1
|
Hu K, Zhang G, Niu H, Sun L. Research advances in FGL1/LAG3 for cancer diagnosis and treatment: From basics to clinical practice. J Cancer Res Ther 2025; 21:344-353. [PMID: 40317138 DOI: 10.4103/jcrt.jcrt_2674_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/18/2025] [Indexed: 05/07/2025]
Abstract
ABSTRACT Fibrinogen-like protein 1 (FGL1), a liver-secreted protein involved in proliferation and metabolism, and lymphocyte activation gene 3 (LAG3), an immune checkpoint receptor expressed on the surfaces of various activated immune cells, play critical roles in tumor immunology. Numerous studies have confirmed that FGL1 acts as a ligand for LAG3 and mediates immune evasion by tumor cells. This review aims to provide a comprehensive summary of the research progress in FGL1/LAG3 in terms of its expression, role in the tumor microenvironment, and clinical application. The expression and regulation of FGL1/LAG3 are influenced by multiple cytokines and signaling pathways. In the tumor microenvironment, FGL1/LAG3 modulates tumor cell proliferation, invasion, and migration through mechanisms such as epithelial-mesenchymal transition, gene methylation, oxygen metabolism, and lipid metabolism. FGL1/LAG3 can serve as a prognostic biomarker, independently or in combination with PD-L1/PD-1, and can be targeted using monoclonal antibodies, bi-specific antibodies, and dual-targeted vaccines to restore the proliferation and activation potential of T cells. Additionally, FGL1/LAG3 has demonstrated therapeutic potential when combined with targeted therapies, radiotherapy, traditional Chinese medicine, and adoptive cell therapy. Overall, FGL1/LAG3 plays a pivotal role in cancer initiation, progression, diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Keyao Hu
- Department of Urology, Yantaishan Hospital, Yantai, China
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guiming Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haitao Niu
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lijiang Sun
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Meyiah A, Al-Harrasi A, Ur Rehman N, Elkord E. Effect of boswellic acids on the expression of PD-1 and TIGIT immune checkpoints on activated human T cells. Fitoterapia 2025; 181:106401. [PMID: 39909360 DOI: 10.1016/j.fitote.2025.106401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Boswellic acids (BAs) have been documented as anti-inflammatory agents with the potential to regulate immune responses. However, their impacts on the expression level of immune checkpoint (IC) molecules in T cells have never been reported. By using flow cytometric assays, we investigated whether BAs extracted from Boswellia sacra (B. sacra) have any potential effects on the expression of PD-1 and TIGIT immune checkpoints (ICs) on activated T cells in vitro. Interestingly β-BA at a concentration of 50 μM significantly reduced the expression of PD-1 and TIGIT on both activated CD4+ and CD8+ T cells without any cytotoxicity. Additionally, β-KBA significantly reduced the percentages of CD4+PD-1+ and CD8+TIGIT+ T cells at 50 μM concentration. Furthermore, a significant reduction in CD4+PD-1+ T cells was observed following treatment with a lower concentration (25 μM) of β-AKBA. These findings show that BA compounds have the ability to reduce the expression of PD-1 and TIGIT in stimulated human T cells, which might play critical roles in reinvigorating exhausted T cells, indicating their potentials in immunosuppressed disease settings such as cancers and infections. This study is the first to investigate the effects of these compounds on the expression of immune checkpoints in human T cells. Clearly, further investigations are required to assess the mechanism of action of these compounds on ICs, and their efficacy as therapeutic agents in different diseases.
Collapse
Affiliation(s)
- Abdo Meyiah
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom.
| |
Collapse
|
3
|
Seghers S, Domen A, Prenen H. Challenges and prospects of LAG-3 inhibition in advanced gastric and gastroesophageal junction cancer: insights from the RELATIVITY-060 trial. J Gastrointest Oncol 2024; 15:2735-2738. [PMID: 39816014 PMCID: PMC11732350 DOI: 10.21037/jgo-24-757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/04/2024] [Indexed: 01/18/2025] Open
Affiliation(s)
- Sofie Seghers
- Department of Medical Oncology, University Hospital Antwerp, Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| | - Andreas Domen
- Department of Medical Oncology, University Hospital Antwerp, Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| | - Hans Prenen
- Department of Medical Oncology, University Hospital Antwerp, Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
4
|
Ooki A, Osumi H, Yoshino K, Yamaguchi K. Potent therapeutic strategy in gastric cancer with microsatellite instability-high and/or deficient mismatch repair. Gastric Cancer 2024; 27:907-931. [PMID: 38922524 PMCID: PMC11335850 DOI: 10.1007/s10120-024-01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Gastric cancer (GC) is a common malignancy that presents challenges in patient care worldwide. The mismatch repair (MMR) system is a highly conserved DNA repair mechanism that protects genome integrity during replication. Deficient MMR (dMMR) results in an increased accumulation of genetic errors in microsatellite sequences, leading to the development of a microsatellite instability-high (MSI-H) phenotype. Most MSI-H/dMMR GCs arise sporadically, mainly due to MutL homolog 1 (MLH1) epigenetic silencing. Unlike microsatellite-stable (MSS)/proficient MMR (pMMR) GCs, MSI-H/dMMR GCs are relatively rare and represent a distinct subtype with genomic instability, a high somatic mutational burden, favorable immunogenicity, different responses to treatment, and prognosis. dMMR/MSI-H status is a robust predictive biomarker for treatment with immune checkpoint inhibitors (ICIs) due to high neoantigen load, prominent tumor-infiltrating lymphocytes, and programmed cell death ligand 1 (PD-L1) overexpression. However, a subset of MSI-H/dMMR GC patients does not benefit from immunotherapy, highlighting the need for further research into predictive biomarkers and resistance mechanisms. This review provides a comprehensive overview of the clinical, molecular, immunogenic, and therapeutic aspects of MSI-H/dMMR GC, with a focus on the impact of ICIs in immunotherapy and their potential as neoadjuvant therapies. Understanding the complexity and diversity of the molecular and immunological profiles of MSI-H/dMMR GC will drive the development of more effective therapeutic strategies and molecular targets for future precision medicine.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan.
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Koichiro Yoshino
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| |
Collapse
|
5
|
Luo Y, Cai X, Yang B, Lu F, Yi C, Wu G. Advances in understanding the role of immune checkpoint LAG-3 in tumor immunity: a comprehensive review. Front Oncol 2024; 14:1402837. [PMID: 39252941 PMCID: PMC11381248 DOI: 10.3389/fonc.2024.1402837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
Lymphocyte activation gene 3 (LAG-3), also known as CD223, is an emerging immune checkpoint that follows PD-1 and CTLA-4. Several LAG-3 targeting inhibitors in clinical trials and the combination of relatlimab (anti-LAG-3) and nivolumab (anti-PD-1) have been approved for treating - unresectable or metastatic melanoma. Despite the encouraging clinical potential of LAG-3, the physiological function and mechanism of action in tumors are still not well understood. In this review, we systematically summarized the structure of LAG-3, ligands of LAG-3, cell-specific functions and signaling of LAG-3, and the current status of LAG-3 inhibitors under development.
Collapse
Affiliation(s)
- Yingzhe Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xuebin Cai
- Department of Abdominal Oncology, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Biao Yang
- Department of Abdominal Oncology, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Facheng Lu
- Department of Abdominal Oncology, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Yi
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Guoyu Wu
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Chen H, Wei J, Zhu Z, Hou Y. Multifaceted roles of PD-1 in tumorigenesis: From immune checkpoint to tumor cell-intrinsic function. Mol Carcinog 2024; 63:1436-1448. [PMID: 38751009 DOI: 10.1002/mc.23740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 05/04/2024] [Indexed: 07/10/2024]
Abstract
Programmed cell death 1 (PD-1), a key immune checkpoint receptor, has been extensively studied for its role in regulating immune responses in cancer. However, recent research has unveiled a complex and dual role for PD-1 in tumorigenesis. While PD-1 is traditionally associated with immune cells, this article explores its expression in various cancer cells and its impact on cancer progression. PD-1's functions extend beyond immune regulation, as it has been found to both promote and suppress tumor growth, depending on the cancer type. These findings have significant implications for the future of cancer treatment and our understanding of the immune response in the context of cancer. This article calls for further research into the multifaceted roles of PD-1 to optimize its therapeutic potential and improve patient outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Huiqing Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jiayu Wei
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhen Zhu
- Zhenjiang Stomatological Hospital, Zhenjiang, China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Hegewisch-Becker S, Mendez G, Chao J, Nemecek R, Feeney K, Van Cutsem E, Al-Batran SE, Mansoor W, Maisey N, Pazo Cid R, Burge M, Perez-Callejo D, Hipkin RW, Mukherjee S, Lei M, Tang H, Suryawanshi S, Kelly RJ, Tebbutt NC. First-Line Nivolumab and Relatlimab Plus Chemotherapy for Gastric or Gastroesophageal Junction Adenocarcinoma: The Phase II RELATIVITY-060 Study. J Clin Oncol 2024; 42:2080-2093. [PMID: 38723227 PMCID: PMC11191068 DOI: 10.1200/jco.23.01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE Open-label phase II study (RELATIVITY-060) to investigate the efficacy and safety of first-line nivolumab, a PD-1-blocking antibody, plus relatlimab, a lymphocyte-activation gene 3 (LAG-3)-blocking antibody, plus chemotherapy in patients with previously untreated advanced gastric cancer (GC) or gastroesophageal junction cancer (GEJC). METHODS Patients with unresectable, locally advanced or metastatic GC/GEJC were randomly assigned 1:1 to nivolumab + relatlimab (fixed-dose combination) + chemotherapy or nivolumab + chemotherapy. The primary end point was objective response rate (ORR; per RECIST v1.1 by blinded independent central review [BICR]) in patients whose tumors had LAG-3 expression ≥1%. RESULTS Of 274 patients, 138 were randomly assigned to nivolumab + relatlimab + chemotherapy and 136 to nivolumab + chemotherapy. Median follow-up was 11.9 months. In patients with LAG-3 expression ≥1%, BICR-assessed ORR (95% CI) was 48% (38 to 59) in the nivolumab + relatlimab + chemotherapy arm and 61% (51 to 71) in the nivolumab + chemotherapy arm; median progression-free survival (95% CI) by BICR was 7.0 months (5.8 to 8.4) versus 8.3 months (6.9 to 12.1; hazard ratio [HR], 1.41 [95% CI, 0.97 to 2.05]), and median overall survival (95% CI) was 13.5 months (11.9 to 19.1) versus 16.0 months (10.9 to not estimable; HR, 1.04 [95% CI, 0.70 to 1.54]), respectively. Grade 3 or 4 treatment-related adverse events (TRAEs) occurred in 69% and 61% of all treated patients, and 42% and 36% of patients discontinued because of any-grade TRAEs in the nivolumab + relatlimab + chemotherapy and nivolumab + chemotherapy arms, respectively. CONCLUSION RELATIVITY-060 did not meet its primary end point of improved ORR in patients with LAG-3 expression ≥1% when relatlimab was added to nivolumab + chemotherapy compared with nivolumab + chemotherapy. Further studies are needed to address whether adding anti-LAG-3 to anti-PD-1 plus chemotherapy can benefit specific GC/GEJC patient subgroups.
Collapse
Affiliation(s)
| | - Guillermo Mendez
- Hospital Universitario Fundacion Favaloro, Buenos Aires, Argentina
| | - Joseph Chao
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Radim Nemecek
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kynan Feeney
- St John of God Murdoch Hospital, Murdoch, WA, Australia
| | - Eric Van Cutsem
- University Hospitals Gasthuisberg and University of Leuven (KUL), Leuven, Belgium
| | - Salah-Eddin Al-Batran
- Krankenhaus Nordwest University Cancer Center Frankfurt, and Institut für Klinische Krebsforschung IKF am Krankenhaus Nordwest, Frankfurt, Germany
| | - Wasat Mansoor
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Nicholas Maisey
- Guy's and St Thomas's NHS Foundation Trust, London, United Kingdom
| | | | - Matthew Burge
- Royal Brisbane & Womens Hospital, Herston, QLD, Australia
| | | | | | | | - Ming Lei
- Bristol Myers Squibb, Princeton, NJ
| | - Hao Tang
- Bristol Myers Squibb, Princeton, NJ
| | | | | | - Niall C. Tebbutt
- Austin Health, Heidelberg, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Bos J, Groen-van Schooten TS, Brugman CP, Jamaludin FS, van Laarhoven HWM, Derks S. The tumor immune composition of mismatch repair deficient and Epstein-Barr virus-positive gastric cancer: A systematic review. Cancer Treat Rev 2024; 127:102737. [PMID: 38669788 DOI: 10.1016/j.ctrv.2024.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Gastric cancer (GC), known for its unfavorable prognosis, has been classified in four distinct molecular subtypes. These subtypes not only exhibit differences in their genome and transcriptome but also in the composition of their tumor immune microenvironment. The microsatellite instable (MSI) and Epstein-Barr virus (EBV) positive GC subtypes show clear clinical benefits from immune checkpoint blockade, likely due to a neoantigen-driven and virus-driven antitumor immune response and high expression of immune checkpoint molecule PD-L1. However, even within these subtypes response to checkpoint inhibition is variable, which is potentially related to heterogeneity in the tumor immune microenvironment (TIME) and expression of co-inhibitory molecules. We conducted a systematic review to outline the current knowledge about the immunological features on the TIME of MSI and EBV + GCs. METHODS A systematic search was performed in PubMed, EMBASE and Cochrane Library. All articles from the year 1990 and onwards addressing immune features of gastric adenocarcinoma were reviewed and included based on predefined in- and exclusion criteria. RESULTS In total 5962 records were screened, of which 139 were included that reported immunological data on molecular GC subtypes. MSI and EBV + GCs were reported to have a more inflamed TIME compared to non-MSI and EBV- GC subtypes. Compared to microsatellite stable (MSS) tumors, MSI tumors were characterized by higher numbers of CD8 + and FoxP3 + T cells, and tumor infiltrating pro- and anti-inflammatory macrophages. HLA-deficiency was most common in MSI tumors compared to other molecular GC subtypes and associated with lower T and B cell infiltrates compared to HLA-proficient tumors. EBV + was associated with a high number of CD8 + T cells, Tregs, NK cells and macrophages. Expression of PD-L1, CTLA-4, Granzyme A and B, Perforin and interferon-gamma was enriched in EBV + tumors. Overall, MSI tumors harbored a more heterogeneous TIME in terms of immune cell composition and immune checkpoints compared to the EBV + tumors. DISCUSSION AND CONCLUSION MSI and EBV + GCs are highly Handbook for Conducting a Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence Integration.; 2019pro-inflammatory immune cell populations. Although studies on the direct comparison of EBV + and MSI tumors are limited, EBV + tumors show less intra-subgroup heterogeneity compared to MSI tumors. More studies are needed to identify how Intra-subgroup heterogeneity impacts response to immunotherapy efficacy.
Collapse
Affiliation(s)
- J Bos
- Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - T S Groen-van Schooten
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - C P Brugman
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - F S Jamaludin
- Amsterdam UMC Location University of Amsterdam, Medical Library AMC, Meibergdreef 9, Amsterdam, the Netherlands
| | - H W M van Laarhoven
- Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - S Derks
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Overman MJ, Gelsomino F, Aglietta M, Wong M, Limon Miron ML, Leonard G, García-Alfonso P, Hill AG, Cubillo Gracian A, Van Cutsem E, El-Rayes B, McCraith SM, He B, Lei M, Lonardi S. Nivolumab plus relatlimab in patients with previously treated microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 study. J Immunother Cancer 2024; 12:e008689. [PMID: 38821718 PMCID: PMC11149130 DOI: 10.1136/jitc-2023-008689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Programmed death-1 (PD-1) inhibitors, including nivolumab, have demonstrated long-term survival benefit in previously treated patients with microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (CRC). PD-1 and lymphocyte-activation gene 3 (LAG-3) are distinct immune checkpoints that are often co-expressed on tumor-infiltrating lymphocytes and contribute to tumor-mediated T-cell dysfunction. Relatlimab is a LAG-3 inhibitor that has demonstrated efficacy in combination with nivolumab in patients with melanoma. Here, we present the results from patients with MSI-H/dMMR metastatic CRC treated with nivolumab plus relatlimab in the CheckMate 142 study. METHODS In this open-label, phase II study, previously treated patients with MSI-H/dMMR metastatic CRC received nivolumab 240 mg plus relatlimab 160 mg intravenously every 2 weeks. The primary end point was investigator-assessed objective response rate (ORR). RESULTS A total of 50 previously treated patients received nivolumab plus relatlimab. With median follow-up of 47.4 (range 43.9-49.2) months, investigator-assessed ORR was 50% (95% CI 36% to 65%) and disease control rate was 70% (95% CI 55% to 82%). The median time to response per investigator was 2.8 (range 1.3-33.1) months, and median duration of response was 42.7 (range 2.8-47.0+) months. The median progression-free survival per investigator was 27.5 (95% CI 5.3 to 43.7) months with a progression-free survival rate at 3 years of 38%, and median overall survival was not reached (95% CI 17.2 months to not estimable), with a 56% overall survival rate at 3 years. The most common any-grade treatment-related adverse events (TRAEs) were diarrhea (24%), asthenia (16%), and hypothyroidism (12%). Grade 3 or 4 TRAEs were reported in 14% of patients, and TRAEs of any grade leading to discontinuation were observed in 8% of patients. No treatment-related deaths were reported. CONCLUSIONS Nivolumab plus relatlimab provided durable clinical benefit and was well tolerated in previously treated patients with MSI-H/dMMR metastatic CRC. TRIAL REGISTRATION NUMBER NCT02060188.
Collapse
Affiliation(s)
- Michael J Overman
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fabio Gelsomino
- Department of Oncology and Hematology, University Hospital Modena, Modena, Italy
| | - Massimo Aglietta
- Department of Medical Oncology, Istituto di Candiolo, FPO IRCCS, Candiolo, Italy
| | - Mark Wong
- Department of Medical Oncology, Westmead Hospital The Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| | | | - Gregory Leonard
- Medical Oncology, University College Hospital, Galway, Ireland
| | - Pilar García-Alfonso
- Medical Oncology Service, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Andrew G Hill
- Tasman Oncology Research, Ltd, Southport, Queensland, Australia
| | - Antonio Cubillo Gracian
- Hospital Universitario HM Sanchinarro, Centro Integral Oncológico Clara Campal HM CIOCC, Madrid, Spain
| | - Eric Van Cutsem
- Department of Digestive Oncology, KU Leuven University Hospitals Leuven Gasthuisberg Campus, Leuven, Belgium
| | - Bassel El-Rayes
- Department of Medicine, Emory University Hospital, Atlanta, Georgia, USA
| | - Stephen M McCraith
- Department of Translational Medicine, Bristol Myers Squibb Co, Princeton, New Jersey, USA
| | - Beilei He
- Department of Translational Medicine, Bristol Myers Squibb Co, Princeton, New Jersey, USA
| | - Ming Lei
- Global Biostatistics and Data Science, Bristol Myers Squibb Co, Princeton, New Jersey, USA
| | - Sara Lonardi
- Department of Oncology, Veneto Institute of Oncology IOV-IRCSS, Padova, Italy
| |
Collapse
|
10
|
Ahn S, Lee HS. Applicability of Spatial Technology in Cancer Research. Cancer Res Treat 2024; 56:343-356. [PMID: 38291743 PMCID: PMC11016655 DOI: 10.4143/crt.2023.1302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
This review explores spatial mapping technologies in cancer research, highlighting their crucial role in understanding the complexities of the tumor microenvironment (TME). The TME, which is an intricate ecosystem of diverse cell types, has a significant impact on tumor dynamics and treatment outcomes. This review closely examines cutting-edge spatial mapping technologies, categorizing them into capture-, imaging-, and antibody-based approaches. Each technology was scrutinized for its advantages and disadvantages, factoring in aspects such as spatial profiling area, multiplexing capabilities, and resolution. Additionally, we draw attention to the nuanced choices researchers face, with capture-based methods lending themselves to hypothesis generation, and imaging/antibody-based methods that fit neatly into hypothesis testing. Looking ahead, we anticipate a scenario in which multi-omics data are seamlessly integrated, artificial intelligence enhances data analysis, and spatiotemporal profiling opens up new dimensions.
Collapse
Affiliation(s)
- Sangjeong Ahn
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
- Artificial Intelligence Center, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
- Department of Medical Informatics, Korea University College of Medicine, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Qi C, Chong X, Zhou T, Ma M, Gong J, Zhang M, Li J, Xiao J, Peng X, Liu Z, Li Z, Shen L, Zhang X. Clinicopathological significance and immunotherapeutic outcome of claudin 18.2 expression in advanced gastric cancer: A retrospective study. Chin J Cancer Res 2024; 36:78-89. [PMID: 38455365 PMCID: PMC10915633 DOI: 10.21147/j.issn.1000-9604.2024.01.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
Objective Immunotherapeutic outcomes and clinical characteristics of claudin 18 isoform 2 positive (CLDN18.2-positive) gastric cancer (GC) vary in different clinical studies, making it difficult to optimize anti-CLDN18.2 therapy. We conducted a retrospective analysis to explore the association of CLDN18.2 expression with clinicopathological characteristics and immunotherapeutic outcomes in GC. Methods A total of 536 advanced GC patients from 2019 to 2021 in the CT041-CG4006 and CT041-ST-01 clinical trials were included in the analysis. CLDN18.2 expression on ≥40% of tumor cells (2+, 40%) and CLDN18.2 expression on ≥70% of tumor cells (2+, 70%) were considered the two levels of positively expressed GC. The clinicopathological characteristics and immunotherapy outcomes of GC patients were analyzed according to CLDN18.2 expression status. Results CLDN18.2 was expressed in 57.6% (cut-off: 2+, 40%) and 48.9% (cut-off: 2+, 70%) of patients. Programmed death-ligand 1 (PD-L1) and CLDN18.2 were co-expressed in 19.8% [combined positive score (CPS)≥1, CLDN18.2 (cut-off: 2+, 40%)] and 17.2% [CPS≥5, CLDN18.2 (cut-off: 2+, 70%)] of patients. CLDN18.2 expression positively correlated with younger age, female sex, non-gastroesophageal junction (non-GEJ), and diffuse phenotype (P<0.001). HER2 and PD-L1 expression were significantly lower in CLDN18.2-positive GC (both P<0.05). Uterine adnexa metastasis (P<0.001) was more frequent and liver metastasis (P<0.001) was less common in CLDN18.2-positive GC. Overall survival and immunotherapy-related progression-free survival (irPFS) were inferior in the CLDN18.2-positive group. Conclusions CLDN18.2-positive GC is associated with poor prognosis and worse immunotherapeutic outcomes. The combination of anti-CLDN18.2 therapy, anti-PD-L1/PD-1 therapy, and chemotherapy for GC requires further investigation.
Collapse
Affiliation(s)
- Changsong Qi
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaoyi Chong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ting Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Mingyang Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jifang Gong
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Miao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jian Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jun Xiao
- CARsgen Therapeutics Co., Ltd, Shanghai 200231, China
| | - Xiaohui Peng
- CARsgen Therapeutics Co., Ltd, Shanghai 200231, China
| | - Zhen Liu
- CARsgen Life Sciences Co., Ltd, Shanghai 200131, China
| | - Zonghai Li
- CARsgen Therapeutics Co., Ltd, Shanghai 200231, China
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaotian Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
12
|
Adashek JJ, Kato S, Nishizaki D, Pabla S, Nesline MK, Previs RA, Conroy JM, DePietro P, Kurzrock R. LAG-3 transcriptomic expression correlates linearly with other checkpoints, but not with clinical outcomes. Am J Cancer Res 2024; 14:368-377. [PMID: 38323282 PMCID: PMC10839320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Immune checkpoint inhibitors have revolutionized the treatment landscape for patients with cancer. Multi-omics, including next-generation DNA and RNA sequencing, have enabled the identification of exploitable targets and the evaluation of immune mediator expression. There is one FDA-approved LAG-3 inhibitor and multiple in clinical trials for numerous cancers. We analyzed LAG-3 transcriptomic expression among 514 patients with diverse cancers, including 489 patients with clinical annotation for their advanced malignancies. Transcriptomic LAG-3 expression was highly variable between histologies/cancer types and within the same histology/cancer type. LAG-3 RNA levels correlated linearly, albeit weakly, with high RNA levels of other checkpoints, including PD-L1 (Pearson's R2 = 0.21 (P < 0.001)), PD-1 (R2 = 0.24 (P < 0.001)) and CTLA-4 (R2 = 0.19 (P < 0.001)); when examined for Spearman correlation, significance did not change. LAG-3 expression (dichotomized at ≥ 75th (high) versus < 75th (moderate/low) RNA percentile level) was not a prognostic factor for overall survival (OS) in 272 immunotherapy-naïve patients with advanced/metastatic disease (Kaplan Meier analysis; P = 0.54). High LAG-3 levels correlated with longer OS after anti-PD-1/PD-L1-based checkpoint blockade (univariate (P = 0.003), but not multivariate analysis (hazard ratio, 95% confidence interval = 0.80 (0.46-1.40) (P = 0.44))); correlation with longer progression-free survival showed a weak univariate trend (P = 0.13). Taken together, these results suggest that high LAG-3 levels in and of themselves do not predict resistance to anti-PD-1/PD-L1 checkpoint blockade. Even so, since LAG-3 is often co-expressed with PD-1, PD-L1 and/or CTLA-4, selecting patients for combinations of checkpoint blockade based on immunomic co-expression patterns is a strategy that merits exploration.
Collapse
Affiliation(s)
- Jacob J Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins HospitalBaltimore, MD 21287, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer CenterLa Jolla, CA 92093, USA
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer CenterLa Jolla, CA 92093, USA
| | | | | | | | | | | | - Razelle Kurzrock
- WIN ConsortiumParis 94550, France
- MCW Cancer CenterMilwaukee, WI 53226, USA
- University of NebraskaOmaha, NE 68198, USA
| |
Collapse
|
13
|
Yu X, Zhai X, Wu J, Feng Q, Hu C, Zhu L, Zhou Q. Evolving perspectives regarding the role of the PD-1/PD-L1 pathway in gastric cancer immunotherapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166881. [PMID: 37696462 DOI: 10.1016/j.bbadis.2023.166881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Gastric cancer (GC) is an increasing global health problem and is one of the leading cancers worldwide. Traditional therapies, such as radiation and chemotherapy, have made limited progress in enhancing their efficacy for advanced GC. The development of immunotherapy for advanced GC has considerably improved with a deeper understanding of the tumor microenvironment. Immunotherapy using checkpoint inhibitors is a new therapeutic option that has made substantial advances in the treatment of other malignancies and is increasingly used in other clinical oncology treatments. Particularly, therapeutic antibodies targeting the programmed cell death protein-1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway have been effectively used in the clinical treatment of cancer. Monoclonal antibodies blocking the PD-1/PD-L1 pathway have been developed for cancer immunotherapy to enhance T cell function to restore the immune response and represent a breakthrough in the treatment of GC. This review provides an outline of the progress of PD-1/PD-L1 blockade therapy and its expression characteristics and clinical application in advanced GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China; Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu, Sichuan Province, People's Republic of China
| | - Xiaoqian Zhai
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Juan Wu
- Out-patient Department, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Qingbo Feng
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Affiliated Digestive Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People's Republic of China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.
| | - Qinghua Zhou
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.
| |
Collapse
|
14
|
Oh S, Nam SK, Lee KW, Lee HS, Park Y, Kwak Y, Lee KS, Kim JW, Kim JW, Kang M, Park YS, Ahn SH, Suh YS, Park DJ, Kim HH. Genomic and Transcriptomic Characterization of Gastric Cancer with Bone Metastasis. Cancer Res Treat 2024; 56:219-237. [PMID: 37591783 PMCID: PMC10789947 DOI: 10.4143/crt.2023.340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
PURPOSE Bone metastasis (BM) adversely affects the prognosis of gastric cancer (GC). We investigated molecular features and immune microenvironment that characterize GC with BM compared to GC without BM. MATERIALS AND METHODS Targeted DNA and whole transcriptome sequencing were performed using formalin-fixed paraffin-embedded primary tumor tissues (gastrectomy specimens) of 50 GC cases with distant metastases (14 with BM and 36 without BM). In addition, immunohistochemistry (IHC) for mucin-12 and multiplex IHC for immune cell markers were performed. RESULTS Most GC cases with BM had a histologic type of poorly cohesive carcinoma and showed worse overall survival (OS) than GC without BM (p < 0.05). GC with BM tended to have higher mutation rates in TP53, KDR, APC, KDM5A, and RHOA than GC without BM. Chief cell-enriched genes (PGA3, PGC, and LIPF), MUC12, MFSD4A, TSPAN7, and TRIM50 were upregulated in GC with BM compared to GC without BM, which was correlated with poor OS (p < 0.05). However, the expression of SERPINA6, SLC30A2, PMAIP1, and ITIH2 were downregulated in GC with BM. GC with BM was associated with PIK3/AKT/mTOR pathway activation, whereas GC without BM showed the opposite effect. The densities of helper, cytotoxic, and regulatory T cells did not differ between the two groups, whereas the densities of macrophages were lower in GC with BM (p < 0.05). CONCLUSION GC with BM had different gene mutation and expression profiles than GC without BM, and had more genetic alterations associated with a poor prognosis.
Collapse
Affiliation(s)
- Sujin Oh
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Kyung Nam
- Department of Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hye Seung Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yujun Park
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kyu Sang Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Minsu Kang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Young Suk Park
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Sang-Hoon Ahn
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Yun-Suhk Suh
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Do Joong Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung Ho Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
15
|
Yan JJ, Liu BB, Yang Y, Liu MR, Wang H, Deng ZQ, Zhang ZW. Prognostic value of T cell immunoglobulin and mucin-domain containing-3 expression in upper gastrointestinal tract tumors: A meta-analysis. World J Gastrointest Oncol 2023; 15:2212-2224. [PMID: 38173439 PMCID: PMC10758650 DOI: 10.4251/wjgo.v15.i12.2212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND There is a lack of robust prognostic markers for upper gastrointestinal (GI) tract cancers, including esophageal, gastric, and esophagogastric junction cancers. T cell immunoglobulin and mucin-domain containing-3 (TIM3) plays a key immunomodulatory role and is linked to the prognosis of various cancers. However, the significance of TIM3 in upper GI tract tumors is still uncertain. AIM To investigate the prognostic value of TIM3 expression in upper GI tract tumors. METHODS A literature search was conducted on the PubMed, Embase, and Web of Science databases for relevant studies published until June 2023. After screening and quality assessment, studies that met the criteria were included in the meta-analysis. Statistical methods were used for the pooled analysis to assess the association of TIM3 expression in upper GI tract tumors with the prognosis and clinicopathological parameters. The results were reported with the hazard ratio (HR) and 95% confidence interval (CI). RESULTS Nine studies involving 2556 patients with upper GI tract cancer were included. High TIM3 expression was associated with a worse prognosis in upper GI tract cancer (HR: 1.17, 95%CI: 1.01-1.36). Positive expression of TIM3 in gastric cancer was correlated with the T and N stage, but the difference was not statistically significant. However, TIM3 overexpression was significantly correlated with the TNM stage (odds ratio: 1.21, 95%CI: 0.63-2.33; P < 0.05). TIM3 expression showed no association with the other clinicopathological parameters. CONCLUSION High expression of TIM3 in the upper GI tract cancer is associated with a worse prognosis and advanced T or N stages, indicating its potential value as a prognostic biomarker. These findings may provide a basis for the personalized treatment of upper GI tract cancers.
Collapse
Affiliation(s)
- Jing-Jing Yan
- College of Clinical Medicine, Hebei University of Engineering, Handan 056000, Hebei Province, China
| | - Bing-Bing Liu
- College of Clinical Medicine, Hebei University of Engineering, Handan 056000, Hebei Province, China
| | - Yan Yang
- College of Clinical Medicine, Hebei University of Engineering, Handan 056000, Hebei Province, China
| | - Meng-Ru Liu
- College of Clinical Medicine, Hebei University of Engineering, Handan 056000, Hebei Province, China
| | - Han Wang
- College of Clinical Medicine, Hebei University of Engineering, Handan 056000, Hebei Province, China
| | - Zhen-Quan Deng
- Department of Oncology, Handan First Hospital, Handan 056002, Hebei Province, China
| | - Zhi-Wei Zhang
- Department of Oncology, Affiliated Hospital of Hebei University of Engineering, Handan 056000, Hebei Province, China
| |
Collapse
|
16
|
Li R, Qiu J, Zhang Z, Qu C, Tang Z, Yu W, Tian Y, Tian H. Prognostic significance of Lymphocyte-activation gene 3 (LAG3) in patients with solid tumors: a systematic review, meta-analysis and pan-cancer analysis. Cancer Cell Int 2023; 23:306. [PMID: 38041068 PMCID: PMC10693146 DOI: 10.1186/s12935-023-03157-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Lymphocyte-activation gene 3 (LAG3) is a recently discovered immune checkpoint molecule that has been linked to immunosuppression and the advancement of cancer in different types of solid tumors. This study aimed to evaluate the prognostic importance of LAG3 and its role in the immune system within solid tumors. METHODS Extensive literature searches were conducted using the Pubmed, EMBASE, and Cochrane Library databases to identify relevant studies exploring the effect of LAG3 on survival outcomes. Pooled hazard ratios (HRs) with its 95% confidence intervals (CIs) were calculated to evaluate the prognostic values of LAG3. Afterwards, subgroup analysis and sensitivity analysis were conducted. Pan-cancer analysis investigated the possible relationships between LAG3 expression and genetic alterations, RNA methylation modification-related genes, genomic instability, immune checkpoint genes, and infiltration of immune cells. RESULTS A total of 43 studies with 7,118 patients were included in this analysis. Higher expression of LAG3 was associated with worse overall survival (HR = 1.10, 95% CI 1.01-1.19, P = 0.023), but not disease-free survival (HR = 1.41, 95% CI 0.96-2.07, P = 0.078), progression-free survival (HR = 1.12, 95% CI 0.90-1.39, P = 0.317) or recurrence-free survival (HR = 0.98, 95% CI 0.81-1.19, P = 0.871). Subgroup analysis showed that LAG3 might play different prognostic roles in different solid tumors. LAG3 expression was positively associated with immune cell infiltration and immune checkpoint genes in all of the cancers included. LAG3 expression was also found to be associated with microsatellite instability (MSI), copy number variation (CNV), simple nucleoside variation (SNV), tumor mutation burden (TMB), and neoantigen in various types of cancers. CONCLUSIONS Elevated expression of LAG3 is linked to poorer prognosis among patients diagnosed with solid cancers. LAG3 might play varying prognostic roles in different types of solid tumors. Given its substantial involvement in cancer immunity and tumorigenesis, LAG3 has garnered attention as a promising prognostic biomarker and a potential target for immunotherapy.
Collapse
Affiliation(s)
- Rongyang Li
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jianhao Qiu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Zhan Zhang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chenghao Qu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Zhanpeng Tang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Wenhao Yu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yu Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
17
|
Wusiman D, Li W, Guo L, Huang Z, Zhang Y, Zhang X, Zhao X, Li L, An Z, Li Z, Ying J, An C. Comprehensive analysis of single-cell and bulk RNA-sequencing data identifies B cell marker genes signature that predicts prognosis and analysis of immune checkpoints expression in head and neck squamous cell carcinoma. Heliyon 2023; 9:e22656. [PMID: 38125461 PMCID: PMC10731009 DOI: 10.1016/j.heliyon.2023.e22656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Recent studies have shown that B cells and the associated tertiary lymphoid structures (TLS) correlate with the response of patients to immune checkpoint inhibitors (ICIs) and predict overall survival (OS) in cancer patients. We screened 145 B cell marker genes (BCMG) by a comprehensive analysis of single-cell RNA-sequencing (scRNA-seq) data of head and neck squamous cell carcinoma (HNSC) from the Gene Expression Omnibus (GEO) database. The BCMG signature (BCMGS) was established using The Cancer Genome Atlas (TCGA) dataset of HNSC and verified in four independent datasets. The multivariate Cox regression analysis identified the signature as an independent prognostic factor. A prognostic nomogram was constructed with independent prognostic factors using the TCGA dataset. GO and KEGG analysis revealed the underlying signaling pathways related to this signature. Study of immune profiles showed that patients in the low-risk group presented discriminative immune-cell infiltrations. Furthermore, the low-risk group was featured by higher TCR and BCR diversity, which suggested that low-risk patients may be more sensitive to ICIs. Immunohistochemistry was performed, and we found that high expression of FTH1 was significantly correlated with poor OS (P = 0.025). The expression of TIM-3, LAG-3 and PD-1 was positively correlated and associated with better OS in HNSC. However, there was no statistically significant difference between PD-L1, PD-L2, CTLA-4, TIGIT and prognosis. The BCMGS was a promising prognostic biomarker in HNSC, which may help to interpret the responses to immunotherapy and provide a new perspective for future research on the treatment in HNSC.
Collapse
Affiliation(s)
- Dilinaer Wusiman
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenbin Li
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Guo
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zehao Huang
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Zhang
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiwei Zhang
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaohui Zhao
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaohong An
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhengjiang Li
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Changming An
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
18
|
Liu J, Liu D, Hu G, Wang J, Chen D, Song C, Cai Y, Zhai C, Xu W. Circulating memory PD-1 +CD8 + T cells and PD-1 +CD8 +T/PD-1 +CD4 +T cell ratio predict response and outcome to immunotherapy in advanced gastric cancer patients. Cancer Cell Int 2023; 23:274. [PMID: 37974194 PMCID: PMC10655311 DOI: 10.1186/s12935-023-03137-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Limited benefit population of immunotherapy makes it urgent to select effective biomarkers for screening appropriate treatment population. Herein, we have investigated the predictive values of circulating CD8+ T cells and CD8+T/CD4+T cell ratio in advanced gastric cancer patients receiving immunotherapy. METHODS A retrospective cohort analysis of 187 advanced gastric cancer patients receiving sintilimab combined with oxaliplatin and capecitabine therapy in The Affiliated Xinghua People's Hospital, Medical School of Yangzhou University between December 2019 and February 2023 was conducted. The corresponding clinical outcomes of the variables were analyzed by receiver operating characteristic (ROC) curve, chi-square test, Kaplan-Meier methods and Cox proportional hazards regression models. RESULTS The optimal cutoff values for percentages of CD8+ T cells, naive CD8+ T cells (CD8+ Tn) and memory CD8+ T cells (CD8+ Tm) expressing programmed cell death -1(PD-1) as well as PD-1+CD8+T/PD-1+CD4+T cell ratio were 21.0, 21.5, 64.3 and 0.669, respectively. It was found that the mean percentages of CD8+ T and CD8+ Tm expressing PD-1 as well as PD-1+CD8+T/PD-1+CD4+T cell ratio were significantly higher in responder (R) than non-responder (NonR) advanced gastric cancer patients associated with a longer progression free survival (PFS) and overall survival (OS). We also observed this correlation in programmed cell death-ligand 1(PD-L1) combined positive score (CPS) ≥ 5 subgroups. Univariate and multivariate Cox regression analyses demonstrated that lower CD8+ T and CD8+ Tm expressing PD-1 as well as PD-1+CD8+T/PD-1+CD4+T cell ratio were independent risk factors in advanced gastric cancer patients receiving immunotherapy plus chemotherapy. CONCLUSION The circulating memory PD-1+CD8+ T cells and PD-1+CD8+T/PD-1+CD4+T cell ratio revealed high predictive values for response and prolonged survival outcomes in advanced gastric cancer patients receiving immunotherapy. Memory PD-1+CD8+ T cells and PD-1+CD8+T/PD-1+CD4+T cell ratio might be effective for screening benefit population of immunotherapy in advanced gastric cancer patients based on this preliminary evidence.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Oncology, The Affiliated Xinghua People's Hospital, Medical School of Yangzhou University, 419 Ying Wu Nan Road, Xinghua, 225700, Jiangsu, People's Republic of China.
| | - Degan Liu
- Department of Oncology, The Affiliated Xinghua People's Hospital, Medical School of Yangzhou University, 419 Ying Wu Nan Road, Xinghua, 225700, Jiangsu, People's Republic of China
| | - Guangyin Hu
- Department of Oncology, The Affiliated Xinghua People's Hospital, Medical School of Yangzhou University, 419 Ying Wu Nan Road, Xinghua, 225700, Jiangsu, People's Republic of China
| | - Jingjing Wang
- Department of Oncology, The Affiliated Xinghua People's Hospital, Medical School of Yangzhou University, 419 Ying Wu Nan Road, Xinghua, 225700, Jiangsu, People's Republic of China
| | - Dadong Chen
- Department of Oncology, The Affiliated Xinghua People's Hospital, Medical School of Yangzhou University, 419 Ying Wu Nan Road, Xinghua, 225700, Jiangsu, People's Republic of China
| | - Chuanjun Song
- Department of Oncology, The Affiliated Xinghua People's Hospital, Medical School of Yangzhou University, 419 Ying Wu Nan Road, Xinghua, 225700, Jiangsu, People's Republic of China
| | - Yin Cai
- Department of Oncology, The Affiliated Xinghua People's Hospital, Medical School of Yangzhou University, 419 Ying Wu Nan Road, Xinghua, 225700, Jiangsu, People's Republic of China
| | - Chentong Zhai
- Department of Oncology, The Affiliated Xinghua People's Hospital, Medical School of Yangzhou University, 419 Ying Wu Nan Road, Xinghua, 225700, Jiangsu, People's Republic of China
| | - Wenjing Xu
- Department of Oncology, The Affiliated Xinghua People's Hospital, Medical School of Yangzhou University, 419 Ying Wu Nan Road, Xinghua, 225700, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Xu X, Chen J, Li W, Feng C, Liu Q, Gao W, He M. Immunology and immunotherapy in gastric cancer. Clin Exp Med 2023; 23:3189-3204. [PMID: 37322134 DOI: 10.1007/s10238-023-01104-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
Gastric cancer is the fifth leading cause of cancer-related deaths worldwide. As the diagnosis of early gastric cancer is difficult, most patients are at a late stage of cancer progression when diagnosed. The current therapeutic approaches based on surgical or endoscopic resection and chemotherapy indeed improve patients' outcomes. Immunotherapy based on immune checkpoint inhibitors has opened a new era for cancer treatment, and the immune system of the host is reshaped to combat tumor cells and the strategy differs according to the patient's immune system. Thus, an in-depth understanding of the roles of various immune cells in the progression of gastric cancer is beneficial to application for immunotherapy and the discovery of new therapeutic targets. This review describes the functions of different immune cells in gastric cancer development, mainly focusing on T cells, B cells, macrophages, natural killer cells, dendritic cells, neutrophils as well as chemokines or cytokines secreted by tumor cells. And this review also discusses the latest advances in immune-related therapeutic approaches such as immune checkpoint inhibitors, CAR-T or vaccine, to reveal potential and promising strategies for gastric cancer treatment.
Collapse
Affiliation(s)
- Xiaqing Xu
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China
| | - Jiaxing Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Wenxing Li
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China
| | - Chenlu Feng
- Department of Cancer Center, Nanyang First People's Hospital, Nanyang, 473000, Henan, People's Republic of China
| | - Qian Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Wenfang Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Meng He
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China.
| |
Collapse
|
20
|
Ulase D, Behrens HM, Krüger S, Heckl SM, Ebert U, Becker T, Röcken C. LAG3 in gastric cancer: it's complicated. J Cancer Res Clin Oncol 2023; 149:10797-10811. [PMID: 37311986 PMCID: PMC10423140 DOI: 10.1007/s00432-023-04954-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
PURPOSE Lymphocyte activation gene 3 (LAG3) is thought to contribute to T cell exhaustion within the tumor microenvironment of solid tumors. This study aimed to analyze the spatial distribution of LAG3 + cells in relation to clinicopathological and survival data in a large set of 580 primary resected and neoadjuvantly treated gastric cancers (GC). METHODS LAG3 expression was evaluated in tumor center and invasive margin using immunohistochemistry and whole-slide digital image analysis. Cases were divided into LAG3-low and LAG3-high expression groups based on (1) median LAG3 + cell density, (2) cut-off values adapted to cancer-specific survival using Cutoff Finder application. RESULTS Significant differences in spatial distribution of LAG3 + cells were observed in primarily resected GC, but not in neoadjuvantly treated GC. LAG3 + cell density showed evident prognostic value at following cut-offs: in primarily resected GC, 21.45 cells/mm2 in tumor center (17.9 vs. 10.1 months, p = 0.008) and 208.50 cells/mm2 in invasive margin (33.8 vs. 14.7 months, p = 0.006); and in neoadjuvantly treated GC, 12.62 cells/mm2 (27.3 vs. 13.2 months, p = 0.003) and 123.00 cells/mm2 (28.0 vs. 22.4 months, p = 0.136), respectively. Significant associations were found between LAG3 + cell distribution patterns and various clinicopathological factors in both cohorts. In neoadjuvantly treated GC, LAG3 + immune cell density was found to be an independent prognostic factor of survival (HR = 0.312, 95% CI 0.162-0.599, p < 0.001). CONCLUSION In this study, a higher density of LAG3 + cells was associated with favorable prognosis. Current results support the need for extended analysis of LAG3. Differences in the distribution of LAG3 + cells should be considered, as they could influence clinical outcomes and treatment responses.
Collapse
Affiliation(s)
- Dita Ulase
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Building U33, 24105 Kiel, Germany
| | - Hans-Michael Behrens
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Building U33, 24105 Kiel, Germany
| | - Sandra Krüger
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Building U33, 24105 Kiel, Germany
| | - Steffen M. Heckl
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Ulrike Ebert
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Building U33, 24105 Kiel, Germany
| | - Thomas Becker
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Building U33, 24105 Kiel, Germany
| |
Collapse
|
21
|
Shin K, Kim J, Park SJ, Kim H, Lee MA, Kim O, Park J, Kang N, Kim IH. Early Increase in Circulating PD-1 +CD8 + T Cells Predicts Favorable Survival in Patients with Advanced Gastric Cancer Receiving Chemotherapy. Cancers (Basel) 2023; 15:3955. [PMID: 37568771 PMCID: PMC10417033 DOI: 10.3390/cancers15153955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The clinical significance of PD-1 expression in circulating CD8+ T cells in patients with gastric cancer (GC) receiving chemotherapy remains unelucidated. Therefore, we aimed to examine its prognostic significance in blood samples of 68 patients with advanced GC who received platinum-based chemotherapy. The correlation between peripheral blood mononuclear cells, measured using fluorescence-activated cell sorting, was evaluated. Patients were divided into two groups according to the changes in PD-1+CD8+ T-cell frequencies between day 0 and 7. They were categorized as increased or decreased PD-1+CD8+ T-cell groups. The increased PD-1+CD8+ T-cell group showed longer progression-free survival (PFS) and overall survival (OS) than the decreased PD-1+CD8+ T-cell group (PFS: 8.7 months vs. 6.1 months, p = 0.007; OS: 20.7 months vs. 10.8 months, p = 0.003). The mean duration of response was significantly different between the groups (5.7 months vs. 2.5 months, p = 0.041). Multivariate analysis revealed that an increase in PD-1+CD8+ T-cell frequency was an independent prognostic factor. We concluded that the early increase in PD-1+CD8+ T-cell frequency is a potential predictor of favorable prognoses and durable responses in patients with advanced GC receiving chemotherapy.
Collapse
Affiliation(s)
- Kabsoo Shin
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Joori Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Se Jun Park
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Hyunho Kim
- Division of Medical Oncology, Department of Internal Medicine, St. Vincent Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Myung Ah Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Okran Kim
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Juyeon Park
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - Nahyeon Kang
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (K.S.); (J.K.); (S.J.P.); (M.A.L.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.K.); (J.P.); (N.K.)
| |
Collapse
|
22
|
Zhao C, Wang D, Li Z, Zhang Z, Xu Y, Liu J, Lei Q, Han D, Huo Y, Liu S, Li L, Zhang Y. IL8 derived from macrophages inhibits CD8 + T-cell function by downregulating TIM3 expression through IL8-CXCR2 axis in patients with advanced colorectal cancer. Int Immunopharmacol 2023; 121:110457. [PMID: 37331296 DOI: 10.1016/j.intimp.2023.110457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/14/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) is a vital immune checkpoint that regulates the immune response. However, the specific role of TIM3 in patients with colorectal cancer (CRC) have rarely been studied. In this study, we investigated the effect of TIM3 on CD8+ T cells in CRC and explored the mechanism of TIM3 regulation in tumor microenvironment (TME). METHODS Peripheral blood and tumor tissues of patients with CRC were collected to evaluate TIM3 expression using flow cytometry. Cytokines in the serum of healthy donors and patients with early- and advanced-stage CRC were screened using a multiplex assay. The effects of interleukin-8 (IL8) on TIM3 expression on CD8+ T cells were analyzed using cell incubation experiments in vitro. The correlation between TIM3 or IL8 and prognosis was verified using bioinformatics analysis. RESULTS TIM3 expression on CD8+ T cells was obviously reduced in patients with advanced-stage CRC, whereas a lower TIM3 expression level was associated with poorer prognosis. Macrophage-derived IL8, which could inhibit TIM3 expression on CD8+ T cells, was significantly increased in the serum of patients with advanced CRC. In addition, the function and proliferation of CD8+ and TIM3+CD8+ T cells were inhibited by IL8, which was partly depending on TIM3 expression. The inhibitory effects of IL8 were reversed by anti-IL8 and anti-CXCR2 antibodies. CONCLUSIONS In summary, macrophages-derived IL8 suppresses TIM3 expression on CD8+ T cells through CXCR2. Targeting the IL8/CXCR2 axis may be an effective strategy for treating patients with advanced CRC.
Collapse
Affiliation(s)
- Chenhui Zhao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Dan Wang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhen Li
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhen Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yujie Xu
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Jinbo Liu
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qingyang Lei
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Dong Han
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yachang Huo
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shasha Liu
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan 450052, China.
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, China.
| |
Collapse
|
23
|
Meyiah A, Mahmoodi Chalbatani G, Al-Mterin MA, Malekraeisi MA, Murshed K, Elkord E. Co-expression of PD-1 with TIGIT or PD-1 with TIM-3 on tumor-infiltrating CD8 + T cells showed synergistic effects on improved disease-free survival in treatment-naïve CRC patients. Int Immunopharmacol 2023; 119:110207. [PMID: 37099940 DOI: 10.1016/j.intimp.2023.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Immune checkpoints (ICs) are highly expressed on tumor-infiltrating immune cells (TIICs) in different malignancies, including colorectal cancer (CRC). T cells play crucial roles in shaping CRC, and their presence in the tumor microenvironment (TME) has proven to be one of the best predictors of clinical outcomes. A crucial component of the immune system is cytotoxic CD8+ T cells (CTLs), which play decisive roles in the prognosis of CRC. In this study, we investigated associations of immune checkpoints expressed on tumor-infiltrating CD8+ T cells with disease-free survival (DFS) in 45 naïve-treatment CRC patients. First, we examined the associations of single ICs, and found that CRC patients with higher levels of T-cell immunoglobulin and ITIM-domain (TIGIT), T-cell immunoglobulin and mucin domain-3 (TIM-3) and programmed cell death-1 (PD-1) CD8+ T cells tended to have longer DFS. Interestingly, when PD-1 expression was combined with other ICs, there were more evident and stronger associations between higher levels of PD-1+ with TIGIT+ or PD-1+ with TIM-3+ tumor-infiltrating CD8+ T cells and longer DFS. Our findings for TIGIT were validated in The Cancer Genome Atlas (TCGA) CRC dataset. This study is the first to report on the association of co-expression of PD-1 with TIGIT and PD-1 with TIM-3 in CD8+ T cells and improved DFS in treatment-naïve CRC patients. This work highlights the significance of immune checkpoint expression on tumor-infiltrating CD8+ T cells as critical predictive biomarkers, especially when co-expression of different ICs is considered.
Collapse
Affiliation(s)
- Abdo Meyiah
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | | | - Mohamed A Al-Mterin
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | | | - Khaled Murshed
- Department of Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Eyad Elkord
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; Department of Biological Sciences and Chemistry, Faculty of Arts and Sciences, University of Nizwa, Nizwa 616, Oman; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
24
|
Kwon HJ, Park Y, Nam SK, Kang E, Kim KK, Jeong I, Kwak Y, Yoon J, Kim TY, Lee KW, Oh DY, Im SA, Kong SH, Park DJ, Lee HJ, Kim HH, Yang HK, Lee HS. Genetic and immune microenvironment characterization of HER2-positive gastric cancer: Their association with response to trastuzumab-based treatment. Cancer Med 2023; 12:10371-10384. [PMID: 36916290 DOI: 10.1002/cam4.5769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND We aimed to determine the molecular and immune microenvironment characteristics of HER2-positive gastric cancer (GC) related to the patient's response to first-line trastuzumab-based treatment. METHODS Eighty-three cases of HER2-positive advanced gastric adenocarcinoma patients treated with trastuzumab were enrolled. Targeted deep sequencing and transcriptome analysis were performed on selected 21 cases (exploration cohort) along with two post-treatment samples. The results were compared between patients progressed before 6 months (Group 2) and others (Group 1), and were validated by FISH and immunohistochemistry in total cohort. Tumor-infiltrating immune cells were evaluated using RNA sequencing data and multiplex immunohistochemistry. Progression-free survival (PFS) analysis was performed. RESULTS Group 1 showed frequent amplification of G1/S cell cycle checkpoint-related genes and upregulated KEGG pathways related to cell proliferation. In contrast, Group 2 had more frequent EGFR, HER3, and MET amplification and higher RNA expression in immune-related KEGG pathways than Group 1. In total cohort, significant predictors of better PFS were cell cycle-related including CCNE1 amplification, Cyclin A and PLK1 overexpression, and decreased Cyclin D3 and HER3 expression (p < 0.05), or immune-related including high density of CD3- CD57+ NK cells and PD-L1 combined positive score ≥5 (p < 0.05). The best prognostic predictors were a combination of Cyclin A, Cyclin E, p21, and HER3 (p < 0.001). CONCLUSION HER2-positive GC with favorable response to trastuzumab were characterized by cell cycle-related gene alterations and increased CD3- CD57+ NK cell infiltration. These findings would be helpful to the fine modulation of therapeutic strategies for patients with HER2-positive GC.
Collapse
Affiliation(s)
- Hyun Jung Kwon
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yujun Park
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Soo Kyung Nam
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Enoch Kang
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | - Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeesun Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae-Yong Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Do Joong Park
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyuk-Joon Lee
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyung-Ho Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han-Kwang Yang
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Clinical relevance of PD-1 positive CD8 T-cells in gastric cancer. Gastric Cancer 2023; 26:393-404. [PMID: 36781556 PMCID: PMC10115710 DOI: 10.1007/s10120-023-01364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND We evaluated the relevance of PD-1+CD8+ T-cells in gastric cancer (GC) including prognostic significance, association with chemotherapy and immunotherapy sensitivity and correlations with the tumor microenvironment (TME). METHODS Discovery cohort: GC samples were evaluated for AE1/3, CD8, PD-1, Ki-67 and Granzyme-B expression with fluorescence-based multiplex immunohistochemistry (mIHC). Validation cohorts: we analyzed bulk RNAseq GC datasets from TCGA, the "3G" chemotherapy trial and an immunotherapy phase 2 trial. The cox proportional hazards model was used to identify factors that influenced overall survival (OS). To study the TME, we analyzed single-cell RNAseq performed on GCs. RESULTS In the discovery cohort of 350 GCs, increased PD-1 expression of CD8 T-cells was prognostic for OS (HR 0.822, p = 0.042). PD-1 expression in CD8 T-cells highly correlated with cytolytic [Granzyme-B+] (r = 0.714, p < 0.001) and proliferative [Ki-67+] (r = 0.798, p < 0.001) activity. Analysis of bulk RNAseq datasets showed tumors with high PD-1 and CD8A expression levels had improved OS when treated with immunotherapy (HR 0.117, p = 0.036) and chemotherapy (HR 0.475, p = 0.017). Analysis of an scRNAseq dataset of 152,423 cells from 40 GCs revealed that T-cell and NK-cell proportions were higher (24% vs 18% and 19% vs 15%, p < 0.0001), while macrophage proportions were lower (7% vs 11%, p < 0.0001) in CD8PD-1high compared to CD8PD-1low tumors. CONCLUSION This is one of the largest GC cohorts of mIHC combined with analysis of multiple datasets providing orthogonal validation of the clinical relevance of PD-1+CD8+ T-cells being associated with improved OS. CD8PD-1high tumors have distinct features of an immunologically active, T-cell inflamed TME.
Collapse
|
26
|
Salnikov M, Prusinkiewicz MA, Lin S, Ghasemi F, Cecchini MJ, Mymryk JS. Tumor-Infiltrating T Cells in EBV-Associated Gastric Carcinomas Exhibit High Levels of Multiple Markers of Activation, Effector Gene Expression, and Exhaustion. Viruses 2023; 15:176. [PMID: 36680216 PMCID: PMC9860965 DOI: 10.3390/v15010176] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Epstein-Barr virus (EBV) is a gamma-herpesvirus associated with 10% of all gastric cancers (GCs) and 1.5% of all human cancers. EBV-associated GCs (EBVaGCs) are pathologically and clinically distinct entities from EBV-negative GCs (EBVnGCs), with EBVaGCs exhibiting differential molecular pathology, treatment response, and patient prognosis. However, the tumor immune landscape of EBVaGC has not been well explored. In this study, a systemic and comprehensive analysis of gene expression and immune landscape features was performed for both EBVaGC and EBVnGC. EBVaGCs exhibited many aspects of a T cell-inflamed phenotype, with greater T and NK cell infiltration, increased expression of immune checkpoint markers (BTLA, CD96, CTLA4, LAG3, PD1, TIGIT, and TIM3), and multiple T cell effector molecules in comparison with EBVnGCs. EBVaGCs also displayed a higher expression of anti-tumor immunity factors (PDL1, CD155, CEACAM1, galectin-9, and IDO1). Six EBV-encoded miRNAs (miR-BARTs 8-3p, 9-5p, 10-3p, 22, 5-5p, and 14-3p) were strongly negatively correlated with the expression of immune checkpoint receptors and multiple markers of anti-tumor immunity. These profound differences in the tumor immune landscape between EBVaGCs and EBVnGCs may help explain some of the observed differences in pathological and clinical outcomes, with an EBV-positive status possibly being a potential biomarker for the application of immunotherapy in GC.
Collapse
Affiliation(s)
- Mikhail Salnikov
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
| | - Martin A Prusinkiewicz
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
| | - Sherman Lin
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Farhad Ghasemi
- Department of General Surgery, Western University, London, ON N6A 3K7, Canada
| | - Matthew J Cecchini
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Otolaryngology, Western University, London, ON N6A 5W9, Canada
| |
Collapse
|
27
|
Mokhtari Z, Rezaei M, Sanei MH, Dehghanian A, Faghih Z, Heidari Z, Tavana S. Tim3 and PD-1 as a therapeutic and prognostic targets in colorectal cancer: Relationship with sidedness, clinicopathological parameters, and survival. Front Oncol 2023; 13:1069696. [PMID: 37035199 PMCID: PMC10076872 DOI: 10.3389/fonc.2023.1069696] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Background Colorectal cancer (CRC) is a heterogeneous disease that complicates predicting patients' prognosis and their response to treatment. CRC prognosis is influenced by the tumor microenvironment (TME). The immune system is a critical component of the TME. Programmed cell death receptor 1 (PD-1) and T-cell immunoglobulin and mucin-domain containing-3 (Tim3) are inhibitory immune checkpoints that regulate immune response and may provide prognostic power. However, the effect of their expressions and co-expressions on the CRC prognosis remains unclear. Accordingly, this study aimed to investigate the prognostic value of the CD8, CD3, PD-1, Tim3 expression, and PD-1/Tim3 co-expression in patients with CRC. Materials and Methods One hundred and thirty six patients with CRC who underwent curative surgery were enrolled in the study. Immunohistochemical staining was performed for PD-1, Tim3, CD8, and CD3, and the expression of each marker was evaluated in the center of the tumor (CT), invasive margin (IM), and adjacent normal-like tissue. Result Our results indicated that high expression of PD-1 in IM was significantly associated with lower TNM stage, T-stage, M-stage, lack of metastasis, the presence of tertiary lymphoid structure (TLS), lack of recurrence (in the left-sided tumors), and larger tumor size (in right-sided tumors) (P<0.05). High expression of PD-1 in IM was also associated with improved overall survival (OS) in a subgroup of patients with high CD8 expression. High Tim3 expression in CT was associated with higher M-stage (M1) (in left-sided CRCs) (P<0.05). It was also associated with decreased OS in total cohort and left-sided CRCs and represented an independent prognostic factor for CRC patients in multivariate analysis. PD-1 and Tim3 co-expression had no synergistic effects on predicting OS. Conclusion Our findings suggest that the clinicopathological and prognostic significance of immune system-related markers such as CD8, PD-1, and Tim3 depends on the primary tumor sides. We also showed that Tim3 could act as a prognostic factor and therapeutic target in CRC. This marker is probably a more preferred target for immunotherapy than PD-1, especially in left-sided CRCs.
Collapse
Affiliation(s)
- Zahra Mokhtari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- *Correspondence: Marzieh Rezaei,
| | - Mohammad Hossein Sanei
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirreza Dehghanian
- Department of Pathology, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Zahra Faghih
- Institute for Cancer Research (ICR), School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Heidari
- Department of Biostatistics & Epidemiologyt, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Tavana
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Ma C, Luo H. A more novel and robust gene signature predicts outcome in patients with esophageal squamous cell carcinoma. Clin Res Hepatol Gastroenterol 2022; 46:102033. [PMID: 36265781 DOI: 10.1016/j.clinre.2022.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/24/2022] [Accepted: 10/10/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a life-threatening thoracic tumor with a poor prognosis. The tumor microenvironment (TME) mainly comprises tumor cells and tumor-infiltrating immune cells mixed with stromal components. The latest research has displayed that tumor immune cell infiltration (ICI) is closely connected with the ESCC patients' clinical prognosis. This study was designed to construct a gene signature based on the ICI of ESCC to predict prognosis. METHODS Based on the selection criteria we set, the eligible ESCC cases from the GSE53625 and TCGA-ESCA datasets were chosen for the training cohort and the validation cohort, respectively. Unsupervised clustering detailed grouped ESCC cases of the training cohort based on the ICI profile. We determined the differential expression genes (DEGs) between the ICI clusters, and, subsequently, we adopted the univariate Cox analysis to recognize DEGs with prognostic potential. These screened DEGs underwent a Lasso regression, which then generated a gene signature. The harvested signature's predictive ability was further examined by the Kaplan-Meier analysis, Cox analysis, ROC, IAUC, and IBS. More importantly, we listed similar studies in the most recent year and compared theirs with ours. We performed the functional annotation, immune relevant signature correlation analysis, and immune infiltrating analysis to thoroughly understand the functional mechanism of the signature and the immune cells' roles in the gene signature's predicting capacity. RESULTS A sixteen-gene signature (ARSD, BCAT1, BIK, CLDN11, DLEU7-AS1, GGH, IGFBP2, LINC01037, LINC01446, LINC01497, M1AP, PCSK2, PCSK5, PPP2R2A, TIGD7, and TMSB4X) was generated from the Lasso model. We then confirmed the signature as having solid and stable prognostic capacity by several statistical methods. We revealed the superiority of our signature after comparing it to our predecessors, and the GSEA uncovered the specifically mechanism of action related to the gene signature. Two immune relevant signatures, including GZMA and LAG3 were identified associating with our signature. The immune-infiltrating analysis identified crucial roles of resting mast cells, which potentially support the sixteen-gene signature's prognosis ability. CONCLUSIONS We discovered a robust sixteen-gene signature that can accurately predict ESCC prognosis. The immune relevant signatures, GZMA and LAG3, and resting mast cells infiltrating were closely linked to the sixteen-gene signature's ability.
Collapse
Affiliation(s)
- Chao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Huan Luo
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
29
|
Rühle A, Todorovic J, Spohn SSK, Gkika E, Becker C, Knopf A, Zamboglou C, Sprave T, Werner M, Grosu AL, Kayser G, Nicolay NH. Prognostic value of tumor-infiltrating immune cells and immune checkpoints in elderly head-and-neck squamous cell carcinoma patients undergoing definitive (chemo)radiotherapy. Radiat Oncol 2022; 17:181. [DOI: 10.1186/s13014-022-02153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/29/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background and purpose
Tumor-infiltrating lymphocytes (TILs) are associated with locoregional control (LRC) in head-and-neck squamous cell carcinoma (HNSCC) patients undergoing (chemo)radiotherapy. As immunosenescence results in reduced immune activity, the role of TILs in elderly HNSCC patients may differ compared to younger patients, providing a rationale to study the prognostic role of TILs and immune checkpoints (ICs) in this population.
Material and methods
Sixty-three HNSCC patients aged ≥ 65 years undergoing definitive (chemo)radiotherapy between 2010 and 2019 with sufficient material from pre-treatment biopsies were included in the analysis. Immunohistochemical stainings of CD3, CD4, CD8, PD-L1, TIM3, LAG3, TIGIT and CD96, and of osteopontin as an immunosenescence-associated protein were performed. Overall survival (OS) and progression-free survival (PFS) were determined using the Kaplan–Meier method, and Fine-Gray's models were used for locoregional failure (LRF) analyses.
Results
While there was no correlation between patient age and IC expression, osteopontin levels correlated with increasing age (r = 0.322, p < 0.05). Two-year OS, PFS, and LRC were 44%, 34%, and 71%, respectively. Increased LAG3 expression, both intraepithelial (SHR = 0.33, p < 0.05) and stromal (SHR = 0.38, p < 0.05), and elevated stromal TIM3 expression (SHR = 0.32, p < 0.05) corresponded with reduced LRFs. Absent tumoral PD-L1 expression (TPS = 0%) was associated with more LRFs (SHR = 0.28, p < 0.05). There was a trend towards improved LRF rates in elderly patients with increased intraepithelial CD3 + (SHR = 0.52, p = 0.07) and CD8 + (SHR = 0.52, p = 0.09) TIL levels.
Conclusion
LAG3, TIM3 and TPS are promising biomarkers in elderly HNSCC patients receiving (chemo)radiotherapy. Considering the frequency of non-cancer related deaths in this population, the prognostic value of these biomarkers primarily relates to LRC.
Collapse
|
30
|
Zheng K, Wang Y, Wang J, Wang C, Chen J. Integrated analysis of Helicobacter pylori-related prognostic gene modification patterns in the tumour microenvironment of gastric cancer. Front Surg 2022; 9:964203. [PMID: 36248367 PMCID: PMC9561901 DOI: 10.3389/fsurg.2022.964203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Helicobacter pylori (HP) infection is one of the leading causes of gastric cancer (GC). However, the interaction between HP and the TME, and its carcinogenic mechanism remains unknown. METHODS The HP-related prognostic genes were identified based on HP infection-related gene markers and HP infection sample datasets by risk method and NMF algorithm. Principal component analysis (PCA) algorithm was used to constructed the HPscore system. The "limma" R package was employed to determine differentially expressed genes. In addition, the R packages, such as "xCell" and "GSVA", was used to analyze the relationship between the HPscore and tumor microenvironment. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to verify the expression levels of 28 HP-related prognostic genes in tissues. RESULTS We successfully identified 28 HP-related prognostic genes that accurately classified the GC population. There are significant differences in survival between different subgroups (high-, low-risk and cluster_1,2). Thereafter, the HPscore system was constructed to evaluate the signatures of the 28 HP-related prognostic genes. The overall survival rate in the high-HPscore group was poor and immunological surveillance was reduced, whereas the low-HPscore group had a survival advantage and was related to the inflammatory response. HPscore was also strongly correlated with the tumour stage, TME cell infiltration and stemness. The qRT-PCR results showed that DOCK4 expression level of 28 HP-related prognostic genes was higher in gastric cancer tissues than in adjacent tissues. CONCLUSIONS HP signatures play a crucial role in the TME and tumourigenesis. HPscore evaluation of a single tumour sample can help identify the TME characteristics and the carcinogenic mechanism of GC patients infected with HP, based on which personalized treatment can be administered.
Collapse
Affiliation(s)
- Kaitian Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiancheng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Congjun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junqiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Enhanced Recovery After Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
31
|
Sauer N, Szlasa W, Jonderko L, Oślizło M, Kunachowicz D, Kulbacka J, Karłowicz-Bodalska K. LAG-3 as a Potent Target for Novel Anticancer Therapies of a Wide Range of Tumors. Int J Mol Sci 2022; 23:9958. [PMID: 36077354 PMCID: PMC9456311 DOI: 10.3390/ijms23179958] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/20/2022] Open
Abstract
LAG-3 (Lymphocyte activation gene 3) protein is a checkpoint receptor that interacts with LSEC-tin, Galectin-3 and FGL1. This interaction leads to reduced production of IL-2 and IFN-γ. LAG-3 is widely expressed in different tumor types and modulates the tumor microenvironment through immunosuppressive effects. Differential expression in various tumor types influences patient prognosis, which is often associated with coexpression with immune checkpoint inhibitors, such as TIM-3, PD-1 and CTLA-4. Here, we discuss expression profiles in different tumor types. To date, many clinical trials have been conducted using LAG-3 inhibitors, which can be divided into anti-LAG-3 monoclonal antibodies, anti-LAG-3 bispecifics and soluble LAG-3-Ig fusion proteins. LAG-3 inhibitors supress T-cell proliferation and activation by disallowing for the interaction between LAG-3 to MHC-II. The process enhances anti-tumor immune response. In this paper, we will review the current state of knowledge on the structure, function and expression of LAG-3 in various types of cancer, as well as its correlation with overall prognosis, involvement in cell-based therapies and experimental medicine. We will consider the role of compounds targeting LAG-3 in clinical trials both as monotherapy and in combination, which will provide data relating to the efficacy and safety of proposed drug candidates.
Collapse
Affiliation(s)
- Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Laura Jonderko
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | | | | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | |
Collapse
|
32
|
Advances in molecular biomarkers research and clinical application progress for gastric cancer immunotherapy. Biomark Res 2022; 10:67. [PMID: 36042469 PMCID: PMC9426247 DOI: 10.1186/s40364-022-00413-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/20/2022] [Indexed: 11/10/2022] Open
Abstract
Gastric cancer is characterized by high morbidity and mortality worldwide. Early-stage gastric cancer is mainly treated with surgery, while for advanced gastric cancer, the current treatment options remain insufficient. In the 2022 NCCN Guidelines for Gastric Cancer, immunotherapy is listed as a first-line option for certain conditions. Immunotherapy for gastric cancer mainly targets the PD-1 molecule and achieves therapeutic effects by activating T cells. In addition, therapeutic strategies targeting other molecules, such as CTLA4, LAG3, Tim3, TIGIT, and OX40, have also been developed to improve the treatment efficacy of gastric cancer immunotherapy. This review summarizes the molecular biomarkers of gastric cancer immunotherapy and their clinical trials.
Collapse
|
33
|
Kuczkiewicz-Siemion O, Sokół K, Puton B, Borkowska A, Szumera-Ciećkiewicz A. The Role of Pathology-Based Methods in Qualitative and Quantitative Approaches to Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14153833. [PMID: 35954496 PMCID: PMC9367614 DOI: 10.3390/cancers14153833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Immunotherapy has become the filar of modern oncological treatment, and programmed death-ligand 1 expression is one of the primary immune markers assessed by pathologists. However, there are still some issues concerning the evaluation of the marker and limited information about the interaction between the tumour and associated immune cells. Recent studies have focused on cancer immunology to try to understand the complex tumour microenvironment, and multiplex imaging methods are more widely used for this purpose. The presented article aims to provide an overall review of a different multiplex in situ method using spectral imaging, supported by automated image-acquisition and software-assisted marker visualisation and interpretation. Multiplex imaging methods could improve the current understanding of complex tumour-microenvironment immunology and could probably help to better match patients to appropriate treatment regimens. Abstract Immune checkpoint inhibitors, including those concerning programmed cell death 1 (PD-1) and its ligand (PD-L1), have revolutionised the cancer therapy approach in the past decade. However, not all patients benefit from immunotherapy equally. The prediction of patient response to this type of therapy is mainly based on conventional immunohistochemistry, which is limited by intraobserver variability, semiquantitative assessment, or single-marker-per-slide evaluation. Multiplex imaging techniques and digital image analysis are powerful tools that could overcome some issues concerning tumour-microenvironment studies. This novel approach to biomarker assessment offers a better understanding of the complicated interactions between tumour cells and their environment. Multiplex labelling enables the detection of multiple markers simultaneously and the exploration of their spatial organisation. Evaluating a variety of immune cell phenotypes and differentiating their subpopulations is possible while preserving tissue histology in most cases. Multiplexing supported by digital pathology could allow pathologists to visualise and understand every cell in a single tissue slide and provide meaning in a complex tumour-microenvironment contexture. This review aims to provide an overview of the different multiplex imaging methods and their application in PD-L1 biomarker assessment. Moreover, we discuss digital imaging techniques, with a focus on slide scanners and software.
Collapse
Affiliation(s)
- Olga Kuczkiewicz-Siemion
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
- Correspondence: (O.K.-S.); (A.S.-C.)
| | - Kamil Sokół
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Beata Puton
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Aneta Borkowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
- Correspondence: (O.K.-S.); (A.S.-C.)
| |
Collapse
|
34
|
Jia K, Chen Y, Sun Y, Hu Y, Jiao L, Ma J, Yuan J, Qi C, Li Y, Gong J, Gao J, Zhang X, Li J, Zhang C, Shen L. Multiplex immunohistochemistry defines the tumor immune microenvironment and immunotherapeutic outcome in CLDN18.2-positive gastric cancer. BMC Med 2022; 20:223. [PMID: 35811317 PMCID: PMC9272556 DOI: 10.1186/s12916-022-02421-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/30/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The FAST study identified claudin-18 (CLDN18.2) as a promising novel therapeutic target for gastric cancer (GC). However, the tumor immune microenvironment and clinicopathological features of CLDN18.2-positive GC are unclear, making it difficult to develop and optimize CLDN18.2-targeted treatments. METHODS This study included 80 GC patients, 60 of whom received anti-PD-1/PD-L1 treatment. CD4/CD8/CD20/CD66b/CD68/CD163/PD-1/PD-L1/TIM-3/LAG-3/FoxP3/CTLA-4/HLA-DR/STING, and CLDN18.2 were labeled using multiplex immunohistochemistry (m-IHC) to decipher the rate and spatial distribution of T cells, B cells, macrophages, and neutrophils in formalin-fixed, paraffin-embedded tumor tissues isolated from these patients. Tumor immune-microenvironmental features and patient survival stratified by CLDN18.2 expression were analyzed using two independent-sample t-tests and log-rank tests, respectively. RESULTS We considered moderate-to-strong CLDN18.2 expression ≥ 40% of tumor cells as the cut-off for positivity. The proportion of CD8+PD-1-, CD8+LAG-3-, and CD8+TIM-3- T cells was significantly higher in CLDN18.2-positive tumors than in negative tumors (0.039 vs. 0.026, P = 0.009; 0.050 vs.0.035, P = 0.024; 0.045 vs. 0.032, P = 0.038, respectively). In addition, the number of neutrophils (CD66b+) was higher in the CLDN18.2-positive group than in the negative group (0.081 vs. 0.055, P = 0.031, respectively), while the rates of M1 (CD68+CD163-HLA-DR+), M2 macrophages (CD68+CD163+HLA-DR-), and B cells (CD20+) were comparable between the CLDN18.2-positive and negative groups. The average numbers of CD8+PD-1-, CD8+LAG-3-, and CD8+TIM-3-T cells surrounding tumor cells within a 20-μm range were higher in CLDN18.2-positive tumors than in the CLDN18.2-negative tumors (0.16 vs. 0.09, P = 0.011; 0.20 vs. 0.12, P = 0.029; 0.18 vs. 0.12, P = 0.047, respectively). In addition, in the CLDN18.2-positive group, tumor cells surrounded by CD8+PD-1-, CD8+LAG-3- T cells, or M1 macrophages within a 20-μm range accounted for a higher proportion of all tumor cells than those in the CLDN18.2-negative group (10.79% vs. 6.60%, P = 0.015; 12.68% vs. 8.70%, P = 0.049; 9.08% vs. 6.56%, P = 0.033, respectively). These findings suggest that CLDN18.2-positive GC harbors complex immune-microenvironmental features. Additionally, CLDN18.2-positive group had shorter OS and irOS than CLDN18.2-negative group (median OS: 23.33 vs.36.6 months, P < 0.001; median irOS: 10.03 vs. 20.13 months, P = 0.044, respectively). CONCLUSIONS CLDN18.2-positive GC displayed unique immune-microenvironmental characteristics, which is of great significance for the development of CLDN18.2-targeted therapies. However, the impact of CLDN18.2-related microenvironmental features on prognosis requires further investigation.
Collapse
Affiliation(s)
- Keren Jia
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yu Sun
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yajie Hu
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lei Jiao
- Panovue Biotechnology (Beijing) Co., Ltd, Beijing, China
| | - Jie Ma
- Panovue Biotechnology (Beijing) Co., Ltd, Beijing, China
| | - Jiajia Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Changsong Qi
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanyan Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jing Gao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Cheng Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China.
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
35
|
Cole KE, Ly QP, Hollingsworth MA, Cox JL, Fisher KW, Padussis JC, Foster JM, Vargas LM, Talmadge JE. Splenic and PB immune recovery in neoadjuvant treated gastrointestinal cancer patients. Int Immunopharmacol 2022; 106:108628. [PMID: 35203041 PMCID: PMC9009221 DOI: 10.1016/j.intimp.2022.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022]
Abstract
In recent years, immune therapy, notably immune checkpoint inhibitors (ICI), in conjunction with chemotherapy and surgery has demonstrated therapeutic activity for some tumor types. However, little is known about the optimal combination of immune therapy with standard of care therapies and approaches. In patients with gastrointestinal (GI) cancers, especially pancreatic ductal adenocarcinoma (PDAC), preoperative (neoadjuvant) chemotherapy has increased the number of patients who can undergo surgery and improved their responses. However, most chemotherapy is immunosuppressive, and few studies have examined the impact of neoadjuvant chemotherapy (NCT) on patient immunity and/or the optimal combination of chemotherapy with immune therapy. Furthermore, the majority of chemo/immunotherapy studies focused on immune regulation in cancer patients have focused on postoperative (adjuvant) chemotherapy and are limited to peripheral blood (PB) and occasionally tumor infiltrating lymphocytes (TILs); representing a minority of immune cells in the host. Our previous studies examined the phenotype and frequencies of myeloid and lymphoid cells in the PB and spleens of GI cancer patients, independent of chemotherapy regimen. These results led us to question the impact of NCT on host immunity. We report herein, unique studies examining the splenic and PB phenotypes, frequencies, and numbers of myeloid and lymphoid cell populations in NCT treated GI cancer patients, as compared to treatment naïve cancer patients and patients with benign GI tumors at surgery. Overall, we noted limited immunological differences in patients 6 weeks following NCT (at surgery), as compared to treatment naive patients, supporting rapid immune normalization. We observed that NCT patients had a lower myeloid derived suppressor cells (MDSCs) frequency in the spleen, but not the PB, as compared to treatment naive cancer patients and patients with benign GI tumors. Further, NCT patients had a higher splenic and PB frequency of CD4+ T-cells, and checkpoint protein expression, as compared to untreated, cancer patients and patients with benign GI tumors. Interestingly, in NCT treated cancer patients the frequency of mature (CD45RO+) CD4+ and CD8+ T-cells in the PB and spleens was higher than in treatment naive patients. These differences may also be associated, in part with patient stage, tumor grade, and/or NCT treatment regimen. In summary, the phenotypic profile of leukocytes at the time of surgery, approximately 6 weeks following NCT treatment in GI cancer patients, are similar to treatment naive GI cancer patients (i.e., patients who receive adjuvant therapy); suggesting that NCT may not limit the response to immune intervention and may improve tumor responses due to the lower splenic frequency of MDSCs and higher frequency of mature T-cells.
Collapse
Affiliation(s)
- Kathryn E Cole
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Quan P Ly
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Kurt W Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - James C Padussis
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - Jason M Foster
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - Luciano M Vargas
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-4990, USA
| | - James E Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198 USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
36
|
Update on lymphocyte-activation gene 3 (LAG-3) in cancers: from biological properties to clinical applications. Chin Med J (Engl) 2022; 135:1203-1212. [PMID: 35170503 PMCID: PMC9337260 DOI: 10.1097/cm9.0000000000001981] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Immunotherapy that targets checkpoints, especially programmed cell death protein 1 and programmed cell death ligand 1, has revolutionized cancer therapy regimens. The overall response rate to mono-immunotherapy, however, is limited, emphasizing the need to potentiate the efficacy of these regimens. The functions of immune cells are modulated by multiple stimulatory and inhibitory molecules, including lymphocyte activation gene 3 (LAG-3). LAG-3 is co-expressed together with other inhibitory checkpoints and plays key roles in immune suppression. Increasing evidence, particularly in the last 5 years, has shown the potential of LAG-3 blockade in anti-tumor immunity. This review provides an update on the biological properties and clinical applications of LAG-3 in cancers.
Collapse
|
37
|
Shi AP, Tang XY, Xiong YL, Zheng KF, Liu YJ, Shi XG, Lv Y, Jiang T, Ma N, Zhao JB. Immune Checkpoint LAG3 and Its Ligand FGL1 in Cancer. Front Immunol 2022; 12:785091. [PMID: 35111155 PMCID: PMC8801495 DOI: 10.3389/fimmu.2021.785091] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
LAG3 is the most promising immune checkpoint next to PD-1 and CTLA-4. High LAG3 and FGL1 expression boosts tumor growth by inhibiting the immune microenvironment. This review comprises four sections presenting the structure/expression, interaction, biological effects, and clinical application of LAG3/FGL1. D1 and D2 of LAG3 and FD of FGL1 are the LAG3-FGL1 interaction domains. LAG3 accumulates on the surface of lymphocytes in various tumors, but is also found in the cytoplasm in non-small cell lung cancer (NSCLC) cells. FGL1 is found in the cytoplasm in NSCLC cells and on the surface of breast cancer cells. The LAG3-FGL1 interaction mechanism remains unclear, and the intracellular signals require elucidation. LAG3/FGL1 activity is associated with immune cell infiltration, proliferation, and secretion. Cytokine production is enhanced when LAG3/FGL1 are co-expressed with PD-1. IMP321 and relatlimab are promising monoclonal antibodies targeting LAG3 in melanoma. The clinical use of anti-FGL1 antibodies has not been reported. Finally, high FGL1 and LAG3 expression induces EGFR-TKI and gefitinib resistance, and anti-PD-1 therapy resistance, respectively. We present a comprehensive overview of the role of LAG3/FGL1 in cancer, suggesting novel anti-tumor therapy strategies.
Collapse
Affiliation(s)
- An-Ping Shi
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Xi-Yang Tang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yan-Lu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Kai-Fu Zheng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yu-Jian Liu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xian-Gui Shi
- College of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Yao Lv
- College of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Nan Ma
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jin-Bo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
38
|
Zhou C, Zhan G, Jin Y, Chen J, Shen Z, Shen Y, Deng H. A novel pyroptosis-related gene signature to predict outcomes in laryngeal squamous cell carcinoma. Aging (Albany NY) 2021; 13:25960-25979. [PMID: 34910689 PMCID: PMC8751611 DOI: 10.18632/aging.203783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/02/2021] [Indexed: 12/09/2022]
Abstract
Pyroptosis, a pro-inflammatory form of programmed cell death, is associated with carcinogenesis and progression. However, there is little information concerning pyroptosis-related genes (PRGs) in laryngeal squamous cell carcinoma (LSCC). Herein, we aim to explore the prognostic value of PRGs in LSCC. The expression and clinical data of 47 PRGs in LSCC patients were obtained from The Cancer Genome Atlas. A novel prognostic PRG signature was constructed using least absolute shrinkage and selection operator analysis. Receiver operating characteristic (ROC) curves were drawn, and Kaplan-Meier survival Cox proportional hazard regression analyses were performed to measure the predictive capacity of the PRG signature. Furthermore, we constructed a six-PRG signature to divide LSCC patients into high- and low-risk groups. Patients in the high-risk group had worse overall survival than the low-risk group. The area under the time-dependent ROC curve was 0.696 for 1 year, 0.784 for 3 years, and 0.738 for 5 years. We proved that the PRGs signature was an independent predictor for LSCC. Functional enrichment analysis indicated that several immune-related pathways were significantly enriched in the low-risk group. Consistent with this, patients with low-risk scores had higher immune scores and better immunotherapeutic responses than the high-risk group. In conclusion, we established a novel PRGs signature that can predict outcome and response to immunotherapy of LSCC, pyroptosis may be a potential target for LSCC.
Collapse
Affiliation(s)
- Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| | - Guowen Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Yinzhou Second Hospital, Ningbo 315040, Zhejiang, China
| | - Yangli Jin
- Department of Ultrasonography, Ningbo Yinzhou Second Hospital, Ningbo 315040, Zhejiang, China
| | - Jianneng Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo 315200, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| | - Yi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| |
Collapse
|
39
|
Capitani N, Patrussi L, Baldari CT. Nature vs. Nurture: The Two Opposing Behaviors of Cytotoxic T Lymphocytes in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms222011221. [PMID: 34681881 PMCID: PMC8540886 DOI: 10.3390/ijms222011221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
Similar to Janus, the two-faced god of Roman mythology, the tumor microenvironment operates two opposing and often conflicting activities, on the one hand fighting against tumor cells, while on the other hand, favoring their proliferation, survival and migration to other sites to establish metastases. In the tumor microenvironment, cytotoxic T cells-the specialized tumor-cell killers-also show this dual nature, operating their tumor-cell directed killing activities until they become exhausted and dysfunctional, a process promoted by cancer cells themselves. Here, we discuss the opposing activities of immune cells populating the tumor microenvironment in both cancer progression and anti-cancer responses, with a focus on cytotoxic T cells and on the molecular mechanisms responsible for the efficient suppression of their killing activities as a paradigm of the power of cancer cells to shape the microenvironment for their own survival and expansion.
Collapse
|