 90-min communication, TCM lifestyle coaching, self-acupressure guidance, and mindfulness practice led by TCM oncologist and psychiatrist each week. Outcomes were measured by Self-rating Anxiety Scale (SAS), Self-rating Depression Scale (SDS), Fear of Cancer Recurrence Inventor (FCRI), and Quality of Life Questionnaire (QLQ-C30). Fecal samples before and after intervention were collected for 16Sr RNA analysis. RESULTS We recruited 40 CRC survivors and 38 of them finally completed all interventions with average age of 58±13 years' old. Paired t-test showed that SAS at week 2(35.4±5.8), week 4 (37.9±10.5) and week 6 (31.3±6.4) during the intervention was significantly lower than baseline (42.1±8.3, p<0.05 respectively). SDS score also declined substantially from baseline (38.8±10.7) to week 2 (28.3±8.8, p<0.001) and week 6 (25.4±7.7, p<0.001). FCRI decreased from 19.4±7.2 at baseline to 17.5±7.1 at week 4 (p=0.038) and 16.3±5.8 at week 6 (p=0.008). Although changes of QLQ-C30 were not statistically prominent, symptom burden of insomnia and fatigue significantly alleviated. The abundances of gut microbiota Intestinibacter, Terrisporobacter, Coprobacter, and Gordonibacter were all significantly elevated after intervention. CONCLUSIONS TCM combined group psychotherapy intervention is feasible and effective to reduce CRC survivors' psychological distress and modulate certain gut bacteria which might be associated with brain-gut axis effect. It is necessary to carry out with phase II randomized controlled clinical trial.
Collapse
Affiliation(s)
- Lingyun Sun
- Oncology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ying Pang
- Rehabilitation Department, Beijing Cancer Hospital, Beijing, China
| | - Zixu Wang
- Clinical Basic Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxi Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Rongyan Peng
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yunzi Yan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Yang
- Oncology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Lili Tang
- Rehabilitation Department, Beijing Cancer Hospital, Beijing, China.
| |
Collapse
|
23
|
Kragsnaes MS, Miguens Blanco J, Mullish BH, Serrano‐Contreras JI, Kjeldsen J, Horn HC, Pedersen JK, Munk HL, Nilsson AC, Salam A, Lewis MR, Chekmeneva E, Kristiansen K, Marchesi JR, Ellingsen T. Small Intestinal Permeability and Metabolomic Profiles in Feces and Plasma Associate With Clinical Response in Patients With Active Psoriatic Arthritis Participating in a Fecal Microbiota Transplantation Trial: Exploratory Findings From the FLORA Trial. ACR Open Rheumatol 2023; 5:583-593. [PMID: 37736702 PMCID: PMC10642255 DOI: 10.1002/acr2.11604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE We investigated intestinal permeability and fecal, plasma, and urine metabolomic profiles in methotrexate-treated active psoriatic arthritis (PsA) and how this related to clinical response following one sham or fecal microbiota transplantation (FMT). METHODS This exploratory study is based on the FLORA trial cohort, in which 31 patients with moderate-to-high peripheral PsA disease activity, despite at least 3 months of methotrexate-treatment, were included in a 26-week, double-blind, 1:1 randomized, sham-controlled trial. Participants were randomly allocated to receive either one healthy donor FMT (n = 15) or sham (n = 16) via gastroscopy. The primary trial end point was the proportion of treatment failures through 26 weeks. We performed a lactulose-to-mannitol ratio (LMR) test at baseline (n = 31) and at week 26 (n = 26) to assess small intestinal permeability. Metabolomic profiles in fecal, plasma, and urine samples collected at baseline, weeks 4, 12, and 26 were measured using 1 H Nuclear Magnetic Resonance. RESULTS Trial failures (n = 7) had significantly higher LMR compared with responders (n = 19) at week 26 (0.027 [0.017-0.33]) vs. 0.012 [0-0.064], P = 0.013), indicating increased intestinal permeability. Multivariate analysis revealed a significant model for responders (n = 19) versus failures (n = 12) at all time points based on their fecal (P < 0.0001) and plasma (P = 0.005) metabolomic profiles, whereas urine metabolomic profiles did not differ between groups (P = 1). Fecal N-acetyl glycoprotein GlycA correlated with Health Assessment Questionnaire Disability Index (coefficient = 0.50; P = 0.03) and fecal propionate correlated with American College of Rheumatology 20 response at week 26 (coefficient = 27, P = 0.02). CONCLUSION Intestinal permeability and fecal and plasma metabolomic profiles of patients with PsA were associated with the primary clinical trial end point, failure versus responder.
Collapse
Affiliation(s)
| | | | - Benjamin H. Mullish
- Imperial College London and St. Mary's Hospital, Imperial College Healthcare National Health Service TrustLondonUK
| | | | - Jens Kjeldsen
- Odense University Hospital and University of Southern DenmarkOdenseDenmark
| | | | | | | | | | - Ash Salam
- Imperial College London, Hammersmith Hospital CampusLondonUK
| | | | | | - Karsten Kristiansen
- University of Copenhagen, Copenhagen, Denmark, and Institute of Metagenomics, Qingdao‐Europe Advanced Institute for Life SciencesQingdaoChina
| | | | - Torkell Ellingsen
- Odense University Hospital and University of Southern DenmarkOdenseDenmark
| |
Collapse
|
24
|
Gao Y, Ding P, Wang J, Zhang C, Ji G, Wu T. Application of metabolomics in irritable bowel syndrome in recent 5 years. Int Immunopharmacol 2023; 124:110776. [PMID: 37603947 DOI: 10.1016/j.intimp.2023.110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders worldwide, characterized by chronic abdominal pain or discomfort and altered bowel habits. To date, the exact pathogenesis of IBS remains elusive, but is clearly multifactorial, including environmental and host factors. However, the management of patients with IBS is challenging and the current diagnostic and therapeutic modalities have unsatisfactory outcomes. Therefore, it is important to develop more effective methods to diagnose IBS early. Metabolomics studies the metabolites most closely related to patient characteristics, which can provide useful clinical biomarkers that can be applied to IBS and may open up new diagnostic approaches. Traditional Chinese medicine (TCM) can play a role in improving symptoms and protecting target organs, but its mechanism needs to be studied in depth. In this review, based on PubMed/MEDLINE and other databases, we searched metabolomics studies related to IBS in the past 5 years, including those related to clinical studies and animal studies, as well as literatures on TCM interventions in IBS, to provide an updated overview of the application of metabolomics to the diagnosis and treatment of IBS and the improvement of IBS by TCM.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Caiyun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
25
|
Zheng H, Zhang C, Zhang J, Duan L. "Sentinel or accomplice": gut microbiota and microglia crosstalk in disorders of gut-brain interaction. Protein Cell 2023; 14:726-742. [PMID: 37074139 PMCID: PMC10599645 DOI: 10.1093/procel/pwad020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/06/2023] [Indexed: 04/20/2023] Open
Abstract
Abnormal brain-gut interaction is considered the core pathological mechanism behind the disorders of gut-brain interaction (DGBI), in which the intestinal microbiota plays an important role. Microglia are the "sentinels" of the central nervous system (CNS), which participate in tissue damage caused by traumatic brain injury, resist central infection and participate in neurogenesis, and are involved in the occurrence of various neurological diseases. With in-depth research on DGBI, we could find an interaction between the intestinal microbiota and microglia and that they are jointly involved in the occurrence of DGBI, especially in individuals with comorbidities of mental disorders, such as irritable bowel syndrome (IBS). This bidirectional regulation of microbiota and microglia provides a new direction for the treatment of DGBI. In this review, we focus on the role and underlying mechanism of the interaction between gut microbiota and microglia in DGBI, especially IBS, and the corresponding clinical application prospects and highlight its potential to treat DGBI in individuals with psychiatric comorbidities.
Collapse
Affiliation(s)
- Haonan Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Cunzheng Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| |
Collapse
|
26
|
Paripati N, Nesi L, Sterrett JD, Dawud LM, Kessler LR, Lowry CA, Perez LJ, DeSipio J, Phadtare S. Gut Microbiome and Lipidome Signatures in Irritable Bowel Syndrome Patients from a Low-Income, Food-Desert Area: A Pilot Study. Microorganisms 2023; 11:2503. [PMID: 37894161 PMCID: PMC10609137 DOI: 10.3390/microorganisms11102503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastroenterological disorder with triggers such as fructose. We showed that our IBS patients suffering from socioeconomic challenges have a significantly high consumption of high-fructose corn syrup (HFCS). Here, we characterize gut microbial dysbiosis and fatty acid changes, with respect to IBS, HFCS consumption, and socioeconomic factors. Fecal samples from IBS patients and healthy controls were subjected to microbiome and lipidome analyses. We assessed phylogenetic diversity and community composition of the microbiomes, and used linear discriminant analysis effect size (LEfSe), analysis of compositions of microbiomes (ANCOM) on highly co-occurring subcommunities (modules), least absolute shrinkage and selection operator (LASSO) on phylogenetic isometric log-ratio transformed (PhILR) taxon abundances to identify differentially abundant taxa. Based on a Procrustes randomization test, the microbiome and lipidome datasets correlated significantly (p = 0.002). Alpha diversity correlated with economic factors (p < 0.001). Multiple subsets of the phylogenetic tree were associated with HFCS consumption (p < 0.001). In IBS patients, relative abundances of potentially beneficial bacteria such as Monoglobaceae, Lachnospiraceae, and Ruminococcaceae were lower (p = 0.007), and Eisenbergiella, associated with inflammatory disorders, was higher. In IBS patients, certain saturated fatty acids were higher and unsaturated fatty acids were lower (p < 0.05). Our study aims first to underscore the influence of HFCS consumption and socioeconomic factors on IBS pathophysiology, and provides new insights that inform patient care.
Collapse
Affiliation(s)
- Nikita Paripati
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Department of Emergency Medicine, Penn Medicine, Pittsburgh, PA 15261, USA
| | - Lauren Nesi
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Department of Urology, Detroit Medical Center, Detroit, MI 4820, USA
| | - John D Sterrett
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lamya'a M Dawud
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lyanna R Kessler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lark J Perez
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Joshua DeSipio
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Department of Gastroenterology, Cooper University Hospital, Camden, NJ 08103, USA
| | - Sangita Phadtare
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
27
|
Wu S, Yang Z, Yuan C, Liu S, Zhang Q, Zhang S, Zhu S. Coffee and tea intake with long-term risk of irritable bowel syndrome: a large-scale prospective cohort study. Int J Epidemiol 2023; 52:1459-1472. [PMID: 36882107 DOI: 10.1093/ije/dyad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND To investigate prospective association of coffee and tea intake with incident irritable bowel syndrome (IBS) in a long-term cohort. METHODS Participants free of IBS, coeliac disease, inflammatory bowel disease and any cancer at baseline from UK Biobank were included. Coffee and tea intake was measured separately via baseline touchscreen questionnaire, with four categories for each intake (0, 0.5-1, 2-3 and ≥4 cups/day). Primary outcome was incident IBS. Cox proportional hazard model was used to estimate associated risk. RESULTS Among 425 387 participants, 83 955(19.7%) and 186 887(43.9%) consumed ≥4 cups/day of coffee and tea at baseline, respectively. During median 12.4-year follow-up, incident IBS was identified in 7736 participants. Compared with no coffee intake, consumption of 0.5-1, 2-3 and ≥4 cups/day was associated with lower IBS risk [hazard ratio (HR)=0.93, 95% CI: 0.87-0.99; 0.91, 0.85-0.97; 0.81, 0.76-0.88; Ptrend < 0.001]. Specifically, decreased risk was evident in individuals who consumed instant (HR = 0.83, 0.78-0.88) or ground coffee (HR = 0.82, 0.76-0.88) compared with no coffee drink. Regarding tea intake, protective association was only found in individuals who consumed 0.5-1 cup/day (HR = 0.87, 0.80-0.95), whereas no significant association was detected in those who consumed 2-3 (HR = 0.94, 0.88-1.01) or ≥4 cups/day (HR = 0.95, 0.89-1.02) compared with no-tea intake (Ptrend = 0.848). CONCLUSIONS Higher intake of coffee, particularly instant and ground coffee, is associated with lower risk of incident IBS, with significant dose-response relationship. Moderate-tea intake (0.5-1 cup/day) is associated with lower IBS risk.
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Gastroenterology, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, China
| | - Zhirong Yang
- Department of Computational Biology and Health Informatic, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Primary Care Unit, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Changzheng Yuan
- Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Si Liu
- Department of Gastroenterology, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, China
| | - Qian Zhang
- Department of Gastroenterology, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, China
| |
Collapse
|
28
|
Leigh SJ, Uhlig F, Wilmes L, Sanchez-Diaz P, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Hyland NP, Cryan JF, Clarke G. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota-gut-brain axis perspective. J Physiol 2023; 601:4491-4538. [PMID: 37756251 DOI: 10.1113/jp281951] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lars Wilmes
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paula Sanchez-Diaz
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Niall P Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
29
|
Oh CK, Park JK, Kim YJ, Kim JB. Efficacy and safety of human gut-derived multi-strain probiotics in patients with irritable bowel syndrome: A prospective open-label observation study. Medicine (Baltimore) 2023; 102:e34899. [PMID: 37653742 PMCID: PMC10470732 DOI: 10.1097/md.0000000000034899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/25/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
This study aimed to investigate the efficacy and safety of human gut-derived multi-strain probiotics in patients with irritable bowel syndrome (IBS). This was an open-label, prospective, observational study. Patients with IBS were administered human gut-derived multi-strain probiotics for 4 weeks. The primary and secondary outcomes were based on the overall responder rate of the total IBS severity scoring system (IBS-SSS) score (>50-point decrease) and the IBS quality of life (IBS-QOL) score and IBS-SSS1 subscore (>10-point decrease in both scores), respectively. The estimated response rate is 55%. Of 44 patients, the total IBS-SSS score responder rate was 18.2% and 63.6% of patients at 2 and 4 weeks, respectively (P = .018). Compared with baseline, a significant improvement in the IBS-QOL score was observed in 27.3% and 63.6% of patients at 2 and 4 weeks, respectively (P = .001). Overall improvement rates in the IBS-SSS1 subscore were observed in 29.5% and 61.4% of patients at 2 and 4 weeks, respectively (P < .001). Primary and secondary outcomes were higher at 4 weeks (total IBS-SSS score, 63.6%; IBS-QOL score, 63.6%; IBS-SSS1 subscore, 61.4%) than the estimated responder rate (55%). Human gut-derived multi-strain probiotics have the potential to become an effective and safe treatment option for IBS patients.
Collapse
Affiliation(s)
- Chang Kyo Oh
- Division of Gastroenterology, Department of Internal Medicine, Kangnam Sacred Heart Hospital, College of Medicine, The Hallym University of Korea, Yeoungdeungpo-gu, Seoul, Korea
| | - Jae Keun Park
- Division of Gastroenterology, Department of Internal Medicine, Kangnam Sacred Heart Hospital, College of Medicine, The Hallym University of Korea, Yeoungdeungpo-gu, Seoul, Korea
| | - Yu Jin Kim
- Division of Gastroenterology, Department of Internal Medicine, Kangnam Sacred Heart Hospital, College of Medicine, The Hallym University of Korea, Yeoungdeungpo-gu, Seoul, Korea
| | - Jin Bae Kim
- Division of Gastroenterology, Department of Internal Medicine, Kangnam Sacred Heart Hospital, College of Medicine, The Hallym University of Korea, Yeoungdeungpo-gu, Seoul, Korea
| |
Collapse
|
30
|
Bartmanski BJ, Rocha M, Zimmermann-Kogadeeva M. Recent advances in data- and knowledge-driven approaches to explore primary microbial metabolism. Curr Opin Chem Biol 2023; 75:102324. [PMID: 37207402 PMCID: PMC10410306 DOI: 10.1016/j.cbpa.2023.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
With the rapid progress in metabolomics and sequencing technologies, more data on the metabolome of single microbes and their communities become available, revealing the potential of microorganisms to metabolize a broad range of chemical compounds. The analysis of microbial metabolomics datasets remains challenging since it inherits the technical challenges of metabolomics analysis, such as compound identification and annotation, while harboring challenges in data interpretation, such as distinguishing metabolite sources in mixed samples. This review outlines the recent advances in computational methods to analyze primary microbial metabolism: knowledge-based approaches that take advantage of metabolic and molecular networks and data-driven approaches that employ machine/deep learning algorithms in combination with large-scale datasets. These methods aim at improving metabolite identification and disentangling reciprocal interactions between microbes and metabolites. We also discuss the perspective of combining these approaches and further developments required to advance the investigation of primary metabolism in mixed microbial samples.
Collapse
Affiliation(s)
| | - Miguel Rocha
- Centre of Biological Engineering, University of Minho, Campus of Gualtar, Braga, Portugal
| | | |
Collapse
|
31
|
Huang KY, Wang FY, Lv M, Ma XX, Tang XD, Lv L. Irritable bowel syndrome: Epidemiology, overlap disorders, pathophysiology and treatment. World J Gastroenterol 2023; 29:4120-4135. [PMID: 37475846 PMCID: PMC10354571 DOI: 10.3748/wjg.v29.i26.4120] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 07/10/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disease with a significant impact on patients' quality of life and a high socioeconomic burden. And the understanding of IBS has changed since the release of the Rome IV diagnosis in 2016. With the upcoming Rome V revision, it is necessary to review the results of IBS research in recent years. In this review of IBS, we can highlight future concerns by reviewing the results of IBS research on epidemiology, overlap disorders, pathophysiology, and treatment over the past decade and summarizing the latest research.
Collapse
Affiliation(s)
- Kai-Yue Huang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
- Institute of Digestive Diseases, Beijing Institute of Spleen and Stomach Disease of Traditional Chinese Medicine, Beijing 100091, China
| | - Feng-Yun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
- Institute of Digestive Diseases, Beijing Institute of Spleen and Stomach Disease of Traditional Chinese Medicine, Beijing 100091, China
| | - Mi Lv
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
- Institute of Digestive Diseases, Beijing Institute of Spleen and Stomach Disease of Traditional Chinese Medicine, Beijing 100091, China
| | - Xiang-Xue Ma
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
- Institute of Digestive Diseases, Beijing Institute of Spleen and Stomach Disease of Traditional Chinese Medicine, Beijing 100091, China
| | - Xu-Dong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
- Institute of Digestive Diseases, Beijing Institute of Spleen and Stomach Disease of Traditional Chinese Medicine, Beijing 100091, China
| | - Lin Lv
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
- Institute of Digestive Diseases, Beijing Institute of Spleen and Stomach Disease of Traditional Chinese Medicine, Beijing 100091, China
| |
Collapse
|
32
|
Duncanson K, Tikhe D, Williams GM, Talley NJ. Irritable bowel syndrome - controversies in diagnosis and management. Expert Rev Gastroenterol Hepatol 2023; 17:649-663. [PMID: 37317843 DOI: 10.1080/17474124.2023.2223975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
INTRODUCTION The irritable bowel syndrome (IBS) is the best-recognized disorder of gut brain interactions (DGBI). However, it is controversial if the Rome IV criteria iteration for IBS diagnosis is fit for purpose. AREAS COVERED This review critically evaluates Rome IV criteria for diagnosis of IBS and addresses clinical considerations in IBS treatment and management, including dietary factors, biomarkers, disease mimics, symptom severity, and subtypes. The role of diet in IBS is critically reviewed along with the influence of the microbiota, including small intestinal bacterial overgrowth. EXPERT OPINION Emerging data suggest the Rome IV criteria are more suitable for identifying severe IBS and least useful for sub-diagnostic patients who are still likely to benefit from IBS treatment. Despite convincing evidence that IBS symptoms are diet-driven and often postprandial, a relationship to eating is not a Rome IV diagnostic criterion. Few IBS biomarkers have been identified, suggesting the syndrome is too heterogeneous to be measured by a single marker, and combined biomarker, clinical, dietary, and microbial profiling may be needed for objective characterization. With many organic diseases mimicking and overlapping with IBS, it's important clinicians are knowledgable about this to mitigate the risk of missing comorbid organic intestinal disease and to optimally treat IBS symptoms.
Collapse
Affiliation(s)
- Kerith Duncanson
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Centre of Research Excellence in Digestive Health, The University of Newcastle, New Lambton Heights, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Dhanashree Tikhe
- Centre of Research Excellence in Digestive Health, The University of Newcastle, New Lambton Heights, NSW, Australia
- Department of Gastroenterology, John Hunter Hospital, Hunter New England Local Health District, New Lambton Heights, NSW, Australia
| | - Georgina M Williams
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Centre of Research Excellence in Digestive Health, The University of Newcastle, New Lambton Heights, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nicholas J Talley
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
- Centre of Research Excellence in Digestive Health, The University of Newcastle, New Lambton Heights, NSW, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Gastroenterology, John Hunter Hospital, Hunter New England Local Health District, New Lambton Heights, NSW, Australia
| |
Collapse
|
33
|
Todor TS, Fukudo S. Systematic review and meta-analysis of calculating degree of comorbidity of irritable bowel syndrome with migraine. Biopsychosoc Med 2023; 17:22. [PMID: 37291550 DOI: 10.1186/s13030-023-00275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) and migraines are often comorbid each other. These disorders are likely to be bidirectionally linked through the gut-brain axis and share several underlying mechanisms including central nervous system sensitization. However, quantitative analysis of comorbidity was not reported enough. The aim of this systematic review and meta-analysis was to calculate the present degree of comorbidity of these two disorders. METHODS A literature search was performed searching for articles describing IBS or migraine patients with the same inverse comorbidity. Pooled odds ratios (ORs) or hazard ratios (HRs) with 95% confidence intervals (CIs) were then extracted. The total effect estimates were determined and presented by random effect forest plots for the group of articles with IBS patients with migraine and the group of articles on migraine sufferers with comorbid IBS separately. The average results of these plots were compared. RESULTS The literature search resulted in initial 358 articles and final 22 articles for the meta-analysis. The total OR values obtained were 2.09 [1.79 - 2.43] in IBS with comorbid migraine or headache, 2.51 [1.76 - 3.58] for migraineurs with comorbid IBS and an overall HR of 1 .62 [1.29 - 2.03] was found for cohort studies of migraine sufferers with comorbid IBS. A similar expression of a selection of other comorbidities was found in IBS and migraine patients, especially for depression and fibromyalgia a strong similarity was found in their expression rate. CONCLUSIONS This systematic review with meta-analysis was the first to combine data on IBS patients with comorbid migraine and migraineurs with comorbid IBS. The fact that closely related existential rates were observed between these two groups should be used as motivation for future research to further investigate these disorders for why this similarity occurs. Mechanisms involved in central hypersensitivity such as genetic risk factors, mitochondrial dysfunction and microbiota are particularly good candidates. Experimental designs in which therapeutic methods for these conditions can be exchanged or combined may also lead to the discovery of more efficient treatment methods.
Collapse
Affiliation(s)
- Tatvan S Todor
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, 980-8575, Japan
- Maastricht University, Maastricht, Netherlands
| | - Shin Fukudo
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, 980-8575, Japan.
| |
Collapse
|
34
|
Vanuytsel T, Bercik P, Boeckxstaens G. Understanding neuroimmune interactions in disorders of gut-brain interaction: from functional to immune-mediated disorders. Gut 2023; 72:787-798. [PMID: 36657961 PMCID: PMC10086308 DOI: 10.1136/gutjnl-2020-320633] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023]
Abstract
Functional gastrointestinal disorders-recently renamed into disorders of gut-brain interaction-such as irritable bowel syndrome and functional dyspepsia are highly prevalent conditions with bothersome abdominal symptoms in the absence of structural abnormalities. While traditionally considered as motility disorders or even psychosomatic conditions, our understanding of the pathophysiology has evolved significantly over the last two decades. Initial observations of subtle mucosal infiltration with immune cells, especially mast cells and eosinophils, are since recently being backed up by mechanistic evidence demonstrating increased release of nociceptive mediators by immune cells and the intestinal epithelium. These mediators can activate sensitised neurons leading to visceral hypersensitivity with bothersome symptoms. The interaction between immune activation and an impaired barrier function of the gut is most likely a bidirectional one with alterations in the microbiota, psychological stress and food components as upstream players in the pathophysiology. Only few immune-targeting treatments are currently available, but an improved understanding through a multidisciplinary scientific approach will hopefully identify novel, more precise treatment targets with ultimately better outcomes.
Collapse
Affiliation(s)
- Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMeta), KU Leuven, Leuven, Belgium.,Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Premysl Bercik
- Faculty of Health Sciences, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Guy Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMeta), KU Leuven, Leuven, Belgium .,Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Zhang M, Zheng Y, Sun Z, Cao C, Zhao W, Liu Y, Zhang W, Zhang H. Change in the Gut Microbiome and Immunity by Lacticaseibacillus rhamnosus Probio-M9. Microbiol Spectr 2023; 11:e0360922. [PMID: 36912650 PMCID: PMC10100958 DOI: 10.1128/spectrum.03609-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
With the exploding growth of the global market for probiotics and the rapid awakening of public awareness to manage health by probiotic intervention, there is still an active debate about whether the consumption of probiotics is beneficial for nonpatients, which is due to the lack of systematic analysis based on time series multiomics data sets. In this study, we recruited 100 adults from a college in China and performed a random case-control study by using a probiotic (Lacticaseibacillus rhamnosus Probio-M9) as an intervention for 6 weeks, aiming to achieve a comprehensive evaluation and understanding of the beneficial effect of Probio-M9 consumption. By testing advanced blood immunity indicators, sequencing the gut microbiome, and profiling the gut metabolome at baseline and the end of the study, we found that although the probiotic intervention has a limited impact on the human immunity and the gut microbiome and metabolome, the associations between the immunity indicators and multiomics data were strengthened, and further analysis of the gut microbiome's genetic variations revealed inhibited generation of single nucleotide variants (SNVs) by probiotic consumption. Taken together, our findings indicated an underestimated influence of the probiotic, not on altering the microbial composition but on strengthening the association between human immunity and commensal microbes and stabilizing the genetic variations of the gut microbiome. IMPORTANCE Although the global market for probiotics is growing explosively, there is still an active debate about whether the consumption of probiotics is beneficial for nonpatients. In this study, we recruited 100 adults from a college in China and performed 6 weeks of intervention for half of the volunteers. By analyzing the time series multiomics data in this study, we found that the probiotic intervention (i) has a limited effect on human immunity or the global structure of the gut microbiome and metabolome, (ii) can largely influence the correlation of the development between multiomics data and immunity, which was not able to be discovered by conventional differential abundance analysis, and (iii) can inhibit the generation of SNVs in the gut microbiome instead of promoting it.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Yan Zheng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Zheng Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Chenxia Cao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Wei Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Yangshuo Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| |
Collapse
|
36
|
Concentrations of Plasma Amino Acids and Neurotransmitters in Participants with Functional Gut Disorders and Healthy Controls. Metabolites 2023; 13:metabo13020313. [PMID: 36837931 PMCID: PMC9959678 DOI: 10.3390/metabo13020313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Amino acids are important in several biochemical pathways as precursors to neurotransmitters which impact biological processes previously linked to functional gastrointestinal disorders (FGIDs). Dietary protein consumption, metabolic host processes, and the gut microbiome can influence the plasma concentration of amino acids and neurotransmitters, and their uptake by tissues. The aim of this analysis was to quantify 19 proteogenic and 4 non-proteogenic amino acids and 19 neurotransmitters (including precursors and catabolites, herein referred to as neurotransmitters) to ascertain if their circulating concentrations differed between healthy participants and those with FGIDs. Plasma proteogenic and non-proteogenic amino acids and neurotransmitters were measured using ultra-performance liquid chromatography and liquid chromatography-mass spectrometry, respectively, from 165 participants (Rome IV: irritable bowel syndrome (IBS-constipation, IBS-diarrhea), functional constipation, functional diarrhea, and healthy controls). There were significant differences (p < 0.05) in pairwise comparisons between healthy controls and specific FGID groups for branched-chain amino acids (BCAAs), ornithine, and alpha-aminobutyric acid. No other significant differences were observed for the neurotransmitters or any other amino acids analyzed. Multivariate and bivariate correlation analyses between proteogenic and non-proteogenic amino acids and neurotransmitters for constipation (constipation (IBS-C and functional constipation) and phenotypes diarrhea (IBS-D and functional diarrhea)) and healthy controls suggested that associations between BCAAs, 5-hydroxytryptophan, and kynurenine in combination with tyrosine, 3,4-dihydroxyphenylalanine, and 3,4-dihydroxyphenylacetic acid and associations with gamma-aminobutyric acid, glutamate, asparagine, and serine are likely disrupted in FGID phenotypes. In conclusion, although correlations were evident between some proteogenic and non-proteogenic amino acids and neurotransmitters, the results showed minor concentration differences in plasma proteogenic and non-proteogenic amino acids, amino acid-derived metabolites, and neurotransmitters between FGID phenotypes and healthy controls.
Collapse
|
37
|
Simrén M. Targeting the gut microenvironment in IBS to improve symptoms. Nat Rev Gastroenterol Hepatol 2023; 20:69-70. [PMID: 36447024 DOI: 10.1038/s41575-022-00718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden. .,Center for Functional Gastrointestinal and Motility Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
38
|
Chen Q, Zhang H, Sun CY, He QY, Zhang RR, Luo BF, Zhou ZH, Chen XF. Evaluation of two laboratory model methods for diarrheal irritable bowel syndrome. Mol Med 2023; 29:5. [PMID: 36635623 PMCID: PMC9837933 DOI: 10.1186/s10020-022-00599-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Diarrheal irritable bowel syndrome (IBS-D) is a common chronic functional gastrointestinal disorder, and the underlying pathogenic mechanism is still unclear. Animal models that mimic the pathological state of IBS-D patients were constructed to provide a reference for later drug research and model development. METHODS The IBS-D model was induced using restraint stress and chemical stimulation (rhubarb), and rats were divided into normal control group (NC), chemically stimulated group (CS), and restraint stress group (RS). Visceral motility responses to Colorectal Balloon Dilation (CRD) were measured by Abdominal Withdrawal Reflex (AWR); evaluation of faecal properties and water content; determination of colonic tissue tight junction (TJ) mRNA expression by RT-PCR; measurement of inflammatory cytokines by ELISA; and intestinal flora and short chain fatty acids. RESULTS Compared to NC group, CS and RS group rats showed increased intestinal sensitivity and Bristol stool score, significant diarrheal symptoms and weight loss. Mucin 2, ZO-1, OCLN, CLDN4 mRNA expression was reduced and the intestinal mucosal barrier function was diminished. In addition, the levels of inflammatory factors IL-1β, IL-6, IL-8, IL-10 and TNF-α increased, the abundance and diversity of intestinal flora decreased, the content of beneficial bacteria such as Bifidobacteria decreased, and SCFAs such as acetic acid, propionic acid and butyric acid decreased to different degrees. Although, no significant difference was observed for any molecular and inflammatory marker, but compared to CS group, RS group had less water in the stool, higher visceral sensitivity, and higher relative abundance of beneficial intestinal bacteria such as Actinobacteria. CONCLUSION In conclusion, restraint stress combined with chemical stimulation can mimic the pathological state of diarrhoea symptoms, visceral hypersensitivity, reduced intestinal mucosal barrier permeability, immune regulatory dysfunction and dysbiosis in IBS-D patients. However, herbs with antibacterial effects such as rhubarb and senna, for example, are not suitable as the first choice for chemical stimulation, as they may lead to a decrease in harmful bacteria and an increase in beneficial bacteria in the intestinal fraction and do not perfectly mimic the imbalanced state of intestinal flora in IBS-D patients, while restraint stress may be a key factor in modelling.
Collapse
Affiliation(s)
- Qian Chen
- Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004 Jiangxi China
| | - Hua Zhang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004 Jiangxi China
| | - Chang-Yue Sun
- Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004 Jiangxi China
| | - Qing-Ying He
- grid.411304.30000 0001 0376 205XChengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
| | - Rui-Rong Zhang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004 Jiangxi China
| | - Bin-Fei Luo
- Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004 Jiangxi China
| | - Zi-Hao Zhou
- Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004 Jiangxi China
| | - Xiao-Fan Chen
- Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004 Jiangxi China
| |
Collapse
|
39
|
Everett BA, Tran P, Prindle A. Toward manipulating serotonin signaling via the microbiota-gut-brain axis. Curr Opin Biotechnol 2022; 78:102826. [PMID: 36332346 DOI: 10.1016/j.copbio.2022.102826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
It is now well established in humans that there is a bidirectional pathway of communication between the central and enteric nervous systems in which members of the microbiome participate. This microbiota-gut-brain axis (MGBA) is crucial for normal development and physiology, and its dysregulation has been implicated in a range of neurological and intestinal disorders. Investigations into the mechanistic underpinnings of the MGBA have identified serotonin as a molecule of particular interest. In this review, we highlight recent advances toward understanding the role of endogenous serotonin in microbial communities, how microbial communities bidirectionally interact with host serotonin, and potential future engineering opportunities to leverage these novel mechanisms for biomedical applications.
Collapse
Affiliation(s)
- Blake A Everett
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peter Tran
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Arthur Prindle
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|