1
|
Liu P, Ji T, Zhang Y, Yin W, Pan Z, Jiao X, Gu D. Functional analysis of the CRP and TreR-treBC regulon in trehalose utilization of Vibrio parahaemolyticus. Microbiol Res 2025; 296:128138. [PMID: 40106935 DOI: 10.1016/j.micres.2025.128138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/28/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Vibrio parahaemolyticus is an important foodborne pathogen recognized for its adaptability to various environmental conditions. Understanding its metabolic pathways is crucial for elucidating its survival and pathogenicity. This study investigates the metabolism of trehalose as a carbon source in V. parahaemolyticus and explores its effects on bacterial growth and virulence. We found that V. parahaemolyticus can utilize trehalose as a sole carbon source for growth and identified the presence of treBC operon, which is crucial for trehalose degradation. Notably, the ΔtreB and ΔtreC strains exhibited impaired growth when trehalose was used as the sole carbon source in both high and low osmolarity, indicating the essential role of treBC operon in trehalose metabolism. Moreover, our results revealed that the repressor TreR inhibits treBC expression by directly binding to its promoter, with two specific binding sites (T1 and T2). When presence of trehalose, the metabolites trehalose-6-phosphate inhibited the binding of TreR to treBC promoter. Furthermore, we found that the cAMP-CRP complex can directly bind to the promoter of treBC and promote its expression. The competitive EMSA results indicated that TreR has a competitive binding advantage over CRP, allowing it to preferentially bind to the treBC promoter and thereby prevent CRP binding. Together, our findings highlight the complex regulatory mechanisms governing trehalose metabolism in V. parahaemolyticus.
Collapse
Affiliation(s)
- Peng Liu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ting Ji
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Youkun Zhang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wenliang Yin
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Dan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
2
|
Gohar D, Põldmaa K, Pent M, Rahimlou S, Cerk K, Ng DY, Hildebrand F, Bahram M. Genomic evidence of symbiotic adaptations in fungus-associated bacteria. iScience 2025; 28:112253. [PMID: 40290873 PMCID: PMC12023794 DOI: 10.1016/j.isci.2025.112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Fungi harbor diverse bacteria that engage in various relationships. While these relationships potentially influence fungal functioning, their underlying genetic mechanisms remain unexplored. Here, we aimed to elucidate the key genomic features of fungus-associated bacteria (FaB) by comparing 163 FaB genomes to 1,048 bacterial genomes from other hosts and habitats. Our analyses revealed several distinctive genomic features of FaB. We found that FaB are enriched in carbohydrate transport/metabolism- and motility-related genes, suggesting an adaptation for utilizing complex fungal carbon sources. They are also enriched in genes targeting fungal biomass, likely reflecting their role in recycling and rebuilding fungal structures. Additionally, FaB associated with plant-mutualistic fungi possess a wider array of carbon-acquisition enzymes specific to fungal and plant substrates compared to those residing with saprotrophic fungi. These unique genomic features highlight FaB' potential as key players in fungal nutrient acquisition and decomposition, ultimately influencing plant-fungal symbiosis and ecosystem functioning.
Collapse
Affiliation(s)
- Daniyal Gohar
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Kadri Põldmaa
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
- Natural History Museum and Botanical Garden, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
| | - Mari Pent
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
| | - Saleh Rahimlou
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Klara Cerk
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ Norfolk, UK
| | - Duncan Y.K. Ng
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
| | - Falk Hildebrand
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ Norfolk, UK
| | - Mo Bahram
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden
| |
Collapse
|
3
|
Anbalagan S. Sugar-sensing swodkoreceptors and swodkocrine signaling. Animal Model Exp Med 2025. [PMID: 40110750 DOI: 10.1002/ame2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
Sugars are one of the major metabolites and are essential for nucleic acid synthesis and energy production. In addition, sugars can act as signaling molecules. To study sugar signaling at the systemic level, there is an urgent need to systematically identify sugar-sensing proteins and nucleic acids. I propose the terms "swodkoreceptor" and "swodkocrine signaling," derived from the Polish word "słodki" meaning "sweet," to comprise all sugar-sensing proteins and signaling events, respectively, regardless of their cellular location and signaling domains. This proposal is intended to facilitate the inclusion of proteins such as the Escherichia coli LacI repressor as an allolactose receptor, human glucokinase regulatory protein (GCKR) as a fructose receptor, and other sugar-binding based allosterically regulated enzymes and transcription factors as sugar-sensing receptors. In addition, enzyme-interacting proteins whose interaction state is regulated by sugar binding have also been proposed as sugar receptors. The systemic study of protein- and nucleic-acid-based swodkoreceptors may help to identify organelle-specific swodkoreceptors and to also address receptor duality. The study of intra- and inter-organism swodkocrine signaling and its crosstalk with gasocrine signaling may help to understand the etiology of diseases due to dysregulation in sugar homeostasis and signaling.
Collapse
Affiliation(s)
- Savani Anbalagan
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
4
|
Dupuis B, Pocquet N, Failloux AB. Understanding the role of trehalose in interactions between Wolbachia and Aedes aegypti. Front Cell Infect Microbiol 2025; 15:1547873. [PMID: 40171161 PMCID: PMC11958977 DOI: 10.3389/fcimb.2025.1547873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/04/2025] [Indexed: 04/03/2025] Open
Abstract
Mosquito-borne diseases such as chikungunya, dengue, and Zika represent a major burden on global public health. To fight against these arboviruses, vector control strategies are a priority. One existing strategy is based on the use of an endosymbiotic bacterium, Wolbachia, which reduces the transmission of arboviruses by the mosquito Aedes aegypti via a pathogen blocking effect. Wolbachia in Ae. aegypti disrupts several pathways of the host's metabolism. Trehalose is a carbohydrate circulating mainly in insect hemolymph and plays a role in numerous mechanisms as energy source or stress recovery molecule and in chitin synthesis. This study explores the importance of trehalose in the interactions between Wolbachia and Ae. aegypti, and attempts to understand the pathogen blocking effect.
Collapse
Affiliation(s)
- Benjamin Dupuis
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Nicolas Pocquet
- Institut Pasteur de Nouvelle-Calédonie, Unité de Recherche et d'Expertise en Entomologie Médicale (URE-EM), Nouméa, New Caledonia
| | - Anna-Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| |
Collapse
|
5
|
Hasan MK, Alaribe O, Govind R. Regulatory networks: Linking toxin production and sporulation in Clostridioides difficile. Anaerobe 2025; 91:102920. [PMID: 39521117 PMCID: PMC11811957 DOI: 10.1016/j.anaerobe.2024.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Clostridioides difficile has been recognized as an important nosocomial pathogen that causes diarrheal disease as a consequence of antibiotic exposure and costs the healthcare system billions of dollars every year. C. difficile enters the host gut as dormant spores, germinates into vegetative cells, colonizes the gut, and produces toxins TcdA and/or TcdB, leading to diarrhea and inflammation. Spores are the primary transmission vehicle, while the toxins A and B directly contribute to the disease. Thus, toxin production and sporulation are the key traits that determine the success of C. difficile as a pathogen. Both toxins and spores are produced during the late stationary phase in response to various stimuli. This review provides a comprehensive analysis of the current knowledge on the molecular mechanisms, highlighting the regulatory pathways that interconnect toxin gene expression and sporulation in C. difficile. The roles of carbohydrates, amino acids and other nutrients and signals, in modulating these virulence traits through global regulatory networks are discussed. Understanding the links within the gene regulatory network is crucial for developing effective therapeutic strategies against C. difficile infections, potentially leading to targeted interventions that disrupt the co-regulation of toxin production and sporulation.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Oluchi Alaribe
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
6
|
Noor S, Aljasir MA, Bashir M, Khan K, Ahmad S, Abideen SA, Khan S, Siddique F, Ahmad H, Ghani K, Iqbal M, Irfan M, Khan A, Wei DQ. Multi-scale computational modeling to identify novel chemical scaffolds as trehalose-6-phosphate phosphatase inhibitors to combat Burkholderia pseudomallei. In Silico Pharmacol 2025; 13:21. [PMID: 39901924 PMCID: PMC11787118 DOI: 10.1007/s40203-025-00309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Burkholderia pseudomallei causes melioidosis, a deadly infection having high fatality rates (20-50%) and antibiotic resistance, however, there's no effective drug or vaccine available. Trehalose is a vital sugar for B. pseudomallei which influences the pathogen resilience and pathogenicity. This proposed computational strategy focuses on developing novel drugs against Trehalose-6-phosphate Phosphatase (TPP) to combat infections. This study found three novel drugs from Asinex, Zinc, Chembridge, and Drugbank databases through a comprehensive structure-based virtual screening. The process screened the top three compounds: BDG_34042863, BDF_33738612, and DB00139 along with control (2-methyl-6-phenoxytetrahydro-2 H-pyran-3,4,5-triol) with a binding energy score of -8.8 kcal/mol, -8.4 kcal/mol, and - 7.7 kcal/mol, -6.4 kcal/mol respectively. In a molecular dynamics simulation, the Ligand-protein complexes demonstrated substantial non-covalent interactions as well as a stable docked intermolecular binding conformation. Throughout the MDS (molecular dynamic simulation) period, the studied compounds showed stable consistent interactions; there were no noticeable changes in the interactions or binding mode. The BDG_34042863, BDF_33738612, and DB00139 had a mean deviation of 4.04, 7.18, and 7.10 measured in Å, respectively. In addition, the simulation trajectories of complexes underwent MM/GBSA analysis, which revealed binding affinity scores of -33.39, -41.1, -49.16, and - 41.29 measured in kcal/mol for the control, BDG_34042863, BDF_33738612, and DB00139, respectively. According to DFT Analysis, BDF_33738612 showed the smallest energy gap (0.46 eV), indicating high reactivity, while DB00139 showed the largest energy gap (5.66 eV), illustrating good kinetic stability compared to the control. The compounds exhibit notable differences in reactivity and stability levels as their HOMO-1 to LUMO + 1 and HOMO-2 to LUMO + 2 orbitals have greater energy gaps, ranging from 5.06 eV to 6.69 eV and 5.66 eV to 7.09 eV, respectively. The compounds also had favorable pharmacokinetic characteristics and were categorized as druglike. Among the selected compounds, BDF_33738612 demonstrated the most promising findings followed by BDG_34042863 and DB00139. The compounds may be employed in an experimental study to examine their anti-TPP activity against B. pseudomallei. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00309-5.
Collapse
Affiliation(s)
- Sara Noor
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000 Pakistan
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Maryam Bashir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakriya University, Multan, 60800 Pakistan
| | - Kalsoom Khan
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000 Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000 Pakistan
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nayang, People’s Republic of China
| | - Syed Ainul Abideen
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Saifullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Pakistan
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakriya University, Multan, 60800 Pakistan
| | - Hamza Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25000 Pakistan
| | - Khudija Ghani
- Sarhad Institute of Allied Health Sciences, Sarhad University of Science and Information Technology, Peshawar, 25000 Pakistan
| | - Madiha Iqbal
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000 Pakistan
| | | | - Abbas Khan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan Malaysia
| | - Dong-Qing Wei
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nayang, People’s Republic of China
| |
Collapse
|
7
|
García JE, Pagnussat LA, Amenta MB, Casanovas EM, Diaz PR, Labarthe MM, Martino MV, Groppa MD, Creus CM, Maroniche GA. Maize drought protection by Azospirillum argentinense Az19 requires bacterial trehalose accumulation. Appl Microbiol Biotechnol 2024; 108:543. [PMID: 39729258 DOI: 10.1007/s00253-024-13391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system. The resulting recombinant strain, Az19F, did not accumulate trehalose, was affected in its capacity to cope with salt-, osmotic-, and UV-stress, and showed higher reactive oxygen species levels. Physiological alterations were also observed under normal conditions, such as increased growth in biofilms, higher motility, and decreased auxin secretion. Even so, the capacity of Az19F to colonize maize roots was not affected, either under normal or drought conditions. When inoculated in maize, both Az19 and Az19F strains promoted plant growth similarly under normal irrigation. However, unlike Az19, the trehalose-deficient strain Az19F could not improve the height, aerial fresh weight, or relative water content of maize plants under drought. Notably, Az19F triggered an exacerbated oxidative response in the plants, resulting in higher levels of antioxidant and phenolic compounds. We conclude that the role of trehalose metabolism in A. argentinense Az19 transcends stress tolerance, being also important for normal bacterial physiology and its plant growth-promoting activity under drought. KEY POINTS: • Trehalose is required by Az19 for full tolerance to salt-, osmotic-, and UV-stress. • A restriction in trehalose accumulation alters Az19 normal cell physiology. • Trehalose contributes to Az19-induced maize growth promotion under drought.
Collapse
Affiliation(s)
- Julia E García
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA), Nicolás Repetto y de los Reseros S/N, Hurlingham, B1713, Buenos Aires, Argentina
| | - Luciana A Pagnussat
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC), Vieytes 3103, B7602, Mar del Plata, Buenos Aires, Argentina
| | - Melina B Amenta
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
| | - E Mabel Casanovas
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
| | - Pablo R Diaz
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 2290 C1425, Godoy Cruz, CABA, Argentina
| | - María M Labarthe
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 2290 C1425, Godoy Cruz, CABA, Argentina
| | - María V Martino
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
| | - María D Groppa
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), CONICET-Universidad de Buenos Aires (UBA), C1113, Junin 956, Buenos Aires, Argentina
| | - Cecilia M Creus
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
| | - Guillermo A Maroniche
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 2290 C1425, Godoy Cruz, CABA, Argentina.
| |
Collapse
|
8
|
Swain A, Senapati SS, Pan A. Transcriptome and interactome-based analyses to unravel crucial proteins and pathways involved in Acinetobacter baumannii pathogenesis. Mol Divers 2024:10.1007/s11030-024-11041-1. [PMID: 39543024 DOI: 10.1007/s11030-024-11041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
The present study employed an integrated transcriptome and interactome-based analyses to identify key proteins and pathways associated with Acinetobacter baumannii infection towards the development of novel therapeutics against this pathogen. Transcriptome analysis of A.baumannii strains (ATCC 17978 and AbH12O-A2) identified 253 and 619 differentially expressed genes (DEGs), respectively. These genes were involved in essential molecular functions, including DNA binding, metal ion binding, and oxidoreductase activity. The centrality and module analyses of these identified DEGs had shortlisted 27 and 41 hub proteins, which were central to the ATCC 17978 and AbH12O-A2 networks, and essential for bacterial survival. Significantly, three proteins (SecA, glutathione synthase, and aromatic-amino-acid transaminase) from the ATCC 17978 strain and seven proteins (ATP synthase subunit alpha, translation initiation factor IF-2, SecY, elongation factors G, Tu, and Ts, and tRNA guanine-N1-methyltransferase) from the AbH12O-A2 strain showed interactions with human proteins, identified through host-pathogen interaction (HPI) analysis of hub proteins (referred as hub-HPI proteins). These proteins were observed to participate in vital pathways, including glutathione metabolism, secondary metabolite biosynthesis and quorum sensing. Targeting these hub-HPI proteins through novel therapeutic strategies holds the potential to disrupt the critical bacterial pathways, thereby controlling A. baumannii infections. Furthermore, their localization analysis indicated that nine proteins were cytoplasmic and one was membrane protein. Among them, six were druggable and four were novel proteins. Overall, this comprehensive study provides valuable insights into the crucial proteins and pathways involved during A. baumannii infection, and offers potential therapeutic targets for designing novel antimicrobial agents to tackle the pathogen.
Collapse
Affiliation(s)
- Aishwarya Swain
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry, 605014, India
| | - Smruti Sikha Senapati
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry, 605014, India
| | - Archana Pan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
9
|
Phuengmaung P, Chongrak C, Saisorn W, Makjaroen J, Singkham-in U, Leelahavanichkul A. The Coexistence of Klebsiella pneumoniae and Candida albicans Enhanced Biofilm Thickness but Induced Less Severe Neutrophil Responses and Less Inflammation in Pneumonia Mice Than K. pneumoniae Alone. Int J Mol Sci 2024; 25:12157. [PMID: 39596223 PMCID: PMC11594830 DOI: 10.3390/ijms252212157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Due to the possible coexistence of Klebsiella pneumoniae (KP) and Candida albicans (CA), strains of KP and CA with biofilm production properties clinically isolated from patients were tested. The production of biofilms from the combined organisms (KP+CA) was higher than the biofilms from each organism alone, as indicated by crystal violet and z-stack immunofluorescence. In parallel, the bacterial abundance in KP + CA was similar to KP, but the fungal abundance was higher than CA (culture method), implying that CA grows better in the presence of KP. Proteomic analysis was performed to compare KP + CA biofilm to KP biofilm alone. With isolated mouse neutrophils (thioglycolate induction), KP + CA biofilms induced less prominent responses than KP biofilms, as determined by (i) neutrophilic supernatant cytokines (ELISA) and (ii) neutrophil extracellular traps (NETs), using immunofluorescent images (neutrophil elastase, myeloperoxidase, and citrullinated histone 3), peptidyl arginine deiminase 4 (PAD4) expression, and cell-free DNA. Likewise, intratracheal KP + CA in C57BL/6 mice induces less severe pneumonia than KP alone, as indicated by organ injury (serum creatinine and alanine transaminase) (colorimetric assays), cytokines (ELISA), bronchoalveolar lavage fluid parameters (bacterial culture and neutrophil abundances using a hemocytometer), histology score (H&E stains), and NETs (immunofluorescence on the lung tissue). In conclusion, the biofilm biomass of KP + CA was mostly produced from CA with less potent neutrophil activation and less severe pneumonia than KP alone. Hence, fungi in the respiratory tract might benefit the host in some situations, despite the well-known adverse effects of fungi.
Collapse
Affiliation(s)
- Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (C.C.); (W.S.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chiratchaya Chongrak
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (C.C.); (W.S.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wilasinee Saisorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (C.C.); (W.S.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiradej Makjaroen
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Uthaibhorn Singkham-in
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Faculty of Medical Technology, Rangsit University, Pathum Thani 12000, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (C.C.); (W.S.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Zhang Y, Ku YS, Cheung TY, Cheng SS, Xin D, Gombeau K, Cai Y, Lam HM, Chan TF. Challenges to rhizobial adaptability in a changing climate: Genetic engineering solutions for stress tolerance. Microbiol Res 2024; 288:127886. [PMID: 39232483 DOI: 10.1016/j.micres.2024.127886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Rhizobia interact with leguminous plants in the soil to form nitrogen fixing nodules in which rhizobia and plant cells coexist. Although there are emerging studies on rhizobium-associated nitrogen fixation in cereals, the legume-rhizobium interaction is more well-studied and usually serves as the model to study rhizobium-mediated nitrogen fixation in plants. Rhizobia play a crucial role in the nitrogen cycle in many ecosystems. However, rhizobia are highly sensitive to variations in soil conditions and physicochemical properties (i.e. moisture, temperature, salinity, pH, and oxygen availability). Such variations directly caused by global climate change are challenging the adaptive capabilities of rhizobia in both natural and agricultural environments. Although a few studies have identified rhizobial genes that confer adaptation to different environmental conditions, the genetic basis of rhizobial stress tolerance remains poorly understood. In this review, we highlight the importance of improving the survival of rhizobia in soil to enhance their symbiosis with plants, which can increase crop yields and facilitate the establishment of sustainable agricultural systems. To achieve this goal, we summarize the key challenges imposed by global climate change on rhizobium-plant symbiosis and collate current knowledge of stress tolerance-related genes and pathways in rhizobia. And finally, we present the latest genetic engineering approaches, such as synthetic biology, implemented to improve the adaptability of rhizobia to changing environmental conditions.
Collapse
Affiliation(s)
- Yunjia Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yee-Shan Ku
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tsz-Yan Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sau-Shan Cheng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Dawei Xin
- College of Agriculture, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China
| | - Kewin Gombeau
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
11
|
Kaur A, Singh S, Sharma SC. Unlocking Trehalose's versatility: A comprehensive Journey from biosynthesis to therapeutic applications. Exp Cell Res 2024; 442:114250. [PMID: 39260672 DOI: 10.1016/j.yexcr.2024.114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
For over forty years, a sugar of rare configuration known as trehalose (two molecules of glucose linked at their 1-carbons), has been recognised for more than just its roles as a storage compound. The ability of trehalose to protect an extensive range of biological materials, for instance cell lines, tissues, proteins and DNA, has sparked considerable interest in the biotechnology and pharmaceutical industries. Currently, trehalose is now being investigated as a promising therapeutic candidate for human use, as it has shown potential to reduce disease severity in various experimental models. Despite its diverse biological effects, the precise mechanism underlying this observation remain unclear. Therefore, this review delves into the significance of trehalose biosynthesis pathway in the development of novel drug, investigates the inhibitors of trehalose synthesis and evaluates the binding efficiency of T6P with TPS1. Additionally, it also emphasizes the knowledge about the protective effect of trehalose on modulation of autophagy, combating viral infections, addressing the conditions like cancer and neurodegenerative diseases based on the recent advancement. Furthermore, review also highlight the trehalose's emerging role as a surfactant in delivering monoclonal antibodies that will further broadening its potential application in biomedicines.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| | - Sukhwinder Singh
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| | | |
Collapse
|
12
|
Eoh H, Lee JJ, Swanson D, Lee SK, Dihardjo S, Lee GY, Sree G, Maskill E, Taylor Z, Van Nieuwenhze M, Singh A, Lee JS, Eum SY, Cho SN, Swarts B. Trehalose catalytic shift is an intrinsic factor in Mycobacterium tuberculosis that enhances phenotypic heterogeneity and multidrug resistance. RESEARCH SQUARE 2024:rs.3.rs-4999164. [PMID: 39315249 PMCID: PMC11419184 DOI: 10.21203/rs.3.rs-4999164/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Drug-resistance (DR) in many bacterial pathogens often arises from the repetitive formation of drug-tolerant bacilli, known as persisters. However, it is unclear whether Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), undergoes a similar phenotypic transition. Recent metabolomics studies have identified that a change in trehalose metabolism is necessary for Mtb to develop persisters and plays a crucial role in metabolic networks of DR-TB strains. The present study used Mtb mutants lacking the trehalose catalytic shift and showed that the mutants exhibited a significantly lower frequency of the emergence of DR mutants compared to wildtype, due to reduced persister formation. The trehalose catalytic shift enables Mtb persisters to survive under bactericidal antibiotics by increasing metabolic heterogeneity and drug tolerance, ultimately leading to development of DR. Intriguingly, rifampicin (RIF)-resistant bacilli exhibit cross-resistance to a second antibiotic, due to a high trehalose catalytic shift activity. This phenomenon explains how the development of multidrug resistance (MDR) is facilitated by the acquisition of RIF resistance. In this context, the heightened risk of MDR-TB in the lineage 4 HN878 W-Beijing strain can be attributed to its greater trehalose catalytic shift. Genetic and pharmacological inactivation of the trehalose catalytic shift significantly reduced persister formation, subsequently decreasing the incidence of MDR-TB in HN878 W-Beijing strain. Collectively, the trehalose catalytic shift serves as an intrinsic factor of Mtb responsible for persister formation, cross-resistance to multiple antibiotics, and the emergence of MDR-TB. This study aids in the discovery of new TB therapeutics by targeting the trehalose catalytic shift of Mtb.
Collapse
|
13
|
Singh H, Wiscovitch-Russo R, Kuelbs C, Espinoza J, Appel AE, Lyons RJ, Vashee S, Förtsch HE, Foster JE, Ramdath D, Hayes VM, Nelson KE, Gonzalez-Juarbe N. Multiomic Insights into Human Health: Gut Microbiomes of Hunter-Gatherer, Agropastoral, and Western Urban Populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611095. [PMID: 39282340 PMCID: PMC11398329 DOI: 10.1101/2024.09.03.611095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Societies with exposure to preindustrial diets exhibit improved markers of health. Our study used a comprehensive multi-omic approach to reveal that the gut microbiome of the Ju/'hoansi hunter-gatherers, one of the most remote KhoeSan groups, exhibit a higher diversity and richness, with an abundance of microbial species lost in the western population. The Ju/'hoansi microbiome showed enhanced global transcription and enrichment of complex carbohydrate metabolic and energy generation pathways. The Ju/'hoansi also show high abundance of short-chain fatty acids that are associated with health and optimal immune function. In contrast, these pathways and their respective species were found in low abundance or completely absent in Western populations. Amino acid and fatty acid metabolism pathways were observed prevalent in the Western population, associated with biomarkers of chronic inflammation. Our study provides the first in-depth multi-omic characterization of the Ju/'hoansi microbiome, revealing uncharacterized species and functional pathways that are associated with health.
Collapse
Affiliation(s)
- Harinder Singh
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Rosana Wiscovitch-Russo
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Claire Kuelbs
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Josh Espinoza
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Amanda E. Appel
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Ruth J. Lyons
- Garvan Institute of Medical Research, New South Wales, Australia
| | - Sanjay Vashee
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Synthetic Biology Group, J. Craig Venter Institute, Rockville, MD, USA
| | | | - Jerome E. Foster
- Faculty of Medical Sciences, University of the West Indies, Trinidad
| | - Dan Ramdath
- Faculty of Medical Sciences, University of the West Indies, Trinidad
| | - Vanessa M. Hayes
- Garvan Institute of Medical Research, New South Wales, Australia
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- School of Health Systems and Public Health, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Karen E. Nelson
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| |
Collapse
|
14
|
Xu N, Zuo J, Li C, Gao C, Guo M. Reconstruction and Analysis of a Genome-Scale Metabolic Model of Acinetobacter lwoffii. Int J Mol Sci 2024; 25:9321. [PMID: 39273268 PMCID: PMC11395192 DOI: 10.3390/ijms25179321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Acinetobacter lwoffii is widely considered to be a harmful bacterium that is resistant to medicines and disinfectants. A. lwoffii NL1 degrades phenols efficiently and shows promise as an aromatic compound degrader in antibiotic-contaminated environments. To gain a comprehensive understanding of A. lwoffii, the first genome-scale metabolic model of A. lwoffii was constructed using semi-automated and manual methods. The iNX811 model, which includes 811 genes, 1071 metabolites, and 1155 reactions, was validated using 39 unique carbon and nitrogen sources. Genes and metabolites critical for cell growth were analyzed, and 12 essential metabolites (mainly in the biosynthesis and metabolism of glycan, lysine, and cofactors) were identified as antibacterial drug targets. Moreover, to explore the metabolic response to phenols, metabolic flux was simulated by integrating transcriptomics, and the significantly changed metabolism mainly included central carbon metabolism, along with some transport reactions. In addition, the addition of substances that effectively improved phenol degradation was predicted and validated using the model. Overall, the reconstruction and analysis of model iNX811 helped to study the antimicrobial systems and biodegradation behavior of A. lwoffii.
Collapse
Affiliation(s)
- Nan Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jiaojiao Zuo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Chenghao Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Cong Gao
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Minliang Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Almalki WH, Salman Almujri S. Oxidative stress and senescence in aging kidneys: the protective role of SIRT1. EXCLI JOURNAL 2024; 23:1030-1067. [PMID: 39391060 PMCID: PMC11464868 DOI: 10.17179/excli2024-7519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/07/2024] [Indexed: 10/12/2024]
Abstract
Aging leads to a gradual decline in kidney function, making the kidneys increasingly vulnerable to various diseases. Oxidative stress, together with cellular senescence, has been established as paramount in promoting the aging process of the kidney. Oxidative stress, defined as an imbalance between ROS formation and antioxidant defense mechanisms, has been implicated in the kidney's cellular injury, inflammation, and premature senescence. Concurrently, the accumulation of SCs in the kidney also exacerbates oxidative stress via the secretion of pro-inflammatory and tissue-damaging factors as the senescence-associated secretory phenotype (SASP). Recently, SIRT1, a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, has been pivotal in combating oxidative stress and cellular senescence in the aging kidney. SIRT1 acts as a potential antioxidant molecule through myriad pathways that influence diverse transcription factors and enzymes essential in maintaining redox homeostasis. SIRT1 promotes longevity and renal health by modulating the acetylation of cell cycle and senescence pathways. This review covers the complex relationship between oxidative stress and cellular senescence in the aging kidney, emphasizing the protective role of SIRT1. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
16
|
Ye LC, Chow SY, Chang SC, Kuo CH, Wang YL, Wei YJ, Lee GC, Liaw SH, Chen WM, Chen SC. Structural and Mutational Analyses of Trehalose Synthase from Deinococcus radiodurans Reveal the Interconversion of Maltose-Trehalose Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18649-18657. [PMID: 39109746 PMCID: PMC11342931 DOI: 10.1021/acs.jafc.4c03661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose to trehalose, playing a vital role in trehalose production. Understanding the catalytic mechanism of TreS is crucial for optimizing the enzyme activity and enhancing its suitability for industrial applications. Here, we report the crystal structures of both the wild type and the E324D mutant of Deinococcus radiodurans trehalose synthase in complex with the trehalose analogue, validoxylamine A. By employing structure-guided mutagenesis, we identified N253, E320, and E324 as crucial residues within the +1 subsite for isomerase activity. Based on these complex structures, we propose the catalytic mechanism underlying the reversible interconversion of maltose to trehalose. These findings significantly advance our comprehension of the reaction mechanism of TreS.
Collapse
Affiliation(s)
- Li-Ci Ye
- Department
of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Sih-Yao Chow
- Department
of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - San-Chi Chang
- Department
of Agricultural Chemistry, National Taiwan
University, Taipei 10617, Taiwan
| | - Chia-Hung Kuo
- Department
of Seafood Science, National Kaohsiung University
of Science and Technology, No. 142, Haijhuan Rd, Kaohsiung, Nanzih District 81157, Taiwan
| | - Yung-Lin Wang
- Institute
of Biochemistry and Molecular Biology, National
Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yong-Jun Wei
- Department
of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Guan-Chiun Lee
- Department
of Life Science, National Taiwan Normal
University, No. 162, Sec. 1, Heping East Road, Taipei 116, Taiwan
| | - Shwu-Huey Liaw
- Department
of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wen-Ming Chen
- Department
of Seafood Science, National Kaohsiung University
of Science and Technology, No. 142, Haijhuan Rd, Kaohsiung, Nanzih District 81157, Taiwan
| | - Sheng-Chia Chen
- Department
of Seafood Science, National Kaohsiung University
of Science and Technology, No. 142, Haijhuan Rd, Kaohsiung, Nanzih District 81157, Taiwan
| |
Collapse
|
17
|
Andrews KR, Besser TE, Stalder T, Top EM, Baker KN, Fagnan MW, New DD, Schneider GM, Gal A, Andrews-Dickert R, Hunter SS, Beckmen KB, Christensen L, Justice-Allen A, Konetchy D, Lehman CP, Manlove K, Miyasaki H, Nordeen T, Roug A, Cassirer EF. Comparative genomic analysis identifies potential adaptive variation in Mycoplasma ovipneumoniae. Microb Genom 2024; 10:001279. [PMID: 39213169 PMCID: PMC11364169 DOI: 10.1099/mgen.0.001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Mycoplasma ovipneumoniae is associated with respiratory disease in wild and domestic Caprinae globally, with wide variation in disease outcomes within and between host species. To gain insight into phylogenetic structure and mechanisms of pathogenicity for this bacterial species, we compared M. ovipneumoniae genomes for 99 samples from 6 countries (Australia, Bosnia and Herzegovina, Brazil, China, France and USA) and 4 host species (domestic sheep, domestic goats, bighorn sheep and caribou). Core genome sequences of M. ovipneumoniae assemblies from domestic sheep and goats fell into two well-supported phylogenetic clades that are divergent enough to be considered different bacterial species, consistent with each of these two clades having an evolutionary origin in separate host species. Genome assemblies from bighorn sheep and caribou also fell within these two clades, indicating multiple spillover events, most commonly from domestic sheep. Pangenome analysis indicated a high percentage (91.4 %) of accessory genes (i.e. genes found only in a subset of assemblies) compared to core genes (i.e. genes found in all assemblies), potentially indicating a propensity for this pathogen to adapt to within-host conditions. In addition, many genes related to carbon metabolism, which is a virulence factor for Mycoplasmas, showed evidence for homologous recombination, a potential signature of adaptation. The presence or absence of annotated genes was very similar between sheep and goat clades, with only two annotated genes significantly clade-associated. However, three M. ovipneumoniae genome assemblies from asymptomatic caribou in Alaska formed a highly divergent subclade within the sheep clade that lacked 23 annotated genes compared to other assemblies, and many of these genes had functions related to carbon metabolism. Overall, our results suggest that adaptation of M. ovipneumoniae has involved evolution of carbon metabolism pathways and virulence mechanisms related to those pathways. The genes involved in these pathways, along with other genes identified as potentially involved in virulence in this study, are potential targets for future investigation into a possible genomic basis for the high variation observed in disease outcomes within and between wild and domestic host species.
Collapse
Affiliation(s)
- Kimberly R. Andrews
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Thomas E. Besser
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Eva M. Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Katherine N. Baker
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Matthew W. Fagnan
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Daniel D. New
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - G. Maria Schneider
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Alexandra Gal
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Rebecca Andrews-Dickert
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, USA
| | - Samuel S. Hunter
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | | | - Lauren Christensen
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow ID, USA
| | | | - Denise Konetchy
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow ID, USA
| | | | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| | | | - Todd Nordeen
- Nebraska Game and Parks Commission, Alliance, NE, USA
| | - Annette Roug
- Utah Division of Wildlife Resources, Salt Lake City, UT, USA
| | | |
Collapse
|
18
|
Sogame Y, Ogata M, Hakozaki S, Saito Y, Suzuki T, Saito R, Suizu F, Watanabe K. α,β-trehalose, an intracellular substance in resting cyst of colpodid ciliates as a key to environmental tolerances. Biochem Biophys Res Commun 2024; 716:149971. [PMID: 38697009 DOI: 10.1016/j.bbrc.2024.149971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
α,α-trehalose is a well-known sugar that plays a key role in establishing tolerance to environmental stresses in many organisms, except unicellular eukaryotes. However, almost nothing is known about α,β-trehalose, including their synthesis, function, and even presence in living organisms. In this study, we identified α,β-trehalose in the resting cyst, a dormancy cell form characterized by extreme tolerance to environmental stresses, of the ciliated protist Colpoda cucullus, using high-performance liquid chromatography (HPLC), and a proton nuclear magnetic resonance (1H NMR). Gene expression analysis revealed that the expression of trehalose-6-phosphate synthase (TPS), glycosyltransferase (GT), alpha-amylase (AMY), and trehalose transporter 1 (TRET1), were up-regulated in encystment, while the expression of α-glucosidase 2 (AG2) and trehalase (TREH) was up-regulated in excystment. These results suggest that α,β-trehalose is synthesized during encystment process, while and contributes to extreme tolerances to environmental stressors, stored carbohydrates, and energy reserve during resting cyst and/or during excystment.
Collapse
Affiliation(s)
- Yoichiro Sogame
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, 970-8034, Japan.
| | - Makoto Ogata
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, 960-1296, Japan
| | - Shuntaro Hakozaki
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, 970-8034, Japan
| | - Yuta Saito
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, 970-8034, Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, 321-8505, Japan
| | - Ryota Saito
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Iwaki, 970-8034, Japan
| | - Futoshi Suizu
- Molecular Oncologic Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Takamatsu, 761-0793, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, 790-8577, Japan
| |
Collapse
|
19
|
Wuo MG, Dulberger CL, Warner TC, Brown RA, Sturm A, Ultee E, Bloom-Ackermann Z, Choi C, Zhu J, Garner EC, Briegel A, Hung DT, Rubin EJ, Kiessling LL. Fluorogenic Probes of the Mycobacterial Membrane as Reporters of Antibiotic Action. J Am Chem Soc 2024; 146:17669-17678. [PMID: 38905328 PMCID: PMC11646346 DOI: 10.1021/jacs.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The genus Mycobacterium includes species such as Mycobacterium tuberculosis, which can cause deadly human diseases. These bacteria have a protective cell envelope that can be remodeled to facilitate their survival in challenging conditions. Understanding how such conditions affect membrane remodeling can facilitate antibiotic discovery and treatment. To this end, we describe an optimized fluorogenic probe, N-QTF, that reports on mycolyltransferase activity, which is vital for cell division and remodeling. N-QTF is a glycolipid probe that can reveal dynamic changes in the mycobacterial cell envelope in both fast- and slow-growing mycobacterial species. Using this probe to monitor the consequences of antibiotic treatment uncovered distinct cellular phenotypes. Even antibiotics that do not directly inhibit cell envelope biosynthesis cause conspicuous phenotypes. For instance, mycobacteria exposed to the RNA polymerase inhibitor rifampicin release fluorescent extracellular vesicles (EVs). While all mycobacteria release EVs, fluorescent EVs were detected only in the presence of RIF, indicating that exposure to the drug alters EV content. Macrophages exposed to the EVs derived from RIF-treated cells released lower levels of cytokines, suggesting the EVs moderate immune responses. These data suggest that antibiotics can alter EV content to impact immunity. Our ability to see such changes in EV constituents directly results from exploiting these chemical probes.
Collapse
Affiliation(s)
- Michael G. Wuo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, United States
| | - Charles L. Dulberger
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health. 677 Huntington Ave, Boston, MA 02115, United States
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St, Cambridge, MA 02138, United States
| | - Theodore C. Warner
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, United States
| | - Robert A. Brown
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue Madison, WI 53706, United States
| | - Alexander Sturm
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, United States
| | - Eveline Ultee
- Institute of Biology, Leiden University, Rapenburg 70, 2311 EZ Leiden, The Netherlands
| | | | - Catherine Choi
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, United States
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health. 677 Huntington Ave, Boston, MA 02115, United States
| | - Ethan C. Garner
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St, Cambridge, MA 02138, United States
| | - Ariane Briegel
- Institute of Biology, Leiden University, Rapenburg 70, 2311 EZ Leiden, The Netherlands
| | - Deborah T. Hung
- Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States
- Department of Genetics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, United States
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health. 677 Huntington Ave, Boston, MA 02115, United States
| | - Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue Madison, WI 53706, United States
| |
Collapse
|
20
|
Laux M, Ciapina LP, de Carvalho FM, Gerber AL, Guimarães APC, Apolinário M, Paes JES, Jonck CR, de Vasconcelos ATR. Living in mangroves: a syntrophic scenario unveiling a resourceful microbiome. BMC Microbiol 2024; 24:228. [PMID: 38943070 PMCID: PMC11212195 DOI: 10.1186/s12866-024-03390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Mangroves are complex and dynamic coastal ecosystems under frequent fluctuations in physicochemical conditions related to the tidal regime. The frequent variation in organic matter concentration, nutrients, and oxygen availability, among other factors, drives the microbial community composition, favoring syntrophic populations harboring a rich and diverse, stress-driven metabolism. Mangroves are known for their carbon sequestration capability, and their complex and integrated metabolic activity is essential to global biogeochemical cycling. Here, we present a metabolic reconstruction based on the genomic functional capability and flux profile between sympatric MAGs co-assembled from a tropical restored mangrove. RESULTS Eleven MAGs were assigned to six Bacteria phyla, all distantly related to the available reference genomes. The metabolic reconstruction showed several potential coupling points and shortcuts between complementary routes and predicted syntrophic interactions. Two metabolic scenarios were drawn: a heterotrophic scenario with plenty of carbon sources and an autotrophic scenario with limited carbon sources or under inhibitory conditions. The sulfur cycle was dominant over methane and the major pathways identified were acetate oxidation coupled to sulfate reduction, heterotrophic acetogenesis coupled to carbohydrate catabolism, ethanol production and carbon fixation. Interestingly, several gene sets and metabolic routes similar to those described for wastewater and organic effluent treatment processes were identified. CONCLUSION The mangrove microbial community metabolic reconstruction reflected the flexibility required to survive in fluctuating environments as the microhabitats created by the tidal regime in mangrove sediments. The metabolic components related to wastewater and organic effluent treatment processes identified strongly suggest that mangrove microbial communities could represent a resourceful microbial model for biotechnological applications that occur naturally in the environment.
Collapse
Affiliation(s)
- Marcele Laux
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Luciane Prioli Ciapina
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil.
| | - Fabíola Marques de Carvalho
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Ana Paula C Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Moacir Apolinário
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Jorge Eduardo Santos Paes
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Célio Roberto Jonck
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Ana Tereza R de Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| |
Collapse
|
21
|
Tan L, Fan C, Wang D, Li X, Wang M, Zhuo Z, Li S, Ding Y, Yang Z, Cheng J. The Effects of Lentinan on the Hematological and Immune Indices of Dairy Cows. Animals (Basel) 2024; 14:1314. [PMID: 38731317 PMCID: PMC11083140 DOI: 10.3390/ani14091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, we investigated the effects of lentinan (LNT) on hematological parameters, immune indices, and metabolite levels in dairy cows. We randomly assigned forty Holstein cows to four treatment groups. The treatments consisted of 0, 5, 10, and 15 g/d of LNT. Compared with the control group, the addition of 10 g/d of LNT decreased the content of ALT and IL-8 but simultaneously increased the content of IL-4 in the cows' serum. Supplementation with 10 g/d of LNT decreased the levels of lymphocyte, RDW, ALT, AST, TC, IL-2, and IL-8, but, concurrently, in-creased the levels of granulocytes and IL-4 in their serum. In addition, supplementation with 15 g/d of LNT decreased the levels of RDW, TC, IL-2, and IL-8, but, at the same time, increased the levels of IL-4 and IgM in their serum. For the metabolomic analysis, cows fed with 0 and 10 g/d of LNT were selected. The results showed that 10 metabolites, including reduced nicotinamide riboside and trehalose, were upregulated in the 10 g/d group. These differential metabolites were enriched in tyrosine metabolism and trehalose degradation and altered two metabolic pathways of ubiquinone and other terpene quinone biosynthesis, as well as starch and sucrose metabolism. These findings provide evidence that LNT could be used to reduce the risk of inflammation in dairy cows.
Collapse
Affiliation(s)
- Lun Tan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (L.T.); (C.F.); (X.L.); (M.W.); (Z.Z.); (S.L.); (Y.D.); (Z.Y.)
| | - Caiyun Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (L.T.); (C.F.); (X.L.); (M.W.); (Z.Z.); (S.L.); (Y.D.); (Z.Y.)
| | - Dian Wang
- Inner Mongolia Youran Dairy Group Limited, Hohhot 010010, China;
- National Center of Technology Innovation for Dairy, Hohhot 010010, China
| | - Xiao Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (L.T.); (C.F.); (X.L.); (M.W.); (Z.Z.); (S.L.); (Y.D.); (Z.Y.)
| | - Meng Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (L.T.); (C.F.); (X.L.); (M.W.); (Z.Z.); (S.L.); (Y.D.); (Z.Y.)
| | - Zhao Zhuo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (L.T.); (C.F.); (X.L.); (M.W.); (Z.Z.); (S.L.); (Y.D.); (Z.Y.)
| | - Shuaihong Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (L.T.); (C.F.); (X.L.); (M.W.); (Z.Z.); (S.L.); (Y.D.); (Z.Y.)
| | - Yuhang Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (L.T.); (C.F.); (X.L.); (M.W.); (Z.Z.); (S.L.); (Y.D.); (Z.Y.)
| | - Zixi Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (L.T.); (C.F.); (X.L.); (M.W.); (Z.Z.); (S.L.); (Y.D.); (Z.Y.)
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (L.T.); (C.F.); (X.L.); (M.W.); (Z.Z.); (S.L.); (Y.D.); (Z.Y.)
| |
Collapse
|
22
|
Markova J, Langova D, Babak V, Kostovova I. Ovine and Caprine Strains of Corynebacterium pseudotuberculosis on Czech Farms-A Comparative Study. Microorganisms 2024; 12:875. [PMID: 38792705 PMCID: PMC11123211 DOI: 10.3390/microorganisms12050875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Caseous lymphadenitis (CLA) is a worldwide disease of small ruminants caused by Corynebacterium pseudotuberculosis, a facultative intracellular pathogen that is able to survive and multiply in certain white blood cells of the host. In this study, 33 strains of C. pseudotuberculosis were isolated from sheep and goats suffering from CLA on nine farms in the Czech Republic. All these strains were tested for their antibiotic susceptibility, ability to form a biofilm and resistance to the effects of commonly used disinfectant agents. To better understand the virulence of C. pseudotuberculosis, the genomes of strains were sequenced and comparative genomic analysis was performed with another 123 genomes of the same species, including ovis and equi biovars, downloaded from the NCBI. The genetic determinants for the virulence factors responsible for adherence and virulence factors specialized for iron uptake and exotoxin phospholipase D were revealed in every analyzed genome. Carbohydrate-Active Enzymes were compared, revealing the presence of genetic determinants encoding exo-α-sialidase (GH33) and the CP40 protein in most of the analyzed genomes. Thirty-three Czech strains of C. pseudotuberculosis were identified as the biovar ovis on the basis of comparative genome analysis. All the compared genomes of the biovar ovis strains were highly similar regardless of their country of origin or host, reflecting their clonal behavior.
Collapse
Affiliation(s)
- Jirina Markova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 62100 Brno, Czech Republic; (D.L.); (V.B.); (I.K.)
| | | | | | | |
Collapse
|
23
|
Roman-Reyna V, Heiden N, Butchacas J, Toth H, Cooperstone JL, Jacobs JM. The timing of bacterial mesophyll infection shapes the leaf chemical landscape. Microbiol Spectr 2024; 12:e0413823. [PMID: 38426767 PMCID: PMC10986523 DOI: 10.1128/spectrum.04138-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Chemistry in eukaryotic intercellular spaces is shaped by both hosts and symbiotic microorganisms such as bacteria. Pathogenic microorganisms like barley-associated Xanthomonas translucens (Xt) swiftly overtake the inner leaf tissue becoming the dominant microbial community member during disease development. The dynamic metabolic changes due to Xt pathogenesis in the mesophyll spaces remain unknown. Genomic group I of Xt consists of two barley-infecting lineages: pathovar translucens (Xtt) and pathovar undulosa (Xtu). Xtu and Xtt, although genomically distinct, cause similar water-soaked lesions. To define the metabolic signals associated with inner leaf colonization, we used untargeted metabolomics to characterize Xtu and Xtt metabolism signatures associated with mesophyll growth. We found that mesophyll apoplast fluid from infected tissue yielded a distinct metabolic profile and shift from catabolic to anabolic processes over time compared to water-infiltrated control. The pathways with the most differentially expressed metabolites by time were glycolysis, tricarboxylic acid cycle, sucrose metabolism, pentose interconversion, amino acids, galactose, and purine metabolism. Hierarchical clustering and principal component analysis showed that metabolic changes were more affected by the time point rather than the individual colonization of the inner leaves by Xtt compared to Xtu. Overall, in this study, we identified metabolic pathways that explain carbon and nitrogen usage during host-bacterial interactions over time for mesophyll tissue colonization. This foundational research provides initial insights into shared metabolic strategies of inner leaf colonization niche occupation by related but phylogenetically distinct phyllosphere bacteria. IMPORTANCE The phyllosphere is a habitat for microorganisms including pathogenic bacteria. Metabolic shifts in the inner leaf spaces for most plant-microbe interactions are unknown, especially for Xanthomonas species in understudied plants like barley (Hordeum vulgare). Xanthomonas translucens pv. translucens (Xtt) and Xanthomonas translucens pv. undulosa (Xtu) are phylogenomically distinct, but both colonize barley leaves for pathogenesis. In this study, we used untargeted metabolomics to shed light on Xtu and Xtt metabolic signatures. Our findings revealed a dynamic metabolic landscape that changes over time, rather than exhibiting a pattern associated with individual pathovars. These results provide initial insights into the metabolic mechanisms of X. translucens inner leaf pathogenesis.
Collapse
Affiliation(s)
- Veronica Roman-Reyna
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Nathaniel Heiden
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jules Butchacas
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Hannah Toth
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jessica L. Cooperstone
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, USA
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Jonathan M. Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
24
|
Huang M, Cong L, Ying R, Ahmad M, Hao G, Hayat K, Salamatullah AM. Polysaccharide-coated quercetin-loaded nanoliposomes mitigate bitterness: A comparison of carrageenan, pectin, and trehalose. Int J Biol Macromol 2024; 259:129410. [PMID: 38219931 DOI: 10.1016/j.ijbiomac.2024.129410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
The intense bitterness of quercetin poses a challenge to its utilization in the food industry. To address this issue, three anionic polysaccharides (carrageenan, pectin, and trehalose) were individually incorporated to fabricate polysaccharide-coated liposome nanocarriers. Electronic tongue analysis revealed a significant decreasing bitterness value (10.34 ± 0.07 mV, sensory score 1.8 ± 0.2, taste weak bitter) in quercetin-loaded nanoliposomes, compared with the bitterness value of quercetin aqueous solution (14 ± 0.01 mV, sensory score 7.3 ± 0.3, taste strong bitter). Furthermore, the polysaccharide-coated nanoliposomes exhibited an even greater capacity to mask the bitterness of quercetin, with carrageenan coated nanoliposomes demonstrating the most pronounced effect. The superior bitter masking ability of carrageenan coated nanoliposomes can be attributed to its high charge and viscosity. In sensory evaluations, gummy incorporated with carrageenan-coated nanoliposomes received the highest ratings, exhibiting enhanced overall palatability and antioxidant activity. This study offers insights into expanding the use of bitter nutrients in food applications and paves the way for more appealing and healthful food products.
Collapse
Affiliation(s)
- Meigui Huang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Lixia Cong
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ruifeng Ying
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mehraj Ahmad
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gang Hao
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China.
| | - Khizar Hayat
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, OH 45056, USA
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Vašíček T, Arensmeyer B, Monti A, Zamyatina A. Versatile approach towards fully desymmetrized trehalose with a novel set of orthogonal protecting groups. Front Chem 2024; 11:1332837. [PMID: 38274896 PMCID: PMC10808579 DOI: 10.3389/fchem.2023.1332837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Trehalose-containing glycans play an essential role in bacterial pathogenesis, host-pathogen interaction, and cell signaling. The investigation of trehalose uptake and metabolism in Mycobacteria using synthetic desymmetrized trehalose probes is an important approach for the development of diagnostic tools and potential therapeutics for tuberculosis. Trehalose-derived mycobacterial glycolipids activate the innate immune response through recognition by the C-type lectin Mincle, justifying efforts to develop novel trehalose-based Mincle-dependent adjuvants. The chemical synthesis of trehalose-based glycoconjugates, glycolipids, and small-molecule trehalose probes requires the challenging chemical desymmetrization of eight hydroxyl groups in a C 2-symmetric disaccharide αGlc(1↔1)αGlc. Using a novel set of orthogonal protecting groups, we developed a flexible multiscale synthetic approach to a collection of differently and variably protected fully desymmetrized trehalose derivatives, ready for final chemical modification with relevant functional or reporter groups. Using a regioselective and site-specific protecting group strategy, we performed multiple symmetry-breaking operations, resulting in a library of trehalose-derived orthogonally protected building blocks as a versatile source for the synthesis of complex trehalose-containing glycans.
Collapse
Affiliation(s)
| | | | | | - Alla Zamyatina
- Department of Chemistry, Institute of Organic Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
26
|
Jakowec NA, Finegan M, Finkel SE. Disruption of trehalose periplasmic recycling dysregulates cAMP-CRP signaling in Escherichia coli during stationary phase. J Bacteriol 2023; 205:e0029223. [PMID: 37916804 PMCID: PMC10662143 DOI: 10.1128/jb.00292-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Survival during starvation hinges on the ability to manage intracellular energy reserves and to initiate appropriate metabolic responses to perturbations of such reserves. How Escherichia coli manage carbon storage systems under starvation stress, as well as transpose changes in intracellular metabolite levels into regulatory signals, is not well understood. Endogenous trehalose metabolism may be at the center of these processes, coupling carbon storage with carbon starvation responses. The coupled transport to the periplasm and subsequent hydrolysis of trehalose back to glucose for transport to the cytoplasm may function as a crucial metabolic signaling pathway. Although trehalose has been characterized as a stress protectant in E. coli, the disaccharide also functions as both an energy storage compound and a regulator of carbohydrate metabolism in fungi, plants, and other bacteria. Our research explores the metabolic regulatory properties of trehalose in E. coli and a potential mechanism by which the intracellular carbon pool is interconnected with regulatory circuits, enabling long-term survival.
Collapse
Affiliation(s)
- Nicolaus A. Jakowec
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Melissa Finegan
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Steven E. Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
27
|
Jiang Z, Shi D, Chen Y, Li H, Wang J, Lv X, Zi Y, Wang D, Xu Z, Huang J, Liu J, Duan H. Discovery of novel isopropanolamine inhibitors against MoTPS1 as potential fungicides with unique mechanisms. Eur J Med Chem 2023; 260:115755. [PMID: 37672934 DOI: 10.1016/j.ejmech.2023.115755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
The resistance and ecotoxicity of fungicides seriously restrict our ability to effectively control Magnaporthe oryzae. Discovering fungicidal agents based on novel targets, including MoTPS1, could efficiently address this situation. Here, we identified a hit VS-10 containing an isopropanolamine fragment as a novel MoTPS1 inhibitor through virtual screening, and forty-four analogs were synthesized by optimizing the structure of VS-10. Utilizing our newly established ion-pair chromatography (IPC) and leaf inoculation methods, we found that compared to VS-10, its analog j11 exhibited substantially greater inhibitory activity against both MoTPS1 and the pathogenicity of M. oryzae. Molecular simulations clarified that the electrostatic interactions between the bridging moiety of isopropanolamine and residue Glu396 of contributed significantly to the binding of j11 and MoTPS1. We preliminarily revealed the unique fungicidal mechanism of j11, which mainly impeded the infection of M. oryzae by decreasing sporulation, killing a small portion of conidia and interfering with the accumulation of turgor pressure in appressoria. Thus, in this study, a novel fungicide candidate with a unique mechanism targeting MoTPS1 was screened and discovered.
Collapse
Affiliation(s)
- Zhiyang Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Dongmei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Yitong Chen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Huilin Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Jin'e Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Xinrui Lv
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Yunjiang Zi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Dongli Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaxing Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Junfeng Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
28
|
Tian J, Li P, Luo Y, Yan H, Liu J, Pan Z, Chen Y, Wang R, Cheng Y, Zhou H, Li J, Li X, Tan Z. Insights of microalgal municipal wastewater treatment at low temperatures: Performance, microbiota patterns, and cold-adaptation of tubular and aeration column photobioreactors. CHEMOSPHERE 2023; 340:139910. [PMID: 37611753 DOI: 10.1016/j.chemosphere.2023.139910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/28/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
In order to refine the treatment of microalgae consortium (MC) for municipal wastewater (MWW) during the winter, this study investigated the effectiveness of tubular and aeration column photobioreactors (TPBR and APBR) in wastewater treatment plant (WWTP) during winter by two start-up modes: microalgae/microalgae-activated sludge (AS). The operation results showed that under 5.7-13.1 °C, TPBR enhanced the assimilation of N and P pollutant by microalgal accumulation, meeting the Chinese discharge standard within 24 h (NH4+-N, TP, and COD ≤8.0, 0.5, and 50 mg·L-1). The microbial community profiles were identified and showed that inoculating AS under low-temperature still promoted bacterial interspecific association, but influenced by the inhibition of microbial diversity by the homogeneous circulation of TPBR, the nitrogen transfer function of MC was lower than that of APBR at low temperatures, except nitrogen fixation (K02588), nitrosification (K10944, K10945, and K10946), assimilatory nitrate reduction (K00366), and ammonification (K01915 and K05601). And the intermittent aeration in the APBR was still beneficial in increasing microbial diversity, which was more beneficial for reducing COD through microbial collaboration. In the treatment, the cryotolerant MGPM were Delftia, Romboutsia, Rhizobiales, and Bacillus, and the cold stress-related genes that were highly up-regulated were defense signaling molecules (K03671 and K00384), cold shock protein gene (K03704), and cellular protector (K01784) were present in both PBRs. This study provided a reference for the feasibility of the low temperature treatment of MC with the different types of PBR, which improved the application of wastewater treatment in more climatic environments.
Collapse
Affiliation(s)
- Jiansong Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang, 621000, China
| | - Pan Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang, 621000, China
| | - Yajun Luo
- Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang, 621000, China
| | - Heng Yan
- Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang, 621000, China
| | - Jian Liu
- Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang, 621000, China
| | - Zhicheng Pan
- Haitian Water Group Co., LTD., Chengdu, 610203, China
| | - Yangwu Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Rui Wang
- Haitian Water Group Co., LTD., Chengdu, 610203, China
| | - Yiwei Cheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Houzhen Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Junjie Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xin Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
29
|
Morgan BL, Kakeshpour T, Occhialini A, King G, Sichterman M, Harbison SA, Rigoulot SB, Brabazon H, Stewart CN, Lenaghan SC. Heterologous Expression of OtsB Increases Tuber Yield and Phenotypic Stability in Potato under Both Abiotic and Biotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3394. [PMID: 37836134 PMCID: PMC10574632 DOI: 10.3390/plants12193394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Climate-smart and sustainable crops are needed for the future. Engineering crops for tolerance of both abiotic and biotic stress is one approach. The accumulation of trehalose, controlled through trehalose-6-phosphate synthase (TPS) or OtsA and trehalose-6-phosphate phosphatase (TPP) or OtsB genes in microbes, is known to provide protection for many microbial and fungal species against abiotic stress. The effect of trehalose accumulation in plant species is less understood. Here, we studied the heterologous expression of Escherichia coli OtsB in potato (Solanum tuberosum var. 'Desiree') with regards to stress tolerance. The performance of transgenic lines was assessed in both growth chambers and greenhouse mesocosms. Overexpressing potato OtsB lines significantly increased resilience to heat, photoperiod, herbivory, and competition when compared with wildtype plants. Most strikingly, when subjected to high temperatures, transgenic lines exhibited a significantly lower reduction in tuber yield ranging from 40% to 77%, while wildtype plants experienced a 95% decrease in tuber yield. When exposed to competitors in a selected StSP3D::OtsB line, tuber yield was 1.6 times higher than wildtype. Furthermore, transgenic lines performed significantly better under low-nutrient regimes: under competition, yield increased by 1.5-fold. Together, these results demonstrate that increased trehalose has the potential to create more resistant and stable crop plants.
Collapse
Affiliation(s)
- Britany Lauren Morgan
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA; (B.L.M.); (A.O.); (M.S.); (S.A.H.); (H.B.)
| | - Tayebeh Kakeshpour
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (T.K.); (G.K.)
| | - Alessandro Occhialini
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA; (B.L.M.); (A.O.); (M.S.); (S.A.H.); (H.B.)
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (T.K.); (G.K.)
| | - Gabriella King
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (T.K.); (G.K.)
| | - Megan Sichterman
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA; (B.L.M.); (A.O.); (M.S.); (S.A.H.); (H.B.)
| | - Stacee A. Harbison
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA; (B.L.M.); (A.O.); (M.S.); (S.A.H.); (H.B.)
| | - Stephen B. Rigoulot
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA; (B.L.M.); (A.O.); (M.S.); (S.A.H.); (H.B.)
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (T.K.); (G.K.)
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Holly Brabazon
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA; (B.L.M.); (A.O.); (M.S.); (S.A.H.); (H.B.)
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (T.K.); (G.K.)
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Charles Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA; (B.L.M.); (A.O.); (M.S.); (S.A.H.); (H.B.)
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (T.K.); (G.K.)
| | - Scott C. Lenaghan
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA; (B.L.M.); (A.O.); (M.S.); (S.A.H.); (H.B.)
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
30
|
Marshall A, McGrath JW, Mitchell M, Fanning S, McMullan G. One size does not fit all - Trehalose metabolism by Clostridioides difficile is variable across the five phylogenetic lineages. Microb Genom 2023; 9:001110. [PMID: 37768179 PMCID: PMC10569727 DOI: 10.1099/mgen.0.001110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Clostridioides difficile, the leading cause of antibiotic-associated diarrhoea worldwide, is a genetically diverse species which can metabolise a number of nutrient sources upon colonising a dysbiotic gut environment. Trehalose, a disaccharide sugar consisting of two glucose molecules bonded by an α 1,1-glycosidic bond, has been hypothesised to be involved in the emergence of C. difficile hypervirulence due to its increased utilisation by the RT027 and RT078 strains. Here, growth in trehalose as the sole carbon source was shown to be non-uniform across representative C. difficile strains, even though the genes for its metabolism were induced. Growth in trehalose reduced the expression of genes associated with toxin production and sporulation in the C. difficile R20291 (RT027) and M120 (RT078) strains in vitro, suggesting an inhibitory effect on virulence factors. Interestingly, the R20291 TreR transcriptional regulatory protein appeared to possess an activator function as its DNA-binding ability was increased in the presence of its effector, trehalose-6-phosphate. Using RNA-sequencing analysis, we report the identification of a putative trehalose metabolism pathway which is induced during growth in trehalose: this has not been previously described within the C. difficile species. These data demonstrate the metabolic diversity exhibited by C. difficile which warrants further investigation to elucidate the molecular basis of trehalose metabolism within this important gut pathogen.
Collapse
Affiliation(s)
- Andrew Marshall
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - John W. McGrath
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Molly Mitchell
- University College Dublin-Centre for Food Safety University College Dublin, Dublin, Ireland
| | - Séamus Fanning
- University College Dublin-Centre for Food Safety University College Dublin, Dublin, Ireland
| | - Geoff McMullan
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| |
Collapse
|
31
|
Zhang S, Zhang Y, Zou H, Li X, Zou H, Wang Z, Zou C. FDP-Na-induced enhancement of glycolysis impacts larval growth and development and chitin biosynthesis in fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105560. [PMID: 37666596 DOI: 10.1016/j.pestbp.2023.105560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023]
Abstract
Fructose 1, 6-diphosphate (FDP) is an endogenous intermediate in the glycolytic pathway, as well as an allosteric activator of phosphofructokinase (PFK). Based on the role in promoting glycolysis, FDP has been widely used as a therapeutic agent for mitigating the damage of endotoxemia and ischemia/reperfusion in clinical practice. However, the effect of exogenous FDP-induced glycolysis activation on insect carbohydrate metabolism and chitin synthesis remains largely unclear. Here, we investigated for the first time the effects of FDP-Na, an allosteric activator of PFK, on the growth and development of Hyphantria cunea larvae, a serious defoliator in agriculture and forestry, especially on glycolysis and chitin synthesis. The results showed that FDP-Na significantly restrained the growth and development of H. cunea larvae and resulted in larval lethality. After treatment with FDP-Na, hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) were significantly activated, and HcHK2, HcPFK, HcPK were dramatically upregulated, which suggested that FDP-Na enhanced glycolysis in H. cunea larvae. Meanwhile, FDP-Na also distinctly impacted chitin biosynthesis by disturbing transcriptions of genes in the chitin synthesis pathway, resulting in changes of chitin contents in the midgut and epidermis of H. cunea larvae. Therefore, we considered that FDP-Na caused the growth and development arrest, and impacted chitin biosynthesis, probably by disturbing in vivo glycolysis and carbohydrate metabolism in H. cunea larvae. The findings provide a new perspective on the mechanism by which glycolysis regulates insect growth and development, and lay the foundation for exploring the potential application of glycolysis activators in pest control as well.
Collapse
Affiliation(s)
- Shengyu Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Yu Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Haifeng Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Xingpeng Li
- Jilin Agricultural University, Jilin 132013, PR China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Ze Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
32
|
Jin M, He B, Cai X, Lei Z, Sun T. Research progress of nanoparticle targeting delivery systems in bacterial infections. Colloids Surf B Biointerfaces 2023; 229:113444. [PMID: 37453264 DOI: 10.1016/j.colsurfb.2023.113444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Bacterial infection is a huge threat to the health of human beings and animals. The abuse of antibiotics have led to the occurrence of bacterial multidrug resistance, which have become a difficult problem in the treatment of clinical infections. Given the outstanding advantages of nanodrug delivery systems in cancer treatment, many scholars have begun to pay attention to their application in bacterial infections. However, due to the similarity of the microenvironment between bacterial infection lesions and cancer sites, the targeting and accuracy of traditional microenvironment-responsive nanocarriers are questionable. Therefore, finding new specific targets has become a new development direction of nanocarriers in bacterial prevention and treatment. This article reviews the infectious microenvironment induced by bacteria and a series of virulence factors of common pathogenic bacteria and their physiological functions, which may be used as potential targets to improve the targeting accuracy of nanocarriers in lesions.
Collapse
Affiliation(s)
- Ming Jin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, China
| | - Xiaoli Cai
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
33
|
Xiong L, Li Y, Yu H, Wei Y, Li H, Ji X. Whole genome analysis and cold adaptation strategies of Pseudomonas sivasensis W-6 isolated from the Napahai plateau wetland. Sci Rep 2023; 13:14190. [PMID: 37648730 PMCID: PMC10468529 DOI: 10.1038/s41598-023-41323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Microbial communities of wetlands play key roles in the earth's ecology and stability. To elucidate the cold adaptation mechanisms of bacteria in plateau wetlands, we conducted comparative genomic analyses of Pseudomonas sivasensis and closely related lineages. The genome of P. sivasensis W-6, a cold-adapted bacterium isolated from the Napahai plateau wetland, was sequenced and analyzed. The genome length was 6,109,123 bp with a G+C content of 59.5%. Gene prediction yielded 5360 protein-coding sequences, 70 tRNAs, 24 gene islands, and 2 CRISPR sequences. The isolate contained evidence of horizontal gene transfer events during its evolution. Two prophages were predicted and indicated that W-6 was a lysogen. The cold adaptation of the W-6 strain showed psychrophilic rather than psychrotrophic characteristics. Cold-adapted bacterium W-6 can utilize glycogen and trehalose as resources, associated with carbohydrate-active enzymes, and survive in a low-temperature environment. In addition, the cold-adapted mechanisms of the W-6 included membrane fluidity by changing the unsaturated fatty acid profile, the two-component regulatory systems, anti-sense transcription, the role played by rpsU genes in the translation process, etc. The genome-wide analysis of W-6 provided a deeper understanding of cold-adapted strategies of bacteria in environments. We elucidated the adaptive mechanism of the psychrophilic W-6 strain for survival in a cold environment, which provided a basis for further study on host-phage coevolution.
Collapse
Affiliation(s)
- Lingling Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yanmei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hang Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Haiyan Li
- Medical School, Kunming University of Science and Technology, Kunming, China.
- Yunnan International Joint Laboratory of Research and Development of Crop Safety Production on Heavy Metal Pollution Areas, Kunming, China.
| | - Xiuling Ji
- Medical School, Kunming University of Science and Technology, Kunming, China.
- Yunnan International Joint Laboratory of Research and Development of Crop Safety Production on Heavy Metal Pollution Areas, Kunming, China.
| |
Collapse
|
34
|
Sun X, Yang J, Fu X, Zhao X, Zhen J, Song H, Xu J, Zheng H, Bai W. Trehalose Production Using Three Extracellular Enzymes Produced via One-Step Fermentation of an Engineered Bacillus subtilis Strain. Bioengineering (Basel) 2023; 10:977. [PMID: 37627862 PMCID: PMC10451709 DOI: 10.3390/bioengineering10080977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
At present, the double-enzyme catalyzed method using maltooligosyltrehalose synthase (MTSase) and maltooligosyltrehalose trehalohydrolase (MTHase) is the mainstream technology for industrial trehalose production. However, MTSase and MTHase are prepared mainly using the heterologous expression in the engineered Escherichia coli strains so far. In this study, we first proved that the addition of 3 U/g neutral pullulanase PulA could enhance the trehalose conversion rate by 2.46 times in the double-enzyme catalyzed system. Then, a CBM68 domain was used to successfully assist the secretory expression of MTSase and MTHase from Arthrobacter ramosus S34 in Bacillus subtilis SCK6. At the basis, an engineered strain B. subtilis PSH02 (amyE::pulA/pHT43-C68-ARS/pMC68-ARH), which co-expressed MTSase, MTHase, and PulA, was constructed. After the 24 h fermentation of B. subtilis PSH02, the optimum ratio of the extracellular multi-enzymes was obtained to make the highest trehalose conversion rate of 80% from 100 g/L maltodextrin. The high passage stability and multi-enzyme preservation stability made B. subtilis PSH02 an excellent industrial production strain. Moreover, trehalose production using these extracellular enzymes produced via the one-step fermentation of B. subtilis PSH02 would greatly simplify the procedure for multi-enzyme preparation and be expected to reduce production costs.
Collapse
Affiliation(s)
- Xi Sun
- College of Biological Engineering, Tianjin Agricultural University, Tianjin 300384, China; (X.S.); (J.Y.)
| | - Jun Yang
- College of Biological Engineering, Tianjin Agricultural University, Tianjin 300384, China; (X.S.); (J.Y.)
| | - Xiaoping Fu
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.F.); (H.S.); (J.X.)
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xingya Zhao
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (J.Z.)
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jie Zhen
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (J.Z.)
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hui Song
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.F.); (H.S.); (J.X.)
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (J.Z.)
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jianyong Xu
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.F.); (H.S.); (J.X.)
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (J.Z.)
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongchen Zheng
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.F.); (H.S.); (J.X.)
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (J.Z.)
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wenqin Bai
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.F.); (H.S.); (J.X.)
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
35
|
Zhu X, Fang D, Li D, Zhang J, Jiang H, Guo L, He Q, Zhang T, Macho AP, Wang E, Shen QH, Wang Y, Zhou JM, Ma W, Qiao Y. Phytophthora sojae boosts host trehalose accumulation to acquire carbon and initiate infection. Nat Microbiol 2023; 8:1561-1573. [PMID: 37386076 DOI: 10.1038/s41564-023-01420-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
Successful infection by pathogenic microbes requires effective acquisition of nutrients from their hosts. Root and stem rot caused by Phytophthora sojae is one of the most important diseases of soybean (Glycine max). However, the specific form and regulatory mechanisms of carbon acquired by P. sojae during infection remain unknown. In the present study, we show that P. sojae boosts trehalose biosynthesis in soybean through the virulence activity of an effector PsAvh413. PsAvh413 interacts with soybean trehalose-6-phosphate synthase 6 (GmTPS6) and increases its enzymatic activity to promote trehalose accumulation. P. sojae directly acquires trehalose from the host and exploits it as a carbon source to support primary infection and development in plant tissue. Importantly, GmTPS6 overexpression promoted P. sojae infection, whereas its knockdown inhibited the disease, suggesting that trehalose biosynthesis is a susceptibility factor that can be engineered to manage root and stem rot in soybean.
Collapse
Affiliation(s)
- Xiaoguo Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Di Fang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Die Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jianing Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Haixin Jiang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Liang Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qingyuan He
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Tianyu Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qian-Hua Shen
- Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jian-Min Zhou
- Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
36
|
Fan YC, Wu YT, Wu YHS, Wang CL, Chou CH, Chen YC, Tsai HJ. Investigation of Trehalose Supplementation Impacting Campylobacter jejuni and Clostridium perfringens from Broiler Farming. Vet Sci 2023; 10:466. [PMID: 37505870 PMCID: PMC10385778 DOI: 10.3390/vetsci10070466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
In 2006, the European Commission banned the use of antibiotic promoters in animal feed. However, there is a new situation in poultry disease where it is necessary to study feed additives, which can overcome the diseases that were previously controlled through the addition of antibiotics and antimicrobial growth promoters in the feed. Therefore, trehalose was investigated to determine whether it impacts the growth performance and pathogenic bacteria (C. jejuni and C. perfringens) inoculation in broilers. In the first experiment, the tolerance of broilers to the addition of trehalose to their feed was investigated. There was no significant difference (p > 0.05) in body weight changes, daily weight gain, feed intake or feed conversion ratio during the feeding period. Within a 35-day feeding period, it was concluded that a trehalose dosage up to 10% does not exert a negative effect on broiler farming. Moreover, there was no significant difference (p > 0.05) in the broilers' growth performance, as well as C. jejuni and C. perfringens counts in the intestines and feces of broilers observed over a 5-week feeding period. However, Lactobacillus counts significantly increased in these groups with 3% and 5% trehalose supplementation. The findings indicate that trehalose supplementation in the feed cannot directly decrease C. jejuni and C. perfringens counts but may enhance gut health by raising Lactobacillus counts in chicken gut, particularly when enteropathogenic bacteria are present.
Collapse
Affiliation(s)
- Yang-Chi Fan
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan
| | - Yi-Tei Wu
- Department of Animal Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan
| | - Yi-Hsieng Samuel Wu
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming Chiao Tung University-Yangming Campus, 155, Sec. 2, Linong Street, Taipei 112, Taiwan
| | - Chia-Lan Wang
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan
| | - Chung-Hsi Chou
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan
| | - Hsiang-Jung Tsai
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan
| |
Collapse
|
37
|
Porter D, Naseer S, Peggs D, McGurk C, Martin SAM. Deciphering the Immunostimulatory Effects of β-Glucan on a Rainbow Trout ( Oncorhynchus mykiss) Macrophage-like Cell Line (RTS11) by Whole Transcriptome Analysis. Genes (Basel) 2023; 14:1261. [PMID: 37372441 DOI: 10.3390/genes14061261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/17/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
β-glucans are a commonly used immunostimulant/prebiotic in many aquaculture applications for boosting the immune status in fish. However, the method of action as an immunostimulant has not been fully deciphered. To determine the immunomodulatory effects of β-glucans on the innate immune response, we stimulated the rainbow trout spleen macrophage-like cell line (RTS11) with β-1,3/1,6-glucans for 4 h. This study uses a whole transcriptomic approach to analyse the immunomodulatory properties of β-glucans. Several proinflammatory pathways were found to be enriched after stimulation, demonstrating the immunomodulatory effects of β-glucan supplementation. Several pathways relating to responses to bacteria were also found to be enriched. This study clearly demonstrates the immunomodulatory effects of the supplementation of β-glucans within an aquaculture setting and further validates the use of cell lines as predictive models to interpret the responses caused by dietary intervention.
Collapse
Affiliation(s)
- Dean Porter
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Shahmir Naseer
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - David Peggs
- Skretting Aquaculture Innovation, Sjøhagen 3, 4016 Stavanger, Norway
| | - Charles McGurk
- Skretting Aquaculture Innovation, Sjøhagen 3, 4016 Stavanger, Norway
| | - Samuel Allen Moore Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
38
|
Zhao Y, Zhang W, Pan H, Chen J, Cui K, Wu LF, Lin W, Xiao T, Zhang W, Liu J. Insight into the metabolic potential and ecological function of a novel Magnetotactic Nitrospirota in coral reef habitat. Front Microbiol 2023; 14:1182330. [PMID: 37342564 PMCID: PMC10278575 DOI: 10.3389/fmicb.2023.1182330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 06/23/2023] Open
Abstract
Magnetotactic bacteria (MTB) within the Nitrospirota phylum play important roles in biogeochemical cycles due to their outstanding ability to biomineralize large amounts of magnetite magnetosomes and intracellular sulfur globules. For several decades, Nitrospirota MTB were believed to only live in freshwater or low-salinity environments. While this group have recently been found in marine sediments, their physiological features and ecological roles have remained unclear. In this study, we combine electron microscopy with genomics to characterize a novel population of Nitrospirota MTB in a coral reef area of the South China Sea. Both phylogenetic and genomic analyses revealed it as representative of a novel genus, named as Candidatus Magnetocorallium paracelense XS-1. The cells of XS-1 are small and vibrioid-shaped, and have bundled chains of bullet-shaped magnetite magnetosomes, sulfur globules, and cytoplasmic vacuole-like structures. Genomic analysis revealed that XS-1 has the potential to respire sulfate and nitrate, and utilize the Wood-Ljungdahl pathway for carbon fixation. XS-1 has versatile metabolic traits that make it different from freshwater Nitrospirota MTB, including Pta-ackA pathway, anaerobic sulfite reduction, and thiosulfate disproportionation. XS-1 also encodes both the cbb3-type and the aa3-type cytochrome c oxidases, which may function as respiratory energy-transducing enzymes under high oxygen conditions and anaerobic or microaerophilic conditions, respectively. XS-1 has multiple copies of circadian related genes in response to variability in coral reef habitat. Our results implied that XS-1 has a remarkable plasticity to adapt the environment and can play a beneficial role in coral reef ecosystems.
Collapse
Affiliation(s)
- Yicong Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| | | | - Kaixuan Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Long-Fei Wu
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
- Aix Marseille University, CNRS, LCB, IM2B, IMM, Marseille, France
| | - Wei Lin
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Wuchang Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jia Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Fu X, Jin Y, Paul MJ, Yuan M, Liang X, Cui R, Huang Y, Peng W, Liang X. Inhibition of rice germination by ustiloxin A involves alteration in carbon metabolism and amino acid utilization. FRONTIERS IN PLANT SCIENCE 2023; 14:1168985. [PMID: 37223794 PMCID: PMC10200953 DOI: 10.3389/fpls.2023.1168985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023]
Abstract
Ustiloxins are the main mycotoxin in rice false smut, a devastating disease caused by Ustilaginoidea virens. A typical phytotoxicity of ustiloxins is strong inhibition of seed germination, but the physiological mechanism is not clear. Here, we show that the inhibition of rice germination by ustiloxin A (UA) is dose-dependent. The sugar availability in UA-treated embryo was lower while the starch residue in endosperm was higher. The transcripts and metabolites responsive to typical UA treatment were investigated. The expression of several SWEET genes responsible for sugar transport in embryo was down-regulated by UA. Glycolysis and pentose phosphate processes in embryo were transcriptionally repressed. Most of the amino acids detected in endosperm and embryo were variously decreased. Ribosomal RNAs for growth were inhibited while the secondary metabolite salicylic acid was also decreased under UA. Hence, we propose that the inhibition of seed germination by UA involves the block of sugar transport from endosperm to embryo, leading to altered carbon metabolism and amino acid utilization in rice plants. Our analysis provides a framework for understanding of the molecular mechanisms of ustiloxins on rice growth and in pathogen infection.
Collapse
Affiliation(s)
- Xiaoxiang Fu
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yu Jin
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Matthew J. Paul
- Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Minxuan Yuan
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | - Xingwei Liang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Ruqiang Cui
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Wenwen Peng
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Xiaogui Liang
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Mo J, Han L, Lv R, Chiang MWL, Fan R, Guo J. Triclosan toxicity in a model cyanobacterium (Anabaena flos-aquae): Growth, photosynthesis and transcriptomic response. J Environ Sci (China) 2023; 127:82-90. [PMID: 36522109 DOI: 10.1016/j.jes.2022.03.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/17/2023]
Abstract
Exposure to triclosan (TCS) has been reported to reduce photosynthetic pigments, suppress photosynthesis, and inhibit growth in both prokaryotic and eukaryotic algae including Anabaena flos-aquae (a model cyanobacterium). In particular, cyanobacteria are more sensitive to TCS toxicity compared to eukaryotic algae possibly due to the structural similarity to bacteria (target organisms); however, whether TCS exerts its toxicity to cyanobacteria by targeting signaling pathways of fatty acid biosynthesis as in bacteria remains virtually unknown, particularly at environmental exposure levels. With the complete genome sequence of A. flos-aquae presented in this study, the transcriptomic alterations and potential toxic mechanisms in A. flos-aquae under TCS stress were revealed. The growth, pigments and photosynthetic activity of A. flos-aquae were markedly suppressed following a 7-day TCS exposure at 0.5 µg/L but not 0.1 µg/L (both concentrations applied are environmentally relevant). The transcriptomic sequencing analysis showed that signaling pathways, such as biofilm formation - Pseudomonas aeruginosa, two-component system, starch and sucrose metabolism, and photosynthesis were closely related to the TCS-induced growth inhibition in the 0.5 µg/L TCS treatment. Photosynthesis systems and potentially two-component system were identified to be sensitive targets of TCS toxicity in A. flos-aquae. The present study provides novel insights on TCS toxicity at the transcriptomic level in A. flos-aquae.
Collapse
Affiliation(s)
- Jiezhang Mo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Linrong Han
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Runnan Lv
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Michael W L Chiang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Rong Fan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
41
|
Zhang C, Chen X, Han M, Li X, Chang H, Ren N, Ho SH. Revealing the role of microalgae-bacteria niche for boosting wastewater treatment and energy reclamation in response to temperature. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 14:100230. [PMID: 36590875 PMCID: PMC9800309 DOI: 10.1016/j.ese.2022.100230] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Conventional biological treatment usually cannot achieve the same high water quality as advanced treatment when conducted under varied temperatures. Here, satisfactory wastewater treatment efficiency was observed in a microalgae-bacteria consortia (MBC) over a wide temperature range because of the predominance of microalgae. Microalgae contributed more toward wastewater treatment at low temperature because of the unsatisfactory performance of the accompanying bacteria, which experienced cold stress (e.g., bacterial abundance below 3000 sequences) and executed defensive strategies (e.g., enrichment of cold-shock proteins). A low abundance of amoA-C and hao indicated that conventional nitrogen removal was replaced through the involvement of microalgae. Diverse heterotrophic bacteria for nitrogen removal were identified at medium and high temperatures, implying this microbial niche treatment contained diverse flexible consortia with temperature variation. Additionally, pathogenic bacteria were eliminated through microalgal photosynthesis. After fitting the neutral community model and calculating the ecological niche, microalgae achieved a maximum niche breadth of 5.21 and the lowest niche overlap of 0.38, while the accompanying bacterial community in the consortia were shaped through deterministic processes. Finally, the maximum energy yield of 87.4 kJ L-1 and lipid production of 1.9 g L-1 were achieved at medium temperature. Altogether, this study demonstrates that advanced treatment and energy reclamation can be achieved through microalgae-bacteria niche strategies.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Meina Han
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
42
|
van Laar A, Grootaert C, Rajkovic A, Desmet T, Beerens K, Van Camp J. Rare Sugar Metabolism and Impact on Insulin Sensitivity along the Gut-Liver-Muscle Axis In Vitro. Nutrients 2023; 15:1593. [PMID: 37049441 PMCID: PMC10096767 DOI: 10.3390/nu15071593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Rare sugars have recently attracted attention as potential sugar replacers. Understanding the biochemical and biological behavior of these sugars is of importance in (novel) food formulations and prevention of type 2 diabetes. In this study, we investigated whether rare sugars may positively affect intestinal and liver metabolism, as well as muscle insulin sensitivity, compared to conventional sugars. Rare disaccharide digestibility, hepatic metabolism of monosaccharides (respirometry) and the effects of sugars on skeletal muscle insulin sensitivity (impaired glucose uptake) were investigated in, respectively, Caco-2, HepG2 and L6 cells or a triple coculture model with these cells. Glucose and fructose, but not l-arabinose, acutely increased extracellular acidification rate (ECAR) responses in HepG2 cells and impaired glucose uptake in L6 cells following a 24 h exposure at 28 mM. Cellular bioenergetics and digestion experiments with Caco-2 cells indicate that especially trehalose (α1-1α), D-Glc-α1,2-D-Gal, D-Glc-α1,2-D-Rib and D-Glc-α1,3-L-Ara experience delayed digestion and reduced cellular impact compared to maltose (α1-4), without differences on insulin-stimulated glucose uptake in a short-term setup with a Caco-2/HepG2/L6 triple coculture. These results suggest a potential for l-arabinose and specific rare disaccharides to improve metabolic health; however, additional in vivo research with longer sugar exposures should confirm their beneficial impact on insulin sensitivity in humans.
Collapse
Affiliation(s)
- Amar van Laar
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Charlotte Grootaert
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Andreja Rajkovic
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Koen Beerens
- Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - John Van Camp
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
43
|
Wu J, McAuliffe O, O'Byrne CP. Trehalose transport occurs via TreB in Listeria monocytogenes and it influences biofilm development and acid resistance. Int J Food Microbiol 2023; 394:110165. [PMID: 36933360 DOI: 10.1016/j.ijfoodmicro.2023.110165] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023]
Abstract
Listeria monocytogenes is a pathogenic bacterium that can inhabit a diverse range of environmental niches. This is largely attributed to the high proportion of carbohydrate-specific phosphotransferase system (PTS) genes in its genome. Carbohydrates can be assimilated as sources of energy but additionally they can serve as niche-specific cues for L. monocytogenes to shape its global gene expression, in order to cope with anticipated stresses. To examine carbon source utilization among wild L. monocytogenes isolates and to understand underlying molecular mechanisms, a diverse collection of L. monocytogenes strains (n = 168) with whole genome sequence (WGS) data available was screened for the ability to grow in chemically defined media with different carbon sources. The majority of the strains grew in glucose, mannose, fructose, cellobiose, glycerol, trehalose, and sucrose. Maltose, lactose, and rhamnose supported slower growth while ribose did not support any growth. In contrast to other strains, strain1386, which belonged to clonal complex 5 (CC5), was unable to grow on trehalose as a sole carbon source. WGS data revealed that it carried a substitution (N352K) in a putative PTS EIIBC trehalose transporter, TreB, while this asparagine residue is conserved in other strains in this collection. Spontaneous mutants of strain 1386 that could grow in trehalose were found to harbour a reversion of the substitution in TreB. These results provide genetic evidence that TreB is responsible for trehalose uptake and that the N352 residue is essential for TreB activity. Moreover, reversion mutants also restored other unusual phenotypes that strain 1386 displayed, i.e. altered colony morphology, impaired biofilm development, and reduced acid resistance. Transcriptional analysis at stationary phase with buffered BHI media revealed that trehalose metabolism positively influences the transcription of genes encoding amino acid-based acid resistance mechanisms. In summary, our results demonstrated that N352 is key to the function of the sole trehalose transporter TreB in L. monocytogenes and suggest that trehalose metabolism alters physiology to favour biofilm development and acid stress resistance. Moreover, since strain 1386 is among the strains recommended by the European Union Reference Laboratory for conducting food challenge studies in order to determine whether or not L. monocytogenes can grow in food, these findings have important implications for food safety.
Collapse
Affiliation(s)
- Jialun Wu
- Bacterial Stress Response Group, Microbiology, School of Biological & Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | | | - Conor P O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Biological & Chemical Sciences, University of Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
44
|
Wijesundera SA, Liyanage SH, Biswas P, Reuther JF, Yan M. Trehalose-Grafted Glycopolymer: Synthesis via the Staudinger Reaction and Capture of Mycobacteria. Biomacromolecules 2023; 24:238-245. [PMID: 36524824 DOI: 10.1021/acs.biomac.2c01096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new trehalose-grafted poly(2-hydroxyethyl methacrylate) (HEMA) glycopolymer was synthesized via the perfluorophenyl azide (PFPA)-mediated Staudinger reaction between poly(HEMA-co-HEMA-PFPA) and a diphenylphosphine-derivatized trehalose. The reaction occurred rapidly at room temperature without the use of any catalyst, giving the trehalose glycopolymers over 68% yield after 1 h. The grafting density of trehalose can be controlled by the copolymer composition in poly(HEMA-co-HEMA-PFPA), resulting in 6.1% (TP1) or 37% (TP2) at 10:1 and 1:1 HEMA/HEMA-PFPA feed ratio, respectively. The trehalose glycopolymer was covalently attached on glass slides or silicon wafers using a thin film of poly(HEMA-co-HEMA-PFPA) as the adhesion layer, achieved through the C-H insertion reaction of the photogenerated singlet perfluorophenyl nitrene. To demonstrate the ability of the trehalose glycopolymer to capture mycobacteria, arrays of the trehalose glycopolymer were fabricated and treated with Mycobacterium smegmatis. Results from the optical, fluorescence, and scanning electron microscopy showed that mycobacteria were indeed captured on the trehalose glycopolymer. The amount of mycobacteria captured increased with the percent trehalose in the trehalose glycopolymer and also with the concentration of the trehalose glycopolymer. In addition, the captured bacteria could be visualized by the naked eye under the illumination of a hand-held UV lamp.
Collapse
Affiliation(s)
- Samurdhi A Wijesundera
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Sajani H Liyanage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Priyanka Biswas
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - James F Reuther
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
45
|
Kong L, Liu J, Zhang W, Li X, Zhang Y, Chen X, Zhan Z, Piao Z. Genome-Wide Identification and Characterization of the Trehalose-6-Phosphate Synthetase Gene Family in Chinese Cabbage ( Brassica rapa) and Plasmodiophora brassicae during Their Interaction. Int J Mol Sci 2023; 24:929. [PMID: 36674458 PMCID: PMC9864397 DOI: 10.3390/ijms24020929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/28/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Trehalose is a nonreducing disaccharide that is widely distributed in various organisms. Trehalose-6-phosphate synthase (TPS) is a critical enzyme responsible for the biosynthesis of trehalose, which serves important functions in growth and development, defense, and stress resistance. Although previous studies have found that the clubroot pathogen Plasmodiophora brassicae can lead to the accumulation of trehalose in infected Arabidopsis organs, it has been proposed that much of the accumulated trehalose is derived from the pathogen. At present, there is very little evidence to verify this view. In this study, a comprehensive analysis of the TPS gene family was conducted in Brassica rapa and Plasmodiophora brassicae. A total of 14 Brassica rapa TPS genes (BrTPSs) and 3 P. brassicae TPS genes (PbTPSs) were identified, and the evolutionary characteristics, functional classification, and expression patterns were analyzed. Fourteen BrTPS genes were classified into two distinct classes according to phylogeny and gene structure. Three PbTPSs showed no significant differences in gene structure and protein conserved motifs. However, evolutionary analysis showed that the PbTPS2 gene failed to cluster with PbTPS1 and PbTPS3. Furthermore, cis-acting elements related to growth and development, defense and stress responsiveness, and hormone responsiveness were predicted in the promoter region of the BrTPS genes. Expression analysis of most BrTPS genes at five stages after P. brassicae interaction found no significant induction. Instead, the expression of the PbTPS genes of P. brassicae was upregulated, which was consistent with the period of trehalose accumulation. This study deepens our understanding of the function and evolution of BrTPSs and PbTPSs. Simultaneously, clarifying the biosynthesis of trehalose in the interaction between Brassica rapa and P. brassicae is also of great significance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
46
|
Gafforov Y, Rašeta M, Yarasheva M, Wan-Mohtar WAAQI, Rapior S. Coprinus comatus (O.F. Müll.) Pers. - AGARICACEAE. ETHNOBIOLOGY OF UZBEKISTAN 2023:993-1010. [DOI: 10.1007/978-3-031-23031-8_104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
47
|
Singh R, Thakur L, Kumar A, Singh S, Kumar S, Kumar M, Kumar Y, Kumar N. Comparison of freeze-thaw and sonication cycle-based methods for extracting AMR-associated metabolites from Staphylococcus aureus. Front Microbiol 2023; 14:1152162. [PMID: 37180233 PMCID: PMC10174324 DOI: 10.3389/fmicb.2023.1152162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Emerging antimicrobial resistance (AMR) among Gram-positive pathogens, specifically in Staphylococcus aureus (S. aureus), is becoming a leading public health concern demanding effective therapeutics. Metabolite modulation can improve the efficacy of existing antibiotics and facilitate the development of effective therapeutics. However, it remained unexplored for drug-resistant S. aureus (gentamicin and methicillin-resistant), primarily due to the dearth of optimal metabolite extraction protocols including a protocol for AMR-associated metabolites. Therefore, in this investigation, we have compared the performance of the two most widely used methods, i.e., freeze-thaw cycle (FTC) and sonication cycle (SC), alone and in combination (FTC + SC), and identified the optimal method for this purpose. A total of 116, 119, and 99 metabolites were identified using the FTC, SC, and FTC + SC methods, respectively, leading to the identification of 163 metabolites cumulatively. Out of 163, 69 metabolites were found to be associated with AMR in published literature consisting of the highest number of metabolites identified by FTC (57) followed by SC (54) and FTC + SC (40). Thus, the performances of FTC and SC methods were comparable with no additional benefits of combining both. Moreover, each method showed biasness toward specific metabolite(s) or class of metabolites, suggesting that the choice of metabolite extraction method shall be decided based on the metabolites of interest in the investigation.
Collapse
Affiliation(s)
- Rita Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, Delhi, India
| | - Lovnish Thakur
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, Delhi, India
| | - Ashok Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Sevaram Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, Delhi, India
| | - Shailesh Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Manoj Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- *Correspondence: Yashwant Kumar,
| | - Niraj Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Niraj Kumar,
| |
Collapse
|
48
|
Targeting Virulence Genes Expression in Vibrio vulnificus by Alternative Carbon Sources. Int J Mol Sci 2022; 23:ijms232315278. [PMID: 36499602 PMCID: PMC9737408 DOI: 10.3390/ijms232315278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022] Open
Abstract
Vibrio vulnificus is an opportunistic human pathogen causing self-limiting gastroenteritis, life-threatening necrotizing soft tissue infection, and fulminating septicaemia. An increasing rate of infections has been reported worldwide, characterized by sudden onset of sepsis and/or rapid progression to irreversible tissue damage or death. Timely intervention is essential to control the infection, and it is based on antibiotic therapy, which does not always result in the effective and rapid blocking of virulence. Inhibitors of essential virulence regulators have been reported in the last years, but none of them has been further developed, so far. We aimed to investigate whether exposure to some carbon compounds, mostly easily metabolizable, could result in transcriptional down-regulation of virulence genes. We screened various carbon sources already available for human use (thus potentially easy to be repurposed), finding some of them (including mannitol and glycerol) highly effective in down-regulating, in vitro and ex-vivo, the mRNA levels of several relevant -even essential- virulence factors (hlyU, lrp, rtxA, vvpE, vvhA, plpA, among others). This paves the way for further investigations aiming at their development as virulence inhibitors and to unveil mechanisms explaining such observed effects. Moreover, data suggesting the existence of additional regulatory networks of some virulence genes are reported.
Collapse
|
49
|
Waters EV, Tucker LA, Ahmed JK, Wain J, Langridge GC. Impact of Salmonella genome rearrangement on gene expression. Evol Lett 2022; 6:426-437. [PMID: 36579163 PMCID: PMC9783417 DOI: 10.1002/evl3.305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/03/2022] [Accepted: 11/07/2022] [Indexed: 11/20/2022] Open
Abstract
In addition to nucleotide variation, many bacteria also undergo changes at a much larger scale via rearrangement of their genome structure (GS) around long repeat sequences. These rearrangements result in genome fragments shifting position and/or orientation in the genome without necessarily affecting the underlying nucleotide sequence. To date, scalable techniques have not been applied to GS identification, so it remains unclear how extensive this variation is and the extent of its impact upon gene expression. However, the emergence of multiplexed, long-read sequencing overcomes the scale problem, as reads of several thousand bases are routinely produced that can span long repeat sequences to identify the flanking chromosomal DNA, allowing GS identification. Genome rearrangements were generated in Salmonella enterica serovar Typhi through long-term culture at ambient temperature. Colonies with rearrangements were identified via long-range PCR and subjected to long-read nanopore sequencing to confirm genome variation. Four rearrangements were investigated for differential gene expression using transcriptomics. All isolates with changes in genome arrangement relative to the parent strain were accompanied by changes in gene expression. Rearrangements with similar fragment movements demonstrated similar changes in gene expression. The most extreme rearrangement caused a large imbalance between the origin and terminus of replication and was associated with differential gene expression as a factor of distance moved toward or away from the origin of replication. Genome structure variation may provide a mechanism through which bacteria can quickly adapt to new environments and warrants routine assessment alongside traditional nucleotide-level measures of variation.
Collapse
Affiliation(s)
- Emma V. Waters
- Microbes in the Food ChainQuadram Institute BioscienceNorwichNR4 7UQUnited Kingdom
| | - Liam A. Tucker
- Microbes in the Food ChainQuadram Institute BioscienceNorwichNR4 7UQUnited Kingdom
| | - Jana K. Ahmed
- The Wellcome Trust Sanger InstituteCambridgeCB10 1SAUnited Kingdom
| | - John Wain
- Microbes in the Food ChainQuadram Institute BioscienceNorwichNR4 7UQUnited Kingdom
- Norwich Medical SchoolUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| | - Gemma C. Langridge
- Microbes in the Food ChainQuadram Institute BioscienceNorwichNR4 7UQUnited Kingdom
| |
Collapse
|
50
|
The role of trehalose biosynthesis on mycolate composition and L-glutamate production in Corynebacterium glutamicum. Microbiol Res 2022; 267:127260. [PMID: 36463830 DOI: 10.1016/j.micres.2022.127260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Corynebacterium glutamicum has been widely utilized for the industrial production of various amino acids. Trehalose is a prerequisite for the biosynthesis of mycolates which are structurally important constituents of the cell envelope in C. glutamicum. In this study, C. glutamicum mutant ΔSYA, which is unable to synthesize trehalose was constructed by deleting genes treS, treY and otsA in the three pathways of trehalose biosynthesis. In the fermentation medium, ΔSYA grew as well as the control C. glutamicum ATCC13869, synthesized similar levels of glucose monocorynomycolate, trehalose dicorynomycolate, and phospholipids to ATCC13869, but produced 12.5 times more L-glutamate than ATCC13869. Transcriptional levels of the genes relevant to L-arginine biosynthesis, encoding ODHC and relevant to the biosynthesis of sulfur-containing amino acids were down-regulated in ΔSYA. In minimal medium with different concentrations of glucose, ΔSYA grew worse than ATCC13869 but excreted more L-glutamate. When grown in minimal medium, phospholipids are the major lipid in ΔSYA, while glucose monocorynomycolate, trehalose dicorynomycolate, and phospholipids are the major lipid in ATCC13869. The transcriptional levels of mscCG in ΔSYA was significantly up-regulated when grown in minimal medium.
Collapse
|