1
|
Obeagu EI. Role of cytokines in immunomodulation during malaria clearance. Ann Med Surg (Lond) 2024; 86:2873-2882. [PMID: 38694310 PMCID: PMC11060309 DOI: 10.1097/ms9.0000000000002019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024] Open
Abstract
Malaria remains a significant global health challenge, demanding a deeper understanding of host immune responses for effective clearance of the parasitic infection. Cytokines, as crucial mediators of the immune system, orchestrate a complex interplay during the various stages of malaria infection. Throughout the course of the disease, an intricate balance of pro-inflammatory and anti-inflammatory cytokines dictate the immune response's outcome, influencing parasitic clearance and disease severity. During the initial stages, interleukins such as interleukin-12 (IL-12), interferon-gamma (IFN-γ), and tumour necrosis factor-alpha (TNF-α) play pivotal roles in activating innate immune cells, initiating the anti-parasitic response. Simultaneously, regulatory cytokines like interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β) modulate this immune activation, preventing excessive inflammation and tissue damage. As the infection progresses, a delicate shift occurs, characterized by a transition to adaptive immunity, guided by cytokines like interleukin-4 (IL-4), interleukin-5 (IL-5), and interleukin-13 (IL-13), promoting antibody production and T-cell responses. Notably, the resolution of malaria infection crucially relies on a fine-tuned balance of cytokine networks. Dysregulation or imbalances in these mediators often result in immune hyperactivation, contributing to severe manifestations and prolonged infection. Understanding the multi-faceted roles of cytokines in malaria clearance offers promising avenues for therapeutic interventions. Targeting cytokine pathways to restore immune equilibrium or bolster protective responses could potentially enhance treatment strategies and vaccine development. In conclusion, the pivotal role of cytokines in immunomodulation during malaria clearance underscores their significance as potential targets for therapeutic interventions, offering promising prospects in the global fight against this infectious disease.
Collapse
|
2
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
3
|
Kotepui M, Mahittikorn A, Masangkay FR, Kotepui KU. Differences in catalase levels between malaria-infected individuals and uninfected controls: a systematic review and meta-analysis. Sci Rep 2023; 13:14619. [PMID: 37670044 PMCID: PMC10480170 DOI: 10.1038/s41598-023-41659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Inconsistent catalase (CAT) research necessitates a comprehensive review of CAT levels among patients with malaria to achieve better therapeutic strategies. This study aimed to systematically review and meta-analyze available literature on CAT levels in nonpregnant and pregnant individuals with malaria compared with those in uninfected controls, with the goal of providing a robust evidence base for future research and potential interventions. Following PRISMA guidelines, a systematic literature search across six databases was conducted to examine CAT levels in patients with malaria. Data was extracted independently by two reviewers, and study quality was assessed using the Joanna Briggs Institute (JBI) critical appraisal checklist. The standardized mean difference of CAT levels was calculated with heterogeneity assessment. Subgroup and sensitivity analyses were conducted to explore heterogeneity and assess the robustness of the findings. Publication bias was visually and statistically assessed and corrected, if necessary. Statistical analyses were performed using Stata software, with a significance level set at P < 0.05. Nineteen studies were included in the review. These studies, published from before 2000 to 2023, primarily from Africa and Asia, focused on different Plasmodium species and age groups. Results of qualitative synthesis among nonpregnant individuals consistently showed lower CAT levels in malaria-infected individuals, although some studies reported higher levels. No significant differences in CAT levels were found between malaria-infected and uninfected individuals, as demonstrated by a meta-analysis overall (P = 0.05, Hedges' g: - 0.78, 95% confidence interval (CI): (- 1.56)-0.01, I2: 98.47, 15 studies), but subgroup analyses showed significant differences in CAT levels in studies conducted in Africa (P = 0.02, Hedges' g: - 0.57, 95% CI: - 1.02-(0.11), I2: 91.81, 7 studies), and in studies that specifically focused on children (P = 0.03, Hedges' g: - 0.57, 95% CI: - 1.07-(- 0.07), I2: 87.52, 4 studies). Pregnant women showed variations in CAT levels across trimesters. This study provides valuable insights into the association between malaria infection and CAT enzyme levels, particularly in nonpregnant individuals. Furthermore, well-designed studies are essential to decoding the intricacies of this relationship, which could have significant implications for understanding disease processes and improving patient care.
Collapse
Affiliation(s)
- Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Aongart Mahittikorn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | | | - Kwuntida Uthaisar Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
4
|
Ezema CA, Okagu IU, Ezeorba TPC. Escaping the enemy's bullets: an update on how malaria parasites evade host immune response. Parasitol Res 2023:10.1007/s00436-023-07868-6. [PMID: 37219610 DOI: 10.1007/s00436-023-07868-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Malaria continues to cause untold hardship to inhabitants of malaria-endemic regions, causing significant morbidity and mortality that severely impact global health and the economy. Considering the complex life cycle of malaria parasites (MPs) and malaria biology, continued research efforts are ongoing to improve our understanding of the pathogenesis of the diseases. Female Anopheles mosquito injects MPs into its hosts during a blood meal, and MPs invade the host skin and the hepatocytes without causing any serious symptoms. Symptomatic infections occur only during the erythrocytic stage. In most cases, the host's innate immunity (for malaria-naïve individuals) and adaptive immunity (for pre-exposed individuals) mount severe attacks and destroy most MPs. It is increasingly understood that MPs have developed several mechanisms to escape from the host's immune destruction. This review presents recent knowledge on how the host's immune system destroys invading MPs as well as MPs survival or host immune evasion mechanisms. On the invasion of host cells, MPs release molecules that bind to cell surface receptors to reprogram the host in a way to lose the capacity to destroy them. MPs also hide from the host immune cells by inducing the clustering of both infected and uninfected erythrocytes (rosettes), as well as inducing endothelial activation. We hope this review will inspire more research to provide a complete understanding of malaria biology and promote interventions to eradicate the notorious disease.
Collapse
Affiliation(s)
- Chinonso Anthony Ezema
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
- Division of Soft Matter, Hokkaido University, Sapporo, 060-0810, Japan
| | - Innocent Uzochukwu Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria.
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State, 410001, Nigeria.
- Department of Molecular Biotechnology, School of Biosciences, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
5
|
Storm J, Camarda G, Haley MJ, Brough D, Couper KN, Craig AG. Plasmodium falciparum-infected erythrocyte co-culture with the monocyte cell line THP-1 does not trigger production of soluble factors reducing brain microvascular barrier function. PLoS One 2023; 18:e0285323. [PMID: 37141324 PMCID: PMC10159134 DOI: 10.1371/journal.pone.0285323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
Monocytes contribute to the pro-inflammatory immune response during the blood stage of a Plasmodium falciparum infection, but their precise role in malaria pathology is not clear. Besides phagocytosis, monocytes are activated by products from P. falciparum infected erythrocytes (IE) and one of the activation pathways is potentially the NLR family pyrin domain containing 3 (NLRP3) inflammasome, a multi-protein complex that leads to the production of interleukin (IL)-1β. In cerebral malaria cases, monocytes accumulate at IE sequestration sites in the brain microvascular and the locally produced IL-1β, or other secreted molecules, could contribute to leakage of the blood-brain barrier. To study the activation of monocytes by IE within the brain microvasculature in an in vitro model, we co-cultured IT4var14 IE and the monocyte cell line THP-1 for 24 hours and determined whether generated soluble molecules affect barrier function of human brain microvascular endothelial cells, measured by real time trans-endothelial electrical resistance. The medium produced after co-culture did not affect endothelial barrier function and similarly no effect was measured after inducing oxidative stress by adding xanthine oxidase to the co-culture. While IL-1β does decrease barrier function, barely any IL-1β was produced in the co- cultures, indicative of a lack of or incomplete THP-1 activation by IE in this co-culture model.
Collapse
Affiliation(s)
- Janet Storm
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Grazia Camarda
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michael J Haley
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Kevin N Couper
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alister G Craig
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
6
|
Chaturvedi R, Mohan M, Kumar S, Chandele A, Sharma A. Profiles of host immune impairment in Plasmodium and SARS-CoV-2 infections. Heliyon 2022; 8:e11744. [PMID: 36415655 PMCID: PMC9671871 DOI: 10.1016/j.heliyon.2022.e11744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Over the past two decades, many countries have reported a steady decline in reported cases of malaria, and a few countries, like China, have been declared malaria-free by the World Health Organization. In 2020 the number of deaths from malaria has declined since 2000. The COVID-19 pandemic has adversely affected overall public health efforts and thus it is feasible that there might be a resurgence of malaria. COVID-19 and malaria share some similarities in the immune responses of the patient and these two diseases also share overlapping early symptoms such as fever, headache, nausea, and muscle pain/fatigue. In the absence of early diagnostics, there can be a misdiagnosis of the infection(s) that can pose additional challenges due to delayed treatment. In both SARS-CoV-2 and Plasmodium infections, there is a rapid release of cytokines/chemokines that play a key role in disease pathophysiology. In this review, we have discussed the cytokine/chemokine storm observed during COVID-19 and malaria. We observed that: (1) the severity in malaria and COVID-19 is likely a consequence primarily of an uncontrolled 'cytokine storm'; (2) five pro-inflammatory cytokines (IL-6, IL-10, TNF-α, type I IFN, and IFN-γ) are significantly increased in severe/critically ill patients in both diseases; (3) Plasmodium and SARS-CoV-2 share some similar clinical manifestations and thus may result in fatal consequences if misdiagnosed during onset.
Collapse
Affiliation(s)
- Rini Chaturvedi
- Molecular Medicine Group, International Center for Genetic Engineering and Biotechnology, New Delhi, Delhi, India
| | - Mradul Mohan
- Parasite-Host Biology Group, National Institute of Malaria Research, New Delhi, Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjeev Kumar
- ICGEB-Emory Vaccine Program, International Center for Genetic Engineering and Biotechnology, New Delhi, Delhi, India
| | - Anmol Chandele
- ICGEB-Emory Vaccine Program, International Center for Genetic Engineering and Biotechnology, New Delhi, Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Center for Genetic Engineering and Biotechnology, New Delhi, Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India,Corresponding author
| |
Collapse
|
7
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Kalia I, Anand R, Quadiri A, Bhattacharya S, Sahoo B, Singh AP. Plasmodium berghei-Released Factor, PbTIP, Modulates the Host Innate Immune Responses. Front Immunol 2022; 12:699887. [PMID: 34987497 PMCID: PMC8721568 DOI: 10.3389/fimmu.2021.699887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
The Plasmodium parasite has to cross various immunological barriers for successful infection. Parasites have evolved mechanisms to evade host immune responses, which hugely contributes to the successful infection and transmission by parasites. One way in which a parasite evades immune surveillance is by expressing molecular mimics of the host molecules in order to manipulate the host responses. In this study, we report a Plasmodium berghei hypothetical protein, PbTIP (PbANKA_124360.0), which is a Plasmodium homolog of the human T-cell immunomodulatory protein (TIP). The latter possesses immunomodulatory activities and suppressed the host immune responses in a mouse acute graft-versus-host disease (GvHD) model. The Plasmodium berghei protein, PbTIP, is expressed on the merozoite surface and exported to the host erythrocyte surface upon infection. It is shed in the blood circulation by the activity of an uncharacterized membrane protease(s). The shed PbTIP could be detected in the host serum during infection. Our results demonstrate that the shed PbTIP exhibits binding on the surface of macrophages and reduces their inflammatory cytokine response while upregulating the anti-inflammatory cytokines such as TGF-β and IL-10. Such manipulated immune responses are observed in the later stage of malaria infection. PbTIP induced Th2-type gene transcript changes in macrophages, hinting toward its potential to regulate the host immune responses against the parasite. Therefore, this study highlights the role of a Plasmodium-released protein, PbTIP, in immune evasion using macrophages, which may represent the critical strategy of the parasite to successfully survive and thrive in its host. This study also indicates the human malaria parasite TIP as a potential diagnostic molecule that could be exploited in lateral flow-based immunochromatographic tests for malaria disease diagnosis.
Collapse
Affiliation(s)
- Inderjeet Kalia
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi, India
| | - Rajesh Anand
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi, India
| | - Afshana Quadiri
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi, India
| | - Shreya Bhattacharya
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi, India
| | - Bijayalaxmi Sahoo
- Department of Biological Sciences and Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Agam Prasad Singh
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
9
|
Dalapati T, Moore JM. Hemozoin: a Complex Molecule with Complex Activities. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022; 8:87-102. [PMID: 35096512 DOI: 10.1007/s40588-021-00166-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Purpose of Review Malaria is a disease caused by parasites that reside in host red blood cells and use hemoglobin as a nutrient source. Heme released by hemoglobin catabolism is modified by the parasite to produce hemozoin (HZ), which has toxic effects on the host. Experimentation aiming to elucidate how HZ contributes to malaria pathogenesis has utilized different preparations of this molecule, complicating interpretation and comparison of findings. We examine natural synthesis and isolation of HZ and highlight studies that have used multiple preparations, including synthetic forms, in a comparative fashion. Recent Findings Recent work utilizing sophisticated imaging and detection techniques reveals important molecular characteristics of HZ synthesis and biochemistry. Other recent studies further refine understanding of contributions of HZ to malaria pathogenesis yet highlight the continuing need to characterize HZ preparations and contextualize experimental conditions in the in vivo infection milieu. Summary This review highlights the necessity of collectively determining what is physiologically relevant HZ. Characterization of isolated natural HZ and use of multiple preparations in each study are recommended with application of in vivo studies whenever possible. Adoption of such practices is expected to improve reproducibility of results and elucidate the myriad of ways that HZ participates in malaria pathogenesis.
Collapse
Affiliation(s)
- Trisha Dalapati
- Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Julie M Moore
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Hussein MIH, Albashir AAD, Elawad OAMA, Homeida A. Malaria and COVID-19: unmasking their ties. Malar J 2020; 19:457. [PMID: 33357220 PMCID: PMC7755982 DOI: 10.1186/s12936-020-03541-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023] Open
Abstract
The incidence and mortality of COVID-19, according to the World Health Organization reports, shows a noticeable difference between North America, Western Europe, and South Asia on one hand and most African countries on the other hand, especially the malaria-endemic countries. Although this observation could be attributed to limited testing capacity, mitigation tools adopted and cultural habits, many theories have been postulated to explain this difference in prevalence and mortality. Because death tends to occur more in elders, both the role of demography, and how the age structure of a population may contribute to the difference in mortality rate between countries were discussed. The variable distribution of the ACEI/D and the ACE2 (C1173T substitution) polymorphisms has been postulated to explain this variable prevalence. Up-to-date data regarding the role of hydroxychloroquine (HCQ) and chloroquine (CQ) in COVID-19 have been summarized. The article also sheds lights on how the similarity of malaria and COVID-19 symptoms can lead to misdiagnosis of one disease for the other or overlooking the possibility of co-infection. As the COVID-19 pandemic threatens the delivery of malaria services, such as the distribution of insecticide-treated nets (ITNs), indoor residual spraying, as well as malaria chemoprevention there is an urgent need for rapid and effective responses to avoid malaria outbreaks.
Collapse
Affiliation(s)
| | | | | | - Anmar Homeida
- Faculty of Medicine, University of Gezira, Wad Medani, Sudan
| |
Collapse
|
11
|
Gutman JR, Lucchi NW, Cantey PT, Steinhardt LC, Samuels AM, Kamb ML, Kapella BK, McElroy PD, Udhayakumar V, Lindblade KA. Malaria and Parasitic Neglected Tropical Diseases: Potential Syndemics with COVID-19? Am J Trop Med Hyg 2020; 103:572-577. [PMID: 32484155 PMCID: PMC7410484 DOI: 10.4269/ajtmh.20-0516] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, have surpassed 5 million cases globally. Current models suggest that low- and middle-income countries (LMICs) will have a similar incidence but substantially lower mortality rate than high-income countries. However, malaria and neglected tropical diseases (NTDs) are prevalent in LMICs, and coinfections are likely. Both malaria and parasitic NTDs can alter immunologic responses to other infectious agents. Malaria can induce a cytokine storm and pro-coagulant state similar to that seen in severe COVID-19. Consequently, coinfections with malaria parasites and SARS-CoV-2 could result in substantially worse outcomes than mono-infections with either pathogen, and could shift the age pattern of severe COVID-19 to younger age-groups. Enhancing surveillance platforms could provide signals that indicate whether malaria, NTDs, and COVID-19 are syndemics (synergistic epidemics). Based on the prevalence of malaria and NTDs in specific localities, efforts to characterize COVID-19 in LMICs could be expanded by adding testing for malaria and NTDs. Such additional testing would allow the determination of the rates of coinfection and comparison of severity of outcomes by infection status, greatly improving the understanding of the epidemiology of COVID-19 in LMICs and potentially helping to mitigate its impact.
Collapse
Affiliation(s)
- Julie R. Gutman
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Naomi W. Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Paul T. Cantey
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Laura C. Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Aaron M. Samuels
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Mary L. Kamb
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Bryan K. Kapella
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
- U.S. President’s Malaria Initiative, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Peter D. McElroy
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Kim A. Lindblade
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| |
Collapse
|
12
|
Sun Y, Cheng Y. STING or Sting: cGAS-STING-Mediated Immune Response to Protozoan Parasites. Trends Parasitol 2020; 36:773-784. [PMID: 32736985 DOI: 10.1016/j.pt.2020.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Emerging evidence suggests that the DNA-sensing pathway plays a crucial role in innate immunity against multiple diseases, especially infectious diseases. Cyclic GMP-AMP synthase (cGAS), as a DNA sensor, and stimulator of interferon (IFN) genes (STING), as an adaptor protein, are the central components that link DNA sensing to immunologic functions - including, but not limited to, the type I IFN response. Recently, a series of studies have revealed that genomic DNA from protozoan parasites triggers the cGAS-STING pathway, and these studies identified the positive and negative regulators that modulate the signaling in parasite infection. Here, we summarize current understanding of the critical functions and potential applications of the cGAS-STING axis in parasitic diseases, specifically those caused by malaria parasites.
Collapse
Affiliation(s)
- Yifan Sun
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Sutherland CJ. Mammalian malaria: Remembering the Alamo. Virulence 2020; 11:945-946. [PMID: 32717174 PMCID: PMC7549949 DOI: 10.1080/21505594.2020.1793489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine , London, UK
| |
Collapse
|