1
|
Ragunathan J, R U KN, Ashraf S, Nakkeeran S, Nallusamy S, Mahendra K, Raish M. Nonanol, an Induced Biomolecule Produced by Bacillus atrophaeus NMB01 During Interaction With Phytophthora infestans Can be Explored as a Novel Formulation for the Management of Late Blight of Potatoes. J Basic Microbiol 2025:e70033. [PMID: 40235205 DOI: 10.1002/jobm.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 04/17/2025]
Abstract
Phytophthora infestans, the pathogen responsible for late blight, continues to pose a significant risk to worldwide potato cultivation, including its historical impact during the Irish Potato Famine. Traditional management relies heavily on synthetic fungicides, but their prolonged use has led to fungicide resistance and environmental concerns. This study examines the potential of the bacterial endophyte Bacillus atrophaeus NMB01 as a biocontrol agent against P. infestans. Six biomolecules produced by B. atrophaeus NMB01 were docked against 15 P. infestans protein targets, with 1-nonanol, glafenine hydrochloride, and mucic acid showing high binding affinity. Wet lab assays confirmed that 1-nonanol inhibited P. infestans mycelial growth by 78% at 2 ppm. Molecular dynamics simulations validated the stability of these interactions. A tri-trophic interaction study identified additional volatile and non-volatile organic compounds (VOCs/NVOCs), with minocycline and doxazosin exhibiting strong binding across all targets. Transcriptome analysis of P. infestans exposed to 1-nonanol revealed differential gene expression, with upregulated genes linked to stress responses and downregulated genes, such as TAR1, cysteine synthase, and glutathione transferase, presenting novel antifungal targets. This study highlights 1-nonanol as a promising eco-friendly alternative to conventional fungicides, offering a sustainable solution for managing late blight and advancing potato cultivation resilience.
Collapse
Affiliation(s)
- Janani Ragunathan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Krishna Nayana R U
- Department of Plant Biotechnology, Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | - Suhail Ashraf
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sevugapperumal Nakkeeran
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Kadiri Mahendra
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Rassan MA, Ewaisha R, Zeitoun H, Shehat MG. Promising antifungal properties of the orally active autophagy inhibitor SBP-7455 against fluconazole-resistant Candida clinical isolates. Lett Appl Microbiol 2025; 78:ovaf055. [PMID: 40216409 DOI: 10.1093/lambio/ovaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/03/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
Candida species, the single most common cause of fungal infections, are major opportunistic pathogens. Novel antifungal agents are needed to address the threat of Candida infections resistant to first-line antifungal agents and those that are multi-drug resistant, both being increasingly reported. Here, we explore the antifungal properties of the novel autophagy inhibitor SBP-7455, whose anticancer effects have been recently described. Using broth microdilution, SBP-7455 inhibited the fluconazole-resistant standard C. albicans strain with minimum inhibitory concentration (MIC) values of 43.91 and 21.95 µM in the presence and absence of d-glucose, respectively. SBP-7455 inhibited the growth of six fluconazole-resistant Candida clinical isolates (MIC range 5.48-87.82 µM). Using the checkerboard assay, the fluconazole-resistant standard strain (MIC > 250 µg/ml) was rendered sensitive (MIC = 3.9 µg/ml) to fluconazole when combined with SBP-7455, but combining SBP-7455 with chloroquine was antagonistic. Compared with control, SBP-7455 treated cell membranes showed disrupted integrity and bulging on SEM images. Treatment with SBP-7455 significantly (P < 0.01) increased reduced glutathione levels with no significant change in nitric oxide levels, possibly adapting to oxidative stress induced by autophagy inhibition. Taken together, our results report for the first time the promising antifungal effects of the dual autophagy inhibitor SBP-7455 against fluconazole-resistant Candida, worthy of further investigation.
Collapse
Affiliation(s)
- Mark A Rassan
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Radwa Ewaisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria , 21521, Egypt
| | - Hend Zeitoun
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria , 21521, Egypt
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria , 21521, Egypt
| |
Collapse
|
3
|
Wen Y, Wang M, Liu X, Yin X, Gong S, Yin J. Deletion of FgAtg27 decreases the pathogenicity of Fusarium graminearum through influence autophagic process. Int J Biol Macromol 2025; 297:139818. [PMID: 39814284 DOI: 10.1016/j.ijbiomac.2025.139818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Autophagy is a conserved and unique degradation system in eukaryotic cells, which plays crucial roles in the growth, development and pathogenesis of Fungi. Despite that, it is poorly understood in Fusarium graminearum currently. Here, we identified an autophagy gene FgAtg27 from F. graminearum, and investigated its possible roles in regulating morphogenesis and pathogenicity. Results showed that FgAtg27 is homologous to Saccharomyces cerevisiae Atg27 and with an active signal peptide at N-terminal. Then, the ΔFgAtg27 mutant was generated and gene deletion did not change growth and sporulation, whereas significantly decreased pathogenicity. FgAtg27 showed subcellular localization at pre-autophagosomal structure (PAS). After starvation induction, amount of autophagosomes in ΔFgAtg27 was significantly less than wild type and complemented strain, indicating that FgAtg27 deletion affects the autophagosome formation in F. graminearum. Meanwhile, under high Ca2+ concentration conditions, ΔFgAtg27 exhibited slowed growth, confirming that FgAtg27 also involved in F. graminearum's hyperosmotic reaction to Ca2+ concentration stress. In addition, yeast two-hybrid experiments, revealed that FgAtg27 interacts with the autophagy key protein FgAtg9. Collectively, we found that the deletion of FgAtg27 did not impact the growth phenotype of F. graminearum, whereas significantly reduced its pathogenicity and Ca2+ stress through affecting autophagic process.
Collapse
Affiliation(s)
- Yong Wen
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Mengru Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xi Liu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiaohui Yin
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Shuangjun Gong
- Key Laboratory of Integrated Pest Management of Crops in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
| | - Junliang Yin
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
4
|
Liu Y, Shang S, Liu C, Liu Y, Xu K, He D, Wang L. Roles of the Sec2p Gene in the Growth and Pathogenicity Regulation of Aspergillus fumigatus. J Fungi (Basel) 2025; 11:36. [PMID: 39852455 PMCID: PMC11767236 DOI: 10.3390/jof11010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Aspergillus fumigatus (A. fumigatus) is a filamentous fungus that causes invasive aspergillosis in immunocompromised individuals. Regulating fungal growth is crucial for preventing disease development. This study found that deleting the guanine nucleotide exchange factor Sec2p gene led to slower A. fumigatus growth and reduced the fungal burden and mortality of infected mice. However, the mechanism by which this gene affects A. fumigatus growth and pathogenicity remains unclear. Transmission electron microscopy revealed that the vacuoles of the gene knockout strain ΔSec2p accumulated more autophagosomes, indicating inhibition of autophagosome degradation. When phenylmethylsulfonyl fluoride was applied to inhibit autophagosome degradation, the ΔSec2p strain produced fewer autophagosomes; the ΔSec2p autophagy pathway was inhibited, affecting A. fumigatus' nutrient homeostasis and growth. Unlike the wild type, the ΔSec2p strain showed strong resistance to cell wall stress. When exposed to caspofungin, Sec2p negatively regulated the expression of cell wall integrity (CWI) pathway genes and participated in the cell wall stress response of A. fumigatus. Furthermore, this gene positively regulated the autophagy pathway and enhanced CWI pathway gene expression to respond to rapamycin-induced autophagy. In summary, Sec2p positively regulated the autophagy pathway; it negatively regulated the CWI pathway during cell wall stress, coordinating the growth and pathogenicity of A. fumigatus.
Collapse
Affiliation(s)
- Yuhuan Liu
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (K.X.)
| | - Shumi Shang
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (K.X.)
| | - Cong Liu
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China;
| | - Yichen Liu
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (K.X.)
| | - Keyang Xu
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (K.X.)
| | - Dan He
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (K.X.)
| | - Li Wang
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (K.X.)
| |
Collapse
|
5
|
Lo TH, Weng IC, Chen HL, Liu FT. The role of galectins in the regulation of autophagy and inflammasome in host immunity. Semin Immunopathol 2024; 46:6. [PMID: 39042263 DOI: 10.1007/s00281-024-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
Galectins, a family of glycan-binding proteins have been shown to bind a wide range of glycans. In the cytoplasm, these glycans can be endogenous (or "self"), originating from damaged endocytic vesicles, or exogenous (or "non-self"), found on the surface of invading microbial pathogens. Galectins can detect these unusual cytosolic exposures to glycans and serve as critical regulators in orchestrating immune responses in innate and adaptive immunity. This review provides an overview of how galectins modulate host cellular responses, such as autophagy, xenophagy, and inflammasome-dependent cell death program, to infection.
Collapse
Affiliation(s)
- Tzu-Han Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hung-Lin Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
- Department of Dermatology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
6
|
Wang JY, Cai YY, Li L, Zhu XM, Shen ZF, Wang ZH, Liao J, Lu JP, Liu XH, Lin FC. Dihydroorotase MoPyr4 is required for development, pathogenicity, and autophagy in rice blast fungus. Cell Commun Signal 2024; 22:362. [PMID: 39010102 PMCID: PMC11247805 DOI: 10.1186/s12964-024-01741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/06/2024] [Indexed: 07/17/2024] Open
Abstract
Dihydroorotase (DHOase) is the third enzyme in the six enzymatic reaction steps of the endogenous pyrimidine nucleotide de novo biosynthesis pathway, which is a metabolic pathway conserved in both bacteria and eukaryotes. However, research on the biological function of DHOase in plant pathogenic fungi is very limited. In this study, we identified and named MoPyr4, a homologous protein of Saccharomyces cerevisiae DHOase Ura4, in the rice blast fungus Magnaporthe oryzae and investigated its ability to regulate fungal growth, pathogenicity, and autophagy. Deletion of MoPYR4 led to defects in growth, conidiation, appressorium formation, the transfer and degradation of glycogen and lipid droplets, appressorium turgor accumulation, and invasive hypha expansion in M. oryzae, which eventually resulted in weakened fungal pathogenicity. Long-term replenishment of exogenous uridine-5'-phosphate (UMP) can effectively restore the phenotype and virulence of the ΔMopyr4 mutant. Further study revealed that MoPyr4 also participated in the regulation of the Pmk1-MAPK signaling pathway, co-localized with peroxisomes for the oxidative stress response, and was involved in the regulation of the Osm1-MAPK signaling pathway in response to hyperosmotic stress. In addition, MoPyr4 interacted with MoAtg5, the core protein involved in autophagy, and positively regulated autophagic degradation. Taken together, our results suggested that MoPyr4 for UMP biosynthesis was crucial for the development and pathogenicity of M. oryzae. We also revealed that MoPyr4 played an essential role in the external stress response and pathogenic mechanism through participation in the Pmk1-MAPK signaling pathway, peroxisome-related oxidative stress response mechanism, the Osm1-MAPK signaling pathway and the autophagy pathway.
Collapse
Affiliation(s)
- Jing-Yi Wang
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ying-Ying Cai
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lin Li
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xue-Ming Zhu
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zi-Fang Shen
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zi-He Wang
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian Liao
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Hong Liu
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
7
|
Su J, Xu Y, Lei M, Meng Y, Zhang S, Liu H, Zhu C, Chen J, Zhang T, Liu J, Lin Y, Yan Z, Li W, Wang J, Chen X, He M. A fatty acid elongase complex regulates cell membrane integrity and septin-dependent host infection by the rice blast fungus. MOLECULAR PLANT PATHOLOGY 2024; 25:e13494. [PMID: 39003585 PMCID: PMC11246601 DOI: 10.1111/mpp.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024]
Abstract
Very-long-chain fatty acids (VLCFAs) regulate biophysical properties of cell membranes to determine growth and development of eukaryotes, such as the pathogenesis of the rice blast fungus Magnaporthe oryzae. The fatty acid elongase Elo1 regulates pathogenesis of M. oryzae by modulating VLCFA biosynthesis. However, it remains unknown whether and how Elo1 associates with other factors to regulate VLCFA biosynthesis in fungal pathogens. Here, we identified Ifa38, Phs1 and Tsc13 as interacting proteins of Elo1 by proximity labelling in M. oryzae. Elo1 associated with Ifa38, Phs1 and Tsc13 on the endoplasmic reticulum (ER) membrane to control VLCFA biosynthesis. Targeted gene deletion mutants Δifa38, Δphs1 and Δtsc13 were all similarly impaired as Δelo1 in vegetative growth, conidial morphology, stress responses in ER, cell wall and membrane. These deletion mutants also displayed severe damage in cell membrane integrity and failed to organize the septin ring that is essential for penetration peg formation and pathogenicity. Our study demonstrates that M. oryzae employs a fatty acid elongase complex to regulate VLCFAs for maintaining or remodelling cell membrane structure, which is important for septin-mediated host penetration.
Collapse
Affiliation(s)
- Jia Su
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Youpin Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Mingliang Lei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yingying Meng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Siqi Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hongrui Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Caicun Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinhua Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tianxin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiawei Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunxiang Lin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhaorui Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Guo S, Zhang S. The Cysteine Protease CfAtg4 Interacts with CfAtg8 to Govern the Growth, Autophagy and Pathogenicity of Colletotrichum fructicola. J Fungi (Basel) 2024; 10:431. [PMID: 38921417 PMCID: PMC11204552 DOI: 10.3390/jof10060431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Camellia oleifera is a native woody oil plant in southern China and is infected with anthracnose wherever it is grown. We previously identified Colletotrichum fructicola as the major causal agent of anthracnose on C. oleifera and found that CfAtg8 regulates the pathogenicity and development of C. fructicola. Here, we revealed that CfAtg4 interacts with CfAtg8, contributing to the formation of autophagosomes. The CfAtg81-160 allele, which only contains 1-160 amino acids of the CfAtg8, partially recovered the autophagosome numbers and autophagy defects of the ΔCfatg4 mutant. Consequently, these recoveries resulted in the restoration of the defects of the ΔCfatg4 mutant in growth and responses to different external stresses, albeit to an extent. Importantly, we illustrated the critical roles of CfAtg81-160 in appressoria formation, and pathogenicity. Collectively, our findings provide new insights into the importance of the interaction between CfAtg8 and CfAtg4 in the growth, autophagy and pathogenicity of the phytopathogenic fungi.
Collapse
Affiliation(s)
- Shufeng Guo
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China;
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Changsha 410004, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China
| | - Shengpei Zhang
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China;
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Changsha 410004, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China
| |
Collapse
|
9
|
Geng Q, Hu J, Xu P, Sun T, Qiu H, Wang S, Song F, Shen L, Li Y, Liu M, Peng X, Tian J, Yang K. The Autophagy-Related Protein ATG8 Orchestrates Asexual Development and AFB1 Biosynthesis in Aspergillus flavus. J Fungi (Basel) 2024; 10:349. [PMID: 38786704 PMCID: PMC11122632 DOI: 10.3390/jof10050349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Autophagy, a conserved cellular recycling process, plays a crucial role in maintaining homeostasis under stress conditions. It also regulates the development and virulence of numerous filamentous fungi. In this study, we investigated the specific function of ATG8, a reliable autophagic marker, in the opportunistic pathogen Aspergillus flavus. To investigate the role of atg8 in A. flavus, the deletion and complemented mutants of atg8 were generated according to the homologous recombination principle. Deletion of atg8 showed a significant decrease in conidiation, spore germination, and sclerotia formation compared to the WT and atg8C strains. Additionally, aflatoxin production was found severely impaired in the ∆atg8 mutant. The stress assays demonstrated that ATG8 was important for A. flavus response to oxidative stress. The fluorescence microscopy showed increased levels of reactive oxygen species in the ∆atg8 mutant cells, and the transcriptional result also indicated that genes related to the antioxidant system were significantly reduced in the ∆atg8 mutant. We further found that ATG8 participated in regulating the pathogenicity of A. flavus on crop seeds. These results revealed the biological role of ATG8 in A. flavus, which might provide a potential target for the control of A. flavus and AFB1 biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xue Peng
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (Q.G.); (J.H.); (P.X.); (T.S.); (H.Q.); (S.W.); (F.S.); (L.S.); (Y.L.); (M.L.)
| | - Jun Tian
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (Q.G.); (J.H.); (P.X.); (T.S.); (H.Q.); (S.W.); (F.S.); (L.S.); (Y.L.); (M.L.)
| | - Kunlong Yang
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (Q.G.); (J.H.); (P.X.); (T.S.); (H.Q.); (S.W.); (F.S.); (L.S.); (Y.L.); (M.L.)
| |
Collapse
|
10
|
Kong Y, Guo P, Xu J, Li J, Wu M, Zhang Z, Wang Y, Liu X, Yang L, Liu M, Zhang H, Wang P, Zhang Z. MoMkk1 and MoAtg1 dichotomously regulating autophagy and pathogenicity through MoAtg9 phosphorylation in Magnaporthe oryzae. mBio 2024; 15:e0334423. [PMID: 38501872 PMCID: PMC11005334 DOI: 10.1128/mbio.03344-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Autophagy is a central biodegradation pathway critical in eliminating intracellular cargo to maintain cellular homeostasis and improve stress resistance. At the same time, the key component of the mitogen-activated protein kinase cascade regulating cell wall integrity signaling MoMkk1 has an essential role in the autophagy of the rice blast fungus Magnaporthe oryzae. Still, the mechanism of how MoMkk1 regulates autophagy is unclear. Interestingly, we found that MoMkk1 regulates the autophagy protein MoAtg9 through phosphorylation. MoAtg9 is a transmembrane protein subjected to phosphorylation by autophagy-related protein kinase MoAtg1. Here, we provide evidence demonstrating that MoMkk1-dependent MoAtg9 phosphorylation is required for phospholipid translocation during isolation membrane stages of autophagosome formation, an autophagic process essential for the development and pathogenicity of the fungus. In contrast, MoAtg1-dependent phosphorylation of MoAtg9 negatively regulates this process, also impacting growth and pathogenicity. Our studies are the first to demonstrate that MoAtg9 is subject to MoMkk1 regulation through protein phosphorylation and that MoMkk1 and MoAtg1 dichotomously regulate autophagy to underlie the growth and pathogenicity of M. oryzae.IMPORTANCEMagnaporthe oryzae utilizes multiple signaling pathways to promote colonization of host plants. MoMkk1, a cell wall integrity signaling kinase, plays an essential role in autophagy governed by a highly conserved autophagy kinase MoAtg1-mediated pathway. How MoMkk1 regulates autophagy in coordination with MoAtg1 remains elusive. Here, we provide evidence that MoMkk1 phosphorylates MoAtg9 to positively regulate phospholipid translocation during the isolation membrane or smaller membrane structures stage of autophagosome formation. This is in contrast to the negative regulation of MoAtg9 by MoAtg1 for the same process. Intriguingly, MoMkk1-mediated MoAtg9 phosphorylation enhances the fungal infection of rice, whereas MoAtg1-dependant MoAtg9 phosphorylation significantly attenuates it. Taken together, we revealed a novel mechanism of autophagy and virulence regulation by demonstrating the dichotomous functions of MoMkk1 and MoAtg1 in the regulation of fungal autophagy and pathogenicity.
Collapse
Affiliation(s)
- Yun Kong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Pusheng Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Jiayun Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Jiaxu Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Miao Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ziqi Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Yifan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Leiyun Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Shen ZF, Li L, Wang JY, Liao J, Zhang YR, Zhu XM, Wang ZH, Lu JP, Liu XH, Lin FC. Csn5 inhibits autophagy by regulating the ubiquitination of Atg6 and Tor to mediate the pathogenicity of Magnaporthe oryzae. Cell Commun Signal 2024; 22:222. [PMID: 38594767 PMCID: PMC11003145 DOI: 10.1186/s12964-024-01598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Csn5 is subunit 5 of the COP9 signalosome (CSN), but the mechanism by which it strictly controls the pathogenicity of pathogenic fungi through autophagy remains unclear. Here, we found that Csn5 deficiency attenuated pathogenicity and enhanced autophagy in Magnaporthe oryzae. MoCSN5 knockout led to overubiquitination and overdegradation of MoTor (the core protein of the TORC1 complex [target of rapamycin]) thereby promoted autophagy. In addition, we identified MoCsn5 as a new interactor of MoAtg6. Atg6 was found to be ubiquitinated through linkage with lysine 48 (K48) in cells, which is necessary for infection-associated autophagy in pathogenic fungi. K48-ubiquitination of Atg6 enhanced its degradation and thereby inhibited autophagic activity. Our experimental results indicated that MoCsn5 promoted K48-ubiquitination of MoAtg6, which reduced the MoAtg6 protein content and thus inhibited autophagy. Aberrant ubiquitination and autophagy in ΔMocsn5 led to pleiotropic defects in the growth, development, stress resistance, and pathogenicity of M. oryzae. In summary, our study revealed a novel mechanism by which Csn5 regulates autophagy and pathogenicity in rice blast fungus through ubiquitination.
Collapse
Affiliation(s)
- Zi-Fang Shen
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jing-Yi Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian Liao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Ran Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zi-He Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Hong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Rudhra O, Gnanam H, Sivaperumal S, Namperumalsamy V, Prajna L, Kuppamuthu D. Melanin depletion affects Aspergillus flavus conidial surface proteins, architecture, and virulence. Appl Microbiol Biotechnol 2024; 108:291. [PMID: 38592509 PMCID: PMC11004046 DOI: 10.1007/s00253-024-13107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Melanin is an Aspergillus flavus cell wall component that provides chemical and physical protection to the organism. However, the molecular and biological mechanisms modulating melanin-mediated host-pathogen interaction in A. flavus keratitis are not well understood. This work aimed to compare the morphology, surface proteome profile, and virulence of melanized conidia (MC) and non-melanized conidia (NMC) of A. flavus. Kojic acid treatment inhibited melanin synthesis in A. flavus, and the conidial surface protein profile was significantly different in kojic acid-treated non-melanized conidia. Several cell wall-associated proteins and proteins responsible for oxidative stress, carbohydrate, and chitin metabolic pathways were found only in the formic acid extracts of NMC. Scanning electron microscopy (SEM) analysis showed the conidial surface morphology difference between the NMC and MC, indicating the role of melanin in the structural integrity of the conidial cell wall. The levels of calcofluor white staining efficiency were different, but there was no microscopic morphology difference in lactophenol cotton blue staining between MC and NMC. Evaluation of the virulence of MC and NMC in the Galleria mellonella model showed NMC was less virulent compared to MC. Our findings showed that the integrity of the conidial surface is controlled by the melanin layer. The alteration in the surface protein profile indicated that many surface proteins are masked by the melanin layer, and hence, melanin can modulate the host response by preventing the exposure of fungal proteins to the host immune defense system. The G. mellonella virulence assay also confirmed that the NMC were susceptible to host defense as in other Aspergillus pathogens. KEY POINTS: • l-DOPA melanin production was inhibited in A. flavus isolates by kojic acid, and for the first time, scanning electron microscopy (SEM) analysis revealed morphological differences between MC and NMC of A. flavus strains • Proteome profile of non-melanized conidia showed more conidial surface proteins and these proteins were mainly involved in the virulence, oxidative stress, and metabolism pathways • Non-melanized conidia of A. flavus strains were shown to be less virulent than melanised conidia in an in vivo virulence experiment with the G. melonella model.
Collapse
Affiliation(s)
- Ondippili Rudhra
- Department of Proteomics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Hariharan Gnanam
- Department of Proteomics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Sivaramakrishnan Sivaperumal
- Department of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Lalitha Prajna
- Department of Ocular Microbiology, Aravind Eye Hospital, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | | |
Collapse
|
13
|
Baudin M, Le Naour‐Vernet M, Gladieux P, Tharreau D, Lebrun M, Lambou K, Leys M, Fournier E, Césari S, Kroj T. Pyricularia oryzae: Lab star and field scourge. MOLECULAR PLANT PATHOLOGY 2024; 25:e13449. [PMID: 38619508 PMCID: PMC11018116 DOI: 10.1111/mpp.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/16/2024]
Abstract
Pyricularia oryzae (syn. Magnaporthe oryzae), is a filamentous ascomycete that causes a major disease called blast on cereal crops, as well as on a wide variety of wild and cultivated grasses. Blast diseases have a tremendous impact worldwide particularly on rice and on wheat, where the disease emerged in South America in the 1980s, before spreading to Asia and Africa. Its economic importance, coupled with its amenability to molecular and genetic manipulation, have inspired extensive research efforts aiming at understanding its biology and evolution. In the past 40 years, this plant-pathogenic fungus has emerged as a major model in molecular plant-microbe interactions. In this review, we focus on the clarification of the taxonomy and genetic structure of the species and its host range determinants. We also discuss recent molecular studies deciphering its lifecycle. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, sub-phylum: Pezizomycotina, class: Sordariomycetes, order: Magnaporthales, family: Pyriculariaceae, genus: Pyricularia. HOST RANGE P. oryzae has the ability to infect a wide range of Poaceae. It is structured into different host-specialized lineages that are each associated with a few host plant genera. The fungus is best known to cause tremendous damage to rice crops, but it can also attack other economically important crops such as wheat, maize, barley, and finger millet. DISEASE SYMPTOMS P. oryzae can cause necrotic lesions or bleaching on all aerial parts of its host plants, including leaf blades, sheaths, and inflorescences (panicles, spikes, and seeds). Characteristic symptoms on leaves are diamond-shaped silver lesions that often have a brown margin and whose appearance is influenced by numerous factors such as the plant genotype and environmental conditions. USEFUL WEBSITES Resources URL Genomic data repositories http://genome.jouy.inra.fr/gemo/ Genomic data repositories http://openriceblast.org/ Genomic data repositories http://openwheatblast.net/ Genome browser for fungi (including P. oryzae) http://fungi.ensembl.org/index.html Comparative genomics database https://mycocosm.jgi.doe.gov/mycocosm/home T-DNA mutant database http://atmt.snu.kr/ T-DNA mutant database http://www.phi-base.org/ SNP and expression data https://fungidb.org/fungidb/app/.
Collapse
Affiliation(s)
- Maël Baudin
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- Present address:
Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Marie Le Naour‐Vernet
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Didier Tharreau
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- CIRAD, UMR PHIMMontpellierFrance
| | - Marc‐Henri Lebrun
- UMR 1290 BIOGER – Campus Agro Paris‐Saclay – INRAE‐AgroParisTechPalaiseauFrance
| | - Karine Lambou
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Marie Leys
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Elisabeth Fournier
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Stella Césari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| |
Collapse
|
14
|
Zhang Y, Wei Y, Wu M, Liu M, Liang S, Zhu X, Liu X, Lin F. Cand2 inhibits CRL-mediated ubiquitination and suppresses autophagy to facilitate pathogenicity of phytopathogenic fungi. PLANT COMMUNICATIONS 2024; 5:100720. [PMID: 37718510 PMCID: PMC10873881 DOI: 10.1016/j.xplc.2023.100720] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The ubiquitin-proteasome system and the autophagy system are the two primary mechanisms used by eukaryotes to maintain protein homeostasis, and both are closely related to the pathogenicity of the rice blast fungus. In this research, we identified MoCand2 as an inhibitor of ubiquitination in Magnaporthe oryzae. Through this role, MoCand2 participates in the regulation of autophagy and pathogenicity. Specifically, we found that deletion of MoCand2 increased the ubiquitination level in M. oryzae, whereas overexpression of MoCand2 inhibited the accumulation of ubiquitinated proteins. Interaction analyses showed that MoCand2 is a subunit of Cullin-RING ligases (CRLs). It suppresses ubiquitination by blocking the assembly of CRLs and downregulating the expression of key CRL subunits. Further research indicated that MoCand2 regulates autophagy through ubiquitination. MoCand2 knockout led to over-ubiquitination and over-degradation of MoTor, and we confirmed that MoTor content was negatively correlated with autophagy level. In addition, MoCand2 knockout accelerated the K63 ubiquitination of MoAtg6 and strengthened the assembly and activity of the phosphatidylinositol-3-kinase class 3 complex, thus enhancing autophagy. Abnormal ubiquitination and autophagy in ΔMocand2 resulted in defects in growth, conidiation, stress resistance, and pathogenicity. Finally, sequence alignment and functional analyses in other phytopathogenic fungi confirmed the high conservation of fungal Cand2s. Our research thus reveals a novel mechanism by which ubiquitination regulates autophagy and pathogenicity in phytopathogenic fungi.
Collapse
Affiliation(s)
- Yunran Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Yunyun Wei
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Minghua Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengyu Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaohong Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
15
|
Wang L, Zhang X, Li L, Bao J, Lin F, Zhu X. A key sphingolipid pathway gene, MoDES1, regulates conidiation, virulence and plasma membrane tension in Magnaporthe oryzae. Microbiol Res 2024; 279:127554. [PMID: 38056173 DOI: 10.1016/j.micres.2023.127554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Rice blast, caused by the plant pathogenic fungus Magnaporthe oryzae, is a destructive disaster all over the earth that causes enormous losses in crop production. Sphingolipid, an important biological cell membrane lipid, is an essential structural component in the plasma membrane (PM) and has several biological functions, including cell mitosis, apoptosis, stress resistance, and signal transduction. Previous studies have suggested that sphingolipid and its derivatives play essential roles in the virulence of plant pathogenic fungi. However, the functions of sphingolipid biosynthesis-related proteins are not fully understood. In this article, we identified a key sphingolipid synthesis enzyme, MoDes1, and found that it is engaged in cell development and pathogenicity in M. oryzae. Deletion of MoDES1 gave rise to pleiotropic defects in vegetative growth, conidiation, plant penetration, and pathogenicity. MoDes1 is also required for lipid homeostasis and participates in the cell wall integrity (CWI) and Osm1-MAPK pathways. Notably, our results showed that there is negative feedback in the TORC2 signaling pathway to compensate for the decreased sphingolipid level due to the knockout of MoDES1 by regulating the phosphorylated Ypk1 level and PM tension. Furthermore, protein structure building has shown that MoDes1 is a potential drug target. These findings further refine the function of Des1 and deepen our understanding of the sphingolipid biosynthesis pathway in M. oryzae, laying a foundation for developing novel and specific drugs for rice blast control.
Collapse
Affiliation(s)
- Lei Wang
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Xiaozhi Zhang
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fucheng Lin
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Xianghu Laboratory, Hangzhou, 311231, China.
| | - Xueming Zhu
- The College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
16
|
Li L, Zhu XM, Bao JD, Wang JY, Liu XH, Lin FC. The cell cycle, autophagy, and cell wall integrity pathway jointly governed by MoSwe1 in Magnaporthe oryzae. Cell Commun Signal 2024; 22:19. [PMID: 38195499 PMCID: PMC10775494 DOI: 10.1186/s12964-023-01389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 01/11/2024] Open
Abstract
The cell cycle is pivotal to cellular differentiation in plant pathogenic fungi. Cell wall integrity (CWI) signaling plays an essential role in coping with cell wall stress. Autophagy is a degradation process in which cells decompose their components to recover macromolecules and provide energy under stress conditions. However, the specific association between cell cycle, autophagy and CWI pathway remains unclear in model pathogenic fungi Magnaporthe oryzae. Here, we have identified MoSwe1 as the conserved component of the cell cycle in the rice blast fungus. We have found that MoSwe1 targets MoMps1, a conserved critical MAP kinase of the CWI pathway, through protein phosphorylation that positively regulates CWI signaling. The CWI pathway is abnormal in the ΔMoswe1 mutant with cell cycle arrest. In addition, we provided evidence that MoSwe1 positively regulates autophagy by interacting with MoAtg17 and MoAtg18, the core autophagy proteins. Moreover, the S phase initiation was earlier, the morphology of conidia and appressoria was abnormal, and septum formation and glycogen degradation were impaired in the ΔMoswe1 mutant. Our research defines that MoSWE1 regulation of G1/S transition, CWI pathway, and autophagy supports its specific requirement for appressorium development and virulence in plant pathogenic fungi. Video Abstract.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiao-Yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiao-Hong Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Zhu XM, Li L, Bao JD, Wang JY, Daskalov A, Liu XH, Del Poeta M, Lin FC. The biological functions of sphingolipids in plant pathogenic fungi. PLoS Pathog 2023; 19:e1011733. [PMID: 37943805 PMCID: PMC10635517 DOI: 10.1371/journal.ppat.1011733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Sphingolipids are critically significant in a range of biological processes in animals, plants, and fungi. In mammalian cells, they serve as vital components of the plasma membrane (PM) in maintaining its structure, tension, and fluidity. They also play a key role in a wide variety of biological processes, such as intracellular signal transduction, cell polarization, differentiation, and migration. In plants, sphingolipids are important for cell development and for cell response to environmental stresses. In pathogenic fungi, sphingolipids are crucial for the initiation and the development of infection processes afflicting humans. However, our knowledge on the metabolism and function of the sphingolipid metabolic pathway of pathogenic fungi affecting plants is still very limited. In this review, we discuss recent developments on sphingolipid pathways of plant pathogenic fungi, highlighting their uniqueness and similarity with plants and animals. In addition, we discuss recent advances in the research and development of fungal-targeted inhibitors of the sphingolipid pathway, to gain insights on how we can better control the infection process occurring in plants to prevent or/and to treat fungal infections in crops.
Collapse
Affiliation(s)
- Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiao-Yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiao-Hong Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
- Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
- Veterans Affairs Medical Center, Northport, New York, United States of America
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Chen Y, Xing M, Chen T, Tian S, Li B. Effects and mechanisms of plant bioactive compounds in preventing fungal spoilage and mycotoxin contamination in postharvest fruits: A review. Food Chem 2023; 415:135787. [PMID: 36854245 DOI: 10.1016/j.foodchem.2023.135787] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Spoilage and mycotoxin contamination of fruits cause significant economic losses and food safety issues. Synthetic chemical fungicide treatment as primary postharvest management has attracted increasing public concern in recent years, because it may cause negative effects on the environment and human health. Numerous bioactive compounds from plants have demonstrated excellent control effects on fruit spoilage and mycotoxin contamination. Plant bioactive compounds have been considered one of the most promising alternatives, because they are generally regarded as safe and environmentally friendly. Here, we reviewed the most recent advances in plant bioactive compounds in the prevention of fungal spoilage and mycotoxin contamination in fruits. The control effects of these compounds and the mechanisms involved were summarized, and current limitations and future perspectives were discussed.
Collapse
Affiliation(s)
- Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Mengyang Xing
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Beijing 100093, China.
| |
Collapse
|
19
|
Neves-da-Rocha J, Santos-Saboya MJ, Lopes MER, Rossi A, Martinez-Rossi NM. Insights and Perspectives on the Role of Proteostasis and Heat Shock Proteins in Fungal Infections. Microorganisms 2023; 11:1878. [PMID: 37630438 PMCID: PMC10456932 DOI: 10.3390/microorganisms11081878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are a diverse group of eukaryotic organisms that infect humans, animals, and plants. To successfully colonize their hosts, pathogenic fungi must continuously adapt to the host's unique environment, e.g., changes in temperature, pH, and nutrient availability. Appropriate protein folding, assembly, and degradation are essential for maintaining cellular homeostasis and survival under stressful conditions. Therefore, the regulation of proteostasis is crucial for fungal pathogenesis. The heat shock response (HSR) is one of the most important cellular mechanisms for maintaining proteostasis. It is activated by various stresses and regulates the activity of heat shock proteins (HSPs). As molecular chaperones, HSPs participate in the proteostatic network to control cellular protein levels by affecting their conformation, location, and degradation. In recent years, a growing body of evidence has highlighted the crucial yet understudied role of stress response circuits in fungal infections. This review explores the role of protein homeostasis and HSPs in fungal pathogenicity, including their contributions to virulence and host-pathogen interactions, as well as the concerted effects between HSPs and the main proteostasis circuits in the cell. Furthermore, we discuss perspectives in the field and the potential for targeting the components of these circuits to develop novel antifungal therapies.
Collapse
Affiliation(s)
- João Neves-da-Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| | | | | | | | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| |
Collapse
|
20
|
Wu Z, Shi H, Li Y, Yan F, Sun Z, Lin C, Xu M, Lin F, Kou Y, Tao Z. Transcriptional Regulation of Autophagy-Related Genes by Sin3 Negatively Modulates Autophagy in Magnaporthe oryzae. Microbiol Spectr 2023; 11:e0017123. [PMID: 37191531 PMCID: PMC10269650 DOI: 10.1128/spectrum.00171-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023] Open
Abstract
Autophagy is a conserved degradation and recycling pathway in eukaryotes and is important for their normal growth and development. An appropriate status of autophagy is crucial for organisms which is tightly regulated both temporally and continuously. Transcriptional regulation of autophagy-related genes (ATGs) is an important layer in autophagy regulation. However, the transcriptional regulators and their mechanisms are still unclear, especially in fungal pathogens. Here, we identified Sin3, a component of the histone deacetylase complex, as a transcriptional repressor of ATGs and negative regulator of autophagy induction in the rice fungal pathogen Magnaporthe oryzae. A loss of SIN3 resulted in upregulated expression of ATGs and promoted autophagy with an increased number of autophagosomes under normal growth conditions. Furthermore, we found that Sin3 negatively regulated the transcription of ATG1, ATG13, and ATG17 through direct occupancy and changed levels of histone acetylation. Under nutrient-deficient conditions, the transcription of SIN3 was downregulated, and the reduced occupancy of Sin3 from those ATGs resulted in histone hyperacetylation and activated their transcription and in turn promoted autophagy. Thus, our study uncovers a new mechanism of Sin3 in modulating autophagy through transcriptional regulation. IMPORTANCE Autophagy is an evolutionarily conserved metabolic process and is required for the growth and pathogenicity of phytopathogenic fungi. The transcriptional regulators and precise mechanisms of regulating autophagy, as well as whether the induction or repression of ATGs is associated with autophagy level, are still poorly understood in M. oryzae. In this study, we revealed that Sin3 acts as a transcriptional repressor of ATGs to negatively regulate autophagy level in M. oryzae. Under the nutrient-rich conditions, Sin3 inhibits autophagy with a basal level through directly repressing the transcription of ATG1-ATG13-ATG17. Upon nutrient-deficient treatment, the transcriptional level of SIN3 would decrease and dissociation of Sin3 from those ATGs associates with histone hyperacetylation and activates their transcriptional expression and in turn contributes to autophagy induction. Our findings are important as we uncover a new mechanism of Sin3 for the first time to negatively modulate autophagy at the transcriptional level in M. oryzae.
Collapse
Affiliation(s)
- Zhongling Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Huanbin Shi
- State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Yuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ziyue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chuyu Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengting Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yanjun Kou
- State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Zeng Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Gu L, Wang Y, Xie S, Liu Y, Yan J, Yin W, Luo C. UvATG6 Interacts with BAX Inhibitor 1 Proteins and Plays Critical Roles in Growth, Conidiation, and Virulence in Ustilaginoidea virens. Microbiol Spectr 2023; 11:e0489822. [PMID: 37102873 PMCID: PMC10269921 DOI: 10.1128/spectrum.04898-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Autophagy and apoptosis are evolutionarily conserved catabolic processes involved in regulating development and cellular homeostasis. Bax inhibitor 1 (BI-1) and autophagy protein 6 (ATG6) perform essential functions in these roles, such as cellular differentiation and virulence in various filamentous fungi. However, the functions of ATG6 and BI-1 proteins in development and virulence in the rice false smut fungus Ustilaginoidea virens are still poorly understood. In this study, UvATG6 was characterized in U. virens. The deletion of UvATG6 almost abolished autophagy in U. virens and reduced growth, conidial production and germination, and virulence. Stress tolerance assays showed that UvATG6 mutants were sensitive to hyperosmotic, salt, and cell wall integrity stresses but were insensitive to oxidative stress. Furthermore, we found that UvATG6 interacted with UvBI-1 or UvBI-1b and suppressed Bax-induced cell death. We previously found that UvBI-1 could suppress Bax-induced cell death and was a negative regulator of mycelial growth and conidiation. Unlike UvBI-1, UvBI-1b could not suppress cell death. UvBI-1b-deleted mutants exhibited decreased growth and conidiation, while the UvBI-1 and UvBI-1b double deletion reduced the phenotype, indicating that UvBI-1 and UvBI-1b antagonistically regulate mycelial growth and conidiation. In addition, the UvBI-1b and double mutants exhibited decreased virulence. Our results provide evidence of the cross talk of autophagy and apoptosis in U. virens and give clues for studying other phytopathogenic fungi. IMPORTANCE Ustilaginoidea virens causes destructive panicle disease in rice, significantly threatening agricultural production. UvATG6 is required for autophagy and contributes to growth, conidiation, and virulence in U. virens. Additionally, it interacts with the Bax inhibitor 1 proteins UvBI-1 and UvBI-1b. UvBI-1 suppresses cell death induced by Bax, unlike UvBI-1b. UvBI-1 negatively regulates growth and conidiation, while UvBI-1b is required for these phenotypes. These results indicate that UvBI-1 and UvBI-1b may antagonistically regulate growth and conidiation. In addition, both of them contribute to virulence. Additionally, our results suggest cross talk between autophagy and apoptosis, contributing to the development, adaptability, and virulence of U. virens.
Collapse
Affiliation(s)
- Lifan Gu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yufu Wang
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Songlin Xie
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yueran Liu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiali Yan
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weixiao Yin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chaoxi Luo
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Qu Q, Liu N, Su Q, Liu X, Jia H, Liu Y, Sun M, Cao Z, Dong J. MicroRNAs involved in the trans-kingdom gene regulation in the interaction of maize kernels and Fusarium verticillioides. Int J Biol Macromol 2023:125046. [PMID: 37245767 DOI: 10.1016/j.ijbiomac.2023.125046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Maize ear rot is a widespread disease and the main pathogen is Fusarium verticillioides. Plant microRNAs (miRNAs) have great effects on disease resistance and it has been reported that maize miRNA participates in defense responses in maize ear rot. However, the trans-kingdom regulation of miRNAs between maize and F. verticillioides remains uncharacterized. In this study, the relationship between miRNA-like RNAs (milRNAs) of F. verticillioides and pathogenicity was investigated, followed by sRNA analysis and degradome sequencing of miRNA profiles and the target genes of maize and F. verticillioides after inoculation. It was found that the milRNA biogenesis positively regulated the pathogenicity of F. verticillioides by knocking out the gene FvDicer2-encoded Dicer-like protein in F. verticillioides. Following inoculation with F. verticillioides, 284 known and 6571 novel miRNAs were obtained in maize, including 28 miRNAs differentially expressed at multiple time points. The target genes of maize differentially expressed miRNAs in F. verticillioides mediated multiple pathways, including autophagy and MAPK signaling pathway. Fifty-one novel F. verticillioides milRNAs were predicted to target 333 genes in maize involved in MAPK signaling pathways, plant hormone signaling transduction and plant-pathogen interaction pathways. Additionally, the miR528b-5p in maize targeted the mRNA of FvTTP which encoded a twice transmembrane protein in F. verticillioides. The FvTTP-knockout mutants displayed decreased pathogenicity and reduced synthesis of fumonisins. Thus, by interfering with the translation of FvTTP, the miR528b-5p inhibited F. verticillioides infection. These findings suggested a novel function of miR528 in resisting F. verticillioides infection. The miRNAs identified in this research and their putative target genes can be used to further elucidate the trans-kingdom functions of microRNAs in plant pathogen interaction.
Collapse
Affiliation(s)
- Qing Qu
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China
| | - Ning Liu
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China
| | - Qianfu Su
- Jilin Academy of Agricultural Sciences, Jilin 130033, China
| | - Xinfang Liu
- Corn Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Hui Jia
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China
| | - Yuwei Liu
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China
| | - Manli Sun
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China
| | - Zhiyan Cao
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China.
| | - Jingao Dong
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China.
| |
Collapse
|
23
|
Yan X, Zhang S, Yu Z, Sun L, Sohail MA, Ye Z, Zhou L, Qi X. The MAP Kinase PvMK1 Regulates Hyphal Development, Autophagy, and Pathogenesis in the Bayberry Twig Blight Fungus Pestalotiopsis versicolor. J Fungi (Basel) 2023; 9:606. [PMID: 37367542 DOI: 10.3390/jof9060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Bayberry twig blight caused by the ascomycete fungus Pestalotiopsis versicolor is a devastating disease threatening worldwide bayberry production. However, the molecular basis underlying the pathogenesis of P. versicolor is largely unknown. Here, we identified and functionally characterized the MAP kinase PvMk1 in P. versicolor through genetic and cellular biochemical approaches. Our analysis reveals a central role of PvMk1 in regulating P. versicolor virulence on bayberry. We demonstrate that PvMk1 is involved in hyphal development, conidiation, melanin biosynthesis, and cell wall stress responses. Notably, PvMk1 regulates P. versicolor autophagy and is essential for hyphal growth under nitrogen-depleting conditions. These findings suggest the multifaceted role of PvMk1 in regulating P. versicolor development and virulence. More remarkably, this evidence of virulence-involved cellular processes regulated by PvMk1 has paved a fundamental way for further understanding the impact of P. versicolor pathogenesis on bayberry.
Collapse
Affiliation(s)
- Xiujuan Yan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shuwen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zheping Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Li Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Muhammad Aamir Sohail
- Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingjiang Qi
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Biotechnology Research Institute, Xianghu Laboratory, Hangzhou 310021, China
| |
Collapse
|
24
|
Sobol MS, Hoshino T, Delgado V, Futagami T, Kadooka C, Inagaki F, Kiel Reese B. Genome characterization of two novel deep-sea sediment fungi, Penicillium pacificagyrus sp. nov. and Penicillium pacificasedimenti sp. nov., from South Pacific Gyre subseafloor sediments, highlights survivability. BMC Genomics 2023; 24:249. [PMID: 37165355 PMCID: PMC10173653 DOI: 10.1186/s12864-023-09320-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/18/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Marine deep subsurface sediments were once thought to be devoid of eukaryotic life, but advances in molecular technology have unlocked the presence and activity of well-known closely related terrestrial and marine fungi. Commonly detected fungi in deep marine sediment environments includes Penicillium, Aspergillus, Cladosporium, Fusarium, and Schizophyllum, which could have important implications in carbon and nitrogen cycling in this isolated environment. In order to determine the diversity and unknown metabolic capabilities of fungi in deep-sea sediments, their genomes need to be fully analyzed. In this study, two Penicillium species were isolated from South Pacific Gyre sediment enrichments during Integrated Ocean Drilling Program Expedition 329. The inner gyre has very limited productivity, organic carbon, and nutrients. RESULTS Here, we present high-quality genomes of two proposed novel Penicillium species using Illumina HiSeq and PacBio sequencing technologies. Single-copy homologues within the genomes were compared to other closely related genomes using OrthoMCL and maximum-likelihood estimation, which showed that these genomes were novel species within the genus Penicillium. We propose to name isolate SPG-F1 as Penicillium pacificasedimenti sp. nov. and SPG-F15 as Penicillium pacificagyrus sp. nov. The resulting genome sizes were 32.6 Mbp and 36.4 Mbp, respectively, and both genomes were greater than 98% complete as determined by the presence of complete single-copy orthologs. The transposable elements for each genome were 4.87% for P. pacificasedimenti and 10.68% for P. pacificagyrus. A total of 12,271 genes were predicted in the P. pacificasedimenti genome and 12,568 genes in P. pacificagyrus. Both isolates contained genes known to be involved in the degradation of recalcitrant carbon, amino acids, and lignin-derived carbon. CONCLUSIONS Our results provide the first constructed genomes of novel Penicillium isolates from deep marine sediments, which will be useful for future studies of marine subsurface fungal diversity and function. Furthermore, these genomes shed light on the potential impact fungi in marine sediments and the subseafloor could have on global carbon and nitrogen biogeochemical cycles and how they may be persisting in the most energy-limited sedimentary biosphere.
Collapse
Affiliation(s)
- Morgan S Sobol
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Baden-Württemberg, Germany
| | - Tatsuhiko Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, 783-8502, Japan
| | - Victor Delgado
- Department of Life Sciences, TX A&M University, Corpus Christi, Texas, USA
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Chihiro Kadooka
- Department of Biotechnology and Life Science, Faculty of Biotechnology and Life Science, Sojo University, Ikeda, Nishiku, Kumamoto, 860-0082, Japan
| | - Fumio Inagaki
- Mantle Drilling Promotion Office, Institute for Marine Earth Exploration and Engineering (MarE3), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, 236- 0001, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai, 980-8574, Japan
| | - Brandi Kiel Reese
- Dauphin Island Sea Lab, Dauphin Island, Alabama, USA.
- Stokes School of Marine and Environmental Sciences, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
25
|
Stuart AKDC, Furuie JL, Cataldi TR, Stuart RM, Zawadneak MAC, Labate CA, Pimentel IC. Metabolomics of the interaction between a consortium of entomopathogenic fungi and their target insect: Mechanisms of attack and survival. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105369. [PMID: 36963938 DOI: 10.1016/j.pestbp.2023.105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
One of the most concerning pests that attack strawberries in Brazil is Duponchelia fovealis (Zeller), a non-native moth with no registered control methods to date. Our group recently observed that a fungal consortium formed by two strains of Beauveria bassiana (Balsamo) increased the mortality of D. fovealis more than inoculation with each strain on its own. However, the molecular interaction between the fungal consortium and the caterpillars is unknown. Thus, in this work, we sought to pioneer the evaluation of the molecular interaction between a fungal consortium of B. bassiana and D. fovealis caterpillars. We aimed to understand the biocontrol process involved in this interaction and the defense system of the caterpillar. Seven days after D. fovealis were inoculated with the consortium, the dead and surviving caterpillars were analyzed using GC-MS and LC-MS. Some of the metabolites identified in dead caterpillars have primarily antioxidant action. Other metabolites may have insecticidal potential, such as diltiazem-like and tamsulosin-like compounds, as well as 2,5-dimethoxymandelic acid. In surviving caterpillars, the main mechanisms are pro-inflammatory from 2-Palmitoylglycerol metabolite and the antifungal action of the metabolite Aegle marmelos Alkaloid-C. The metabolites identified in dead caterpillars may explain the increased mortality caused by the consortium due to its antioxidant mechanism, which can suppress the caterpillars' immune system, and insecticide action. In surviving caterpillars, the main resistance mechanisms may involve the stimulus to the immunity and antifungal action.
Collapse
Affiliation(s)
- Andressa Katiski da Costa Stuart
- Laboratório de Microbiologia e Biologia Molecular (LabMicro), Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| | - Jason Lee Furuie
- Laboratório de Microbiologia e Biologia Molecular (LabMicro), Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Thais Regiani Cataldi
- Laboratório de Genética de Plantas Max Feffer, Departamento de Genética, Escola Superior de Agronomia Luiz de Queiroz - Esalq/USP, Piracicaba, São Paulo, Brazil
| | - Rodrigo Makowiecky Stuart
- Laboratório de Microbiologia e Biologia Molecular (LabMicro), Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Maria Aparecida Cassilha Zawadneak
- Laboratório de Microbiologia e Biologia Molecular (LabMicro), Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil; Programa de Pós-graduação em Agronomia Produção Vegetal, Departamento de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Carlos Alberto Labate
- Laboratório de Genética de Plantas Max Feffer, Departamento de Genética, Escola Superior de Agronomia Luiz de Queiroz - Esalq/USP, Piracicaba, São Paulo, Brazil
| | - Ida Chapaval Pimentel
- Laboratório de Microbiologia e Biologia Molecular (LabMicro), Departamento de Patologia Básica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
26
|
Yan D, Fan Y, Song S, Guo Y, Liu Y, Xu X, Liu F, Gao Q, Wang S. HOG1 Mitogen-Activated Protein Kinase Pathway–Related Autophagy Induced by H2O2 in Lentinula edodes Mycelia. J Fungi (Basel) 2023; 9:jof9040413. [PMID: 37108868 PMCID: PMC10143471 DOI: 10.3390/jof9040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Mycelial ageing is associated with ROS and autophagy in Lentinula edodes. However, the underlying cellular and molecular mechanisms between ROS and autophagy remain obscure. This study induced autophagy in L. edodes mycelia through exogenous H2O2 treatment. Results showed that 100 μM H2O2 treatment for 24 h significantly inhibited mycelial growth. H2O2 caused the depolarisation of MMP and accumulation of TUNEL-positive nuclei, which was similar to the ageing phenotype of L. edodes mycelia. Transcriptome analysis showed that differentially expressed genes were enriched in the mitophagic, autophagic, and MAPK pathways. LeAtg8 and LeHog1 were selected as hub genes. RNA and protein levels of LeATG8 increased in the H2O2-treated mycelia. Using fluorescent labelling, we observed for the first time the classic ring structure of autophagosomes in a mushroom, while 3D imaging suggested that these autophagosomes surrounded the nuclei to degrade them at specific growth stages. Phospho-LeHOG1 protein can translocate from the cytoplasm to the nucleus to regulate mycelial cells, resisting ROS-induced oxidative stress. Furthermore, LeATG8 expression was suppressed when LeHOG1 phosphorylation was inhibited. These results suggest that the LeATG8-dependent autophagy in L. edodes mycelial is closely associated with the activity or even phosphorylation of LeHOG1.
Collapse
|
27
|
Gao Q, Fan Y, Wei S, Song S, Guo Y, Wang S, Liu Y, Yan D. Insights into the Global Transcriptome Response of Lentinula edodes Mycelia during Aging. J Fungi (Basel) 2023; 9:jof9030379. [PMID: 36983547 PMCID: PMC10057243 DOI: 10.3390/jof9030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The spawn of Lentinula edodes and other basidiomycete fungi tend to age with long-term culture. This causes heavy yield losses if aging spawn is used for propagation. In this study, we cultivated dikaryotic L. edodes mycelia in plates for 60 days to produce intrinsic aging phenotypes. We found that intracellular reactive oxygen species levels increased in contrast to mitochondrial depolarization and also observed greater DNA fragmentation with longer culture time. Transcriptome analysis of mycelia at different growth stages revealed pronounced expression differences between short- and long-term cultures. In particular, "phenylalanine, tyrosine, and tryptophan biosynthesis", "mitophagy and autophagy", "MAPK signaling pathway", and "ABC transporter" were among the enriched terms in the mycelial aging process. Weighted correlation network analysis identified LeAtg8, LeHog1, LePbs2, and LemTOR as key genes during aging. Western blotting confirmed that LeATG8 and phosphorylated LeHOG1 protein levels were significantly upregulated in aging mycelia. Our combined analytical approach provides insights into the mechanisms that regulate mycelial aging, indicating that autophagy/mitophagy plays a major role in counteracting the effects of age on mycelial growth development.
Collapse
Affiliation(s)
- Qi Gao
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Yangyang Fan
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Sai Wei
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
- College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102208, China
| | - Shuang Song
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Yuan Guo
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Shouxian Wang
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Yu Liu
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Dong Yan
- Beijing Engineering Research Center for Edible Mushroom, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| |
Collapse
|
28
|
Yang C, Jiang X, Ma L, Xiao D, Liu X, Ying Z, Li Y, Lin Y. Transcriptomic and Metabolomic Profiles Provide Insights into the Red-Stipe Symptom of Morel Fruiting Bodies. J Fungi (Basel) 2023; 9:jof9030373. [PMID: 36983541 PMCID: PMC10058789 DOI: 10.3390/jof9030373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The cultivation of true morels (Morchella spp., Morchellaceae, Ascomycota) has rapidly expanded in recent years, especially in China. Red stipe is a symptom wherein the stipe of morel fruiting bodies becomes red-gray, resulting in the gradual death of the affected fruiting bodies. The impact of red-stipe symptom occurrence on the development and nutritional quality of morel fruiting bodies remains unclear. Herein, morel ascocarps with the red-stipe symptom (R) and normal (N), artificially cultivated in the Fujian Province of China, were selected for the transcriptome and metabolome analysis to study the physiological and biochemical responses of morel fruiting bodies to the red-stipe symptom. Transcriptome data revealed several differentially expressed genes between the R and N groups significantly enriched in the tyrosine, riboflavin, and glycerophospholipid metabolism pathways. Similarly, the differentially accumulated metabolites were mainly assigned to metabolic pathways, including tyrosine, the biosynthesis of plant secondary metabolites, and the biosynthesis of amino acids. Moreover, the transcriptome and metabolome data combination revealed that tyrosine metabolism was the most enriched pathway, which was followed by ATP-binding cassette (ABC) transport, alanine, aspartate, and glutamate metabolism. Overall, the integration of transcriptomic and metabolomic data of M. sextelata affected by red-stipe symptoms identified several important genes, metabolites, and pathways. These findings further improve our understanding of the mechanisms underlying the red-stipe symptom development of M. sextelata and provide new insights into how to optimize its cultivation methods.
Collapse
Affiliation(s)
- Chi Yang
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Xiaoling Jiang
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Lu Ma
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Donglai Xiao
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Xiaoyu Liu
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Zhenghe Ying
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Yaru Li
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Yanquan Lin
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| |
Collapse
|
29
|
Dual Transcriptome Analysis Reveals That ChATG8 Is Required for Fungal Development, Melanization and Pathogenicity during the Interaction between Colletotrichum higginsianum and Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24054376. [PMID: 36901806 PMCID: PMC10002072 DOI: 10.3390/ijms24054376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Anthracnose disease of cruciferous plants caused by Colletotrichum higginsianum is a serious fungal disease that affects cruciferous crops such as Chinese cabbage, Chinese flowering cabbage, broccoli, mustard plant, as well as the model plant Arabidopsis thaliana. Dual transcriptome analysis is commonly used to identify the potential mechanisms of interaction between host and pathogen. In order to identify differentially expressed genes (DEGs) in both the pathogen and host, the conidia of wild-type (ChWT) and Chatg8 mutant (Chatg8Δ) strains were inoculated onto leaves of A. thaliana, and the infected leaves of A. thaliana at 8, 22, 40, and 60 h post-inoculation (hpi) were subjected to dual RNA-seq analysis. The results showed that comparison of gene expression between the 'ChWT' and 'Chatg8Δ' samples detected 900 DEGs (306 upregulated and 594 down-regulated) at 8 hpi, 692 DEGs (283 upregulated and 409 down-regulated) at 22 hpi, 496 DEGs (220 upregulated and 276 down-regulated) at 40 hpi, and 3159 DEGs (1544 upregulated and 1615 down-regulated) at 60 hpi. GO and KEGG analyses found that the DEGs were mainly involved in fungal development, biosynthesis of secondary metabolites, plant-fungal interactions, and phytohormone signaling. The regulatory network of key genes annotated in the Pathogen-Host Interactions database (PHI-base) and Plant Resistance Genes database (PRGdb), as well as a number of key genes highly correlated with the 8, 22, 40, and 60 hpi, were identified during the infection. Among the key genes, the most significant enrichment was in the gene encoding the trihydroxynaphthalene reductase (THR1) in the melanin biosynthesis pathway. Both Chatg8Δ and Chthr1Δ strains showed varying degrees of reduction of melanin in appressoria and colonies. The pathogenicity of the Chthr1Δ strain was lost. In addition, six DEGs from C. higginsianum and six DEGs from A. thaliana were selected for real-time quantitative PCR (RT-qPCR) to confirm the RNA-seq results. The information gathered from this study enriches the resources available for research into the role of the gene ChATG8 during the infection of A. thaliana by C. higginsianum, such as potential links between melanin biosynthesis and autophagy, and the response of A. thaliana to different fungal strains, thereby providing a theoretical basis for the breeding of cruciferous green leaf vegetable cultivars with resistance to anthracnose disease.
Collapse
|
30
|
Wang Y, Wu X, Lu Y, Fu H, Liu S, Zhao J, Long C. Ferric Chloride Controls Citrus Anthracnose by Inducing the Autophagy Activity of Colletotrichum gloeosporioides. J Fungi (Basel) 2023; 9:jof9020230. [PMID: 36836344 PMCID: PMC9962583 DOI: 10.3390/jof9020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Colletotrichum gloeosporioides causes citrus anthracnose, which seriously endangers the pre-harvest production and post-harvest storage of citrus due to its devastating effects on fruit quality, shelf life, and profits. However, although some chemical agents have been proven to effectively control this plant disease, little to no efforts have been made to identify effective and safe anti-anthracnose alternatives. Therefore, this study assessed and verified the inhibitory effect of ferric chloride (FeCl3) against C. gloeosporioides. Our findings demonstrated that FeCl3 could effectively inhibit C. gloeosporioides spore germination. After FeCl3 treatment, the germination rate of the spores in the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) groups decreased by 84.04% and 89.0%, respectively. Additionally, FeCl3 could effectively inhibit the pathogenicity of C. gloeosporioides in vivo. Optical microscopy (OM) and scanning electron microscopy (SEM) analyses demonstrated the occurrence of wrinkled and atrophic mycelia. Moreover, FeCl3 induced autophagosome formation in the test pathogen, as confirmed by transmission electron microscopy (TEM) and monodansylcadaverine (MDC) staining. Additionally, a positive correlation was identified between the FeCl3 concentration and the damage rate of the fungal sporophyte cell membrane, as the staining rates of the control (untreated), 1/2 MIC, and MIC FeCl3 treatment groups were 1.87%, 6.52%, and 18.15%, respectively. Furthermore, the ROS content in sporophyte cells increased by 3.6%, 29.27%, and 52.33% in the control, 1/2 MIC, and MIC FeCl3 groups, respectively. Therefore, FeCl3 could reduce the virulence and pathogenicity of C. gloeosporioides. Finally, FeCl3-handled citrus fruit exhibited similar physiological qualities to water-handled fruit. The results show that FeCl3 may prove to be a good substitute for the treatment of citrus anthracnose in the future.
Collapse
Affiliation(s)
- Yuqing Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Wuhan 430070, China
- National R&D Center for Citrus Preservation, Wuhan 430070, China
- National Centre of Citrus Breeding, Wuhan 430070, China
- College of Horticulture & Forestry Sciences of Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoxiao Wu
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guilin 541004, China
- Guangxi Citrus Breeding and Cultivation Research Center of Engineering Technology, Guilin 541004, China
- Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Yongqing Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Wuhan 430070, China
- National R&D Center for Citrus Preservation, Wuhan 430070, China
- National Centre of Citrus Breeding, Wuhan 430070, China
- College of Horticulture & Forestry Sciences of Huazhong Agricultural University, Wuhan 430070, China
| | - Huimin Fu
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guilin 541004, China
- Guangxi Citrus Breeding and Cultivation Research Center of Engineering Technology, Guilin 541004, China
- Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Shuqi Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Wuhan 430070, China
- National R&D Center for Citrus Preservation, Wuhan 430070, China
- National Centre of Citrus Breeding, Wuhan 430070, China
- College of Horticulture & Forestry Sciences of Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Wuhan 430070, China
- National R&D Center for Citrus Preservation, Wuhan 430070, China
- National Centre of Citrus Breeding, Wuhan 430070, China
- College of Horticulture & Forestry Sciences of Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoan Long
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Wuhan 430070, China
- National R&D Center for Citrus Preservation, Wuhan 430070, China
- National Centre of Citrus Breeding, Wuhan 430070, China
- College of Horticulture & Forestry Sciences of Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
31
|
A Subunit of the COP9 Signalosome, MoCsn6, Is Involved in Fungal Development, Pathogenicity, and Autophagy in Rice Blast Fungus. Microbiol Spectr 2022; 10:e0202022. [PMID: 36445131 PMCID: PMC9769505 DOI: 10.1128/spectrum.02020-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The COP9 signalosome (CSN) is a highly conserved protein complex in eukaryotes, affecting various development and signaling processes. To date, the biological functions of the COP9 signalosome and its subunits have not been determined in Magnaporthe oryzae. In this study, we characterized the CSN in M. oryzae (which we named MoCsn6) and analyzed its biological functions. MoCsn6 is involved in fungal development, autophagy, and plant pathogenicity. Compared with the wild-type strain 70-15, ΔMocsn6 mutants showed a significantly reduced growth rate, sporulation rate, and germ tube germination rate. Pathogenicity assays showed that the ΔMocsn6 mutants did not cause or significantly reduced the number of disease spots on isolated barley leaves. After the MoCSN6 gene was complemented into the ΔMocsn6 mutant, vegetative growth, sporulation, and pathogenicity were restored. The Osm1 and Pmk1 phosphorylation pathways were also disrupted in the ΔMocsn6 mutants. Furthermore, we found that MoCsn6 participates in the autophagy pathway by interacting with the autophagy core protein MoAtg6 and regulating its ubiquitination level. Deletion of MoCSN6 resulted in rapid lipidation of MoAtg8 and degradation of the autophagic marker protein green fluorescent protein-tagged MoAtg8 under nutrient and starvation conditions, suggesting that MoCsn6 negatively regulates autophagic activity. Taken together, our results demonstrate that MoCsn6 plays a crucial role in regulating fungal development, pathogenicity, and autophagy in M. oryzae. IMPORTANCE Magnaporthe oryzae, a filamentous fungus, is the cause of many cereal diseases. Autophagy is involved in fungal development and pathogenicity. The COP9 signalosome (CSN) has been extensively studied in ubiquitin pathways, but its regulation of autophagy has rarely been reported in plant-pathogenic fungi. Investigations on the relationship between CSN and autophagy will deepen our understanding of the pathogenic mechanism of M. oryzae and provide new insights into the development of new drug targets to control fungal diseases. In this study, the important function of Csn6 in the autophagy regulation pathway and its impact on the pathogenicity of M. oryzae were determined. We showed that Csn6 manages autophagy by interacting with the autophagy core protein Atg6 and regulating its ubiquitination level. Furthermore, future investigations that explore the function of CSN will deepen our understanding of autophagy mechanisms in rice blast fungus.
Collapse
|
32
|
The SsAtg1 Activating Autophagy Is Required for Sclerotia Formation and Pathogenicity in Sclerotinia sclerotiorum. J Fungi (Basel) 2022; 8:jof8121314. [PMID: 36547647 PMCID: PMC9787769 DOI: 10.3390/jof8121314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Sclerotinia sclerotiorum is a necrotrophic phytopathogenic fungus that produces sclerotia. Sclerotia are essential components of the survival and disease cycle of this devastating pathogen. In this study, we analyzed comparative transcriptomics of hyphae and sclerotia. A total of 1959 differentially expressed genes, 919 down-regulated and 1040 up-regulated, were identified. Transcriptomes data provide the possibility to precisely comprehend the sclerotia development. We further analyzed the differentially expressed genes (DEGs) in sclerotia to explore the molecular mechanism of sclerotia development, which include ribosome biogenesis and translation, melanin biosynthesis, autophagy and reactivate oxygen metabolism. Among these, the autophagy-related gene SsAtg1 was up-regulated in sclerotia. Atg1 homologs play critical roles in autophagy, a ubiquitous and evolutionarily highly conserved cellular mechanism for turnover of intracellular materials in eukaryotes. Therefore, we investigated the function of SsAtg1 to explore the function of the autophagy pathway in S. sclerotiorum. Deficiency of SsAtg1 inhibited autophagosome accumulation in the vacuoles of nitrogen-starved cells. Notably, ΔSsAtg1 was unable to form sclerotia and displayed defects in vegetative growth under conditions of nutrient restriction. Furthermore, the development and penetration of the compound appressoria in ΔSsAtg1 was abnormal. Pathogenicity analysis showed that SsAtg1 was required for full virulence of S. sclerotiorum. Taken together, these results indicate that SsAtg1 is a core autophagy-related gene that has vital functions in nutrient utilization, sclerotia development and pathogenicity in S. sclerotiorum.
Collapse
|
33
|
He X, Yu J, Pan X, Cao H, Yu M, Song T, Qi Z, Du Y, Zhang R, Liang D, Liu Y. Autophagy-related protein UvAtg14 contributes to mycelial growth, asexual reproduction, virulence and cell stress response in rice false smut fungus Ustilaginoidea virens. PHYTOPATHOLOGY RESEARCH 2022; 4:11. [DOI: 10.1186/s42483-022-00116-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 01/04/2025]
Abstract
AbstractAutophagy is an evolutionarily conserved degradation process that degrades damaged proteins to maintain homeostasis and to protect cells against stress. In this study, we identified and characterized a critical autophagy-related protein, UvAtg14, in Ustilaginoidea virens, which is the ortholog of MoAtg14 in rice blast fungus Magnaporthe oryzea. UvAtg14 is co-localized with UvAtg8 (an autophagy marker protein) and is highly expressed at 1–3 days post-inoculation. Deletion of the UvATG14 gene blocked GFP-UvAtg8 trafficking and autophagic digestion and significantly reduced mycelial growth, asexual reproduction, and virulence of U. virens. UvATG14 deletion mutants also exhibited increased sensitivity to various abiotic stresses. Our findings indicate that UvAtg14 is a key autophagic protein and contributes to mycelial growth, conidia production, and pathogenicity in U. virens.
Collapse
|
34
|
Huang C, Li L, Wang L, Bao J, Zhang X, Yan J, Wu J, Cao N, Wang J, Zhao L, Liu X, Yu X, Zhu X, Lin F. The Amino Acid Permease MoGap1 Regulates TOR Activity and Autophagy in Magnaporthe oryzae. Int J Mol Sci 2022; 23:13663. [PMID: 36362450 PMCID: PMC9655246 DOI: 10.3390/ijms232113663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 08/26/2023] Open
Abstract
Rice is an important food crop all over the world. It can be infected by the rice blast fungus Magnaporthe oryzae, which results in a significant reduction in rice yield. The infection mechanism of M. oryzae has been an academic focus for a long time. It has been found that G protein, AMPK, cAMP-PKA, and MPS1-MAPK pathways play different roles in the infection process. Recently, the function of TOR signaling in regulating cell growth and autophagy by receiving nutritional signals generated by plant pathogenic fungi has been demonstrated, but its regulatory mechanism in response to the nutritional signals remains unclear. In this study, a yeast amino acid permease homologue MoGap1 was identified and a knockout mutant of MoGap1 was successfully obtained. Through a phenotypic analysis, a stress analysis, autophagy flux detection, and a TOR activity analysis, we found that the deletion of MoGap1 led to a sporulation reduction as well as increased sensitivity to cell wall stress and carbon source stress in M. oryzae. The ΔMogap1 mutant showed high sensitivity to the TOR inhibitor rapamycin. A Western blot analysis further confirmed that the TOR activity significantly decreased, which improved the level of autophagy. The results suggested that MoGap1, as an upstream regulator of TOR signaling, regulated autophagy and responded to adversities such as cell wall stress by regulating the TOR activity.
Collapse
Affiliation(s)
- Changli Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Wang
- College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 310007, China
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaozhi Zhang
- College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 310007, China
| | - Jiongyi Yan
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiaqi Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Na Cao
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 310007, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lili Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaohong Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 310007, China
| | - Fucheng Lin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 310007, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
35
|
Li X, Zhu M, Liu Y, Yang L, Yang J. Aoatg11 and Aoatg33 are indispensable for mitophagy, and contribute to conidiation, the stress response, and pathogenicity in the nematode-trapping fungus Arthrobotrys oligospora. Microbiol Res 2022; 266:127252. [DOI: 10.1016/j.micres.2022.127252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
36
|
Wu P, Choo CYL, Lu H, Wei X, Chen Y, Yago JI, Chung K. Pexophagy is critical for fungal development, stress response, and virulence in Alternaria alternata. MOLECULAR PLANT PATHOLOGY 2022; 23:1538-1554. [PMID: 35810316 PMCID: PMC9452759 DOI: 10.1111/mpp.13247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 06/09/2023]
Abstract
Alternaria alternata can resist high levels of reactive oxygen species (ROS). The protective roles of autophagy or autophagy-mediated degradation of peroxisomes (termed pexophagy) against oxidative stress remain unclear. The present study, using transmission electron microscopy and fluorescence microscopy coupled with a GFP-AaAtg8 proteolysis assay and an mCherry tagging assay with peroxisomal targeting tripeptides, demonstrated that hydrogen peroxide (H2 O2 ) and nitrogen depletion induced autophagy and pexophagy. Experimental evidence showed that H2 O2 triggered autophagy and the translocation of peroxisomes into the vacuoles. Mutational inactivation of the AaAtg8 gene in A. alternata led to autophagy impairment, resulting in the accumulation of peroxisomes, increased ROS sensitivity, and decreased virulence. Compared to the wild type, ΔAaAtg8 failed to detoxify ROS effectively, leading to ROS accumulation. Deleting AaAtg8 down-regulated the expression of genes encoding an NADPH oxidase and a Yap1 transcription factor, both involved in ROS resistance. Deleting AaAtg8 affected the development of conidia and appressorium-like structures. Deleting AaAtg8 also compromised the integrity of the cell wall. Reintroduction of a functional copy of AaAtg8 in the mutant completely restored all defective phenotypes. Although ΔAaAtg8 produced wild-type toxin levels in axenic culture, the mutant induced a lower level of H2 O2 and smaller necrotic lesions on citrus leaves. In addition to H2 O2 , nitrogen starvation triggered peroxisome turnover. We concluded that ΔAaAtg8 failed to degrade peroxisomes effectively, leading to the accumulation of peroxisomes and the reduction of the stress response. Autophagy-mediated peroxisome turnover could increase cell adaptability and survival under oxidative stress and starvation conditions.
Collapse
Affiliation(s)
- Pei‐Ching Wu
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Celine Yen Ling Choo
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Hsin‐Yu Lu
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Xian‐Yong Wei
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Yu‐Kun Chen
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Jonar I. Yago
- Plant Science Department, College of AgricultureNueva Vizcaya State UniversityBayombongPhilippines
| | - Kuang‐Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
37
|
Botcazon C, Bergia T, Lecouturier D, Dupuis C, Rochex A, Acket S, Nicot P, Leclère V, Sarazin C, Rippa S. Rhamnolipids and fengycins, very promising amphiphilic antifungal compounds from bacteria secretomes, act on Sclerotiniaceae fungi through different mechanisms. Front Microbiol 2022; 13:977633. [PMID: 36246282 PMCID: PMC9557291 DOI: 10.3389/fmicb.2022.977633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Rhamnolipids (RLs) and fengycins (FGs) are amphiphilic lipid compounds from bacteria secretomes proposed to replace synthetic pesticides for crop protection. They both display plant defense triggering properties and direct antimicrobial activities. In particular, they have well reported antifungal effects against phytopathogenic fungi. RLs and FGs are considered to act through a direct interaction with membrane lipids and a destabilization of microorganism plasma membrane, thereby limiting the risk of resistance emergence. The main objective of this work was to gain insights in the antimycelial mode of action of these metabolites to promote them as environment and human health friendly biocontrol solutions. Their biocidal effects were studied on two Sclerotiniaceae fungi responsible for diseases in numerous plant species worldwide. We show here that different strains of Botrytis cinerea and Sclerotinia sclerotiorum have opposite sensitivities to RLs and FGs on plate experiments. Overall, B. cinerea is more sensitive to FGs while S. sclerotiorum is more sensitive to RLs. Electron microscopy observations demonstrated that RLs induce mycelial destructuring by asperities emergence and hyphal fusions whereas FGs promote swelling and formation of vesicle-like structures due to vacuole fusions and autophagy. Permeability studies, phosphatidylserine externalization and reactive oxygen species production assessments showed a programmed cell death triggering by RLs at medium concentrations (until 50 μg mL−1) and necrosis characteristics at higher concentration. Programmed cell death was always observed on hyphae treated with FGs. Quantifications of mycelial ergosterol content indicated that a higher ergosterol rate in S. sclerotiorum correlates with increasing sensitivity to RLs. Oppositely, a lower ergosterol rate in B. cinerea correlates with increasing sensitivity to FGs, which was confirmed by ergosterol biosynthesis inhibition with tebuconazole. This gain of knowledge will help to better understand the mode of action of RLs and FGs to fight specific plant fungal diseases.
Collapse
Affiliation(s)
- Camille Botcazon
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Sorbonne Universités, Université de Technologie de Compiègne, Compiègne, France
| | - Thomas Bergia
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Sorbonne Universités, Université de Technologie de Compiègne, Compiègne, France
| | - Didier Lecouturier
- Charles Viollette Institute, UMRt BioEcoAgro 1158-INRAe, Métabolites Secondaires d’Origine Microbienne, Université de Lille, Université de Liège, Lille, France
| | - Chloé Dupuis
- Charles Viollette Institute, UMRt BioEcoAgro 1158-INRAe, Métabolites Secondaires d’Origine Microbienne, Université de Lille, Université de Liège, Lille, France
| | - Alice Rochex
- Charles Viollette Institute, UMRt BioEcoAgro 1158-INRAe, Métabolites Secondaires d’Origine Microbienne, Université de Lille, Université de Liège, Lille, France
| | - Sébastien Acket
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Sorbonne Universités, Université de Technologie de Compiègne, Compiègne, France
| | - Philippe Nicot
- Centre de Recherche PACA, Domaine Saint Maurice, Unité de Pathologie Végétale, INRAe, Avignon, France
| | - Valérie Leclère
- Charles Viollette Institute, UMRt BioEcoAgro 1158-INRAe, Métabolites Secondaires d’Origine Microbienne, Université de Lille, Université de Liège, Lille, France
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Université de Picardie Jules Verne, Amiens, France
| | - Sonia Rippa
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Sorbonne Universités, Université de Technologie de Compiègne, Compiègne, France
- *Correspondence: Sonia Rippa,
| |
Collapse
|
38
|
The CfSnt2-Dependent Deacetylation of Histone H3 Mediates Autophagy and Pathogenicity of Colletotrichum fructicola. J Fungi (Basel) 2022; 8:jof8090974. [PMID: 36135699 PMCID: PMC9506038 DOI: 10.3390/jof8090974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 12/12/2022] Open
Abstract
Camellia oleifera is one of the most valuable woody edible-oil crops, and anthracnose seriously afflicts its yield and quality. We recently showed that the CfSnt2 regulates the pathogenicity of Colletotrichum fructicola, the dominant causal agent of anthracnose on C. oleifera. However, the molecular mechanisms of CfSnt2-mediated pathogenesis remain largely unknown. Here, we found that CfSnt2 is localized to the nucleus to regulate the deacetylation of histone H3. The further transcriptomic analysis revealed that CfSnt2 mediates the expression of global genes, including most autophagy-related genes. Furthermore, we provided evidence showing that CfSnt2 negatively regulates autophagy and is involved in the responses to host-derived ROS and ER stresses. These combined functions contribute to the pivotal roles of CfSnt2 on pathogenicity. Taken together, our studies not only illustrate how CfSnt2 functions in the nucleus, but also link its roles on the autophagy and responses to host-derived stresses with pathogenicity in C. fructicola.
Collapse
|
39
|
Liu N, Zhu M, Zhang Y, Wang Z, Li B, Ren W. Involvement of the Autophagy Protein Atg1 in Development and Virulence in Botryosphaeria dothidea. J Fungi (Basel) 2022; 8:jof8090904. [PMID: 36135629 PMCID: PMC9501979 DOI: 10.3390/jof8090904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Botryosphaeria canker and fruit rot caused by the fungus Botryosphaeria dothidea is one of the most destructive diseases of apple worldwide. Autophagy is an evolutionarily conserved self-degradation process that is important for maintaining homeostasis to ensure cellular functionality. To date, the role of autophagy in B. dothidea is not well elucidated. In this study, we identified and characterized the autophagy-related protein Atg1 in B. dothidea. The BdAtg1 deletion mutant ΔBdAtg1 showed autophagy blockade and phenotypic defects in mycelial growth, conidiation, ascosporulation and virulence. In addition, ΔBdAtg1 exhibited an increased number of nuclei in the mycelial compartment. Comparative transcriptome analysis revealed that inactivation of BdAtg1 significantly influenced multiple metabolic pathways. Taken together, our results indicate that BdAtg1 plays an important role in vegetative differentiation and the pathogenicity of B. dothidea. The results of this study will provide a reference for the development of new target-based fungicides.
Collapse
|
40
|
Gebreegziabher Amare M, Westrick NM, Keller NP, Kabbage M. The conservation of IAP-like proteins in fungi, and their potential role in fungal programmed cell death. Fungal Genet Biol 2022; 162:103730. [PMID: 35998750 DOI: 10.1016/j.fgb.2022.103730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Programmed cell death (PCD) is a tightly regulated process which is required for survival and proper development of all cellular life. Despite this ubiquity, the precise molecular underpinnings of PCD have been primarily characterized in animals. Attempts to expand our understanding of this process in fungi have proven difficult as core regulators of animal PCD are apparently absent in fungal genomes, with the notable exception of a class of proteins referred to as inhibitors of apoptosis proteins (IAPs). These proteins are characterized by the conservation of a distinct Baculovirus IAP Repeat (BIR) domain and animal IAPs are known to regulate a number of processes, including cellular death, development, organogenesis, immune system maturation, host-pathogen interactions and more. IAP homologs are broadly conserved throughout the fungal kingdom, but our understanding of both their mechanism and role in fungal development/virulence is still unclear. In this review, we provide a broad and comparative overview of IAP function across taxa, with a particular focus on fungal processes regulated by IAPs. Furthermore, their putative modes of action in the absence of canonical interactors will be discussed.
Collapse
Affiliation(s)
| | - Nathaniel M Westrick
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Nancy P Keller
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
41
|
Histone Acetyltransferase CfGcn5-Mediated Autophagy Governs the Pathogenicity of Colletotrichum fructicola. mBio 2022; 13:e0195622. [PMID: 35975920 PMCID: PMC9600425 DOI: 10.1128/mbio.01956-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Camellia oleifera is a woody edible-oil plant in China, and anthracnose occurs wherever it is grown, causing serious losses each year. We previously identified that the histone acetyltransferase CfGcn5 orchestrates growth, development, and pathogenicity in Colletotrichum fructicola, the major causal agent of anthracnose on C. oleifera. To elucidate the underlying mechanism, we conducted a transcriptome analysis and found that CfGcn5 is mainly involved in ribosomes, catalytic and metabolic processes, primary metabolism, and autophagy. In addition, we provided evidence showing that CfGcn5 serves as an autophagy repressor to mediate the expression of many autophagy-related genes (ATG) and undergoes degradation during autophagy. Moreover, we found that the CfATG8 and CfATG9 gene-deletion mutants had defects in mitosis and autophagy, resulting in their decreased appressoria formation rates and lower turgor pressure. These combined effects caused the failure of their appressoria functions and caused defects on their pathogenicity, revealing the importance of autophagy in pathogenicity. Taken together, our study illustrates that the autophagy repressor CfGcn5 undergoes degradation in order to regulate autophagy-dependent pathogenicity in C. fructicola.
Collapse
|
42
|
Asif N, Lin F, Li L, Zhu X, Nawaz S. Regulation of Autophagy Machinery in Magnaporthe oryzae. Int J Mol Sci 2022; 23:8366. [PMID: 35955497 PMCID: PMC9369213 DOI: 10.3390/ijms23158366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 01/18/2023] Open
Abstract
Plant diseases cause substantial loss to crops all over the world, reducing the quality and quantity of agricultural goods significantly. One of the world's most damaging plant diseases, rice blast poses a substantial threat to global food security. Magnaporthe oryzae causes rice blast disease, which challenges world food security by causing substantial damage in rice production annually. Autophagy is an evolutionarily conserved breakdown and recycling system in eukaryotes that regulate homeostasis, stress adaption, and programmed cell death. Recently, new studies found that the autophagy process plays a vital role in the pathogenicity of M. oryzae and the regulation mechanisms are gradually clarified. Here we present a brief summary of the recent advances, concentrating on the new findings of autophagy regulation mechanisms and summarize some autophagy-related techniques in rice blast fungus. This review will help readers to better understand the relationship between autophagy and the virulence of plant pathogenic fungi.
Collapse
Affiliation(s)
- Nida Asif
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.Z.)
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.Z.)
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.Z.)
| | - Sehar Nawaz
- Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| |
Collapse
|
43
|
The LAMMER Kinase MoKns1 Regulates Growth, Conidiation and Pathogenicity in Magnaporthe oryzae. Int J Mol Sci 2022; 23:ijms23158104. [PMID: 35897680 PMCID: PMC9332457 DOI: 10.3390/ijms23158104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Magnaporthe oryzae is an important pathogen that causes a devastating disease in rice. It has been reported that the dual-specificity LAMMER kinase is conserved from yeast to animal species and has a variety of functions. However, the functions of the LAMMER kinase have not been reported in M. oryzae. In this study, we identified the unique LAMMER kinase MoKns1 and analyzed its function in M. oryzae. We found that in a MoKNS1 deletion mutant, growth and conidiation were primarily decreased, and pathogenicity was almost completely lost. Furthermore, our results found that MoKns1 is involved in autophagy. The ΔMokns1 mutant was sensitive to rapamycin, and MoKns1 interacted with the autophagy-related protein MoAtg18. Compared with the wild-type strain 70−15, autophagy was significantly enhanced in the ΔMokns1 mutant. In addition, we also found that MoKns1 regulated DNA damage stress pathways, and the ΔMokns1 mutant was more sensitive to hydroxyurea (HU) and methyl methanesulfonate (MMS) compared to the wild-type strain 70−15. The expression of genes related to DNA damage stress pathways in the ΔMokns1 mutant was significantly different from that in the wild-type strain. Our results demonstrate that MoKns1 is an important pathogenic factor in M. oryzae involved in regulating autophagy and DNA damage response pathways, thus affecting virulence. This research on M. oryzae pathogenesis lays a foundation for the prevention and control of M. oryzae.
Collapse
|
44
|
Mitochondrial prohibitin complex regulates fungal virulence via ATG24-assisted mitophagy. Commun Biol 2022; 5:698. [PMID: 35835849 PMCID: PMC9283515 DOI: 10.1038/s42003-022-03666-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Prohibitins are highly conserved eukaryotic proteins in mitochondria that function in various cellular processes. The roles of prohibitins in fungal virulence and their regulatory mechanisms are still unknown. Here, we identified the prohibitins ChPhb1 and ChPhb2 in a plant pathogenic fungus Colletotrichum higginsianum and investigated their roles in the virulence of this anthracnose fungus attacking crucifers. We demonstrate that ChPhb1 and ChPhb2 are required for the proper functioning of mitochondria, mitophagy and virulence. ChPhb1 and ChPhb2 interact with the autophagy-related protein ChATG24 in mitochondria, and ChATG24 shares similar functions with these proteins in mitophagy and virulence, suggesting that ChATG24 is involved in prohibitin-dependent mitophagy. ChPhb1 and ChPhb2 modulate the translocation of ChATG24 into mitochondria during mitophagy. The role of ChATG24 in mitophagy is further confirmed to be conserved in plant pathogenic fungi. Our study presents that prohibitins regulate fungal virulence by mediating ATG24-assisted mitophagy. Prohibitins recruit ChATG24 into the mitochondria to modulate mitophagy, thereby affecting the virulence of Colletotrichum higginsianum.
Collapse
|
45
|
Ren Z, Tang B, Xing J, Liu C, Cai X, Hendy A, Kamran M, Liu H, Zheng L, Huang J, Chen XL. MTA1-mediated RNA m 6 A modification regulates autophagy and is required for infection of the rice blast fungus. THE NEW PHYTOLOGIST 2022; 235:247-262. [PMID: 35338654 DOI: 10.1111/nph.18117] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
In eukaryotes, N6 -methyladenosine (m6 A) is abundant on mRNA, and plays key roles in the regulation of RNA function. However, the roles and regulatory mechanisms of m6 A in phytopathogenic fungi are still largely unknown. Combined with biochemical analysis, MeRIP-seq and RNA-seq methods, as well as biological analysis, we showed that Magnaporthe oryzae MTA1 gene is an orthologue of human METTL4, which is involved in m6 A modification and plays a critical role in autophagy for fungal infection. The Δmta1 mutant showed reduced virulence due to blockage of appressorial penetration and invasive growth. Moreover, the autophagy process was severely disordered in the mutant. MeRIP-seq identified 659 hypomethylated m6 A peaks covering 595 mRNAs in Δmta1 appressoria, 114 m6 A peaks was negatively related to mRNA abundance, including several ATG gene transcripts. Typically, the mRNA abundance of MoATG8 was also increased in the single m6 A site mutant ∆atg8/MoATG8A982C , leading to an autophagy disorder. Our findings reveal the functional importance of the m6 A methylation in infection of M. oryzae and provide novel insight into the regulatory mechanisms of plant pathogenic fungi.
Collapse
Affiliation(s)
- Zhiyong Ren
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bozeng Tang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Junjie Xing
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Caiyun Liu
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Cai
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Hendy
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Kamran
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junbing Huang
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| |
Collapse
|
46
|
Hyphal Fusions Enable Efficient Nutrient Distribution in Colletotrichum graminicola Conidiation and Symptom Development on Maize. Microorganisms 2022; 10:microorganisms10061146. [PMID: 35744664 PMCID: PMC9231406 DOI: 10.3390/microorganisms10061146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hyphal and germling fusion is a common phenomenon in ascomycetous fungi. Due to the formed hyphal network, this process enables a coordinated development as well as an interaction with plant hosts and efficient nutrient distribution. Recently, our laboratory work demonstrated a positive correlation between germling fusion and the formation of penetrating hyphopodia on maize leaves outgoing from Colletotrichum graminicola oval conidia. To investigate the probable interconnectivity of these processes, we generated a deletion mutant in Cgso, in which homologs are essential for cellular fusion in other fungal species. However, hyphopodia development was not affected, indicating that both processes are not directly connected. Instead, we were able to link the cellular fusion defect in ∆Cgso to a decreased formation of asexual fruiting bodies of C. graminicola on the leaves. The monitoring of a fluorescent-labelled autophagy marker, eGFP-CgAtg8, revealed a high autophagy activity in the hyphae surrounding the acervuli. These results support the hypothesis that the efficient nutrient transport of degraded cellular material by hyphal fusions enables proper acervuli maturation and, therefore, symptom development on the leaves.
Collapse
|
47
|
Yang W, Zhang Y, Teng H, Liu N, Sheng C, Guo Y. Role of Azole Drugs in Promoting Fungal Cell Autophagy Revealed by an NIR Fluorescence-Based Theranostic Probe. Anal Chem 2022; 94:7092-7099. [PMID: 35503259 DOI: 10.1021/acs.analchem.2c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Autophagy, a widespread degradation system in eukaryotes, plays an important role in maintaining the homeostasis of the cellular environment and the recycling of substances. Optical probes for the tracking of autophagy can be used as an effective tool not only to visualize the autophagy process but also to study autophagy-targeted drugs. Various molecule probes for autophagy of cancer cells emerge but are very limited for that of fungal cells, resulting in the lack of research on antifungal drugs targeting autophagy. To address this issue, we report an azole NIR fluorescence-based theranostic probe AF-1 with antifungal activity that is sensitive to autophagy-associated pH. The unique design of this probe lies in the introduction of both the pH-sensitive fluorophore with a detection range matching the pH range of the autophagy process and the conserved core structural fragment of azole drugs, providing a strategy to investigate the relationship between antifungal drug action and autophagy. As such, AF-1 exhibited excellent spectral properties and was found to target and induce the autophagy of the fungal cell membrane while maintaining moderate antifungal activity. Of note, using this theranostic probe as both a dye and drug, the autophagy process of fungi was visualized in a ratiometric manner, revealing the role of azole antifungal drugs in promoting autophagy to induce fungal cell apoptosis.
Collapse
Affiliation(s)
- Wanzhen Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yanhui Zhang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Hao Teng
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Na Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yuan Guo
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
48
|
Li L, Zhu XM, Zhang YR, Cai YY, Wang JY, Liu MY, Wang JY, Bao JD, Lin FC. Research on the Molecular Interaction Mechanism between Plants and Pathogenic Fungi. Int J Mol Sci 2022; 23:ijms23094658. [PMID: 35563048 PMCID: PMC9104627 DOI: 10.3390/ijms23094658] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Plant diseases caused by fungi are one of the major threats to global food security and understanding the interactions between fungi and plants is of great significance for plant disease control. The interaction between pathogenic fungi and plants is a complex process. From the perspective of pathogenic fungi, pathogenic fungi are involved in the regulation of pathogenicity by surface signal recognition proteins, MAPK signaling pathways, transcription factors, and pathogenic factors in the process of infecting plants. From the perspective of plant immunity, the signal pathway of immune response, the signal transduction pathway that induces plant immunity, and the function of plant cytoskeleton are the keys to studying plant resistance. In this review, we summarize the current research progress of fungi–plant interactions from multiple aspects and discuss the prospects and challenges of phytopathogenic fungi and their host interactions.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
| | - Yun-Ran Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
| | - Ying-Ying Cai
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
| | - Jing-Yi Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
| | - Meng-Yu Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
| | - Jiao-Yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.L.); (X.-M.Z.); (J.-Y.W.); (J.-D.B.)
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.-R.Z.); (Y.-Y.C.); (J.-Y.W.); (M.-Y.L.)
- Correspondence: ; Tel.: +86-571-88404007
| |
Collapse
|
49
|
Ozaki Y, Aimi T, Shimomura N. Detection of Autophagy-Related Structures in Fruiting Bodies of Edible Mushroom, Pleurotus ostreatus. Microscopy (Oxf) 2022; 71:222-230. [PMID: 35445724 DOI: 10.1093/jmicro/dfac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/12/2022] Open
Abstract
Autophagy is involved in various fungal morphogenetic processes. However, there are limited reports regarding the role of autophagy in mushroom fruiting body formation. The purpose of this study was to reveal the autophagy-related structures in mushroom-forming fungi. The edible mushroom Pleurotus ostreatus was used in this study. Transmission electron microscopy revealed double-membrane bounded structures containing cytoplasmic components in the fruiting bodies of this fungus. Some of these double-membrane structures were observed to interact with the vacuoles. Additionally, curved flat cisternae of various lengths were detected in the cytoplasm. The shape, size, and thickness of the limiting membrane of the double-membrane structures and the flat cisternae corresponded well with those of the autophagosomes and the isolation membranes, respectively. Regarding autophagosome formation, a membrane-bound specific zone was detected near the isolation membrane, which appeared to expand along the novel membrane. This is the first detailed report showing autophagy-related structures in P. ostreatus and provides a possible model for autophagosome formation in these filamentous fungi. Mini-abstract Autophagy is involved in fungal morphogenetic processes. The fruiting bodies of edible mushroom Pleurotus ostreatus was observed under a TEM. The present study showed autophagy-related structures in this fungus and provides a possible model for autophagosome formation in filamentous fungi.
Collapse
Affiliation(s)
- Yuma Ozaki
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8553, Japan
| | - Tadanori Aimi
- Faculty of Agriculture, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8553, Japan
| | - Norihiro Shimomura
- Faculty of Agriculture, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8553, Japan
| |
Collapse
|
50
|
Sun L, Qian H, Wu M, Zhao W, Liu M, Wei Y, Zhu X, Li L, Lu J, Lin F, Liu X. A Subunit of ESCRT-III, MoIst1, Is Involved in Fungal Development, Pathogenicity, and Autophagy in Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2022; 13:845139. [PMID: 35463448 PMCID: PMC9021896 DOI: 10.3389/fpls.2022.845139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The culprit of rice blast, Magnaporthe oryzae, is a filamentous fungus that seriously affects the yield and quality of rice worldwide. MoIst1, a subunit of ESCRT-III, is involved in identified ubiquitinated proteins and transports them into the intraluminal vesicles of multivesicular bodies (MVBs) for degradation in lysosomes. Here, we identify and characterize MoIst1 in M. oryzae. Disruption of MoIst1 leads to a significant decrease in sporulation and formation of appressoria, defects in response to oxidative stress, cell wall stress, hyperosmotic stress, and reduced pathogenicity. Deletion of MoIst1 also caused the decreased Pmk1 phosphorylation levels, appressorium formation, the delayed translocation and degradation of lipid droplets and glycogen, resulting in a decreased appressorium turgor. In addition, deletion of MoIst1 leads to an abnormal autophagy. In summary, our results indicate that MoIst1 is involved in sporulation, appressorium development, plant penetration, pathogenicity, and autophagy in M. oryzae.
Collapse
Affiliation(s)
- Lixiao Sun
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hui Qian
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Minghua Wu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenhui Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengyu Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunyun Wei
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaohong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|