1
|
Borlak J, Ciribilli Y, Bisio A, Selvaraj S, Inga A, Oh JH, Spanel R. The Abl1 tyrosine kinase is a key player in doxorubicin-induced cardiomyopathy and its p53/p73 cell death mediated signaling differs in atrial and ventricular cardiomyocytes. J Transl Med 2024; 22:845. [PMID: 39285385 PMCID: PMC11403941 DOI: 10.1186/s12967-024-05623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Doxorubicin is an important anticancer drug, however, elicits dose-dependently cardiomyopathy. Given its mode of action, i.e. topoisomerase inhibition and DNA damage, we investigated genetic events associated with cardiomyopathy and searched for mechanism-based possibilities to alleviate cardiotoxicity. We treated rats at clinically relevant doses of doxorubicin. Histopathology and transmission electron microscopy (TEM) defined cardiac lesions, and transcriptomics unveiled cardiomyopathy-associated gene regulations. Genomic-footprints revealed critical components of Abl1-p53-signaling, and EMSA-assays evidenced Abl1 DNA-binding activity. Gene reporter assays confirmed Abl1 activity on p53-targets while immunohistochemistry/immunofluorescence microscopy demonstrated Abl1, p53&p73 signaling. RESULTS Doxorubicin treatment caused dose-dependently toxic cardiomyopathy, and TEM evidenced damaged mitochondria and myofibrillar disarray. Surviving cardiomyocytes repressed Parkin-1 and Bnip3-mediated mitophagy, stimulated dynamin-1-like dependent mitochondrial fission and induced anti-apoptotic Bag1 signaling. Thus, we observed induced mitochondrial biogenesis. Transcriptomics discovered heterogeneity in cellular responses with minimal overlap between treatments, and the data are highly suggestive for distinct cardiomyocyte (sub)populations which differed in their resilience and reparative capacity. Genome-wide footprints revealed Abl1 and p53 enriched binding sites in doxorubicin-regulated genes, and we confirmed Abl1 DNA-binding activity in EMSA-assays. Extraordinarily, Abl1 signaling differed in the heart with highly significant regulations of Abl1, p53 and p73 in atrial cardiomyocytes. Conversely, in ventricular cardiomyocytes, Abl1 solely-modulated p53-signaling that was BAX transcription-independent. Gene reporter assays established Abl1 cofactor activity for the p53-reporter PG13-luc, and ectopic Abl1 expression stimulated p53-mediated apoptosis. CONCLUSIONS The tyrosine kinase Abl1 is of critical importance in doxorubicin induced cardiomyopathy, and we propose its inhibition as means to diminish risk of cardiotoxicity.
Collapse
Affiliation(s)
- Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Yari Ciribilli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Saravanakumar Selvaraj
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alberto Inga
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
2
|
Haddad G, Blaine J. Identification of Four Mouse FcRn Splice Variants and FcRn-Specific Vesicles. Cells 2024; 13:594. [PMID: 38607033 PMCID: PMC11012118 DOI: 10.3390/cells13070594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Research into the neonatal Fc receptor (FcRn) has increased dramatically ever since Simister and Mostov first purified a rat version of the receptor. Over the years, FcRn has been shown to function not only as a receptor that transfers immunity from mother to fetus but also performs an array of different functions that include transport and recycling of immunoglobulins and albumin in the adult. Due to its important cellular roles, several clinical trials have been designed to either inhibit/enhance FcRn function or develop of non-invasive therapeutic delivery system such as fusion of drugs to IgG Fc or albumin to enhance delivery inside the cells. Here, we report the accidental identification of several FcRn alternatively spliced variants in both mouse and human cells. The four new mouse splice variants are capable of binding immunoglobulins' Fc and Fab portions. In addition, we have identified FcRn-specific vesicles in which immunoglobulins and albumin can be stored and that are involved in the endosomal-lysosomal system. The complexity of FcRn functions offers significant potential to design and develop novel and targeted therapeutics.
Collapse
Affiliation(s)
| | - Judith Blaine
- Division of Renal Disease and Hypertension, Department of Medicine, School of Medicine, University of Colorado, Aurora, CO 80045, USA;
| |
Collapse
|
3
|
Li TY, Wang Q, Gao AW, Li X, Sun Y, Mottis A, Shong M, Auwerx J. Lysosomes mediate the mitochondrial UPR via mTORC1-dependent ATF4 phosphorylation. Cell Discov 2023; 9:92. [PMID: 37679337 PMCID: PMC10484937 DOI: 10.1038/s41421-023-00589-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/21/2023] [Indexed: 09/09/2023] Open
Abstract
Lysosomes are central platforms for not only the degradation of macromolecules but also the integration of multiple signaling pathways. However, whether and how lysosomes mediate the mitochondrial stress response (MSR) remain largely unknown. Here, we demonstrate that lysosomal acidification via the vacuolar H+-ATPase (v-ATPase) is essential for the transcriptional activation of the mitochondrial unfolded protein response (UPRmt). Mitochondrial stress stimulates v-ATPase-mediated lysosomal activation of the mechanistic target of rapamycin complex 1 (mTORC1), which then directly phosphorylates the MSR transcription factor, activating transcription factor 4 (ATF4). Disruption of mTORC1-dependent ATF4 phosphorylation blocks the UPRmt, but not other similar stress responses, such as the UPRER. Finally, ATF4 phosphorylation downstream of the v-ATPase/mTORC1 signaling is indispensable for sustaining mitochondrial redox homeostasis and protecting cells from ROS-associated cell death upon mitochondrial stress. Thus, v-ATPase/mTORC1-mediated ATF4 phosphorylation via lysosomes links mitochondrial stress to UPRmt activation and mitochondrial function resilience.
Collapse
Affiliation(s)
- Terytty Yang Li
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Laboratory of Longevity and Metabolic Adaptations, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Qi Wang
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Arwen W Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yu Sun
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Laboratory of Longevity and Metabolic Adaptations, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Adrienne Mottis
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Minho Shong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Liang W, Sagar S, Ravindran R, Najor RH, Quiles JM, Chi L, Diao RY, Woodall BP, Leon LJ, Zumaya E, Duran J, Cauvi DM, De Maio A, Adler ED, Gustafsson ÅB. Mitochondria are secreted in extracellular vesicles when lysosomal function is impaired. Nat Commun 2023; 14:5031. [PMID: 37596294 PMCID: PMC10439183 DOI: 10.1038/s41467-023-40680-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Mitochondrial quality control is critical for cardiac homeostasis as these organelles are responsible for generating most of the energy needed to sustain contraction. Dysfunctional mitochondria are normally degraded via intracellular degradation pathways that converge on the lysosome. Here, we identified an alternative mechanism to eliminate mitochondria when lysosomal function is compromised. We show that lysosomal inhibition leads to increased secretion of mitochondria in large extracellular vesicles (EVs). The EVs are produced in multivesicular bodies, and their release is independent of autophagy. Deletion of the small GTPase Rab7 in cells or adult mouse heart leads to increased secretion of EVs containing ubiquitinated cargos, including intact mitochondria. The secreted EVs are captured by macrophages without activating inflammation. Hearts from aged mice or Danon disease patients have increased levels of secreted EVs containing mitochondria indicating activation of vesicular release during cardiac pathophysiology. Overall, these findings establish that mitochondria are eliminated in large EVs through the endosomal pathway when lysosomal degradation is inhibited.
Collapse
Affiliation(s)
- Wenjing Liang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Shakti Sagar
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Rishith Ravindran
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Rita H Najor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Justin M Quiles
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Liguo Chi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Rachel Y Diao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Benjamin P Woodall
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Leonardo J Leon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Erika Zumaya
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jason Duran
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - David M Cauvi
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Antonio De Maio
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Eric D Adler
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Sagar S, Gustafsson AB. Cardiovascular aging: the mitochondrial influence. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:33. [PMID: 37583788 PMCID: PMC10426788 DOI: 10.20517/jca.2023.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Age-associated cardiovascular disease is becoming progressively prevalent due to the increased lifespan of the population. However, the fundamental mechanisms underlying the aging process and the corresponding decline in tissue functions are still poorly understood. The heart has a very high energy demand and the cellular energy needed to sustain contraction is primarily generated by mitochondrial oxidative phosphorylation. Mitochondria are also involved in supporting various metabolic processes, as well as activation of the innate immune response and cell death pathways. Given the central role of mitochondria in energy metabolism and cell survival, the heart is highly susceptible to the effects of mitochondrial dysfunction. These key organelles have been implicated as underlying drivers of cardiac aging. Here, we review the evidence demonstrating the mitochondrial contribution to the cardiac aging process and disease susceptibility. We also discuss the potential mechanisms responsible for the age-related decline in mitochondrial function.
Collapse
Affiliation(s)
- Shakti Sagar
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Asa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Shafique A, Brughera M, Lualdi M, Alberio T. The Role of Rab Proteins in Mitophagy: Insights into Neurodegenerative Diseases. Int J Mol Sci 2023; 24:6268. [PMID: 37047239 PMCID: PMC10094445 DOI: 10.3390/ijms24076268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Mitochondrial dysfunction and vesicular trafficking alterations have been implicated in the pathogenesis of several neurodegenerative diseases. It has become clear that pathogenetic pathways leading to neurodegeneration are often interconnected. Indeed, growing evidence suggests a concerted contribution of impaired mitophagy and vesicles formation in the dysregulation of neuronal homeostasis, contributing to neuronal cell death. Among the molecular factors involved in the trafficking of vesicles, Ras analog in brain (Rab) proteins seem to play a central role in mitochondrial quality checking and disposal through both canonical PINK1/Parkin-mediated mitophagy and novel alternative pathways. In turn, the lack of proper elimination of dysfunctional mitochondria has emerged as a possible causative/early event in some neurodegenerative diseases. Here, we provide an overview of major findings in recent years highlighting the role of Rab proteins in dysfunctional mitochondrial dynamics and mitophagy, which are characteristic of neurodegenerative diseases. A further effort should be made in the coming years to clarify the sequential order of events and the molecular factors involved in the different processes. A clear cause-effect view of the pathogenetic pathways may help in understanding the molecular basis of neurodegeneration.
Collapse
Affiliation(s)
| | | | | | - Tiziana Alberio
- Department of Science and High Technology, Center of Research in Neuroscience, University of Insubria, I-21052 Busto Arsizio, VA, Italy
| |
Collapse
|
7
|
Maheshwari R, Rahman MM, Drey S, Onyundo M, Fabig G, Martinez MAQ, Matus DQ, Müller-Reichert T, Cohen-Fix O. A membrane reticulum, the centriculum, affects centrosome size and function in Caenorhabditis elegans. Curr Biol 2023; 33:791-806.e7. [PMID: 36693370 PMCID: PMC10023444 DOI: 10.1016/j.cub.2022.12.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023]
Abstract
Centrosomes are cellular structures that nucleate microtubules. At their core is a pair of centrioles that recruit pericentriolar material (PCM). Although centrosomes are considered membraneless organelles, in many cell types, including human cells, centrosomes are surrounded by endoplasmic reticulum (ER)-derived membranes of unknown structure and function. Using volume electron microscopy (vEM), we show that centrosomes in the Caenorhabditis elegans (C. elegans) early embryo are surrounded by a three-dimensional (3D), ER-derived membrane reticulum that we call the centriculum, for centrosome-associated membrane reticulum. The centriculum is adjacent to the nuclear envelope in interphase and early mitosis and fuses with the fenestrated nuclear membrane at metaphase. Centriculum formation is dependent on the presence of an underlying centrosome and on microtubules. Conversely, increasing centriculum size by genetic means led to the expansion of the PCM, increased microtubule nucleation capacity, and altered spindle width. The effect of the centriculum on centrosome function suggests that in the C. elegans early embryo, the centrosome is not membraneless. Rather, it is encased in a membrane meshwork that affects its properties. We provide evidence that the centriculum serves as a microtubule "filter," preventing the elongation of a subset of microtubules past the centriculum. Finally, we propose that the fusion between the centriculum and the nuclear membrane contributes to nuclear envelope breakdown by coupling spindle elongation to nuclear membrane fenestration.
Collapse
Affiliation(s)
- Richa Maheshwari
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohammad M Rahman
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seth Drey
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megan Onyundo
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, 450 Life Sciences Building, Stony Brook, NY 11794, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, 450 Life Sciences Building, Stony Brook, NY 11794, USA
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Orna Cohen-Fix
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Liang W, Diao RY, Quiles JM, Najor RH, Chi L, Woodall BP, Leon LJ, Duran J, Cauvi DM, De Maio A, Adler ED, Gustafsson ÃSB. The Small GTPase Rab7 Regulates Release of Mitochondria in Extracellular Vesicles in Response to Lysosomal Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.11.528148. [PMID: 36824711 PMCID: PMC9949095 DOI: 10.1101/2023.02.11.528148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Mitochondrial quality control is critical for cardiac homeostasis as these organelles are responsible for generating most of the energy needed to sustain contraction. Dysfunctional mitochondria are normally degraded via intracellular degradation pathways that converge on the lysosome. Here, we identified an alternative mechanism to eliminate mitochondria when lysosomal function is compromised. We show that lysosomal inhibition leads to increased secretion of mitochondria in large extracellular vesicles (EVs). The EVs are produced in multivesicular bodies, and their release is independent of autophagy. Deletion of the small GTPase Rab7 in cells or adult mouse heart leads to increased secretion of EVs containing ubiquitinated cargos, including intact mitochondria. The secreted EVs are captured by macrophages without activating inflammation. Hearts from aged mice or Danon disease patients have increased levels of secreted EVs containing mitochondria indicating activation of vesicular release during cardiac pathophysiology. Overall, these findings establish that mitochondria are eliminated in large EVs through the endosomal pathway when lysosomal degradation is inhibited.
Collapse
|
9
|
Quiles JM, Najor RH, Gonzalez E, Jeung M, Liang W, Burbach SM, Zumaya EA, Diao RY, Lampert MA, Gustafsson ÅB. Deciphering functional roles and interplay between Beclin1 and Beclin2 in autophagosome formation and mitophagy. Sci Signal 2023; 16:eabo4457. [PMID: 36719945 PMCID: PMC10019900 DOI: 10.1126/scisignal.abo4457] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023]
Abstract
The degradation of macromolecules and organelles by the process of autophagy is critical for cellular homeostasis and is often compromised during aging and disease. Beclin1 and Beclin2 are implicated in autophagy induction, and these homologs share a high degree of amino acid sequence similarity but have divergent N-terminal regions. Here, we investigated the functions of the Beclin homologs in regulating autophagy and mitophagy, a specialized form of autophagy that targets mitochondria. Both Beclin homologs contributed to autophagosome formation, but a mechanism of autophagosome formation independent of either Beclin homolog occurred in response to starvation or mitochondrial damage. Mitophagy was compromised only in Beclin1-deficient HeLa cells and mouse embryonic fibroblasts because of defective autophagosomal engulfment of mitochondria, and the function of Beclin1 in mitophagy required the phosphorylation of the conserved Ser15 residue by the kinase Ulk1. Mitochondria-ER-associated membranes (MAMs) are important sites of autophagosome formation during mitophagy, and Beclin1, but not Beclin2 or a Beclin1 mutant that could not be phosphorylated at Ser15, localized to MAMs during mitophagy. Our findings establish a regulatory role for Beclin1 in selective mitophagy by initiating autophagosome formation adjacent to mitochondria, a function facilitated by Ulk1-mediated phosphorylation of Ser15 in its distinct N-terminal region.
Collapse
Affiliation(s)
- Justin M. Quiles
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Rita H. Najor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Eileen Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Monica Jeung
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Wenjing Liang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Sarah M. Burbach
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Erika A. Zumaya
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Rachel Y. Diao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Mark A. Lampert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| | - Åsa B. Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0751
| |
Collapse
|
10
|
Disruption of mitochondrial dynamics triggers muscle inflammation through interorganellar contacts and mitochondrial DNA mislocation. Nat Commun 2023; 14:108. [PMID: 36609505 PMCID: PMC9822926 DOI: 10.1038/s41467-022-35732-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Some forms of mitochondrial dysfunction induce sterile inflammation through mitochondrial DNA recognition by intracellular DNA sensors. However, the involvement of mitochondrial dynamics in mitigating such processes and their impact on muscle fitness remain unaddressed. Here we report that opposite mitochondrial morphologies induce distinct inflammatory signatures, caused by differential activation of DNA sensors TLR9 or cGAS. In the context of mitochondrial fragmentation, we demonstrate that mitochondria-endosome contacts mediated by the endosomal protein Rab5C are required in TLR9 activation in cells. Skeletal muscle mitochondrial fragmentation promotes TLR9-dependent inflammation, muscle atrophy, reduced physical performance and enhanced IL6 response to exercise, which improved upon chronic anti-inflammatory treatment. Taken together, our data demonstrate that mitochondrial dynamics is key in preventing sterile inflammatory responses, which precede the development of muscle atrophy and impaired physical performance. Thus, we propose the targeting of mitochondrial dynamics as an approach to treating disorders characterized by chronic inflammation and mitochondrial dysfunction.
Collapse
|
11
|
Li TY, Gao AW, Li X, Li H, Liu YJ, Lalou A, Neelagandan N, Naef F, Schoonjans K, Auwerx J. V-ATPase/TORC1-mediated ATFS-1 translation directs mitochondrial UPR activation in C. elegans. J Cell Biol 2023; 222:e202205045. [PMID: 36314986 PMCID: PMC9623136 DOI: 10.1083/jcb.202205045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/22/2022] [Accepted: 10/12/2022] [Indexed: 11/18/2022] Open
Abstract
To adapt mitochondrial function to the ever-changing intra- and extracellular environment, multiple mitochondrial stress response (MSR) pathways, including the mitochondrial unfolded protein response (UPRmt), have evolved. However, how the mitochondrial stress signal is sensed and relayed to UPRmt transcription factors, such as ATFS-1 in Caenorhabditis elegans, remains largely unknown. Here, we show that a panel of vacuolar H+-ATPase (v-ATPase) subunits and the target of rapamycin complex 1 (TORC1) activity are essential for the cytosolic relay of mitochondrial stress to ATFS-1 and for the induction of the UPRmt. Mechanistically, mitochondrial stress stimulates v-ATPase/Rheb-dependent TORC1 activation, subsequently promoting ATFS-1 translation. Increased translation of ATFS-1 upon mitochondrial stress furthermore relies on a set of ribosomal components but is independent of GCN-2/PEK-1 signaling. Finally, the v-ATPase and ribosomal subunits are required for mitochondrial surveillance and mitochondrial stress-induced longevity. These results reveal a v-ATPase-TORC1-ATFS-1 signaling pathway that links mitochondrial stress to the UPRmt through intimate crosstalks between multiple organelles.
Collapse
Affiliation(s)
- Terytty Yang Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Arwen W. Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hao Li
- Laboratory of Metabolic Signaling, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yasmine J. Liu
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amelia Lalou
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nagammal Neelagandan
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix Naef
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Ravindran R, Velikkakath AKG, Narendradev ND, Chandrasekharan A, Santhoshkumar TR, Srinivasula SM. Endosomal-associated RFFL facilitates mitochondrial clearance by enhancing PRKN/parkin recruitment to mitochondria. Autophagy 2022; 18:2851-2864. [PMID: 35373701 PMCID: PMC9673925 DOI: 10.1080/15548627.2022.2052460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mutations in the ubiquitin ligase PRKN (parkin RBR E3 ubiquitin protein ligase) are associated with Parkinson disease and defective mitophagy. Conceptually, PRKN-dependent mitophagy is classified into two phases: 1. PRKN recruits to and ubiquitinates mitochondrial proteins; 2. formation of phagophore membrane, sequestering mitochondria for degradation. Recently, endosomal machineries are reported to contribute to the later stage for membrane assembly. We reported a role for endosomes in the events upstream of phase 1. We demonstrate that the endosomal ubiquitin ligase RFFL (ring finger and FYVE like domain containing E3 ubiquitin protein ligase) associated with damaged mitochondria, and this association preceded that of PRKN. RFFL interacted with PRKN, and stable recruitment of PRKN to damaged mitochondria was substantially reduced in RFFL KO cells. Our study unraveled a novel role of endosomes in modulating upstream pathways of PRKN-dependent mitophagy initiation.Abbreviations CCCP: carbonyl cyanide 3-chlorophenylhydrazone; DMSO: dimethyl sulfoxide; EGFP: enhanced green fluorescence protein; KO: knockout; PRKN: parkin RBR E3 ubiquitin protein ligase; RFFL: ring finger and FYVE like domain containing E3 ubiquitin protein ligase; UQCRC1: ubiquinol-cytochrome c reductase core protein 1; WT: wild-type.
Collapse
Affiliation(s)
- Rishith Ravindran
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| | - Anoop Kumar G. Velikkakath
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India,Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to Be University), Karnataka, India
| | - Nikhil Dev Narendradev
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| | | | - T. R. Santhoshkumar
- Cancer Research Program-1, Rajiv Gandhi Centre for Biotechnology, Kerala, India
| | - Srinivasa M. Srinivasula
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India,CONTACT Srinivasa M. Srinivasula School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala695551, India
| |
Collapse
|
13
|
Berardi DE, Bock-Hughes A, Terry AR, Drake LE, Bozek G, Macleod KF. Lipid droplet turnover at the lysosome inhibits growth of hepatocellular carcinoma in a BNIP3-dependent manner. SCIENCE ADVANCES 2022; 8:eabo2510. [PMID: 36223464 PMCID: PMC9555787 DOI: 10.1126/sciadv.abo2510] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/23/2022] [Indexed: 05/12/2023]
Abstract
Hepatic steatosis is a major etiological factor in hepatocellular carcinoma (HCC), but factors causing lipid accumulation leading to HCC are not understood. We identify BNIP3 (a mitochondrial cargo receptor) as an HCC suppressor that mitigates against lipid accumulation to attenuate tumor cell growth. Targeted deletion of Bnip3 decreased tumor latency and increased tumor burden in a mouse model of HCC. This was associated with increased lipid in bnip3-/- HCC at early stages of disease, while lipid did not accumulate until later in tumorigenesis in wild-type mice, as Bnip3 expression was attenuated. Low BNIP3 expression in human HCC similarly correlated with increased lipid content and worse prognosis than HCC expressing high BNIP3. BNIP3 suppressed HCC cell growth by promoting lipid droplet turnover at the lysosome in a manner dependent on BNIP3 binding LC3. We have termed this process "mitolipophagy" because it involves the coordinated autophagic degradation of lipid droplets with mitochondria.
Collapse
Affiliation(s)
- Damian E. Berardi
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Althea Bock-Hughes
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
- The Committee on Molecular Metabolism and Nutrition, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Alexander R. Terry
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Lauren E. Drake
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Grazyna Bozek
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Kay F. Macleod
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
- The Committee on Molecular Metabolism and Nutrition, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
- The Committee on Cancer Biology, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Molecular Signaling to Preserve Mitochondrial Integrity against Ischemic Stress in the Heart: Rescue or Remove Mitochondria in Danger. Cells 2021; 10:cells10123330. [PMID: 34943839 PMCID: PMC8699551 DOI: 10.3390/cells10123330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death and global health problems worldwide, and ischemic heart disease is the most common cause of heart failure (HF). The heart is a high-energy demanding organ, and myocardial energy reserves are limited. Mitochondria are the powerhouses of the cell, but under stress conditions, they become damaged, release necrotic and apoptotic factors, and contribute to cell death. Loss of cardiomyocytes plays a significant role in ischemic heart disease. In response to stress, protective signaling pathways are activated to limit mitochondrial deterioration and protect the heart. To prevent mitochondrial death pathways, damaged mitochondria are removed by mitochondrial autophagy (mitophagy). Mitochondrial quality control mediated by mitophagy is functionally linked to mitochondrial dynamics. This review provides a current understanding of the signaling mechanisms by which the integrity of mitochondria is preserved in the heart against ischemic stress.
Collapse
|
15
|
Lyamzaev KG, Knorre DA, Chernyak BV. Mitoptosis, Twenty Years After. BIOCHEMISTRY (MOSCOW) 2021; 85:1484-1498. [PMID: 33705288 DOI: 10.1134/s0006297920120020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In 1999 V. P. Skulachev proposed the term "mitoptosis" to refer to the programmed elimination of mitochondria in living cells. According to the initial thought, mitoptosis serves to protect cells from malfunctioning of the damaged mitochondria. At the same time, a new mechanism of the complete mitochondria elimination was found under the conditions of massive mitochondrial damage associated with oxidative stress. In this experimental model, mitochondrial cluster formation in the perinuclear region leads to the formation of "mitoptotic body" surrounded by a single-layer membrane and subsequent release of mitochondria from the cell. Later, it was found that mitoptosis plays an important role in various normal and pathological processes that are not necessarily associated with the mitochondrial damage. It was found that mitoptosis takes place during cell differentiation, self-maintenance of hematopoietic stem cells, metabolic remodelling, and elimination of the paternal mitochondria in organisms with the maternal inheritance of the mitochondrial DNA. Moreover, the associated with mitoptosis release of mitochondrial components into the blood may be involved in the transmission of signals between cells, but also leads to the development of inflammatory and autoimmune diseases. Mitoptosis can be attributed to the asymmetric inheritance of mitochondria in the division of yeast and some animal cells, when the defective mitochondria are transferred to one of the newly formed cells. Finally, a specific form of mitoptosis appears to be selective elimination of mitochondria with deleterious mutations in whole follicular ovarian cells in mammals. During formation of the primary follicle, the mitochondrial DNA copy number is significantly reduced. After division, the cells that receive predominantly mitochondria with deleterious mutations in their mtDNA die, thereby reducing the likelihood of transmission of these mutations to offspring. Further study of the mechanisms of mitoptosis in normal and pathological conditions is important both for understanding the processes of development and aging, and for designing therapeutic approaches for inflammatory, neurodegenerative and other diseases.
Collapse
Affiliation(s)
- K G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - B V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
16
|
Quiles JM, Gustafsson ÅB. Mitochondrial Quality Control and Cellular Proteostasis: Two Sides of the Same Coin. Front Physiol 2020; 11:515. [PMID: 32528313 PMCID: PMC7263099 DOI: 10.3389/fphys.2020.00515] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a hallmark of cardiac pathophysiology. Defects in mitochondrial performance disrupt contractile function, overwhelm myocytes with reactive oxygen species (ROS), and transform these cellular powerhouses into pro-death organelles. Thus, quality control (QC) pathways aimed at identifying and removing damaged mitochondrial proteins, components, or entire mitochondria are crucial processes in post-mitotic cells such as cardiac myocytes. Almost all of the mitochondrial proteins are encoded by the nuclear genome and the trafficking of these nuclear-encoded proteins necessitates significant cross-talk with the cytosolic protein QC machinery to ensure that only functional proteins are delivered to the mitochondria. Within the organelle, mitochondria contain their own protein QC system consisting of chaperones and proteases. This system represents another level of QC to promote mitochondrial protein folding and prevent aggregation. If this system is overwhelmed, a conserved transcriptional response known as the mitochondrial unfolded protein response is activated to increase the expression of proteins involved in restoring mitochondrial proteostasis. If the mitochondrion is beyond repair, the entire organelle must be removed before it becomes cytotoxic and causes cellular damage. Recent evidence has also uncovered mitochondria as participants in cytosolic protein QC where misfolded cytosolic proteins can be imported and degraded inside mitochondria. However, this process also places increased pressure on mitochondrial QC pathways to ensure that the imported proteins do not cause mitochondrial dysfunction. This review is focused on discussing the pathways involved in regulating mitochondrial QC and their relationship to cellular proteostasis and mitochondrial health in the heart.
Collapse
Affiliation(s)
- Justin M Quiles
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Åsa B Gustafsson
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
17
|
Ryan TA, Phillips EO, Collier CL, Jb Robinson A, Routledge D, Wood RE, Assar EA, Tumbarello DA. Tollip coordinates Parkin-dependent trafficking of mitochondrial-derived vesicles. EMBO J 2020; 39:e102539. [PMID: 32311122 PMCID: PMC7265236 DOI: 10.15252/embj.2019102539] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple mitochondrial quality control pathways exist to maintain the health of mitochondria and ensure cell homeostasis. Here, we investigate the role of the endosomal adaptor Tollip during the mitochondrial stress response and identify its interaction and colocalisation with the Parkinson's disease-associated E3 ubiquitin ligase Parkin. The interaction between Tollip and Parkin is dependent on the ubiquitin-binding CUE domain of Tollip, but independent of Tom1 and mitophagy. Interestingly, this interaction is independent of Parkin mitochondrial recruitment and ligase activity but requires an intact ubiquitin-like (UBL) domain. Importantly, Tollip regulates Parkin-dependent endosomal trafficking of a discrete subset of mitochondrial-derived vesicles (MDVs) to facilitate delivery to lysosomes. Retromer function and an interaction with Tom1 allow Tollip to facilitate late endosome/lysosome trafficking in response to mitochondrial stress. We find that upregulation of TOM20-positive MDVs upon mitochondrial stress requires Tollip interaction with ubiquitin, endosomal membranes and Tom1 to ensure their trafficking to the lysosomes. Thus, we conclude that Tollip, via an association with Parkin, is an essential coordinator to sort damaged mitochondrial-derived cargo to the lysosomes.
Collapse
Affiliation(s)
- Thomas A Ryan
- Biological Sciences, University of Southampton, Southampton, UK
| | | | | | | | | | - Rebecca E Wood
- Biological Sciences, University of Southampton, Southampton, UK
| | - Emelia A Assar
- Biological Sciences, University of Southampton, Southampton, UK
| | | |
Collapse
|
18
|
Papandreou ME, Tavernarakis N. Crosstalk between Endo/Exocytosis and Autophagy in Health and Disease. Biotechnol J 2020; 15:e1900267. [PMID: 32143239 DOI: 10.1002/biot.201900267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/13/2020] [Indexed: 01/03/2023]
Abstract
Imbalance between the main intracellular degradative, trafficking and intercellular shuttling pathways has been implicated in disease pathogenesis. Autophagy controls degradation of cellular components, while vesicular trafficking permits transport of material in and out of the cell. Emerging evidence has uncovered the extensive interconnectivity between these pathways, which is crucial to maintain organismal homeostasis. Thus, therapeutic intervention and drug development strategies targeting these processes, particularly in neurodegeneration, should account for this broad crosstalk, to maximize effectiveness. Here, recent findings underlining the highly dynamic nature of the crosstalk between autophagy, endosomal transport, and secretion is reviewed. Synergy of autophagy and endosomes for degradation, as well as, competition of autophagy and secretion are discussed. Perturbation of this crosstalk triggers pathology especially neurodegeneration.
Collapse
Affiliation(s)
- Margarita-Elena Papandreou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 70013, Greece.,Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, 71500, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 70013, Greece.,Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, 71500, Greece
| |
Collapse
|
19
|
Tatullo M, Marrelli B, Zullo MJ, Codispoti B, Paduano F, Benincasa C, Fortunato F, Scacco S, Zavan B, Cocco T. Exosomes from Human Periapical Cyst-MSCs: Theranostic Application in Parkinson's Disease. Int J Med Sci 2020; 17:657-663. [PMID: 32210716 PMCID: PMC7085217 DOI: 10.7150/ijms.41515] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
The scientific community continuously strives to get new disease models, to discover early markers or novel therapeutic approaches, improving the diagnosis and prognosis of several human pathologies. Parkinson's Disease (PD) is characterized by a long asymptomatic phase, characterized by a selective loss of dopaminergic neurons. Recently, the human Periapical Cyst-Mesenchymal Stem Cells (hPCy-MSCs) have been differentiated in functional dopaminergic neurons: such oral-derived MSCs and the hPCy-MSCs-derived exosomes may represent a strategic and useful in vitro study-model, as well as intriguing therapeutic carriers. Circadian rhythm (CR) alteration variously impacts on PD pathways: an interesting research target is represented by the analysis of the exosomes released by dopaminergic neurons, derived from neural-differentiated hPCy-MSCs, after having reproduced in-vitro PD-like conditions. This review aims to describe the crosstalk among some aspects of circadian rhythm related to the onset of PD and the exosomes released by cells of PD patients. More in detail: the first part of this article will describe the main characteristics of circadian rhythm and the involvement of the exosomes found to be effective in the pathogenesis of PD. Finally, the authors will suggest how those exosomes derived from dopaminergic neurons, obtained by oral-derived stem cells (hPCy-MSCs) may represent a smart model for the in vitro research on PD, to find new biomarkers, to test new drugs or, fatally, to find new pathways applicable in future therapeutic approaches.
Collapse
Affiliation(s)
- Marco Tatullo
- Marrelli Health - Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
- Department of Therapeutic Dentistry, Sechenov University Russia, Moscow, Russia
| | - Benedetta Marrelli
- Marrelli Health - Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
- Department of Therapeutic Dentistry, Sechenov University Russia, Moscow, Russia
| | - Maria Josephine Zullo
- Department of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Bruna Codispoti
- Marrelli Health - Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
| | - Francesco Paduano
- Marrelli Health - Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
| | - Caterina Benincasa
- Marrelli Health - Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
| | - Francesco Fortunato
- Department of Neurological Sciences, University of Catanzaro “Magna Graecia”, Italy
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Italy
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Tiziana Cocco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Italy
| |
Collapse
|
20
|
Fang C, Manes TD, Liu L, Liu K, Qin L, Li G, Tobiasova Z, Kirkiles-Smith NC, Patel M, Merola J, Fu W, Liu R, Xie C, Tietjen GT, Nigrovic PA, Tellides G, Pober JS, Jane-Wit D. ZFYVE21 is a complement-induced Rab5 effector that activates non-canonical NF-κB via phosphoinosotide remodeling of endosomes. Nat Commun 2019; 10:2247. [PMID: 31113953 PMCID: PMC6529429 DOI: 10.1038/s41467-019-10041-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/09/2019] [Indexed: 12/28/2022] Open
Abstract
Complement promotes vascular inflammation in transplant organ rejection and connective tissue diseases. Here we identify ZFYVE21 as a complement-induced Rab5 effector that induces non-canonical NF-κB in endothelial cells (EC). In response to membrane attack complexes (MAC), ZFYVE21 is post-translationally stabilized on MAC+Rab5+ endosomes in a Rab5- and PI(3)P-dependent manner. ZFYVE21 promotes SMURF2-mediated polyubiquitinylation and proteasome-dependent degradation of endosome-associated PTEN to induce vesicular enrichment of PI(3,4,5)P3 and sequential recruitment of activated Akt and NF-κB-inducing kinase (NIK). Pharmacologic alteration of cellular phosphoinositide content with miltefosine reduces ZFYVE21 induction, EC activation, and allograft vasculopathy in a humanized mouse model. ZFYVE21 induction distinctly occurs in response to MAC and is detected in human renal and synovial tissues. Our data identifies ZFYVE21 as a Rab5 effector, defines a Rab5-ZFYVE21-SMURF2-pAkt axis by which it mediates EC activation, and demonstrates a role for this pathway in complement-mediated conditions. Complement activation contributes to vascular inflammation in the contexts of allograft rejection and connective tissue disease. Here Fang et al. identify ZFYVE21 as a novel effector of Rab5 and find it regulates pro-inflammatory NF-κB signaling in endothelial cells in response to complement activation.
Collapse
Affiliation(s)
- Caodi Fang
- Division of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Thomas D Manes
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Lufang Liu
- Division of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Kevin Liu
- Division of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Guangxin Li
- Department of Surgery, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Zuzana Tobiasova
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Nancy C Kirkiles-Smith
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Manal Patel
- St. John's College, University of Cambridge, Cambridge, CB2 1TP, UK
| | - Jonathan Merola
- Department of Surgery, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Whitney Fu
- Division of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Rebecca Liu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Catherine Xie
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Gregory T Tietjen
- Department of Surgery, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Division of Immunology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jordan S Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Dan Jane-Wit
- Division of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
21
|
von Stockum S, Sanchez-Martinez A, Corrà S, Chakraborty J, Marchesan E, Locatello L, Da Rè C, Cusumano P, Caicci F, Ferrari V, Costa R, Bubacco L, Rasotto MB, Szabo I, Whitworth AJ, Scorrano L, Ziviani E. Inhibition of the deubiquitinase USP8 corrects a Drosophila PINK1 model of mitochondria dysfunction. Life Sci Alliance 2019; 2:e201900392. [PMID: 30988163 PMCID: PMC6467245 DOI: 10.26508/lsa.201900392] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 02/02/2023] Open
Abstract
Aberrant mitochondrial dynamics disrupts mitochondrial function and contributes to disease conditions. A targeted RNA interference screen for deubiquitinating enzymes (DUBs) affecting protein levels of multifunctional mitochondrial fusion protein Mitofusin (MFN) identified USP8 prominently influencing MFN levels. Genetic and pharmacological inhibition of USP8 normalized the elevated MFN protein levels observed in PINK1 and Parkin-deficient models. This correlated with improved mitochondrial function, locomotor performance and life span, and prevented dopaminergic neurons loss in Drosophila PINK1 KO flies. We identified a novel target antagonizing pathologically elevated MFN levels, mitochondrial dysfunction, and dopaminergic neuron loss of a Drosophila model of mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Samantha Corrà
- Department of Biology, University of Padova, Padova, Italy
- Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | | | | | - Lisa Locatello
- Department of Biology, University of Padova, Padova, Italy
| | - Caterina Da Rè
- Department of Biology, University of Padova, Padova, Italy
- Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | - Paola Cusumano
- Department of Biology, University of Padova, Padova, Italy
- Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | | | - Vanni Ferrari
- Department of Biology, University of Padova, Padova, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
- Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| | | | - Luca Scorrano
- Department of Biology, University of Padova, Padova, Italy
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Elena Ziviani
- Fondazione Ospedale San Camillo, IRCCS, Venezia, Italy
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
22
|
Gustafsson ÅB, Dorn GW. Evolving and Expanding the Roles of Mitophagy as a Homeostatic and Pathogenic Process. Physiol Rev 2019; 99:853-892. [PMID: 30540226 PMCID: PMC6442924 DOI: 10.1152/physrev.00005.2018] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/10/2018] [Accepted: 09/29/2018] [Indexed: 02/07/2023] Open
Abstract
The central functions fulfilled by mitochondria as both energy generators essential for tissue homeostasis and gateways to programmed apoptotic and necrotic cell death mandate tight control over the quality and quantity of these ubiquitous endosymbiotic organelles. Mitophagy, the targeted engulfment and destruction of mitochondria by the cellular autophagy apparatus, has conventionally been considered as the mechanism primarily responsible for mitochondrial quality control. However, our understanding of how, why, and under what specific conditions mitophagy is activated has grown tremendously over the past decade. Evidence is accumulating that nonmitophagic mitochondrial quality control mechanisms are more important to maintaining normal tissue homeostasis whereas mitophagy is an acute tissue stress response. Moreover, previously unrecognized mitophagic regulation of mitochondrial quantity control, metabolic reprogramming, and cell differentiation suggests that the mechanisms linking genetic or acquired defects in mitophagy to neurodegenerative and cardiovascular diseases or cancer are more complex than simple failure of normal mitochondrial quality control. Here, we provide a comprehensive overview of mitophagy in cellular homeostasis and disease and examine the most revolutionary concepts in these areas. In this context, we discuss evidence that atypical mitophagy and nonmitophagic pathways play central roles in mitochondrial quality control, functioning that was previously considered to be the primary domain of mitophagy.
Collapse
Affiliation(s)
- Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, California ; and Washington University School of Medicine, St. Louis, Missouri
| | - Gerald W Dorn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, California ; and Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
23
|
Moras M, Lefevre SD, Ostuni MA. From Erythroblasts to Mature Red Blood Cells: Organelle Clearance in Mammals. Front Physiol 2017; 8:1076. [PMID: 29311991 PMCID: PMC5742207 DOI: 10.3389/fphys.2017.01076] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Erythropoiesis occurs mostly in bone marrow and ends in blood stream. Mature red blood cells are generated from multipotent hematopoietic stem cells, through a complex maturation process involving several morphological changes to produce a highly functional specialized cells. In mammals, terminal steps involved expulsion of the nucleus from erythroblasts that leads to the formation of reticulocytes. In order to produce mature biconcave red blood cells, organelles and ribosomes are selectively eliminated from reticulocytes as well as the plasma membrane undergoes remodeling. The mechanisms involved in these last maturation steps are still under investigation. Enucleation involves dramatic chromatin condensation and establishment of the nuclear polarity, which is driven by a rearrangement of actin cytoskeleton and the clathrin-dependent generation of vacuoles at the nuclear-cytoplasmic junction. This process is favored by interaction between the erythroblasts and macrophages at the erythroblastic island. Mitochondria are eliminated by mitophagy. This is a macroautophagy pathway consisting in the engulfment of mitochondria into a double-membrane structure called autophagosome before degradation. Several mice knock-out models were developed to identify mitophagy-involved proteins during erythropoiesis, but whole mechanisms are not completely determined. Less is known concerning the clearance of other organelles, such as smooth and rough ER, Golgi apparatus and ribosomes. Understanding the modulators of organelles clearance in erythropoiesis may elucidate the pathogenesis of different dyserythropoietic diseases such as myelodysplastic syndrome, leukemia and anemia.
Collapse
Affiliation(s)
| | | | - Mariano A. Ostuni
- UMR-S1134 Integrated Biology of Red Blood Cell, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
24
|
Roles of Mitochondrial DNA Signaling in Immune Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:39-53. [PMID: 29178068 DOI: 10.1007/978-981-10-6674-0_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial DNA (mtDNA) plays an important role in immune responses during the evolution. The present chapter systemically describes its role on immune-related diseases and its interaction on immune responses. It is important to explore the main function and mechanisms of mtDNA in immune responses by which mtDNA regulates the signaling pathways of Toll-like receptor 9, autophagy, and STING. There are potentials to discover therapeutic targets of mtDNA in immune diseases and inflammation. It will be more exciting if the CRISPR-Cas9 method can be applied for mtDNA gene editing to cure diseases and provide a novel insight of mtDNA in immune responses as well as new therapies.
Collapse
|