1
|
Zin H, Lim J, Shin Y, Kim B, Yoon M, Ha K, Cho S. Genomic Insights into Vibrio parahaemolyticus from Southern Korea: Pathogenicity, Antimicrobial Resistance, and Phylogenetic Distinctions. Microorganisms 2024; 12:2497. [PMID: 39770700 PMCID: PMC11727765 DOI: 10.3390/microorganisms12122497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Vibrio parahaemolyticus, a significant cause of gastroenteritis and a growing public health concern, has become increasingly prevalent owing to the rise in ocean temperatures driven by climate change. This study aimed to characterize the genetic diversity, pathogenic potential, and antimicrobial resistance (AMR) profiles of V. parahaemolyticus strains isolated from the southern coastal region of Korea. Using whole genome sequencing (WGS) and advanced bioinformatics tools, we identified novel sequence types through multilocus sequence typing and serotyped isolates using the VPsero database. Pathogenic genes, such as tdh and trh, were detected in only a few isolates, suggesting the involvement of alternative virulence mechanisms in the pathogenicity of these strains. An in silico analysis revealed widespread AMR, particularly against beta-lactams, chloramphenicol, and tetracycline antibiotics, underscoring the public health threats posed by these strains. A phylogenetic analysis revealed no significant clustering by geographic origin, year, or strain source, although most clinical and environmental strains were not closely related at lower phylogenetic branches. These findings highlight the importance of continued genomic surveillance and strict regulations regarding antibiotic use in marine environments. Moreover, this study suggests that integrating WGS data with epidemiological models could enhance the prediction of the emerging virulent strains and support effective outbreak management strategies.
Collapse
Affiliation(s)
- Hyunwoo Zin
- Food Safety and Processing Research Division, National Institute of Fisheries Science, 216 Gijang-haeanro, Gijang-eup, Busan 46083, Republic of Korea; (B.K.); (M.Y.); (K.H.)
| | - Jaewon Lim
- Research and Development Center, Insilicogen Inc., 13, Yongin-si 16954, Republic of Korea; (J.L.); (Y.S.)
| | - Younhee Shin
- Research and Development Center, Insilicogen Inc., 13, Yongin-si 16954, Republic of Korea; (J.L.); (Y.S.)
| | - Byeori Kim
- Food Safety and Processing Research Division, National Institute of Fisheries Science, 216 Gijang-haeanro, Gijang-eup, Busan 46083, Republic of Korea; (B.K.); (M.Y.); (K.H.)
| | - Minchul Yoon
- Food Safety and Processing Research Division, National Institute of Fisheries Science, 216 Gijang-haeanro, Gijang-eup, Busan 46083, Republic of Korea; (B.K.); (M.Y.); (K.H.)
| | - Kwangsoo Ha
- Food Safety and Processing Research Division, National Institute of Fisheries Science, 216 Gijang-haeanro, Gijang-eup, Busan 46083, Republic of Korea; (B.K.); (M.Y.); (K.H.)
| | - Sunghyun Cho
- Research and Development Center, Insilicogen Inc., 13, Yongin-si 16954, Republic of Korea; (J.L.); (Y.S.)
| |
Collapse
|
2
|
Campbell JS, Pearce JC, Bebes A, Pradhan A, Yuecel R, Brown AJP, Wakefield JG. Characterising phagocytes and measuring phagocytosis from live Galleria mellonella larvae. Virulence 2024; 15:2313413. [PMID: 38357909 PMCID: PMC10877982 DOI: 10.1080/21505594.2024.2313413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Over the last 20 years, the larva of the greater waxmoth, Galleria mellonella, has rapidly increased in popularity as an in vivo mammalian replacement model organism for the study of human pathogens. Experimental readouts of response to infection are most often limited to observing the melanization cascade and quantifying larval death and, whilst transcriptomic and proteomic approaches, and methods to determine microbial load are also used, a more comprehensive toolkit of profiling infection over time could transform the applicability of this model. As an invertebrate, Galleria harbour an innate immune system comprised of both humoral components and a repertoire of innate immune cells - termed haemocytes. Although information on subtypes of haemocytes exists, there are conflicting reports on their exact number and function. Flow cytometry has previously been used to assay Galleria haemocytes, but protocols include both centrifugation and fixation - physical methods which have the potential to affect haemocyte morphology prior to analysis. Here, we present a method for live haemocyte analysis by flow cytometry, revealing that Galleria haemocytes constitute only a single resolvable population, based on relative size or internal complexity. Using fluorescent zymosan particles, we extend our method to show that up to 80% of the Galleria haemocyte population display phagocytic capability. Finally, we demonstrate that the developed assay reliably replicates in vitro data, showing that cell wall β-1,3-glucan masking by Candida albicans subverts phagocytic responses. As such, our method provides a new tool with which to rapidly assess phagocytosis and understand live infection dynamics in Galleria.
Collapse
Affiliation(s)
| | | | - Attila Bebes
- Exeter Centre for Cytomics, Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, UK
| | - Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Raif Yuecel
- Exeter Centre for Cytomics, Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | | |
Collapse
|
3
|
Sorée M, Lozach S, Kéomurdjian N, Richard D, Hughes A, Delbarre-Ladrat C, Verrez-Bagnis V, Rincé A, Passerini D, Ritchie JM, Heath DH. Virulence phenotypes differ between toxigenic Vibrio parahaemolyticus isolated from western coasts of Europe. Microbiol Res 2024; 285:127744. [PMID: 38735242 DOI: 10.1016/j.micres.2024.127744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Vibrio parahaemolyticus is the leading bacterial cause of gastroenteritis associated with seafood consumption worldwide. Not all members of the species are thought to be pathogenic, thus identification of virulent organisms is essential to protect public health and the seafood industry. Correlations of human disease and known genetic markers (e.g. thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH)) appear complex. Some isolates recovered from patients lack these factors, while their presence has become increasingly noted in isolates recovered from the environment. Here, we used whole-genome sequencing in combination with mammalian and insect models of infection to assess the pathogenic potential of V. parahaemolyticus isolated from European Atlantic shellfish production areas. We found environmental V. parahaemolyticus isolates harboured multiple virulence-associated genes, including TDH and/or TRH. However, carriage of these factors did not necessarily reflect virulence in the mammalian intestine, as an isolate containing TDH and the genes coding for a type 3 secretion system (T3SS) 2α virulence determinant, appeared avirulent. Moreover, environmental V. parahaemolyticus lacking TDH or TRH could be assigned to groups causing low and high levels of mortality in insect larvae, with experiments using defined bacterial mutants showing that a functional T3SS1 contributed to larval death. When taken together, our findings highlight the genetic diversity of V. parahaemolyticus isolates found in the environment, their potential to cause disease and the need for a more systematic evaluation of virulence in diverse V. parahaemolyticus to allow better genetic markers.
Collapse
Affiliation(s)
| | - Solen Lozach
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, Plouzané F-29280, France
| | | | | | - Alexandra Hughes
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | | | | | - Alain Rincé
- Biotargen, Université de Caen Normandie, Saint-Contest F-14380, France
| | | | - Jennifer M Ritchie
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom.
| | | |
Collapse
|
4
|
Nicolosi RM, Bonincontro G, Imperia E, Badiali C, De Vita D, Sciubba F, Dugo L, Guarino MPL, Altomare A, Simonetti G, Pasqua G. Protective Effect of Procyanidin-Rich Grape Seed Extract against Gram-Negative Virulence Factors. Antibiotics (Basel) 2023; 12:1615. [PMID: 37998817 PMCID: PMC10668874 DOI: 10.3390/antibiotics12111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Biofilm formation and lipopolysaccharide (LPS) are implicated in the pathogenesis of gastrointestinal (GI) diseases caused by Gram-negative bacteria. Grape seeds, wine industry by-products, have antioxidant and antimicrobial activity. In the present study, the protective effect of procyanidin-rich grape seed extract (prGSE), from unfermented pomace of Vitis vinifera L. cv Bellone, on bacterial LPS-induced oxidative stress and epithelial barrier integrity damage has been studied in a model of Caco-2 cells. The prGSE was characterized at the molecular level using HPLC and NMR. The in vitro activity of prGSE against formation of biofilm of Salmonella enterica subsp. enterica serovar Typhimurium and Escherichia coli was investigated. In vivo, prGSE activity using infected Galleria mellonella larvae has been evaluated. The results show that the prGSE, if administered with LPS, can significantly reduce the LPS-induced permeability alteration. Moreover, the ability of the extract to prevent Reactive Oxygen Species (ROS) production induced by the LPS treatment of Caco-2 cells was demonstrated. prGSE inhibited the biofilm formation of E. coli and S. Typhimurium. In terms of in vivo activity, an increase in survival of infected G. mellonella larvae after treatment with prGSE was demonstrated. In conclusion, grape seed extracts could be used to reduce GI damage caused by bacterial endotoxin and biofilms of Gram-negative bacteria.
Collapse
Affiliation(s)
- Roberta Maria Nicolosi
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Graziana Bonincontro
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Elena Imperia
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.D.)
| | - Camilla Badiali
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Daniela De Vita
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Laura Dugo
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.D.)
| | - Michele Pier Luca Guarino
- Research Unit of Gastroenterology, Department of Medicine and Surgery, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
- Operative Research Unit of Gastroenterology, University Policlinico Foundation Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Annamaria Altomare
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.D.)
- Research Unit of Gastroenterology, Department of Medicine and Surgery, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
| | - Giovanna Simonetti
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| |
Collapse
|
5
|
Kaya S. Immunosuppressive effect of Plantago major on the innate immunity of Galleria mellonella. PeerJ 2023; 11:e15982. [PMID: 37753175 PMCID: PMC10519203 DOI: 10.7717/peerj.15982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
Greater plantain (Plantago major), a medicinal plant species, is used in folk medicine for the treatment of various diseases in many countries of the world. Different studies have shown that the bioactive components contained in the plant have a dual effect. It was also reported that in vivo and in vitro studies showed different results. The aim of the study was to determine the effects of P. major extract on the hemocyte-mediated and humoral immune responses of the invertebrate model organism Galleria mellonella, which is widely used in immune studies. In the evaluation of these effects, total hemocyte count, encapsulation, melanization, phenoloxidase, superoxide dismutase, catalase, malondialdehyde and total protein parameters were evaluated. The results of the study showed that the total hemocyte count did not change, that the encapsulation responses decreased, that the melanization responses and phenoloxidase activity increased and that the superoxide dismutase activity decreased. As a result, it was determined that high doses of P. major had negative effects on cell-mediated immunity and antioxidant defence and positive effects on melanization. High doses and continuous use of P. major may have negative effects on living things.
Collapse
Affiliation(s)
- Serhat Kaya
- Department of Biology/Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
6
|
You J, Park J, Choi D, Yun J, Choi H, Lee IH. Implant-associated biofilm infection established in an experimental Galleria mellonella model. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104670. [PMID: 36796467 DOI: 10.1016/j.dci.2023.104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The study reports in vivo biofilm infection implemented in an insect model. We mimicked implant-associated biofilm infections in Galleria mellonella larvae using toothbrush bristles and methicillin-resistant Staphylococcus aureus (MRSA). In vivo biofilm formation on bristle was achieved by sequentially injecting a bristle and MRSA into the larval hemocoel. It was found that biofilm formation was in progress without any external sign of infection in most of the bristle-bearing larvae for 12 h after MRSA inoculation. Whereas the activation of the prophenoloxidase system did not affect the preformed in vitro MRSA biofilms, an antimicrobial peptide interfered with in vivo biofilm formation when injected into bristle-bearing larvae infected with MRSA. Finally, our confocal laser scanning microscopic analysis revealed that the biomass of the in vivo biofilm is greater compared to that of the in vitro biofilm and harbors a distribution of dead cells, which might be bacteria and/or host cells.
Collapse
Affiliation(s)
| | | | | | | | - Hanbyeul Choi
- Department of Pharmacy, Korea University, Sejong, South Korea
| | - In Hee Lee
- Department of Biotechnology, South Korea; Research Institute for Basic Science, Hoseo University, Asan City, Chungnam, South Korea.
| |
Collapse
|
7
|
Wagley S. The Viable but Non-Culturable (VBNC) State in Vibrio Species: Why Studying the VBNC State Now Is More Exciting than Ever. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:253-268. [PMID: 36792880 DOI: 10.1007/978-3-031-22997-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
During periods that are not conducive for growth or when facing stressful conditions, Vibrios enter a dormant state called the Viable But Non-Culturable (VBNC) state. In this chapter, I will analyse the role of the VBNC state in Vibrio species survival and pathogenesis and the molecular mechanisms regulating this complex phenomenon. I will emphasise some of the novel findings that make studying the VBNC state now more exciting than ever and its significance in the epidemiology of these pathogens and critical role in food safety.
Collapse
Affiliation(s)
- Sariqa Wagley
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, UK.
| |
Collapse
|
8
|
Elizalde-Bielsa A, Aragón-Aranda B, Loperena-Barber M, Salvador-Bescós M, Moriyón I, Zúñiga-Ripa A, Conde-Álvarez R. Development and evaluation of the Galleria mellonella (greater wax moth) infection model to study Brucella host-pathogen interaction. Microb Pathog 2023; 174:105930. [PMID: 36496059 DOI: 10.1016/j.micpath.2022.105930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Brucellosis is a zoonotic disease caused by Gram-negative bacteria of the genus Brucella. These pathogens cause long-lasting infections, a process in which Brucella modifications in the lipopolysaccharide (LPS) and envelope lipids reduce pathogen-associated molecular pattern (PAMP) recognition, thus hampering innate immunity activation. In vivo models are essential to investigate bacterial virulence, mice being the most used model. However, ethical and practical considerations impede their use in high-throughput screening studies. Although lacking the complexity of the mammalian immune system, insects share key-aspects of innate immunity with mammals, and Galleria mellonella has been used increasingly as a model. G. mellonella larvae have been shown useful in virulence analyses, including Gram-negative pathogens like Klebsiella pneumoniae and Legionella pneumophila. To assess its potential to study Brucella virulence, we first evaluated larva survival upon infection with representative Brucella species (i.e.B. abortus 2308W, B. microti CCM4915 and B. suis biovar 2) and mutants in the VirB type-IV secretion system (T4SS) or in the LPS-O-polysaccharide (O-PS). As compared to K.pneumoniae, the Brucella spp. tested induced a delayed and less severe mortality profile consistent with an escape of innate immunity detection. Brucella replication within larvae was affected by the lack of O-PS, which is reminiscent of their attenuation in natural hosts. On the contrary, replication was not affected by T4SS dysfunction and the mutant induced only slightly less mortality (not statistically significant) than its parental strain. We also evaluated G. mellonella to efficiently recognise Brucella and their LPS by quantification of the pro-phenoloxidase system and melanisation activation, using Pseudomonas LPS as a positive control. Among the brucellae, only B. microti LPS triggered an early-melanisation response consistent with the slightly increased endotoxicity of this species in mice. Therefore, G. mellonella represents a tool to screen for potential Brucella factors modulating innate immunity, but its usefulness to investigate other mechanisms relevant in Brucella intracellular life is limited.
Collapse
Affiliation(s)
- Aitor Elizalde-Bielsa
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Beatriz Aragón-Aranda
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Maite Loperena-Barber
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Miriam Salvador-Bescós
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Ignacio Moriyón
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Amaia Zúñiga-Ripa
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain
| | - Raquel Conde-Álvarez
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Spain.
| |
Collapse
|
9
|
Zha F, Pang R, Huang S, Zhang J, Wang J, Chen M, Xue L, Ye Q, Wu S, Yang M, Gu Q, Ding Y, Zhang H, Wu Q. Evaluation of the pathogenesis of non-typical strain with α-hemolysin, Vibrio parahaemolyticus 353, isolated from Chinese seafood through comparative genome and transcriptome analysis. MARINE POLLUTION BULLETIN 2023; 186:114276. [PMID: 36437125 DOI: 10.1016/j.marpolbul.2022.114276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/21/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Vibrio parahaemolyticus outbreaks frequently occur, causing gastrointestinal sickness owing to the consumption of aquatic foods by various virulence factors; however, the mechanism of pathogenesis is still unknown. In this study, a non-typical strain of V. parahaemolyticus, named VP353, was isolated from shrimp in China. Its comparative genome and transcriptome after infection with Caco-2 cells were examined to illustrate the mechanisms of its pathogenesis. VP353 was a tdh-trh- strain but uncommonly manifested robust cytotoxicity towards Caco-2 cells. Compared with the standard strain RIMD2210633, VP353 harbored alpha-hemolysins (hlyA, hlyB, hlyC, and hlyD) was first reported in V. parahaemolyticus and showed high diversity in the T3SS2 gene cluster. Moreover, the expression of flagella, T2SS, quorum sensing-related genes, hlyA, hlyC were up-regulated, and hlyB, hlyD were down-regulated. In summary, our results demonstrate that some novel virulence factors contribute to the pathogenesis of V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Fei Zha
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Shixuan Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Meiyan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, Guangdong, China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China.
| |
Collapse
|
10
|
Targeting Virulence Genes Expression in Vibrio vulnificus by Alternative Carbon Sources. Int J Mol Sci 2022; 23:ijms232315278. [PMID: 36499602 PMCID: PMC9737408 DOI: 10.3390/ijms232315278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022] Open
Abstract
Vibrio vulnificus is an opportunistic human pathogen causing self-limiting gastroenteritis, life-threatening necrotizing soft tissue infection, and fulminating septicaemia. An increasing rate of infections has been reported worldwide, characterized by sudden onset of sepsis and/or rapid progression to irreversible tissue damage or death. Timely intervention is essential to control the infection, and it is based on antibiotic therapy, which does not always result in the effective and rapid blocking of virulence. Inhibitors of essential virulence regulators have been reported in the last years, but none of them has been further developed, so far. We aimed to investigate whether exposure to some carbon compounds, mostly easily metabolizable, could result in transcriptional down-regulation of virulence genes. We screened various carbon sources already available for human use (thus potentially easy to be repurposed), finding some of them (including mannitol and glycerol) highly effective in down-regulating, in vitro and ex-vivo, the mRNA levels of several relevant -even essential- virulence factors (hlyU, lrp, rtxA, vvpE, vvhA, plpA, among others). This paves the way for further investigations aiming at their development as virulence inhibitors and to unveil mechanisms explaining such observed effects. Moreover, data suggesting the existence of additional regulatory networks of some virulence genes are reported.
Collapse
|
11
|
Xiang X, Diao E, Shang Y, Song M, He Y. Rapid quantitative detection of Vibrio parahaemolyticus via high-fidelity target-based microfluidic identification. Food Res Int 2022; 162:112032. [PMID: 36461252 DOI: 10.1016/j.foodres.2022.112032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/12/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022]
Abstract
With the rapid development of logistics, a growing number of pathogenic microorganisms has the means to spread worldwide using food as a carrier; thus, there is an urgent need to develop effective detection strategies to ensure food safety. By combining novel markers identified by pan-genome analysis and a digital recombinase-aided amplification (RAA) detection method based on a microfluidic chip, a strategy of high-fidelity target-based microfluidic identification (HFTMI) has been developed. Herein, a proof-of-concept study of HFTMI for rapid pathogen detection of V. parahaemolyticus was investigated. Specific primers designed for the gene group_41170 identified in the pan-genome analysis showed high sensitivity and a broad spectrum for the detection of V. parahaemolyticus. Different power systems were investigated to increase the partition rate on specifically designed chamber-based digital chips. The performance of HFTMI was greatly improved compared with qPCR. Collectively, this novel HFTMI system provides more reliable guidance for food safety testing.
Collapse
Affiliation(s)
- Xinran Xiang
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Enjie Diao
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Yuting Shang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Minghui Song
- Hainan Hospital of Chinese PLA General Hospital, Sanya 572000, China.
| | - Yinglong He
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
12
|
Ahlawat S, Sharma KK. Lepidopteran insects: emerging model organisms to study infection by enteropathogens. Folia Microbiol (Praha) 2022; 68:181-196. [PMID: 36417090 DOI: 10.1007/s12223-022-01014-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022]
Abstract
The in vivo analysis of a pathogen is a critical step in gaining greater knowledge of pathogen biology and host-pathogen interactions. In the last two decades, there has been a notable rise in the number of studies on developing insects as a model for studying pathogens, which provides various benefits, such as ethical acceptability, relatively short life cycle, and cost-effective care and maintenance relative to routinely used rodent infection models. Furthermore, lepidopteran insects provide many advantages, such as easy handling and tissue extraction due to their large size relative to other invertebrate models, like Caenorhabditis elegans. Additionally, insects have an innate immune system that is highly analogous to vertebrates. In the present review, we discuss the components of the insect's larval immune system, which strengthens its usage as an alternative host, and present an updated overview of the research findings involving lepidopteran insects (Galleria mellonella, Manduca sexta, Bombyx mori, and Helicoverpa armigera) as infection models to study the virulence by enteropathogens due to the homology between insect and vertebrate gut.
Collapse
Affiliation(s)
- Shruti Ahlawat
- Department of Microbiology, Faculty of Allied Health Sciences, SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram, 122505, Haryana, India.
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| |
Collapse
|
13
|
Liu H, Zhu W, Cao Y, Gao J, Jin T, Qin N, Xia X. Punicalagin inhibits biofilm formation and virulence gene expression of Vibrio parahaemolyticus. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Description of a Rare Pyomelanin-Producing Carbapenem-Resistant Acinetobacter baumannii Strain Coharboring Chromosomal OXA-23 and NDM-1. Microbiol Spectr 2022; 10:e0214422. [PMID: 35946816 PMCID: PMC9431530 DOI: 10.1128/spectrum.02144-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB), which belonged to global clones 1 (GC1) or 2 (GC2), has been widely reported and become a global threat. However, non-GC1 and non-GC2 CRAB strains are not well-studied, especially for those with rare phenotype. Here, one pyomelanin-producing CRAB strain (A. baumannii DETAB-R21) was isolated from oral swab in the ICU. Antimicrobial susceptibility testing showed it was resistant to carbapenems, ceftazidime, levofloxacin, and ciprofloxacin. DETAB-R21 was ST164Pas and ST1418Oxf with KL47 and OCL5, respectively. Whole-genome sequencing (WGS) analysis revealed chromosome contained three copies of blaOXA-23 on three 4,805-bp Tn2006 composite transposons with various novel 9-bp target site duplications (TSD). A Tn125-like structure, including blaNDM-1, a novel 4,343 bp composite transposon encoding blaCARB-16, and three prophage regions were also identified. Importantly, hmgA was interrupted by a Tn2006 and contributed to pyomelanin production and further confirmed by hmgA overexpression. Furthermore, A. baumannii irradiated with UV light, DETAB-R21 showed a higher relatively survival rate compared to a control strain that did not produce pyomelanin. No effects of pyomelanin were observed on disinfectants susceptibility, growth, or virulence. In conclusion, pyomelanin-producing CRAB carrying the blaNDM-1 and blaOXA-23 genes embedded in the bacterial chromosome is of grave concern for health care settings, highlighting the need for effective measures to prevent further dissemination. IMPORTANCE Pyomelanin production is a quite rare phenotype in A. baumannii. Moreover, the mechanisms leading to the pyomelanin production was still unclear. Here, we for the first time, confirmed the mechanism of pyomelanin production, and further investigated the impact of pyomelanin on disinfectants susceptibility, growth, virulence, and UV irradiation. More importantly, many mobile genetic elements (MGEs), including three copies of Tn2006 composite transposons, one copy of blaNDM-1 on the Tn125-like structure and three prophage regions, were identified in the chromosome, demonstrated strong plasticity of A. baumannii genome. Our study provides important insights into the new rare ST164Pas A. baumannii strain with high level carbapenem resistance, which is of great threat for patients. These findings will provide important insights into the resistance gene transfer via transposition events and further spread in the clinic.
Collapse
|
15
|
Harrison J, Nelson K, Morcrette H, Morcrette C, Preston J, Helmer L, Titball RW, Butler CS, Wagley S. The increased prevalence of Vibrio species and the first reporting of Vibrio jasicida and Vibrio rotiferianus at UK shellfish sites. WATER RESEARCH 2022; 211:117942. [PMID: 35042073 PMCID: PMC8841665 DOI: 10.1016/j.watres.2021.117942] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/18/2021] [Accepted: 12/05/2021] [Indexed: 05/31/2023]
Abstract
Warming sea-surface temperature has led to an increase in the prevalence of Vibrio species in marine environments. This can be observed particularly in temperate regions where conditions for their growth has become more favourable. The increased prevalence of pathogenic Vibrio species has resulted in a worldwide surge of Vibriosis infections in human and aquatic animals. This study uses sea-surface temperature data around the English and Welsh coastlines to identify locations where conditions for the presence and growth of Vibrio species is favourable. Shellfish samples collected from three locations that were experiencing an increase in sea-surface temperature were found to be positive for the presence of Vibrio species. We identified important aquaculture pathogens Vibrio rotiferianus and Vibrio jasicida from these sites that have not been reported in UK waters. We also isolated human pathogenic Vibrio species including V. parahaemolyticus from these sites. This paper reports the first isolation of V. rotiferianus and V. jasicida from UK shellfish and highlights a growing diversity of Vibrio species inhabiting British waters.
Collapse
Affiliation(s)
- Jamie Harrison
- Biosciences, College of life and Environmental Sciences, University of Exeter, Devon, Exeter EX4 4QD, UK
| | - Kathryn Nelson
- Sussex Inshore Fisheries and Conservation Authority, 12a Riverside Business Centre, Brighton Road, Shoreham BN43 6RE, UK
| | - Helen Morcrette
- Biosciences, College of life and Environmental Sciences, University of Exeter, Devon, Exeter EX4 4QD, UK
| | | | - Joanne Preston
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth PO4 9LY, UK
| | - Luke Helmer
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth PO4 9LY, UK; Blue Marine Foundation, Somerset House, London WC2R 1LA, UK
| | - Richard W Titball
- Biosciences, College of life and Environmental Sciences, University of Exeter, Devon, Exeter EX4 4QD, UK
| | - Clive S Butler
- Biosciences, College of life and Environmental Sciences, University of Exeter, Devon, Exeter EX4 4QD, UK
| | - Sariqa Wagley
- Biosciences, College of life and Environmental Sciences, University of Exeter, Devon, Exeter EX4 4QD, UK.
| |
Collapse
|
16
|
Ménard G, Rouillon A, Cattoir V, Donnio PY. Galleria mellonella as a Suitable Model of Bacterial Infection: Past, Present and Future. Front Cell Infect Microbiol 2022; 11:782733. [PMID: 35004350 PMCID: PMC8727906 DOI: 10.3389/fcimb.2021.782733] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
The increasing interest for Galleria mellonella larvae as an infection model is evidenced by the number of papers reporting its use, which increases exponentially since the early 2010s. This popularity was initially linked to limitation of conventional animal models due to financial, technical and ethical aspects. In comparison, alternative models (e.g. models using Caenorhabditis elegans, Drosophila melanogaster or G. mellonella) were cheap, simple to use and not limited by ethical regulation. Since then, similar results have been established with G. mellonella model comparatively to vertebrates, and it is more and more often used as a robust model per se, not only as an alternative to the murine model. This review attempts to summarize the current knowledge supporting the development of this model, both on immunological and microbiological aspects. For that, we focus on investigation of virulence and new therapies for the most important pathogenic bacteria. We also discuss points out directions for standardization, as well as recent advances and new perspectives for monitoring host-pathogen interactions.
Collapse
Affiliation(s)
- Guillaume Ménard
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| | - Astrid Rouillon
- Univ Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), UMR_S 1230, Rennes, France
| | - Vincent Cattoir
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| | - Pierre-Yves Donnio
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| |
Collapse
|
17
|
Krachler AM, Sirisaengtaksin N, Monteith P, Paine CET, Coates CJ, Lim J. Defective phagocyte association during infection of Galleria mellonella with Yersinia pseudotuberculosis is detrimental to both insect host and microbe. Virulence 2021; 12:638-653. [PMID: 33550901 PMCID: PMC7889024 DOI: 10.1080/21505594.2021.1878672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 11/03/2022] Open
Abstract
Adhesins facilitate bacterial colonization and invasion of host tissues and are considered virulence factors, but their impact on immune-mediated damage as a driver of pathogenesis remains unclear. Yersinia pseudotuberculosis encodes for a multivalent adhesion molecule (MAM), a mammalian cell entry (MCE) family protein and adhesin. MAMs are widespread in Gram-negative bacteria and enable enteric bacteria to colonize epithelial tissues. Their role in bacterial interactions with the host innate immune system and contribution to pathogenicity remains unclear. Here, we investigated howY. pseudotuberculosis MAM contributes to pathogenesis during infection of the Galleria mellonella insect model. We show that Y. pseudotuberculosis MAM is required for efficient bacterial binding and uptake by hemocytes, the host phagocytes. Y. pseudotuberculosis interactions with insect and mammalian phagocytes are determined by bacterial and host factors. Loss of MAM, and deficient microbe-phagocyte interaction, increased pathogenesis in G. mellonella. Diminished phagocyte association also led to increased bacterial clearance. Furthermore, Y. pseudotuberculosis that failed to engage phagocytes hyperactivated humoral immune responses, most notably melanin production. Despite clearing the pathogen, excessive melanization also increased phagocyte death and host mortality. Our findings provide a basis for further studies investigating how microbe- and host-factors integrate to drive pathogenesis in a tractable experimental system.
Collapse
Affiliation(s)
- Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Natalie Sirisaengtaksin
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Pauline Monteith
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - C. E. Timothy Paine
- School of Environmental and Rural Sciences, University of New England, Armidale, Australia
| | - Christopher J. Coates
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales UK
| | - Jenson Lim
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
18
|
Nale JY, Al-Tayawi TS, Heaphy S, Clokie MRJ. Impact of Phage CDHS-1 on the Transcription, Physiology and Pathogenicity of a Clostridioides difficile Ribotype 027 Strain, R20291. Viruses 2021; 13:v13112262. [PMID: 34835068 PMCID: PMC8619979 DOI: 10.3390/v13112262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 01/05/2023] Open
Abstract
All known Clostridioides difficile phages encode integrases rendering them potentially able to lyse or lysogenise bacterial strains. Here, we observed the infection of the siphovirus, CDHS-1 on a ribotype 027 strain, R20291 and determined the phage and bacterial gene expression profiles, and impacts of phage infection on bacterial physiology and pathogenicity. Using RNA-seq and RT-qPCR we analysed transcriptomic changes during early, mid-log and late phases of phage replication at an MOI of 10. The phage has a 20 min latent period, takes 80 min to lyse cells and a burst size of ~37. All phage genes are highly expressed during at least one time point. The Cro/C1-transcriptional regulator, ssDNA binding protein and helicase are expressed early, the holin is expressed during the mid-log phase and structural proteins are expressed from mid-log to late phase. Most bacterial genes, particularly the metabolism and toxin production/regulatory genes, were downregulated from early phage replication. Phage-resistant strains and lysogens showed reduced virulence during Galleria mellonella colonization as ascertained by the larval survival and expression of growth (10), reproduction (2) and infection (2) marker genes. These data suggest that phage infection both reduces colonization and negatively impacts bacterial pathogenicity, providing encouraging data to support the development of this phage for therapy to treat C. difficile infection.
Collapse
|
19
|
Emery H, Traves W, Rowley AF, Coates CJ. The diarrhetic shellfish-poisoning toxin, okadaic acid, provokes gastropathy, dysbiosis and susceptibility to bacterial infection in a non-rodent bioassay, Galleria mellonella. Arch Toxicol 2021; 95:3361-3376. [PMID: 34374792 PMCID: PMC8448676 DOI: 10.1007/s00204-021-03132-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
Diarrhetic shellfish-poisoning (DSP) toxins such as okadaic acid and dinophysistoxins harm the human gastrointestinal tract, and therefore, their levels are regulated to an upper limit of 160 μg per kg tissue to protect consumers. Rodents are used routinely for risk assessment and studies concerning mechanisms of toxicity, but there is a general move toward reducing and replacing vertebrates for these bioassays. We have adopted insect larvae of the wax moth Galleria mellonella as a surrogate toxicology model. We treated larvae with environmentally relevant doses of okadaic acid (80–400 μg/kg) via intrahaemocoelic injection or gavage to determine marine toxin-related health decline: (1) whether pre-exposure to a sub-lethal dose of toxin (80 μg/kg) enhances susceptibility to bacterial infection, or (2) alters tissue pathology and bacterial community (microbiome) composition of the midgut. A sub-lethal dose of okadaic acid (80 μg/kg) followed 24 h later by bacterial inoculation (2 × 105Escherichia coli) reduced larval survival levels to 47%, when compared to toxin (90%) or microbial challenge (73%) alone. Histological analysis of the midgut depicted varying levels of tissue disruption, including nuclear aberrations associated with cell death (karyorrhexis, pyknosis), loss of organ architecture, and gross epithelial displacement into the lumen. Moreover, okadaic acid presence in the midgut coincided with a shift in the resident bacterial population over time in that substantial reductions in diversity (Shannon) and richness (Chao-1) indices were observed at 240 μg toxin per kg. Okadaic acid-induced deterioration of the insect alimentary canal resembles those changes reported for rodent bioassays.
Collapse
Affiliation(s)
- Helena Emery
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - William Traves
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Andrew F Rowley
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Christopher J Coates
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, Wales, SA2 8PP, UK.
| |
Collapse
|
20
|
Emery H, Butt TM, Coates CJ. Nutraceutical intervention protects against bacterial and chemical-induced gastrotoxicity in a non-mammalian model, Galleria mellonella. Food Chem Toxicol 2021; 154:112354. [PMID: 34146620 DOI: 10.1016/j.fct.2021.112354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022]
Abstract
Preparations of the fungus Cordyceps sinensis and bovine colostrum are considered nutraceuticals due to their anti-inflammatory, repair and gut alimentation properties in mammalian models. To reduce the reliance on rodents in routine experimentation, we gauged the capacity of nutraceuticals to alleviate gastric damage in an insect surrogate, Galleria mellonella. Larvae were reared on standard or supplemented diets - 10% (w/w) colostrum, 10% (w/w) C. sinensis, or 5% + 5% each - prior to receiving an oral dose of the NSAID indomethacin (30 mg/kg) or challenged with the bacterial pathogen Campylobacter jejuni (1-3 x106) via two inoculation routes. Insects reared on a cordyceps-supplemented diet proved most resistant to indomethacin-induced gut leakiness, and displayed stable health indices after C. jejuni challenge (~77% survival). Insects reared on a colostrum-supplemented diet also showed recalcitrance in the gut, but were more sensitive to C. jejuni when injected directly into the body cavity (50% survival). The nutraceutical blend yielded improved health outcomes when compared to the standard diet, but was not as effective as either nutraceutical alone. Our findings represent clear evidence that insects were more resistant to known chemical and microbial agitators when reared on nutraceutical-supplemented diets - toxicological endpoints that are shared with vertebrate studies.
Collapse
Affiliation(s)
- Helena Emery
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Tariq M Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Christopher J Coates
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
21
|
Santos LDO, de Lanna CA, Arcanjo ACDC, Bisch PM, von Krüger WMA. Genotypic Diversity and Pathogenic Potential of Clinical and Environmental Vibrio parahaemolyticus Isolates From Brazil. Front Microbiol 2021; 12:602653. [PMID: 33776949 PMCID: PMC7994283 DOI: 10.3389/fmicb.2021.602653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022] Open
Abstract
Vibrio parahaemolyticus strains recovered from human diarrheal stools (one in 1975 and two in 2001) and environmental sources (four, between 2008 and 2010) were investigated for the presence of virulence genes (trh, tdh, and vpadF), pandemic markers (orf8, toxRSnew), and with respect to their pathogenic potential in two systemic infection models. Based only on the presence or absence of these genetic markers, they were classified as follows: the environmental strains were non-pathogenic, whereas among the clinical strains, the one isolated in 1975 was pathogenic (non-pandemic), and the other two were pathogenic (pandemic). The pathogenic potential of the strains was evaluated in mice and Galleria mellonella larvae infection models, and except for the clinical (pathogenic, non-pandemic) isolate, the others produced lethal infection in both organisms, regardless of their source, serotype, and genotype (tdh, orf8, toxRSnew, and vpadF). Based on mice and larval mortality rates, the strains were then grouped according to virulence (high, intermediate, and avirulent), and remarkably similar results were obtained by using these models: The clinical strain (pathogenic and non-pandemic) was classified as avirulent, and other strains (four non-pathogenic and two pandemic) were considered of high or intermediate virulence. In summary, these findings demonstrate that G. mellonella larvae can indeed be used as an alternative model to study the pathogenicity of V. parahaemolyticus. Moreover, they raise doubts about the use of traditional virulence markers to predict pathogenesis of the species and show that reliable models are indispensable to determine the pathogenic potential of environmental isolates considered non-pathogenic, based on the absence of the long-standing virulence indicators.
Collapse
Affiliation(s)
- Leandro de O Santos
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristóvão A de Lanna
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Carolina da C Arcanjo
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanda M A von Krüger
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Davis BJK, Corrigan AE, Sun Z, Atherly E, DePaola A, Curriero FC. A case-control analysis of traceback investigations for Vibrio parahaemolyticus infections (vibriosis) and pre-harvest environmental conditions in Washington State, 2013-2018. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141650. [PMID: 32898797 PMCID: PMC7674187 DOI: 10.1016/j.scitotenv.2020.141650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/25/2020] [Accepted: 08/10/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Vibrio parahaemolyticus is a major cause of seafood-borne illness. It is naturally prevalent in brackish waters and accumulates in shellfish. Vibriosis cases are rising globally, likely due to rising temperatures. OBJECTIVES To identify associations between vibriosis in Washington State and pre-harvest environmental and V. parahaemolyticus genetic measurements sampled from shellfish. METHODS Successful vibriosis traceback investigations were spatiotemporally matched to routine intertidal oyster (Crassostrea gigas) sampling events, which included measurements of temperature, salinity, and V. parahaemolyticus genetic targets (thermolabile hemolysin: tlh; thermostable direct hemolysin: tdh; thermostable direct-related hemolysin: trh). Unmatched sampling events were treated as controls. Associations were evaluated using logistic regression models. RESULTS Systematic differences were observed across Washington harvesting zones. These included positive associations between the odds of vibriosis and all three genetic targets in South Puget Sound, with a large odds ratio (OR) = 13.0 (95% CI: 1.5, 115.0) for a 1-log10 increase in tdh when total bacterium abundance was low (tlh < 1 log10 MPN/g). A positive association also occurred for a 1 °C increase in tissue temperature OR = 1.20 (95% CI: 1.10, 1.30) while a negative association occurred for a similar increase in water temperature OR = 0.70 (95% CI: 0.59, 0.81). In contrast, the coastal bays displayed positive associations for water temperature OR = 2.16 (95% CI, 1.15, 4.05), and for a 1-log10 increase in the tdh:trh ratio OR = 5.85 (95% CI, 1.06, 32.26). DISCUSSION The zonal variation in associations indicates unique pathogenic strain prominence, suggesting tdh+/trh+ strains in South Puget Sound, such as the O4:K12 serotype, and tdh+/trh- strains in the coastal bays. The temperature discrepancy between water and oyster tissue suggests that South Puget Sound pathogenic strains flourish with exposure to relatively warm air during low tide. These findings identify new ecological risk factors for vibriosis in Washington State that can be used in future prevention efforts.
Collapse
Affiliation(s)
- Benjamin J K Davis
- Spatial Science for Public Health Center, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 627 N. Washington Street, Baltimore, MD 21205, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA; Center for Chemical Regulation and Food Safety, Exponent, Inc., 1105 Connective Avenue #1100, Washington, DC 20036, USA
| | - Anne E Corrigan
- Spatial Science for Public Health Center, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 627 N. Washington Street, Baltimore, MD 21205, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Zhe Sun
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Erika Atherly
- Office of Environmental Health & Safety, Division of Environmental Public Health, Washington State Department of Health, Olympia, WA, USA
| | | | - Frank C Curriero
- Spatial Science for Public Health Center, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 627 N. Washington Street, Baltimore, MD 21205, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Bacterial dormancy: A subpopulation of viable but non-culturable cells demonstrates better fitness for revival. PLoS Pathog 2021; 17:e1009194. [PMID: 33439894 PMCID: PMC7837498 DOI: 10.1371/journal.ppat.1009194] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/26/2021] [Accepted: 11/27/2020] [Indexed: 01/08/2023] Open
Abstract
The viable but non culturable (VBNC) state is a condition in which bacterial cells are viable and metabolically active, but resistant to cultivation using a routine growth medium. We investigated the ability of V. parahaemolyticus to form VBNC cells, and to subsequently become resuscitated. The ability to control VBNC cell formation in the laboratory allowed us to selectively isolate VBNC cells using fluorescence activated cell sorting, and to differentiate subpopulations based on their metabolic activity, cell shape and the ability to cause disease in Galleria mellonella. Our results showed that two subpopulations (P1 and P2) of V. parahaemolyticus VBNC cells exist and can remain dormant in the VBNC state for long periods. VBNC subpopulation P2, had a better fitness for survival under stressful conditions and showed 100% revival under favourable conditions. Proteomic analysis of these subpopulations (at two different time points: 12 days (T12) and 50 days (T50) post VBNC) revealed that the proteome of P2 was more similar to that of the starting microcosm culture (T0) than the proteome of P1. Proteins that were significantly up or down-regulated between the different VBNC populations were identified and differentially regulated proteins were assigned into 23 functional groups, the majority being assigned to metabolism functional categories. A lactate dehydrogenase (lldD) protein, responsible for converting lactate to pyruvate, was significantly upregulated in all subpopulations of VBNC cells. Deletion of the lactate dehydrogenase (RIMD2210633:ΔlldD) gene caused cells to enter the VBNC state significantly more quickly compared to the wild-type, and adding lactate to VBNC cells aided their resuscitation and extended the resuscitation window. Addition of pyruvate to the RIMD2210633:ΔlldD strain restored the wild-type VBNC formation profile. This study suggests that lactate dehydrogenase may play a role in regulating the VBNC state.
Collapse
|
24
|
Kraszewska E, Drabinska J. Nudix proteins affecting microbial pathogenesis. MICROBIOLOGY (READING, ENGLAND) 2020; 166:1110-1114. [PMID: 33253082 DOI: 10.1099/mic.0.000993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nudix proteins catalyse hydrolysis of pyrophosphate bonds in a variety of substrates and are ubiquitous in all domains of life. Their widespread presence and broad substrate specificity suggest that they have important cellular functions. In this review, we summarize the state of knowledge on microbial Nudix proteins involved in pathogenesis.
Collapse
Affiliation(s)
- Elzbieta Kraszewska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Joanna Drabinska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| |
Collapse
|
25
|
Pérez-Reytor D, Pavón A, Lopez-Joven C, Ramírez-Araya S, Peña-Varas C, Plaza N, Alegría-Arcos M, Corsini G, Jaña V, Pavez L, Del Pozo T, Bastías R, Blondel CJ, Ramírez D, García K. Analysis of the Zonula occludens Toxin Found in the Genome of the Chilean Non-toxigenic Vibrio parahaemolyticus Strain PMC53.7. Front Cell Infect Microbiol 2020; 10:482. [PMID: 33072618 PMCID: PMC7541967 DOI: 10.3389/fcimb.2020.00482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Vibrio parahaemolyticus non-toxigenic strains are responsible for about 10% of acute gastroenteritis associated with this species, suggesting they harbor unique virulence factors. Zonula occludens toxin (Zot), firstly described in Vibrio cholerae, is a secreted toxin that increases intestinal permeability. Recently, we identified Zot-encoding genes in the genomes of highly cytotoxic Chilean V. parahaemolyticus strains, including the non-toxigenic clinical strain PMC53.7. To gain insights into a possible role of Zot in V. parahaemolyticus, we analyzed whether it could be responsible for cytotoxicity. However, we observed a barely positive correlation between Caco-2 cell membrane damage and Zot mRNA expression during PMC53.7 infection and non-cytotoxicity induction in response to purified PMC53.7-Zot. Unusually, we observed a particular actin disturbance on cells infected with PMC53.7. Based on this observation, we decided to compare the sequence of PMC53.7-Zot with Zot of human pathogenic species such as V. cholerae, Campylobacter concisus, Neisseria meningitidis, and other V. parahaemolyticus strains, using computational tools. The PMC53.7-Zot was compared with other toxins and identified as an endotoxin with conserved motifs in the N-terminus and a variable C-terminal region and without FCIGRL peptide. Notably, the C-terminal diversity among Zots meant that not all of them could be identified as toxins. Structurally, PMC53.7-Zot was modeled as a transmembrane protein. Our results suggested that it has partial 3D structure similarity with V. cholerae-Zot. Probably, the PMC53.7-Zot would affect the actin cytoskeletal, but, in the absence of FCIGRL, the mechanisms of actions must be elucidated.
Collapse
Affiliation(s)
- Diliana Pérez-Reytor
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Alequis Pavón
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Carmen Lopez-Joven
- Facultad de Ciencias Veterinarias, Instituto de Medicina Preventiva Veterinaria, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Ramírez-Araya
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Carlos Peña-Varas
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Nicolás Plaza
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Melissa Alegría-Arcos
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Gino Corsini
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Víctor Jaña
- Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Santiago, Chile
| | - Leonardo Pavez
- Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago, Chile.,Instituto de Ciencias Naturales, Universidad de Las Américas, Santiago, Chile
| | - Talia Del Pozo
- Centro Tecnológico de Recursos Vegetales, Escuela de Agronomía, Universidad Mayor, Huechuraba, Chile
| | - Roberto Bastías
- Laboratorio de Microbiología, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carlos J Blondel
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.,Facultad de Medicina y Facultad de Ciencias de la Vida, Instituto de Ciencias Biomédicas, Universidad Andrés Bello, Santiago, Chile
| | - David Ramírez
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Katherine García
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
26
|
Drabinska J, Ziecina M, Modzelan M, Jagura‐Burdzy G, Kraszewska E. Individual Nudix hydrolases affect diverse features of Pseudomonas aeruginosa. Microbiologyopen 2020; 9:e1052. [PMID: 32419387 PMCID: PMC7424265 DOI: 10.1002/mbo3.1052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Nudix proteins catalyze the hydrolysis of pyrophosphate bonds in a variety of substrates and are ubiquitous in all domains of life. The genome of an important opportunistic human pathogen, Pseudomonas aeruginosa, encodes multiple Nudix proteins. To determine the role of nine Nudix hydrolases of the P. aeruginosa PAO1161 strain in its fitness, virulence or antibiotic resistance mutants devoid of individual enzymes were constructed and analyzed for growth rate, motility, biofilm formation, pyocyanin production, and susceptibility to oxidative stress and different antibiotics. The potential effect on bacterial virulence was studied using the Caenorhabditis elegans-P. aeruginosa infection model. Of the nine mutants tested, five had an altered phenotype in comparison with the wild-type strain. The ΔPA3470, ΔPA3754, and ΔPA4400 mutants showed increased pyocyanin production, were more resistant to the β-lactam antibiotic piperacillin, and were more sensitive to killing by H2 O2 . In addition, ΔPA4400 and ΔPA5176 had impaired swarming motility and were less virulent for C. elegans. The ΔPA4841 had an increased sensitivity to oxidative stress. These changes were reversed by providing the respective nudix gene in trans indicating that the observed phenotype alterations were indeed due to the lack of the particular Nudix protein.
Collapse
Affiliation(s)
| | | | - Marta Modzelan
- Institute of Biochemistry and Biophysics PASWarsawPoland
| | | | | |
Collapse
|
27
|
|
28
|
Cutuli MA, Petronio Petronio G, Vergalito F, Magnifico I, Pietrangelo L, Venditti N, Di Marco R. Galleria mellonella as a consolidated in vivo model hosts: New developments in antibacterial strategies and novel drug testing. Virulence 2019; 10:527-541. [PMID: 31142220 PMCID: PMC6550544 DOI: 10.1080/21505594.2019.1621649] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
A greater ethical conscience, new global rules and a modified perception of ethical consciousness entail a more rigorous control on utilizations of vertebrates for in vivo studies. To cope with this new scenario, numerous alternatives to rodents have been proposed. Among these, the greater wax moth Galleria mellonella had a preponderant role, especially in the microbiological field, as demonstrated by the growing number of recent scientific publications. The reasons for its success must be sought in its peculiar characteristics such as the innate immune response mechanisms and the ability to grow at a temperature of 37°C. This review aims to describe the most relevant features of G. mellonella in microbiology, highlighting the most recent and relevant research on antibacterial strategies, novel drug tests and toxicological studies. Although solutions for some limitations are required, G. mellonella has all the necessary host features to be a consolidated in vivo model host.
Collapse
Affiliation(s)
- Marco Alfio Cutuli
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Giulio Petronio Petronio
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Franca Vergalito
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Laura Pietrangelo
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| |
Collapse
|
29
|
Indomethacin-induced gut damage in a surrogate insect model, Galleria mellonella. Arch Toxicol 2019; 93:2347-2360. [PMID: 31270586 DOI: 10.1007/s00204-019-02508-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022]
Abstract
Indomethacin is a non-steroidal anti-inflammatory drug that causes gastric ulceration and increased 'leakiness' in rat models, and is used routinely as a toxicology assay to screen novel compounds for repair and restitution properties. We set out to establish conditions for indomethacin-induced gut damage in wax-moth (Galleria mellonella) larvae with a view to reducing the need for rodents in such experimentation. We administered indomethacin (0.5-7.5 µg/larva; 2-30 mg/kg) to G. mellonella via intrahaemocoelic injection and gavage (force-feeding) and monitored survival and development, blood cell (haemocyte) numbers, and changes in gut permeability. Increased levels of gut leakiness were observed within the first 4- to 24 h by tracking fluorescent microspheres in the faeces and haemolymph (blood equivalent). Additionally, we recorded varying levels of tissue damage in histological sections of the insect midgut, including epithelial sloughing and cell necrosis. Degeneration of the midgut was accompanied by significant increases in detoxification-associated activities (superoxide dismutase and glutathione-S-transferase). Herein, we present the first evidence that G. mellonella larvae force-fed indomethacin display broad symptoms of gastric damage similar to their rodent counterparts.
Collapse
|
30
|
Kay S, Edwards J, Brown J, Dixon R. Galleria mellonella Infection Model Identifies Both High and Low Lethality of Clostridium perfringens Toxigenic Strains and Their Response to Antimicrobials. Front Microbiol 2019; 10:1281. [PMID: 31333591 PMCID: PMC6616247 DOI: 10.3389/fmicb.2019.01281] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/23/2019] [Indexed: 12/29/2022] Open
Abstract
Research progress into mechanisms of the anaerobe Clostridium perfringens and associated diseases has been frustrated by the lack of reliable infection models. Wax moth larvae (Galleria mellonella) have emerged as a viable alternative to other models of infection since they are economic, survive at 37°C and require no specialist equipment. This study aims to establish to what extent G. mellonella larvae can be used to study the virulence of C. perfringens strains and its suitability for studying novel treatment strategies by an improved time-lapse approach to data collection. Mortality and morbidity rates of larvae challenged with 105 CFU of C. perfringens isolates from various sources were observed over 72 h and dose response data obtained. Phenoloxidase enzyme activity was investigated as a marker for immune response and tissue burden assessed by histopathological techniques. Results demonstrate that C. perfringens is pathogenic toward G. mellonella although potency varies dramatically between C. perfringens isolates and the reference strain ATCC 13124 was shown to be avirulent. Infection with C. perfringens strains activated the melanisation pathway resulting in melanin deposition but no increase in enzyme activity was observed. Efficacy of antibiotic therapy (penicillin G, bacitracin, neomycin, and tetracycline) administered parenterally to some extent correlates with that of in vitro analysis. The findings suggest G. mellonella might be a useful in vivo model of infection and convenient as a pre-screening assay for virulence of C. perfringens strains or as a simple, cheap and rapid in vivo assay in the first stage development of novel therapeutics against anaerobes. HIGHLIGHTS -Potential novel in vivo model for the study of Clostridium perfringens infection.-Novel time-lapse approach to data collection.-First report of the pathogenicity of C. perfringens toward G. mellonella.-First report of the efficacy of antibiotic therapy in response to C. perfringens infection in G. mellonella.
Collapse
Affiliation(s)
- Sammy Kay
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom.,Arden Biotechnology, Lincoln, United Kingdom
| | - Joseph Edwards
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom.,Arden Biotechnology, Lincoln, United Kingdom
| | | | - Ronald Dixon
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
31
|
Jesser KJ, Valdivia-Granda W, Jones JL, Noble RT. Clustering of Vibrio parahaemolyticus Isolates Using MLST and Whole-Genome Phylogenetics and Protein Motif Fingerprinting. Front Public Health 2019; 7:66. [PMID: 31139608 PMCID: PMC6519141 DOI: 10.3389/fpubh.2019.00066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/06/2019] [Indexed: 01/22/2023] Open
Abstract
Vibrio parahaemolyticus is a ubiquitous and abundant member of native microbial assemblages in coastal waters and shellfish. Though V. parahaemolyticus is predominantly environmental, some strains have infected human hosts and caused outbreaks of seafood-related gastroenteritis. In order to understand differences among clinical and environmental V. parahaemolyticus strains, we used high quality DNA sequencing data to compare the genomes of V. parahaemolyticus isolates (n = 43) from a variety of geographic locations and clinical and environmental sample matrices. We used phylogenetic trees inferred from multilocus sequence typing (MLST) and whole-genome (WG) alignments, as well as a novel classification and genome clustering approach that relies on protein motif fingerprints (MFs), to assess relationships between V. parahaemolyticus strains and identify novel molecular targets associated with virulence. Differences in strain clustering at more than one position were observed between the MLST and WG phylogenetic trees. The WG phylogeny had higher support values and strain resolution since isolates of the same sequence type could be differentiated. The MF analysis revealed groups of protein motifs that were associated with the pathogenic MLST type ST36 and a large group of clinical strains isolated from human stool. A subset of the stool and ST36-associated protein motifs were selected for further analysis and the motif sequences were found in genes with a variety of functions, including transposases, secretion system components and effectors, and hypothetical proteins. DNA sequences associated with these protein motifs are candidate targets for future molecular assays in order to improve surveys of pathogenic V. parahaemolyticus in the environment and seafood.
Collapse
Affiliation(s)
- Kelsey J Jesser
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, United States
| | | | - Jessica L Jones
- Gulf Coast Seafood Laboratory, Division of Seafood Science and Technology, U.S. Food and Drug Administration, Dauphin Island, AL, United States
| | - Rachel T Noble
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, United States
| |
Collapse
|
32
|
Coates CJ, Lim J, Harman K, Rowley AF, Griffiths DJ, Emery H, Layton W. The insect, Galleria mellonella, is a compatible model for evaluating the toxicology of okadaic acid. Cell Biol Toxicol 2018; 35:219-232. [PMID: 30426330 PMCID: PMC6556153 DOI: 10.1007/s10565-018-09448-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
The polyether toxin, okadaic acid, causes diarrhetic shellfish poisoning in humans. Despite extensive research into its cellular targets using rodent models, we know little about its putative effect(s) on innate immunity. We inoculated larvae of the greater wax moth, Galleria mellonella, with physiologically relevant doses of okadaic acid by direct injection into the haemocoel (body cavity) and/or gavage (force-feeding). We monitored larval survival and employed a range of cellular and biochemical assays to assess the potential harmful effects of okadaic acid. Okadaic acid at concentrations ≥ 75 ng/larva (≥ 242 μg/kg) led to significant reductions in larval survival (> 65%) and circulating haemocyte (blood cell) numbers (> 50%) within 24 h post-inoculation. In the haemolymph, okadaic acid reduced haemocyte viability and increased phenoloxidase activities. In the midgut, okadaic acid induced oxidative damage as determined by increases in superoxide dismutase activity and levels of malondialdehyde (i.e. lipid peroxidation). Our observations of insect larvae correspond broadly to data published using rodent models of shellfish-poisoning toxidrome, including complementary LD50 values: 206–242 μg/kg in mice, ~ 239 μg/kg in G. mellonella. These data support the use of this insect as a surrogate model for the investigation of marine toxins, which offers distinct ethical and financial incentives.
Collapse
Affiliation(s)
- Christopher J Coates
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK.
| | - Jenson Lim
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - Katie Harman
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Andrew F Rowley
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - David J Griffiths
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Helena Emery
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Will Layton
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK
| |
Collapse
|
33
|
Pérez-Reytor D, Jaña V, Pavez L, Navarrete P, García K. Accessory Toxins of Vibrio Pathogens and Their Role in Epithelial Disruption During Infection. Front Microbiol 2018; 9:2248. [PMID: 30294318 PMCID: PMC6158335 DOI: 10.3389/fmicb.2018.02248] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023] Open
Abstract
Gastrointestinal episodes associated with Vibrio species have been rising worldwide in the last few years. Consequently, it is important to comprehend how occurs the production of diarrhea, to establish new preventive and therapeutic measures. Besides the classical CT and TCP toxins, Zot, RTX, and Ace among others have been deeply studied in V. cholerae. However, in other Vibrio species of clinical interest, where some of these toxins have been reported, there is practically no information. Zot activates a cascade of signals inside of the cell that increase the permeability of epithelial barrier, while RTX causes depolymerization of the actin cytoskeleton and Ace increases the permeability of intestinal cell monolayers. The goal of this study is to acquire information about the distribution of these toxins in human pathogenic Vibrios and to review the progress in the study of their role in the intestinal epithelium during infection.
Collapse
Affiliation(s)
- Diliana Pérez-Reytor
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Victor Jaña
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Leonardo Pavez
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Paola Navarrete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
34
|
Standardization of G. mellonella Larvae to Provide Reliable and Reproducible Results in the Study of Fungal Pathogens. J Fungi (Basel) 2018; 4:jof4030108. [PMID: 30200639 PMCID: PMC6162639 DOI: 10.3390/jof4030108] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/24/2022] Open
Abstract
In the past decade, Galleria mellonella (wax moth) larvae have become widely used as a non-mammalian infection model. However, the full potential of this infection model has yet to be realised, limited by the variable quality of larvae used and the lack of standardised procedures. Here, we review larvae suitable for research, protocols for dosing larvae, and methods for scoring illness in larvae infected with fungal pathogens. The development of standardised protocols for carrying out our experimental work will allow high throughput screens to be developed, changing the way in which we evaluate panels of mutants and strains. It will also enable the in vivo screening of potential antimicrobials at an earlier stage in the research and development cycle.
Collapse
|
35
|
Abstract
Vibrio is a genus of ubiquitous bacteria found in a wide variety of aquatic and marine habitats; of the >100 described Vibrio spp., ~12 cause infections in humans. Vibrio cholerae can cause cholera, a severe diarrhoeal disease that can be quickly fatal if untreated and is typically transmitted via contaminated water and person-to-person contact. Non-cholera Vibrio spp. (for example, Vibrio parahaemolyticus, Vibrio alginolyticus and Vibrio vulnificus) cause vibriosis - infections normally acquired through exposure to sea water or through consumption of raw or undercooked contaminated seafood. Non-cholera bacteria can lead to several clinical manifestations, most commonly mild, self-limiting gastroenteritis, with the exception of V. vulnificus, an opportunistic pathogen with a high mortality that causes wound infections that can rapidly lead to septicaemia. Treatment for Vibrio spp. infection largely depends on the causative pathogen: for example, rehydration therapy for V. cholerae infection and debridement of infected tissues for V. vulnificus-associated wound infections, with antibiotic therapy for severe cholera and systemic infections. Although cholera is preventable and effective oral cholera vaccines are available, outbreaks can be triggered by natural or man-made events that contaminate drinking water or compromise access to safe water and sanitation. The incidence of vibriosis is rising, perhaps owing in part to the spread of Vibrio spp. favoured by climate change and rising sea water temperature.
Collapse
|
36
|
Pérez-Reytor D, García K. Galleria mellonella: A model of infection to discern novel mechanisms of pathogenesis of non-toxigenic Vibrio parahaemolyticus strains. Virulence 2017; 9:22-24. [PMID: 28981394 PMCID: PMC5955188 DOI: 10.1080/21505594.2017.1388487] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Vibrio parahaemolyticus is a leading cause of raw seafood-associated bacterial gastroenteritis in the world. Its pathogenesis is likely to be multifactorial, although the most characteristic virulence-associated factors are the toxins TDH and TRH, in addition to the Type-III Secretion System-2, which codes for diverse effectors involved in cytotoxicity and enterotoxicity. However, diarrhea cases produced by clinical strains lacking all of these main virulence factors (non-toxigenic strains) have been reported in many countries and they can represent up to 9-10% of the clinical isolations. So far, although there have been significant advances in the description of the virulence factors of V. parahaemolyticus, the ability of non-toxigenic strains to cause illness is still not completely understood. To elucidate this question it is necessary to have adequate infection models. The susceptibility of G. mellonella to the infection with non-toxigenic strains seems to be the response to identifying new virulence factors and consequently providing new insights into mechanisms of the virulence of non-toxigenic strains. This new model means an invaluable contribution to public health, since the understanding of virulence in strains lacking the traditional major toxins is essential to detect these strains present in waters and marine products and avoid possible food-borne infection.
Collapse
Affiliation(s)
- Diliana Pérez-Reytor
- a Unidad de Microbiología, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile. Llano Subercaseaux 2801, San Miguel , Región Metropolitana , Chile
| | - Katherine García
- a Unidad de Microbiología, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile. Llano Subercaseaux 2801, San Miguel , Región Metropolitana , Chile
| |
Collapse
|