1
|
Bryant KN, Frick-Cheng AE, Solecki LE, Kroh HK, McDonald WH, Lacy DB, McClain MS, Ohi MD, Cover TL. Species-specific components of the Helicobacter pylori Cag type IV secretion system. Infect Immun 2025; 93:e0049324. [PMID: 40208031 PMCID: PMC12070742 DOI: 10.1128/iai.00493-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/08/2025] [Indexed: 04/11/2025] Open
Abstract
Helicobacter pylori strains containing the cag pathogenicity island (PAI) deliver an effector protein (CagA) and non-protein substrates into gastric cells through a process that requires the Cag type IV secretion system (T4SS). The Cag T4SS outer membrane core complex (OMCC) contains multiple copies of five proteins, two of which are species-specific proteins. By using modifications of a previously described OMCC immunopurification method and optimized mass spectrometric methods, we have now isolated additional cag PAI-encoded proteins that are present in lower relative abundance. Four of these proteins (CagW, CagL, CagI, and CagH) do not exhibit sequence relatedness to T4SS components in other bacterial species. Size exclusion chromatography analysis of immunopurified samples revealed that CagW, CagL, CagI, and CagH co-elute with OMCC components. These four Cag proteins are copurified with the OMCC in immunopurifications from a Δcag3 mutant strain (lacking peripheral OMCC components), but not from a ΔcagX mutant strain (defective in OMCC assembly). Negative stain electron microscopy analysis indicated that OMCC preparations isolated from ΔcagW, cagL::kan, ΔcagI, and ΔcagH mutant strains are indistinguishable from wild-type OMCCs. In summary, by using several complementary methods, we have identified multiple species-specific Cag proteins that are associated with the Cag T4SS OMCC and are required for T4SS activity.
Collapse
Affiliation(s)
- Kaeli N. Bryant
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Lauren E. Solecki
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Heather K. Kroh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - W. Hayes McDonald
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark S. McClain
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Melanie D. Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Zhang X, Fam KT, Dai T, Hang HC. Microbiota mechanisms in cancer progression and therapy. Cell Chem Biol 2025:S2451-9456(25)00128-X. [PMID: 40334660 DOI: 10.1016/j.chembiol.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/19/2025] [Accepted: 04/13/2025] [Indexed: 05/09/2025]
Abstract
The composition of the microbiota in patients has been shown to correlate with cancer progression and response to therapy, highlighting unique opportunities to improve patient outcomes. In this review, we discuss the challenges and advancements in understanding the chemical mechanisms of specific microbiota species, pathways, and molecules involved in cancer progression and treatment. We also describe the modulation of cancer and immunotherapy by the microbiota, along with approaches for investigating microbiota enzymes and metabolites. Elucidating these specific microbiota mechanisms and molecules should offer new opportunities for developing enhanced diagnostics and therapeutics to improve outcomes for cancer patients. Nonetheless, many microbiota mechanisms remain to be determined and require innovative chemical genetic approaches.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Kyong Tkhe Fam
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Tingting Dai
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Meng F, Yang L, Ji M, Zhu S, Tao H, Wang G. Nanomaterials: A Prospective Strategy for Biofilm-Forming Helicobacter pylori Treatment. Int J Nanomedicine 2025; 20:5209-5229. [PMID: 40292401 PMCID: PMC12034278 DOI: 10.2147/ijn.s512066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Helicobacter pylori (H. pylori) is prevalent in over 50% of the global population and is recognized as the primary etiological agent for the development of gastric cancer. With the increasing incidence of antibiotic resistance, clinical treatment of H. pylori is a significant challenge. The formation of H. pylori biofilm is an important reason for antibiotic resistance and chronic infection, and it is also one of the key obstacles to eradicating H. pylori. H. pylori biofilm acts as a physical barrier, preventing the penetration of antibiotics and increasing the expression of efflux pump genes and drug-resistant gene mutations. Therefore, the treatment of H. pylori biofilm is extremely challenging. Nanomaterials, such as inorganic nanoparticles, lipid-based nanoparticles, and polymeric nanoparticles, which have properties including disrupting bacterial cell membranes, controlling drug release, and overcoming antibiotic resistance, have attracted significant interest. Furthermore, nanomaterials have the ability to treat H. pylori biofilm owing to their unique size, structure, and physical properties, including the inhibition of biofilm formation, enhancement of biofilm permeability, and disruption of mature biofilm. Moreover, nanomaterials have targeting functions and can carry antimicrobial drugs that play a synergistic role, thus providing a prospective strategy for treating H. pylori biofilm. In this review, we summarize the formation and antibiotic-resistance mechanisms of H. pylori biofilm and outline the latest progress in nanomaterials against H. pylori biofilm with the aim of laying the foundation for the development and clinical application of nanomaterials for anti-H. pylori biofilm.
Collapse
Affiliation(s)
- Fansen Meng
- Department of Gastroenterology, Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| | - Lyukun Yang
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| | - Mingzhong Ji
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| | - Siying Zhu
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| | - Hongjin Tao
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| | - Gangshi Wang
- Department of Gastroenterology, Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| |
Collapse
|
4
|
Wu S, Luo Y, Wei F, Li Y, Fan J, Chen Y, Zhang W, Li X, Xu Y, Chen Z, Xia C, Hu M, Li P, Gu Q. Lactic acid bacteria target NF-κB signaling to alleviate gastric inflammation. Food Funct 2025; 16:3101-3119. [PMID: 40152095 DOI: 10.1039/d4fo06308b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Helicobacter pylori (H. pylori) infection and the resulting gastric inflammation are major contributors to gastric cancer development. Probiotics, particularly Lactobacillus, are promising for their anti-inflammatory potential, yet their exact mechanisms in inhibiting H. pylori-induced inflammation are unclear. In our previous study, Lactiplantibacillus plantarum ZJ316 (L. plantarum ZJ316) demonstrated strong anti-inflammatory effects against H. pylori infection in vivo, but its precise mechanisms were not fully understood. Here, we aimed to investigate how L. plantarum ZJ316 inhibits the inflammatory response to H. pylori infection. Our results demonstrated that L. plantarum ZJ316 effectively reduced the expression of pro-inflammatory cytokines in H. pylori-infected AGS cells. Mechanistically, L. plantarum ZJ316 inhibited the NF-κB signaling pathway by preventing the degradation of IκBα, suppressing p65 phosphorylation, and blocking the nuclear translocation of phosphorylated p65. Treatment with the NF-κB inhibitor BAY 11-7082 further decreased tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and interleukin-1β (IL-1β) levels, confirming the inhibitory effect of L. plantarum ZJ316 on the NF-κB pathway. In H. pylori-infected mice, oral administration of L. plantarum ZJ316 significantly alleviated inflammatory cell infiltration, reduced TNF-α and pepsinogen II (PGII) levels, and increased interleukin-10 (IL-10) levels in serum. A comparative metagenomic analysis of the gastric microbiota revealed a decrease in Prevotella and Desulfovibrio, alongside an increase in Ligilactobacillus and Akkermansia, supporting the protective effects of L. plantarum ZJ316 and correlating with their decreased inflammatory response. In summary, administration of L. plantarum ZJ316 demonstrated robust anti-inflammatory effects against H. pylori infection by suppressing NF-κB signaling and promoting favorable changes in the gastric microbiota composition. Therefore, L. plantarum ZJ316 holds promise as a novel functional food for protecting the body against H. pylori infection.
Collapse
Affiliation(s)
- Shiying Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Yuenuo Luo
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Fangtong Wei
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jiayi Fan
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Yongqiang Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Wenjie Zhang
- Hangzhou Helixinjian Industry Co., Ltd, No. 48 Zijinghua Road, Gudang Street, Xihu District, Hangzhou, Zhejiang 310050, China
| | - Xuelong Li
- Hangzhou Helixinjian Industry Co., Ltd, No. 48 Zijinghua Road, Gudang Street, Xihu District, Hangzhou, Zhejiang 310050, China
| | - Yang Xu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Ziqi Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Chenlan Xia
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Mingyang Hu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
5
|
Shuman JHB, Lin AS, Westland MD, Bryant KN, Fortier GE, Piazuelo MB, Reyzer ML, Judd AM, Tsui T, McDonald WH, McClain MS, Schey KL, Algood HM, Cover TL. Helicobacter pylori CagA and Cag type IV secretion system activity have key roles in triggering gastric transcriptional and proteomic alterations. Infect Immun 2025; 93:e0059524. [PMID: 40047510 PMCID: PMC11977315 DOI: 10.1128/iai.00595-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/24/2025] [Indexed: 04/09/2025] Open
Abstract
Colonization of the human stomach with cag pathogenicity island (PAI)-positive Helicobacter pylori strains is associated with increased gastric cancer risk compared to colonization with cag PAI-negative strains. To evaluate the contributions of the Cag type IV secretion system (T4SS) and CagA (a secreted bacterial oncoprotein) to gastric molecular alterations relevant for carcinogenesis, we infected Mongolian gerbils with a Cag T4SS-positive wild-type (WT) H. pylori strain, one of two Cag T4SS mutant strains (∆cagT or ∆cagY), or a ∆cagA mutant for 12 weeks. Histologic staining revealed a biphasic distribution of gastric inflammation severity in WT-infected animals and minimal inflammation in animals infected with mutant strains. Atrophic gastritis (a premalignant condition), dysplasia, and gastric adenocarcinoma were only detected in WT-infected animals with high inflammation scores. Transcriptional profiling, liquid chromatography-tandem mass spectrometry analysis of micro-extracted tryptic peptides, and imaging mass spectrometry revealed more than a thousand molecular alterations in gastric tissues from WT-infected animals with high inflammation scores compared to uninfected tissues and few alterations in tissues from other groups of infected animals. Proteins with altered abundance in animals with severe Cag T4SS-induced inflammation mapped to multiple pathways, including the complement/coagulation cascade and proteasome pathway. Proteins exhibiting markedly increased abundance in tissues from H. pylori-infected animals with severe inflammation included calprotectin components, proteins involved in proteasome activation, polymeric immunoglobulin receptor (PIGR), interferon-inducible guanylate-binding protein (GBP2), lactoferrin, lysozyme, superoxide dismutase, and eosinophil peroxidase. These results demonstrate key roles for CagA and Cag T4SS activity in promoting gastric mucosal inflammation, transcriptional alterations, and proteomic alterations relevant to gastric carcinogenesis.IMPORTANCEHelicobacter pylori colonizes the stomachs of about half of humans worldwide, and its presence is the primary risk factor for the development of stomach cancer. H. pylori strains isolated from humans can be broadly classified into two groups based on whether they contain a chromosomal cag pathogenicity island, which encodes a secreted effector protein (CagA) and components of a type IV secretion system (T4SS). In experiments using a Mongolian gerbil model, we found that severe gastric inflammation and gastric transcriptional and proteomic alterations related to gastric cancer development were detected only in animals infected with a wild-type H. pylori strain containing CagA and an intact Cag T4SS. Mutant strains lacking CagA or Cag T4SS activity successfully colonized the stomach without inducing detectable pathologic host responses. These findings illustrate two different patterns of H. pylori-host interaction.
Collapse
Affiliation(s)
- Jennifer H. B. Shuman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aung Soe Lin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mandy D. Westland
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gabrielle E. Fortier
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michelle L. Reyzer
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Audra M. Judd
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - W. Hayes McDonald
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Holly M. Algood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Gillet L, Bénéjat L, Jehanne Q, Maunet PL, Perreau C, Ducournau A, Aptel J, Jauvain M, Lehours P. Resistome and virulome determination in Helicobacter pylori using next-generation sequencing with target-enrichment technology. Microbiol Spectr 2025; 13:e0329824. [PMID: 40042287 PMCID: PMC11960115 DOI: 10.1128/spectrum.03298-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/06/2025] [Indexed: 03/12/2025] Open
Abstract
The identification of Helicobacter pylori infection from gastric biopsy samples requires PCR or bacterial cultures. However, it is difficult to culture H. pylori because it is a fragile bacterium. Next-generation sequencing (NGS) allows direct assessment of the resistome and virulome. Here we describe a new NGS method for studying the resistome and virulome of H. pylori directly from gastric biopsies, based on enrichment analyses and targeted sequencing of H. pylori DNA. In all, 19 DNA samples from human gastric biopsies that tested positive for H. pylori were analyzed. The Agilent SureSelectXT target-enrichment protocol was used with a custom bait library prior to sequencing using the Agilent MagnisDx NGS Library Prep System. NGS sequencing was performed on the Illumina iSeq 100 sequencer using RNA probes for virulence, resistance, and molecular typing genes. The method yielded significant results with a limit of detection of around 1.8e5 CFU per mL H. pylori. Mutations in the 23S rDNA sequence associated with macrolide resistance and in the quinolone resistance-determining region of gyrase A associated with levofloxacin resistance were correctly identified. The results of MLST phylogeny analyses performed after target-enrichment were consistent with those obtained via conventional Sanger sequencing. Among the cagA-positive isolates, the gene was detected correctly, and the vacA genotype was determined. In conclusion, our enrichment method enables rapid assessment of the resistome and virulome of H. pylori directly from fresh gastric biopsies.IMPORTANCEHelicobacter pylori, a bacterium that infects at least 50% of the world population, is often treated by probabilistic antimicrobial therapies due to the lack of antimicrobial resistance data provided by clinical laboratories to clinicians. However, targeted antimicrobial therapies are increasingly recommended to achieve efficient eradication with a limited impact on the gut microbiota and with fewer adverse events for the patient. Recent advancements in next-generation sequencing strategies have opened new opportunities in the diagnosis of H. pylori infection. The significance of our research is the development of a novel next-generation sequencing strategy based on target-enrichment. This approach enables the identification of the resistome and the virulome of H. pylori directly from gastric biopsies, providing clinicians with a broad overview of therapeutic options.
Collapse
Affiliation(s)
- Léo Gillet
- CHU de Bordeaux, CNR des Campylobacters et des Hélicobacters, Bordeaux, France
| | - Lucie Bénéjat
- CHU de Bordeaux, CNR des Campylobacters et des Hélicobacters, Bordeaux, France
| | - Quentin Jehanne
- CHU de Bordeaux, CNR des Campylobacters et des Hélicobacters, Bordeaux, France
| | - Pierre-Louis Maunet
- CHU de Bordeaux, CNR des Campylobacters et des Hélicobacters, Bordeaux, France
| | - Claudie Perreau
- CHU de Bordeaux, CNR des Campylobacters et des Hélicobacters, Bordeaux, France
| | - Astrid Ducournau
- CHU de Bordeaux, CNR des Campylobacters et des Hélicobacters, Bordeaux, France
| | - Johanna Aptel
- CHU de Bordeaux, CNR des Campylobacters et des Hélicobacters, Bordeaux, France
| | - Marine Jauvain
- CHU de Bordeaux, CNR des Campylobacters et des Hélicobacters, Bordeaux, France
- INSERM U1312, UMR BRIC-Team 4, Bordeaux, France
| | - Philippe Lehours
- CHU de Bordeaux, CNR des Campylobacters et des Hélicobacters, Bordeaux, France
- INSERM U1312, UMR BRIC-Team 4, Bordeaux, France
| |
Collapse
|
7
|
Sun HT. Helicobacter pylori-related serum indicators: Cutting-edge advances to enhance the efficacy of gastric cancer screening. World J Gastrointest Oncol 2025; 17:100739. [PMID: 40092953 PMCID: PMC11866254 DOI: 10.4251/wjgo.v17.i3.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/08/2024] [Accepted: 01/03/2025] [Indexed: 02/14/2025] Open
Abstract
Helicobacter pylori (H. pylori) infection induces pathological changes via chronic inflammation and virulence factors, thereby increasing the risk of gastric cancer development. Compared with invasive examination methods, H. pylori-related serum indicators are cost-effective and valuable for the early detection of gastric cancer (GC); however, large-scale clinical validation and sufficient understanding of the specific molecular mechanisms involved are lacking. Therefore, a comprehensive review and analysis of recent advances in this field is necessary. In this review, we systematically analyze the relationship between H. pylori and GC and discuss the application of new molecular biomarkers in GC screening. We also summarize the screening potential and application of anti-H. pylori immunoglobulin G and virulence factor-related serum antibodies for identifying GC risk. These indicators provide early warning of infection and enhance screening accuracy. Additionally, we discuss the potential combination of multiple screening indicators for the comprehensive analysis and development of emerging testing methods to improve the accuracy and efficiency of GC screening. Although this review may lack sufficient evidence due to limitations in existing studies, including small sample sizes, regional variations, and inconsistent testing methods, it contributes to advancing personalized precision medicine in high-risk populations and developing GC screening strategies.
Collapse
Affiliation(s)
- Hao-Tian Sun
- Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
8
|
Yan Y, Satoh-Takayama N. New perspectives on gastric disorders: the relationship between innate lymphoid cells and microbes in the stomach. Cell Mol Life Sci 2025; 82:113. [PMID: 40074935 PMCID: PMC11904066 DOI: 10.1007/s00018-025-05632-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
A growing number of studies in recent years have revealed the changes in the gastric microbiota during the development of gastric diseases, breaking the stereotype that the stomach is hostile to microorganisms beyond H. pylori. After a decade of intensive research, the discovery of innate lymphoid cells (ILCs) has provided a new perspective on the immune response in many diseases. In the context of defense against infectious pathogens, the pre-existing innate defense mechanism of tissue-resident ILCs can rapidly recognize and respond to microbes to eliminate infection at the earliest stages. Here, we outline the basic function of ILCs in the gastric mucosa and in shaping the gastric microbiome. We discuss the interactions between the gastric microbiota and ILCs, explaining how the ILCs actively drive the immune response against bacterial pathogens that can lead to the development of the gastric disease.
Collapse
Affiliation(s)
- Yunzi Yan
- Precision Immune Regulation RIKEN ECL Research Unit, Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Naoko Satoh-Takayama
- Precision Immune Regulation RIKEN ECL Research Unit, Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
- Immunobiology Laboratory, Graduate School of Medical Life Sciences, Yokohama City University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
9
|
Peng L, Song J, Sun H, Zhang X, Huang Y, Zeng S, Zhou Z, Li X, Zhuo C. Molecular investigation of an epidemic dissemination of vancomycin-resistant Enterococcus faecium sequence type 80 in Guangdong province, China. Int J Antimicrob Agents 2025; 65:107412. [PMID: 39709131 DOI: 10.1016/j.ijantimicag.2024.107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The detection rate of vancomycin-resistant Enterococcus faecium (VREfm) displayed a dramatic increase in Guangdong, China, from 2021 to 2023, for which the molecular epidemiology and genomic characteristics remain largely unexplored. In this study, we investigated the genetic features and epidemiology of VREfm isolates in Guangdong. METHODS A total of 54 Guangdong VREfm isolates were collected from three tertiary hospitals in Guangdong. We preformed antimicrobial susceptibility tests, whole genome sequencing, risk factor analysis, and bioinformatics analysis to conduct this research. RESULTS Our investigation indicated that VREfm isolates were highly clonal and multidrug-resistant ST80 Enterococcus faecium harboring vanA-positive plasmid. Phylogenetic analysis based on single-nucleotide polymorphisms (SNPs) demonstrated that VREfm isolates exhibited minimal genetic similarity to previously reported E. faecium in China, whereas they exhibited high genomic similarity to an India strain A10290 isolated in 2019 and Hiroshima isolates detected in 2020, indicative of a possible exogeneous import. The genetic environment of cps region showed a novel type of wzy gene cluster involved in capsule polysaccharide (CPS) biosynthesis flanked by ISEf1 and IS16 identified in VREfm isolates, which displayed a remarkably divergence from the downstream of putative cpsABCD region in other sequence types (STs) E. faecium. Heat map of plasmid-mediated virulence factors suggested that several predicted proteins including Cag pathogenetic island proteins existed in VREfm isolates at a high frequency. CONCLUSIONS This study highlighted the importance of ongoing surveillance to track the dynamic dissemination of multidrug-resistant ST80 VREfm isolates harboring multiple virulence genes in Guangdong Province, China.
Collapse
Affiliation(s)
- Lianghui Peng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jingjie Song
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hongli Sun
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiwei Zhang
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yulan Huang
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Shihan Zeng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhuoyang Zhou
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xiaoyan Li
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.
| | - Chao Zhuo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Yi M, Chen S, Yi X, Zhang F, Zhou X, Zeng M, Song H. Helicobacter pylori infection process: from the molecular world to clinical treatment. Front Microbiol 2025; 16:1541140. [PMID: 40083792 PMCID: PMC11903457 DOI: 10.3389/fmicb.2025.1541140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Helicobacter pylori is a gram-negative microaerophilic microorganism intricately associated with chronic gastrointestinal disorders and gastric cancer. H. pylori can cause various upper digestive tract diseases, including chronic gastritis, peptic ulcer, gastroesophageal reflux disease, and gastric cancer. The bacterium exhibits a variety of pathogenic mechanisms, including colonization, the expression of virulence factors, and the development of drug resistance. This article presents a comprehensive review of H. pylori pathogenesis, emphasizing recent research advancements concerning the cytotoxin-associated gene A, vacuolating cytotoxin, outer membrane proteins, and other virulence factors. Additionally, it examines the molecular mechanisms underlying drug resistance and evaluates the efficacy of conventional therapeutic approaches. Recently, researchers have attempted novel therapeutic regimens, including probiotics and Chinese medicine-assisted therapies, to enhance therapeutic effects. This article aimed to offer an overview of the academic community's comprehension of H. pylori infection and to highlight the current treatment options.
Collapse
Affiliation(s)
- Meijing Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Silan Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Xinying Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Fan Zhang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Zhou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Meiyan Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Houpan Song
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
11
|
Liu Y, Huang T, Wang L, Wang Y, Liu Y, Bai J, Wen X, Li Y, Long K, Zhang H. Traditional Chinese Medicine in the treatment of chronic atrophic gastritis, precancerous lesions and gastric cancer. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118812. [PMID: 39260710 DOI: 10.1016/j.jep.2024.118812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic atrophic gastritis (CAG), precancerous lesions of gastric cancer (PLGC), and gastric cancer (GC), seriously threaten human health. Traditional Chinese medicine (TCM) has been employed in the treatment of chronic diseases for a long time and has shown remarkable efficacy. AIM OF THE STUDY Recently, there has been an increasing use of TCM in treating CAG, PLGC, and GC. The objective of this study is to compile a comprehensive overview of the existing research on the effects and molecular mechanisms of TCM, including formulas, single herbs, and active components. MATERIALS AND METHODS To obtain a comprehensive understanding of traditional use of TCM in treating these diseases, we reviewed ancient books and Chinese literature. In addition, keywords such as "TCM", "CAG", "PLGC", "GC", and "active ingredients" were used to collect modern research on TCM published in databases such as CNKI, Web of Science, and Pubmed up to April 2024. All collected information was then summarized and analyzed. RESULTS This study analyzed 174 articles, which covered the research progress of 20 TCM formulas, 14 single herbs, and 50 active ingredients in treating CAG, PLGC, and GC. Sources, effects, and molecular mechanisms of the TCM were summarized. CONCLUSIONS This article reviews the progress of TCM in the management of CAG, PLGC, and GC, which will provide a foundation for the clinical application and further development of TCM.
Collapse
Affiliation(s)
- Yuxi Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Tingting Huang
- Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China.
| | - Lu Wang
- Shaanxi University of Chinese Medicine, Middle section of Century Avenue, Xianyang, 712046, China.
| | - Yuan Wang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Jingyi Bai
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Xinli Wen
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Ye Li
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Kaihua Long
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China; Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China; Shaanxi University of Chinese Medicine, Middle section of Century Avenue, Xianyang, 712046, China.
| |
Collapse
|
12
|
Duan Y, Xu Y, Dou Y, Xu D. Helicobacter pylori and gastric cancer: mechanisms and new perspectives. J Hematol Oncol 2025; 18:10. [PMID: 39849657 PMCID: PMC11756206 DOI: 10.1186/s13045-024-01654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Gastric cancer remains a significant global health challenge, with Helicobacter pylori (H. pylori) recognized as a major etiological agent, affecting an estimated 50% of the world's population. There has been a rapidly expanding knowledge of the molecular and pathogenetic mechanisms of H. pylori over the decades. This review summarizes the latest research advances to elucidate the molecular mechanisms underlying the H. pylori infection in gastric carcinogenesis. Our investigation of the molecular mechanisms reveals a complex network involving STAT3, NF-κB, Hippo, and Wnt/β-catenin pathways, which are dysregulated in gastric cancer caused by H. pylori. Furthermore, we highlight the role of H. pylori in inducing oxidative stress, DNA damage, chronic inflammation, and cell apoptosis-key cellular events that pave the way for carcinogenesis. Emerging evidence also suggests the effect of H. pylori on the tumor microenvironment and its possible implications for cancer immunotherapy. This review synthesizes the current knowledge and identifies gaps that warrant further investigation. Despite the progress in our previous knowledge of the development in H. pylori-induced gastric cancer, a comprehensive investigation of H. pylori's role in gastric cancer is crucial for the advancement of prevention and treatment strategies. By elucidating these mechanisms, we aim to provide a more in-depth insights for the study and prevention of H. pylori-related gastric cancer.
Collapse
Affiliation(s)
- Yantao Duan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yonghu Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Dou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dazhi Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Whitmire JM, Windham IH, Makobongo MO, Westland MD, Tran SC, Piñol J, Hui Y, Raheem Alkarkoushi R, Pich OQ, McGee DJ, Piazuelo MB, Melton-Celsa A, Testerman TL, Cover TL, Merrell DS. A unique Helicobacter pylori strain to study gastric cancer development. Microbiol Spectr 2025; 13:e0216324. [PMID: 39641575 PMCID: PMC11705839 DOI: 10.1128/spectrum.02163-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/20/2024] [Indexed: 12/07/2024] Open
Abstract
Helicobacter pylori colonizes a majority of the human population worldwide and can trigger development of a variety of gastric diseases. Since the bacterium is classified as a carcinogen, elucidation of the characteristics of H. pylori that influence gastric carcinogenesis is a high priority. To this end, the Mongolian gerbil infection model has proven to be an important tool to study gastric cancer progression. However, only a small number of H. pylori strains have been evaluated in the gerbil model. Thus, to identify additional strains able to colonize and induce disease in this model, several H. pylori strains were used to infect Mongolian gerbils, and stomachs were harvested at multiple timepoints to assess colonization and gastric pathology. The USU101 strain reproducibly colonized Mongolian gerbils and induced gastric inflammation in the majority of the animals 1 month after infection. Adenocarcinoma or dysplasia was observed in the majority of gerbils by 2 months post-infection. To define the contribution of key virulence factors to this process, isogenic strains lacking cagA or vacA, along with restorant strains containing a wild-type (WT) copy of the genes, were studied. The ΔcagA USU101 strain colonized gerbils at levels similar to WT, but did not induce comparable levels of inflammation or disease. In contrast, the ΔvacA USU101 strain did not colonize gerbils, and the stomach pathology resembled that of the mock-infected animals. The restorant USU101 strains expressed the CagA and VacA proteins in vitro, and in vivo experiments with Mongolian gerbils showed a restoration of colonization levels and inflammation scores comparable to those observed in WT USU101. Our studies indicate that the USU101 strain is a valuable tool to study H. pylori-induced disease.IMPORTANCEGastric cancer is the fifth leading cause of cancer-related death globally; the majority of gastric cancers are associated with Helicobacter pylori infection. Infection of Mongolian gerbils with H. pylori has been shown to result in induction of gastric cancer, but few H. pylori strains have been studied in this model; this limits our ability to fully understand gastric cancer pathogenesis in humans because H. pylori strains are notoriously heterogenous. Our studies reveal that USU101 represents a unique H. pylori strain that can be added to our repertoire of strains to study gastric cancer development in the Mongolian gerbil model.
Collapse
Affiliation(s)
| | - Ian H. Windham
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Morris O. Makobongo
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | | | | | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Yvonne Hui
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | | | - Oscar Q. Pich
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Hospital Universitari Parc Taulí, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - David J. McGee
- Department of Microbiology and Immunology, LSU Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | | | - Angela Melton-Celsa
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Traci L. Testerman
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Timothy L. Cover
- Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - D. Scott Merrell
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
14
|
Chen X, Zhou B, Wang S, Jiang X, Ping Y, Xia J, Yu F, Li Y, Zhang M, Ding Y. Intestinal metaplasia key molecules and UPP1 activation via Helicobacter pylori /NF-kB: drivers of malignant progression in gastric cancer. Cancer Cell Int 2024; 24:399. [PMID: 39695769 DOI: 10.1186/s12935-024-03598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Gastric cancer (GC) remains a significant global health challenge due to its high morbidity and mortality rates. The development of GC is a multi-hit process and the exploration of precancerous lesions is crucial. To elucidate the molecular and cellular dynamics underlying gastric carcinogenesis, we conducted an integrative single-cell RNA sequencing analysis of 26,028 high-quality cells from gastric antral mucosa biopsies across various stages, including non-atrophic gastritis, chronic atrophic gastritis, intestinal metaplasia, and early gastric cancer. By constructing a detailed single-cell atlas, we identified distinct epithelial cell subpopulations and their corresponding molecular signatures. We focused on the biological link between gastric epithelial cells and cancer cells. Notably, we observed that gland mucous cells acquired an intestinal-like stem cell phenotype during metaplasia, with MUC6, MUC2 and OLFM4 emerging as the specific markers for unique endocrine cells in early malignant lesions. Additionally, our analysis highlighted UPP1 as a key oncogene, with its expression progressively increasing from normal epithelial cells to malignant cells. UPP1 upregulation was shown to promote GC cell proliferation and migration, implicating it in the oncogenic process. Further, we explored the impact of Helicobacter pylori infection on gene expression, revealing that Helicobacter pylori infection upregulates UPP1 via the NF-κB pathway. Our cell-cell communication analysis underscored the significant role of the Macrophage migration inhibitory factor pathway in the tumor microenvironment, contributing to GC progression. Various key molecules involved in intestinal metaplasia, along with UPP1 and the Macrophage migration inhibitory factor pathway, collectively illustrate the multifaceted nature and complexity of gastric cancer evolution, highlighting the cumulative impacts that drive tumorigenesis.
Collapse
Affiliation(s)
- Xuyu Chen
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Bengang Zhou
- Dalian Medical University, Dalian, Liaoning, China
| | - Siying Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Jiang
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yukun Ping
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jianlei Xia
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Feiyu Yu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yaoyao Li
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| | - Min Zhang
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| | - Yanbing Ding
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| |
Collapse
|
15
|
Van Hul M, Cani PD, Petitfils C, De Vos WM, Tilg H, El-Omar EM. What defines a healthy gut microbiome? Gut 2024; 73:1893-1908. [PMID: 39322314 PMCID: PMC11503168 DOI: 10.1136/gutjnl-2024-333378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
The understanding that changes in microbiome composition can influence chronic human diseases and the efficiency of therapies has driven efforts to develop microbiota-centred therapies such as first and next generation probiotics, prebiotics and postbiotics, microbiota editing and faecal microbiota transplantation. Central to microbiome research is understanding how disease impacts microbiome composition and vice versa, yet there is a problematic issue with the term 'dysbiosis', which broadly links microbial imbalances to various chronic illnesses without precision or definition. Another significant issue in microbiome discussions is defining 'healthy individuals' to ascertain what characterises a healthy microbiome. This involves questioning who represents the healthiest segment of our population-whether it is those free from illnesses, athletes at peak performance, individuals living healthily through regular exercise and good nutrition or even elderly adults or centenarians who have been tested by time and achieved remarkable healthy longevity.This review advocates for delineating 'what defines a healthy microbiome?' by considering a broader range of factors related to human health and environmental influences on the microbiota. A healthy microbiome is undoubtedly linked to gut health. Nevertheless, it is very difficult to pinpoint a universally accepted definition of 'gut health' due to the complexities of measuring gut functionality besides the microbiota composition. We must take into account individual variabilities, the influence of diet, lifestyle, host and environmental factors. Moreover, the challenge in distinguishing causation from correlation between gut microbiome and overall health is presented.The review also highlights the resource-heavy nature of comprehensive gut health assessments, which hinders their practicality and broad application. Finally, we call for continued research and a nuanced approach to better understand the intricate and evolving concept of gut health, emphasising the need for more precise and inclusive definitions and methodologies in studying the microbiome.
Collapse
Affiliation(s)
- Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Camille Petitfils
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
| | - Willem M De Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| | - Emad M El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical Campuses, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
16
|
Zhong X, Zheng H, Zhao S, Wang Z, Su Y, Zhong K, Wang M, Shi Y. Effects and mechanisms of Helicobacter pylori on cancers development and immunotherapy. Front Immunol 2024; 15:1469096. [PMID: 39434880 PMCID: PMC11491387 DOI: 10.3389/fimmu.2024.1469096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Tumor immunotherapy has been widely used in clinical treatment of various cancers. However, some patients of these cancers do not respond to immunotherapy effectively. And H. pylori infection has been considered to be related to the efficacy of immunotherapy. This review aims to summarize the different effects and mechanisms of H. pylori infection on immunotherapy in different kinds of cancers. We searched the relevant literature on H. pylori and tumor immunotherapy, and summarized to form a review. Generally, H. pylori infection plays a role in affecting kinds of cancers' development, besides gastric cancer. Current evidence suggests that H. pylori infection may reduce the efficacy of immunotherapy for colorectal cancer, non-small cell lung cancer and melanoma, but due to the lack of sufficient evidence, more data is needed to prove that. While for gastric cancer, the effects remain controversial. The H. pylori regulation effects and metabolisms involved in systematic related cancers should be paid attention to. Whether H. pylori should be eradicated when immunotherapy performed may be a critical consideration for some kinds of tumors.
Collapse
Affiliation(s)
- Xiaotian Zhong
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Huiling Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Shiqing Zhao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Ziye Wang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Yi Su
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Kaili Zhong
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mopei Wang
- Department of Tumor Chemotherapy and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
17
|
Ou L, Hao Y, Liu H, Zhu Z, Li Q, Chen Q, Wei R, Feng Z, Zhang G, Yao M. Chebulinic acid isolated from aqueous extracts of Terminalia chebula Retz inhibits Helicobacter pylori infection by potential binding to Cag A protein and regulating adhesion. Front Microbiol 2024; 15:1416794. [PMID: 39421559 PMCID: PMC11483367 DOI: 10.3389/fmicb.2024.1416794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Terminalia chebula Retz, known as the King of Tibet, is considered a functional food in China, celebrated for its antioxidant, immune-modulating, antibacterial, and anti-inflammatory properties. Chebulinic acid, derived from aqueous extracts of Terminalia chebula Retz, is known for its anti-inflammatory properties. However, its potential as an anti-Helicobacter pylori (HP) agent has not been fully explored. METHODS Herein, we extracted the main compound from Terminalia chebula Retz using a semi-preparative liquid chromatography (LC) system and identified compound 5 as chebulinic acid through Ultra-high performance liquid chromatography-MS/MS (UPLC-MS/MS) and Nuclear Magnetic Resonance (NMR). To evaluate its role, we conducted minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays, scanning electron microscope (SEM) imaging, inhibiting kinetics curves, urea fast test, cell counting kit-8 (CCK-8) assay, western blot analysis, griess reagent system, and molecular docking. RESULTS Our results showed that chebulinic acid effectively inhibited the growth of the HP strain ATCC 700392, damaged the HP structure, and exhibited selective antimicrobial activity without affecting normal epithelial cells GES-1. Importantly, it suppressed the expression of Cytotoxin-associated gene A (Cag A) protein, a crucial factor in HP infection. Molecular docking analysis predicted a strong affinity (-9.7 kcal/mol) between chebulinic acid and Cag A protein. CONCLUSION Overall, our findings suggest that chebulinic acid acts as an anti-adhesive agent, disrupting the adhesion of HP to host cells, which is a critical step in HP infection. It also suppresses the Cag A protein. These results highlight the potential of chebulinic acid against HP infections.
Collapse
Affiliation(s)
- Ling Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Yajie Hao
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, China
| | - Hengrui Liu
- Cancer Institute, Jinan University, Guangzhou, China
- Yinuo Biomedical Company, Tianjin, China
| | - Zhixiang Zhu
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Qingwei Li
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, China
| | - Qingchang Chen
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Ruixia Wei
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Zhong Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Guimin Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Meicun Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
18
|
Cui M, Ji X, Guan F, Su G, Du L. Design of a Helicobacter pylori multi-epitope vaccine based on immunoinformatics. Front Immunol 2024; 15:1432968. [PMID: 39247202 PMCID: PMC11377293 DOI: 10.3389/fimmu.2024.1432968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Helicobacter pylori (H. pylori) is an infectious bacterium that colonizes the stomach of approximately half of the global population. It has been classified as a Group I carcinogen by the World Health Organization due to its strong association with an increased incidence of gastric cancer and exacerbation of stomach diseases. The primary treatment for H. pylori infection currently involves triple or quadruple therapy, primarily consisting of antibiotics and proton pump inhibitors. However, the increasing prevalence of antibiotic resistance poses significant challenges to this approach, underscoring the urgent need for an effective vaccine. In this study, a novel multi-epitope H. pylori vaccine was designed using immunoinformatics. The vaccine contains epitopes derived from nine essential proteins. Software tools and online servers were utilized to predict, evaluate, and analyze the physiochemical properties, secondary and tertiary structures, and immunogenicity of the candidate vaccine. These comprehensive assessments ultimately led to the formulation of an optimal design scheme for the vaccine. Through constructing a novel multi-epitope vaccine based on immunoinformatics, this study offers promising prospects and great potential for the prevention of H. pylori infection. This study also provides a reference strategy to develop multi-epitope vaccines for other pathogens.
Collapse
Affiliation(s)
- Man Cui
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Xiaohui Ji
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Fengtao Guan
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Guimin Su
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Lin Du
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| |
Collapse
|
19
|
Shirani M, Shariati S, Bazdar M, Sojoudi Ghamnak F, Moradi M, Shams Khozani R, Taki E, Arabsorkhi Z, Heidary M, Eskandari DB. The immunopathogenesis of Helicobacter pylori-induced gastric cancer: a narrative review. Front Microbiol 2024; 15:1395403. [PMID: 39035439 PMCID: PMC11258019 DOI: 10.3389/fmicb.2024.1395403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/06/2024] [Indexed: 07/23/2024] Open
Abstract
Helicobacter pylori infection is a well-established risk factor for the development of gastric cancer (GC). Understanding the immunopathogenesis underlying this association is crucial for developing effective preventive and therapeutic strategies. This narrative review comprehensively explores the immunopathogenesis of H. pylori-induced GC by delving into several key aspects, emphasizing the pivotal roles played by H. pylori virulence factors, including cytotoxin-associated gene A (cagA) and vacuolating cytotoxin A (vacA), blood group antigen-binding adhesin (babA), and sialic acid binding adhesin (sabA). Moreover, the review focuses on the role of toll-like receptors (TLRs) and cytokines in the complex interplay between chronic infection and gastric carcinogenesis. Finally, the study examines the association between H. pylori evasion of the innate and adaptive immune response and development of GC. A comprehensive understanding of the immunopathogenesis of H. pylori-induced GC is essential for designing targeted interventions to prevent and manage this disease. Further research is warranted to elucidate the intricate immune responses involved and identify potential therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shariati
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Monireh Bazdar
- School of Medicine, Razi Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Melika Moradi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Elahe Taki
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Arabsorkhi
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | |
Collapse
|
20
|
Zhang Z, Cui M, Ji X, Su G, Zhang YX, Du L. Candidate Antigens and the Development of Helicobacter pylori Vaccines. Helicobacter 2024; 29:e13128. [PMID: 39177204 DOI: 10.1111/hel.13128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Infection with Helicobacter pylori (Hp) mostly occurs during childhood, and persistent infection may lead to severe gastric diseases and even gastric cancer. Currently, the primary method for eradicating Hp is through antibiotic treatment. However, the increasing multidrug resistance in Hp strains has diminished the effectiveness of antibiotic treatments. Vaccination could potentially serve as an effective intervention to resolve this issue. AIMS Through extensive research and analysis of the vital protein characteristics involved in Hp infection, we aim to provide references for subsequent vaccine antigen selection. Additionally, we summarize the current research and development of Hp vaccines in order to provide assistance for future research. MATERIALS AND METHODS Utilizing the databases PubMed and the Web of Science, a comprehensive search was conducted to compile articles pertaining to Hp antigens and vaccines. The salient aspects of these articles were then summarized to provide a detailed overview of the current research landscape in this field. RESULTS Several potential antigens have been identified and introduced through a thorough understanding of the infection process and pathogenic mechanisms of Hp. The conserved and widely distributed candidate antigens in Hp, such as UreB, HpaA, GGT, and NAP, are discussed. Proteins such as CagA and VacA, which have significant virulence effects but relatively poor conservatism, require further evaluation. Emerging antigens like HtrA and dupA have significant research value. In addition, vaccines based on these candidate antigens have been compiled and summarized. CONCLUSIONS Vaccines are a promising method for preventing and treating Hp. While some Hp vaccines have achieved promising results, mature products are not yet available on the market. Great efforts have been directed toward developing various types of vaccines, underscoring the need for developers to select appropriate antigens and vaccine formulations to improve success rates.
Collapse
Affiliation(s)
- Zhanhua Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Man Cui
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Xiaohui Ji
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Guimin Su
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Lin Du
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| |
Collapse
|
21
|
He X, Huang T, Wang Q, Bao L, Wang Z, Song H, Li Y, Zhou J, Zhao Y, Xie Y. A prominent role of LncRNA H19 in H. pylori CagA induced DNA damage response and cell malignancy. Sci Rep 2024; 14:14185. [PMID: 38902391 PMCID: PMC11190245 DOI: 10.1038/s41598-024-65221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
Helicobacter pylori (H. pylori), together with its CagA, has been implicated in causing DNA damage, cell cycle arrest, apoptosis, and the development of gastric cancer. Although lncRNA H19 is abundantly expressed in gastric cancer and functions as a pro-oncogene, it remains unclear whether lncRNA H19 contributes to the oncogenic process of H. pylori CagA. This study investigates the role of H19 in the DNA damage response and malignancy induced by H. pylori. It was observed that cells infected with CagA+ H. pylori strain (GZ7/cagA) showed significantly higher H19 expression, resulting in increased γH2A.X and p-ATM expression and decreased p53 and Rad51 expression. Faster cell migration and invasion was also observed, which was reversed by H19 knockdown in H. pylori. YWHAZ was identified as an H19 target protein, and its expression was increased in H19 knockdown cells. GZ7/cagA infection responded to the increased YWHAZ expression induced by H19 knockdown. In addition, H19 knockdown stimulated cells to enter the G2-phase and attenuated the effect of GZ7/cagA infection on the cellular S-phase barrier. The results suggest that H. pylori CagA can upregulate H19 expression, participate in the DNA damage response and promote cell migration and invasion, and possibly affect cell cycle arrest via regulation of YWHAZ.
Collapse
Affiliation(s)
- Xiaofeng He
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
- Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, People's Republic of China
| | - Tingting Huang
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Liya Bao
- Hepatitis Laboratory, Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Zhengrong Wang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Hui Song
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Yanhong Li
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China.
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China.
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China.
| |
Collapse
|
22
|
Roberts JR, Tran SC, Frick-Cheng AE, Bryant KN, Okoye CD, McDonald WH, Cover TL, Ohi MD. Subdomains of the Helicobacter pylori Cag T4SS outer membrane core complex exhibit structural independence. Life Sci Alliance 2024; 7:e202302560. [PMID: 38631913 PMCID: PMC11024343 DOI: 10.26508/lsa.202302560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
The Helicobacter pylori Cag type IV secretion system (Cag T4SS) has an important role in the pathogenesis of gastric cancer. The Cag T4SS outer membrane core complex (OMCC) is organized into three regions: a 14-fold symmetric outer membrane cap (OMC) composed of CagY, CagX, CagT, CagM, and Cag3; a 17-fold symmetric periplasmic ring (PR) composed of CagY and CagX; and a stalk with unknown composition. We investigated how CagT, CagM, and a conserved antenna projection (AP) region of CagY contribute to the structural organization of the OMCC. Single-particle cryo-EM analyses showed that complexes purified from ΔcagT or ΔcagM mutants no longer had organized OMCs, but the PRs remained structured. OMCCs purified from a CagY antenna projection mutant (CagY∆AP) were structurally similar to WT OMCCs, except for the absence of the α-helical antenna projection. These results indicate that CagY and CagX are sufficient for maintaining a stable PR, but the organization of the OMC requires CagY, CagX, CagM, and CagT. Our results highlight an unexpected structural independence of two major subdomains of the Cag T4SS OMCC.
Collapse
Affiliation(s)
- Jacquelyn R Roberts
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Sirena C Tran
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Kaeli N Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Chiamaka D Okoye
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - W Hayes McDonald
- Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN USA
| | - Timothy L Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|