1
|
Wolf SP, Leisegang M, Steiner M, Wallace V, Kiyotani K, Hu Y, Rosenberger L, Huang J, Schreiber K, Nakamura Y, Schietinger A, Schreiber H. CD4 + T cells with convergent TCR recombination reprogram stroma and halt tumor progression in adoptive therapy. Sci Immunol 2024; 9:eadp6529. [PMID: 39270007 PMCID: PMC11560124 DOI: 10.1126/sciimmunol.adp6529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Cancers eventually kill hosts even when infiltrated by cancer-specific T cells. We examined whether cancer-specific T cell receptors of CD4+ T cells (CD4TCRs) from tumor-bearing hosts can be exploited for adoptive TCR therapy. We focused on CD4TCRs targeting an autochthonous mutant neoantigen that is only presented by stroma surrounding the MHC class II-negative cancer cells. The 11 most common tetramer-sorted CD4TCRs were tested using TCR-engineered CD4+ T cells. Three TCRs were characterized by convergent recombination for which multiple T cell clonotypes differed in their nucleotide sequences but encoded identical TCR α and β chains. These preferentially selected TCRs destroyed tumors equally well and halted progression through reprogramming of the tumor stroma. TCRs represented by single T cell clonotypes were similarly effective only if they shared CDR elements with preferentially selected TCRs in both α and β chains. Selecting candidate TCRs on the basis of these characteristics can help identify TCRs that are potentially therapeutically effective.
Collapse
Affiliation(s)
- Steven P. Wolf
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Matthias Leisegang
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Institute of Immunology, Campus Buch, Charité - Universitätsmedizin Berlin; Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Madeline Steiner
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Veronika Wallace
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research; Tokyo, Japan
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics (CiDIG), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| | - Yifei Hu
- Pritzker School of Molecular Engineering, University of Chicago; Chicago, USA
- Pritzker School of Medicine, University of Chicago; Chicago, USA
| | - Leonie Rosenberger
- Institute of Immunology, Campus Buch, Charité - Universitätsmedizin Berlin; Berlin, Germany
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago; Chicago, USA
- Committees on Cancer Biology and Immunology and the Cancer Center, The University of Chicago; Chicago, USA
| | - Karin Schreiber
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Yusuke Nakamura
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research; Tokyo, Japan
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics (CiDIG), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, USA
| | - Hans Schreiber
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
- Committees on Cancer Biology and Immunology and the Cancer Center, The University of Chicago; Chicago, USA
| |
Collapse
|
2
|
Zou S, Zhang L, Jiang C, Li F, Yang Y, Deng X, Zhang J, Chen H, Jiang L, Cheng X, Deng L, Lin L, Shen B, Wen C, Zhan Q. Driver mutation subtypes involve with differentiated immunophenotypes influencing pancreatic cancer outcomes. Cancer Lett 2024; 599:217134. [PMID: 39094824 DOI: 10.1016/j.canlet.2024.217134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Despite many studies focusing on the prognostic biomarkers in pancreatic adenocarcinomas (PAADs), there is ill-informed about the relationships between their genomic features and immune characteristics. Herein, we deeply investigated the involvement of major driver mutation subtypes with immunophenotypes impacting PAAD outcomes. Based on public data analyses of RNA expression-based immune subtypes in PAAD, in contrast to KRAS G12D & TP53 co-mutant patients with poor outcomes, the best immune subtype C3 (inflammatory) characterized by high Th1/Th2 ratio was relatively enriched in KRASnon-G12DTP53wt patients with better survival, whereas the inferior subtype C2 (IFN-γ dominant) with low Th1/Th2 ratio was more common in the former than in the latter. Moreover, contrary to the highly immunosuppressive microenvironment (high Treg, high ratio of Treg to tumor-specific CD4+ T cell) in KRASG12DTP53mut patients, KRASG12VTP53wt individuals exhibited an inflamed context profiled by multiplex immunohistochemistry. It could be responsible for their outstanding survival advantage over others in postsurgical PAAD patients receiving adjuvant chemotherapy as shown by our cohort. Together, KRASG12VTP53wt may be a promising biomarker for prognostic evaluation and screening certain candidates with PAAD to get desirable survival benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Siyi Zou
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China; Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lei Zhang
- Genecast Biotechnology Co., Ltd, 88 Danshan Road, Xidong Chuangrong Building, Suite C 1310-1318, Xishan District, Wuxi City, Jiangsu, 214104, PR China
| | - Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Fanlu Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China; Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ying Yang
- Genecast Biotechnology Co., Ltd, 88 Danshan Road, Xidong Chuangrong Building, Suite C 1310-1318, Xishan District, Wuxi City, Jiangsu, 214104, PR China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China; Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiao Zhang
- Genecast Biotechnology Co., Ltd, 88 Danshan Road, Xidong Chuangrong Building, Suite C 1310-1318, Xishan District, Wuxi City, Jiangsu, 214104, PR China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China; Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China; Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xueyan Cheng
- Genecast Biotechnology Co., Ltd, 88 Danshan Road, Xidong Chuangrong Building, Suite C 1310-1318, Xishan District, Wuxi City, Jiangsu, 214104, PR China
| | - Lisha Deng
- Genecast Biotechnology Co., Ltd, 88 Danshan Road, Xidong Chuangrong Building, Suite C 1310-1318, Xishan District, Wuxi City, Jiangsu, 214104, PR China
| | - Lin Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China; Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Chenlei Wen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China; Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Qian Zhan
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, PR China; Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
3
|
Chen X, Zhao J, Yue S, Li Z, Duan X, Lin Y, Yang Y, He J, Gao L, Pan Z, Yang X, Su X, Huang M, Li X, Zhao Y, Zhang X, Li Z, Hu L, Tang J, Hao Y, Tian Q, Wang Y, Xu L, Huang Q, Cao Y, Chen Y, Zhu B, Li Y, Bai F, Zhang G, Ye L. An oncolytic virus delivering tumor-irrelevant bystander T cell epitopes induces anti-tumor immunity and potentiates cancer immunotherapy. NATURE CANCER 2024; 5:1063-1081. [PMID: 38609488 PMCID: PMC11286533 DOI: 10.1038/s43018-024-00760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Tumor-specific T cells are crucial in anti-tumor immunity and act as targets for cancer immunotherapies. However, these cells are numerically scarce and functionally exhausted in the tumor microenvironment (TME), leading to inefficacious immunotherapies in most patients with cancer. By contrast, emerging evidence suggested that tumor-irrelevant bystander T (TBYS) cells are abundant and preserve functional memory properties in the TME. To leverage TBYS cells in the TME to eliminate tumor cells, we engineered oncolytic virus (OV) encoding TBYS epitopes (OV-BYTE) to redirect the antigen specificity of tumor cells to pre-existing TBYS cells, leading to effective tumor inhibition in multiple preclinical models. Mechanistically, OV-BYTE induced epitope spreading of tumor antigens to elicit more diverse tumor-specific T cell responses. Remarkably, the OV-BYTE strategy targeting human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory efficiently inhibited tumor progression in a human tumor cell-derived xenograft model, providing important insights into the improvement of cancer immunotherapies in a large population with a history of SARS-CoV-2 infection or coronavirus disease 2019 (COVID-19) vaccination.
Collapse
Affiliation(s)
- Xiangyu Chen
- Institute of Immunological Innovation and Translation, Chongqing Medical University, Chongqing, China
- Changping Laboratory, Beijing, China
| | - Jing Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuai Yue
- Institute of Immunology, Third Military Medical University, Chongqing, China
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Third Military Medical University, Chongqing, China
| | - Ziyu Li
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Xiang Duan
- The State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, MOE Engineering Research Center of Protein and Peptide Medicine, Chemistry and Biomedicine Innovation Center, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Yao Lin
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Junjian He
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Leiqiong Gao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Zhiwei Pan
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xiaofan Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xingxing Su
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Min Huang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xuehui Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhirong Li
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Li Hu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianfang Tang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yaxing Hao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Qin Tian
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yifei Wang
- Institute of Immunological Innovation and Translation, Chongqing Medical University, Chongqing, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Qizhao Huang
- Institute of Immunological Innovation and Translation, Chongqing Medical University, Chongqing, China
| | - Yingjiao Cao
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, MOE Engineering Research Center of Protein and Peptide Medicine, Chemistry and Biomedicine Innovation Center, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China.
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Lilin Ye
- Changping Laboratory, Beijing, China.
- Institute of Immunology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
4
|
Haanen J, Los C, Phan GQ, Betof Warner A. Adoptive Cell Therapy for Solid Tumors: Current Status in Melanoma and Next-Generation Therapies. Am Soc Clin Oncol Educ Book 2024; 44:e431608. [PMID: 38776509 DOI: 10.1200/edbk_431608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Lifileucel or TIL has recently been FDA approved for metastatic melanoma patients as first cell therapy for a solid tumor. We discuss roll-out of TIL as new SOC and other upcoming new cell therapies.
Collapse
Affiliation(s)
- John Haanen
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
- Division of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Christy Los
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Giao Q Phan
- Division of Surgical Oncology, UConn Health, Neag Cancer Center, Farmington, CT
| | - Allison Betof Warner
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
5
|
Klobuch S, Seijkens TTP, Schumacher TN, Haanen JBAG. Tumour-infiltrating lymphocyte therapy for patients with advanced-stage melanoma. Nat Rev Clin Oncol 2024; 21:173-184. [PMID: 38191921 DOI: 10.1038/s41571-023-00848-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Immunotherapy with immune-checkpoint inhibitors (ICIs) and targeted therapy with BRAF and MEK inhibitors have revolutionized the treatment of melanoma over the past decade. Despite these breakthroughs, the 5-year survival rate of patients with advanced-stage melanoma is at most 50%, emphasizing the need for additional therapeutic strategies. Adoptive cell therapy with tumour-infiltrating lymphocytes (TILs) is a therapeutic modality that has, in the past few years, demonstrated long-term clinical benefit in phase II/III trials involving patients with advanced-stage melanoma, including those with disease progression on ICIs and/or BRAF/MEK inhibitors. In this Review, we summarize the current status of TIL therapies for patients with advanced-stage melanoma, including potential upcoming marketing authorization, the characteristics of TIL therapy products, as well as future strategies that are expected to increase the efficacy of this promising cellular immunotherapy.
Collapse
Affiliation(s)
- Sebastian Klobuch
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tom T P Seijkens
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - John B A G Haanen
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands.
- Melanoma Clinic, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
6
|
Bredel D, Tihic E, Mouraud S, Danlos FX, Susini S, Aglave M, Alfaro A, Mohamed-Djalim C, Rouanne M, Halse H, Bigorgne A, Tselikas L, Dalle S, Hartl DM, Baudin E, Guettier C, Vibert E, Rosmorduc O, Robert C, Ferlicot S, Parier B, Albiges L, de Montpreville VT, Besse B, Mercier O, Even C, Breuskin I, Classe M, Radulescu C, Lebret T, Pautier P, Gouy S, Scoazec JY, Zitvogel L, Marabelle A, Bonvalet M. Immune checkpoints are predominantly co-expressed by clonally expanded CD4 +FoxP3 + intratumoral T-cells in primary human cancers. J Exp Clin Cancer Res 2023; 42:333. [PMID: 38057799 DOI: 10.1186/s13046-023-02897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND In addition to anti-PD(L)1, anti-CTLA-4 and anti-LAG-3, novel immune checkpoint proteins (ICP)-targeted antibodies have recently failed to demonstrate significant efficacy in clinical trials. In these trials, patients were enrolled without screening for drug target expression. Although these novel ICP-targeted antibodies were expected to stimulate anti-tumor CD8 + T-cells, the rationale for their target expression in human tumors relied on pre-clinical IHC stainings and transcriptomic data, which are poorly sensitive and specific techniques for assessing membrane protein expression on immune cell subsets. Our aim was to describe ICP expression on intratumoral T-cells from primary solid tumors to better design upcoming neoadjuvant cancer immunotherapy trials. METHODS We prospectively performed multiparameter flow cytometry and single-cell RNA sequencing (scRNA-Seq) paired with TCR sequencing on freshly resected human primary tumors of various histological types to precisely determine ICP expression levels within T-cell subsets. RESULTS Within a given tumor type, we found high inter-individual variability for tumor infiltrating CD45 + cells and for T-cells subsets. The proportions of CD8+ T-cells (~ 40%), CD4+ FoxP3- T-cells (~ 40%) and CD4+ FoxP3+ T-cells (~ 10%) were consistent across patients and indications. Intriguingly, both stimulatory (CD25, CD28, 4-1BB, ICOS, OX40) and inhibitory (PD-1, CTLA-4, PD-L1, CD39 and TIGIT) checkpoint proteins were predominantly co-expressed by intratumoral CD4+FoxP3+ T-cells. ScRNA-Seq paired with TCR sequencing revealed that T-cells with high clonality and high ICP expressions comprised over 80% of FoxP3+ cells among CD4+ T-cells. Unsupervised clustering of flow cytometry and scRNAseq data identified subsets of CD8+ T-cells and of CD4+ FoxP3- T-cells expressing certain checkpoints, though these expressions were generally lower than in CD4+ FoxP3+ T-cell subsets, both in terms of proportions among total T-cells and ICP expression levels. CONCLUSIONS Tumor histology alone does not reveal the complete picture of the tumor immune contexture. In clinical trials, assumptions regarding target expression should rely on more sensitive and specific techniques than conventional IHC or transcriptomics. Flow cytometry and scRNAseq accurately characterize ICP expression within immune cell subsets. Much like in hematology, flow cytometry can better describe the immune contexture of solid tumors, offering the opportunity to guide patient treatment according to drug target expression rather than tumor histological type.
Collapse
Affiliation(s)
- Delphine Bredel
- Gustave Roussy, 114 Rue Édouard Vaillant, 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), 94805, Villejuif, France
| | - Edi Tihic
- Gustave Roussy, 114 Rue Édouard Vaillant, 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) CIC1428, Centre d'Investigation Clinique BIOTHERIS, 94805, Villejuif, France
| | - Séverine Mouraud
- Gustave Roussy, 114 Rue Édouard Vaillant, 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) CIC1428, Centre d'Investigation Clinique BIOTHERIS, 94805, Villejuif, France
| | - François-Xavier Danlos
- Gustave Roussy, 114 Rue Édouard Vaillant, 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) CIC1428, Centre d'Investigation Clinique BIOTHERIS, 94805, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
- Gustave Roussy, Département d'Innovation Thérapeutique Et d'Essais Précoces (DITEP), 94805, Villejuif, France
| | - Sandrine Susini
- Gustave Roussy, 114 Rue Édouard Vaillant, 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) CIC1428, Centre d'Investigation Clinique BIOTHERIS, 94805, Villejuif, France
| | - Marine Aglave
- Gustave Roussy, Plateforme de bioinformatique, F-94805, Villejuif, France
| | - Alexia Alfaro
- Gustave Roussy, Université Paris-Saclay, UMS 23/3655, Plateforme Imagerie Et Cytométrie, Villejuif, France
| | - Chifaou Mohamed-Djalim
- Gustave Roussy, 114 Rue Édouard Vaillant, 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) CIC1428, Centre d'Investigation Clinique BIOTHERIS, 94805, Villejuif, France
| | - Mathieu Rouanne
- Gustave Roussy, 114 Rue Édouard Vaillant, 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) CIC1428, Centre d'Investigation Clinique BIOTHERIS, 94805, Villejuif, France
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA
| | - Héloise Halse
- Gustave Roussy, 114 Rue Édouard Vaillant, 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) CIC1428, Centre d'Investigation Clinique BIOTHERIS, 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1163, Institut Imagine, Université Paris Descartes, 75015, Paris, France
| | - Amélie Bigorgne
- Gustave Roussy, 114 Rue Édouard Vaillant, 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) CIC1428, Centre d'Investigation Clinique BIOTHERIS, 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1163, Institut Imagine, Université Paris Descartes, 75015, Paris, France
| | - Lambros Tselikas
- Gustave Roussy, 114 Rue Édouard Vaillant, 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) CIC1428, Centre d'Investigation Clinique BIOTHERIS, 94805, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
- Gustave Roussy, Université Paris Saclay, Département d'Anesthésie, Chirurgie et Imagerie Interventionnelle, F-94805, Villejuif, France
| | - Stéphane Dalle
- Department of Dermatology, HCL Cancer Institute, Lyon Cancer Research Center, 69495, Lyon, France
| | - Dana M Hartl
- Gustave Roussy, Université Paris Saclay, Département d'Anesthésie, Chirurgie et Imagerie Interventionnelle, F-94805, Villejuif, France
| | - Eric Baudin
- Gustave Roussy, Département d'Oncologie Médicale, F-94805, Villejuif, France
| | - Catherine Guettier
- Université Paris-Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
- Service d'Anatomie Pathologique, Hôpital Bicêtre, AP-HP, 94270, Le Kremlin-Bicêtre, France
- UMR-S 1193, Hôpital Paul Brousse Université Paris Saclay, 94800, Villejuif, France
| | - Eric Vibert
- UMR-S 1193, Hôpital Paul Brousse Université Paris Saclay, 94800, Villejuif, France
- Centre Hépato-Biliaire, Hôpital Paul Brousse, AP-HP, 94800, Villejuif, France
| | - Olivier Rosmorduc
- Centre Hépato-Biliaire, Hôpital Paul Brousse, AP-HP, 94800, Villejuif, France
| | - Caroline Robert
- Université Paris-Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
- Gustave Roussy, Département d'Oncologie Médicale, F-94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U981, Gustave Roussy, 94805, Villejuif, France
| | - Sophie Ferlicot
- Université Paris-Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
- Service d'Anatomie Pathologique, Hôpital Bicêtre, AP-HP, 94270, Le Kremlin-Bicêtre, France
- Centre National de Recherche Scientifique (CNRS), Gustave Roussy, Université Paris-Saclay, UMR 9019, 94805, Villejuif, France
| | - Bastien Parier
- Service de Chirurgie Urologique, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - Laurence Albiges
- Université Paris-Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
- Gustave Roussy, Département d'Oncologie Médicale, F-94805, Villejuif, France
| | | | - Benjamin Besse
- Université Paris-Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
- Gustave Roussy, Département d'Oncologie Médicale, F-94805, Villejuif, France
| | - Olaf Mercier
- Université Paris-Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
- Service de Chirurgie Thoracique Et Transplantation Cardio-Pulmonaire, Hôpital Marie-Lannelongue, UMR_S 999 INSERM, Université Paris-Saclay, GHPSJ, 92350, Le Plessis-Robinson, France
| | - Caroline Even
- Gustave Roussy, Département d'Oncologie Médicale, F-94805, Villejuif, France
| | - Ingrid Breuskin
- Gustave Roussy, Université Paris Saclay, Département d'Anesthésie, Chirurgie et Imagerie Interventionnelle, F-94805, Villejuif, France
| | - Marion Classe
- Gustave Roussy, Département de Biopathologie, F-94805, Villejuif, France
| | - Camélia Radulescu
- Département de Pathologie, Hôpital Foch, UVSQ, Université Paris-Saclay, 92150, Suresnes, France
| | - Thierry Lebret
- Département d'Urologie, Hôpital Foch, UVSQ-Université Paris-Saclay, 92150, Suresnes, France
| | - Patricia Pautier
- Gustave Roussy, Département d'Oncologie Médicale, F-94805, Villejuif, France
| | - Sébastien Gouy
- Gustave Roussy, Université Paris Saclay, Département d'Anesthésie, Chirurgie et Imagerie Interventionnelle, F-94805, Villejuif, France
| | - Jean-Yves Scoazec
- Gustave Roussy, Département de Biopathologie, F-94805, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy, 114 Rue Édouard Vaillant, 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) CIC1428, Centre d'Investigation Clinique BIOTHERIS, 94805, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Aurélien Marabelle
- Gustave Roussy, 114 Rue Édouard Vaillant, 94805, Villejuif, France.
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), 94805, Villejuif, France.
- Institut National de La Santé Et de La Recherche Médicale (INSERM) CIC1428, Centre d'Investigation Clinique BIOTHERIS, 94805, Villejuif, France.
- Université Paris-Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France.
- Gustave Roussy, Département d'Innovation Thérapeutique Et d'Essais Précoces (DITEP), 94805, Villejuif, France.
| | - Mélodie Bonvalet
- Gustave Roussy, 114 Rue Édouard Vaillant, 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), 94805, Villejuif, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) CIC1428, Centre d'Investigation Clinique BIOTHERIS, 94805, Villejuif, France
| |
Collapse
|
7
|
Zemanek T, Nova Z, Nicodemou A. Tumor-Infiltrating Lymphocytes and Adoptive Cell Therapy: State of the Art in Colorectal, Breast and Lung Cancer. Physiol Res 2023; 72:S209-S224. [PMID: 37888965 PMCID: PMC10669950 DOI: 10.33549/physiolres.935155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/07/2023] [Indexed: 12/01/2023] Open
Abstract
Our knowledge of tumor-infiltrating lymphocytes (TILs) is dramatically expanding. These cells have proven prognostic and therapeutic value for many cancer outcomes and potential to treat also disseminated breast, colorectal, or lung cancer. However, the therapeutical outcome of TILs is negatively affected by tumor mutational burden and neoantigens. On the other hand, it can be improved in combination with checkpoint blockade therapy. This knowledge and rapid detection techniques alongside gene editing allow us to classify and modify T cells in many ways. Hence, to tailor them precisely to the patient´s needs as to program T cell receptors to recognize specific tumor-associated neoantigens and to insert them into lymphocytes or to select tumor neoantigen-specific T cells, for the development of vaccines that recognize tumor-specific antigens in tumors or metastases. Further studies and clinical trials in the field are needed for an even better-detailed understanding of TILs interactions and aiming in the fight against multiple cancers.
Collapse
Affiliation(s)
- T Zemanek
- Lambda Life, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
8
|
Bossio SN, Abrate C, Tosello Boari J, Rodriguez C, Canale FP, Ramello MC, Brunotto V, Richer W, Rocha D, Sedlik C, Vincent-Salomon A, Borcoman E, Del Castillo A, Gruppi A, Fernandez E, Acosta Rodríguez EV, Piaggio E, Montes CL. CD39 + conventional CD4 + T cells with exhaustion traits and cytotoxic potential infiltrate tumors and expand upon CTLA-4 blockade. Oncoimmunology 2023; 12:2246319. [PMID: 37885970 PMCID: PMC10599196 DOI: 10.1080/2162402x.2023.2246319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/03/2023] [Accepted: 08/05/2023] [Indexed: 10/28/2023] Open
Abstract
Conventional CD4+ T (Tconv) lymphocytes play important roles in tumor immunity; however, their contribution to tumor elimination remains poorly understood. Here, we describe a subset of tumor-infiltrating Tconv cells characterized by the expression of CD39. In several mouse cancer models, we observed that CD39+ Tconv cells accumulated in tumors but were absent in lymphoid organs. Compared to tumor CD39- counterparts, CD39+ Tconv cells exhibited a cytotoxic and exhausted signature at the transcriptomic level, confirmed by high protein expression of inhibitory receptors and transcription factors related to the exhaustion. Additionally, CD39+ Tconv cells showed increased production of IFNγ , granzyme B, perforin and CD107a expression, but reduced production of TNF. Around 55% of OVA-specific Tconv from B16-OVA tumor-bearing mice, expressed CD39. In vivo CTLA-4 blockade induced the expansion of tumor CD39+ Tconv cells, which maintained their cytotoxic and exhausted features. In breast cancer patients, CD39+ Tconv cells were found in tumors and in metastatic lymph nodes but were less frequent in adjacent non-tumoral mammary tissue and not detected in non-metastatic lymph nodes and blood. Human tumor CD39+ Tconv cells constituted a heterogeneous cell population with features of exhaustion, high expression of inhibitory receptors and CD107a. We found that high CD4 and ENTPD1 (CD39) gene expression in human tumor tissues correlated with a higher overall survival rate in breast cancer patients. Our results identify CD39 as a biomarker of Tconv cells, with characteristics of both exhaustion and cytotoxic potential, and indicate CD39+ Tconv cells as players within the immune response against tumors.
Collapse
Affiliation(s)
- Sabrina N. Bossio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Carolina Abrate
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Jimena Tosello Boari
- Institut Curie Research Center, Translational Research Department, INSERM U932, PSL Research University, Paris, France
| | - Constanza Rodriguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Fernando P. Canale
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - María C. Ramello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Valentina Brunotto
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Wilfrid Richer
- Institut Curie Research Center, Translational Research Department, INSERM U932, PSL Research University, Paris, France
| | - Dario Rocha
- Centro de Investigación y desarrollo en inmunología y enfermedades infecciosas (CIDIE-CONICET), Argentina
| | - Christine Sedlik
- Institut Curie Research Center, Translational Research Department, INSERM U932, PSL Research University, Paris, France
| | - Anne Vincent-Salomon
- Diagnostic and Theranostic Medicine Division, Institut Curie, PSL Research University, Paris, France
| | - Edith Borcoman
- Department of Medical Oncology, Institut Curie, Paris, France
| | | | - Adriana Gruppi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Elmer Fernandez
- Centro de Investigación y desarrollo en inmunología y enfermedades infecciosas (CIDIE-CONICET), Argentina
| | - Eva V. Acosta Rodríguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Eliane Piaggio
- Institut Curie Research Center, Translational Research Department, INSERM U932, PSL Research University, Paris, France
| | - Carolina L. Montes
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| |
Collapse
|
9
|
Strobl J, Haniffa M. Functional heterogeneity of human skin-resident memory T cells in health and disease. Immunol Rev 2023; 316:104-119. [PMID: 37144705 PMCID: PMC10952320 DOI: 10.1111/imr.13213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The human skin is populated by a diverse pool of memory T cells, which can act rapidly in response to pathogens and cancer antigens. Tissue-resident memory T cells (TRM ) have been implicated in range of allergic, autoimmune and inflammatory skin diseases. Clonal expansion of cells with TRM properties is also known to contribute to cutaneous T-cell lymphoma. Here, we review the heterogeneous phenotypes, transcriptional programs, and effector functions of skin TRM . We summarize recent studies on TRM formation, longevity, plasticity, and retrograde migration and contextualize the findings to skin TRM and their role in maintaining skin homeostasis and altered functions in skin disease.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of DermatologyMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular MedicineViennaAustria
| | - Muzlifah Haniffa
- Wellcome Sanger InstituteCambridgeUK
- Department of Dermatology and NIHR Newcastle Biomedical Research CentreNewcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
10
|
Javid H, Attarian F, Saadatmand T, Rezagholinejad N, Mehri A, Amiri H, Karimi-Shahri M. The therapeutic potential of immunotherapy in the treatment of breast cancer: Rational strategies and recent progress. J Cell Biochem 2023; 124:477-494. [PMID: 36966454 DOI: 10.1002/jcb.30402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/25/2023] [Accepted: 03/12/2023] [Indexed: 03/27/2023]
Abstract
The second leading cause of cancer death in women worldwide is breast cancer (BC), and despite significant advances in BC therapies, a significant proportion of patients develop metastasis and disease recurrence. Currently used treatments, like radiotherapy, chemotherapy, and hormone replacement therapy, result in poor responses and high recurrence rates. Alternative therapies are therefore needed for this type of cancer. Cancer patients may benefit from immunotherapy, a novel treatment strategy in cancer treatment. Even though immunotherapy has been successful in many cases, some patients do not respond to the treatment or those who do respond relapse or progress. The purpose of this review is to discuss several different immunotherapy approaches approved for the treatment of BC, as well as different strategies for immunotherapy for the treatment of BC.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Attarian
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Toktam Saadatmand
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | | | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Amiri
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
11
|
van den Bulk J, van der Ploeg M, Ijsselsteijn ME, Ruano D, van der Breggen R, Duhen R, Peeters KCMJ, Fariña-Sarasqueta A, Verdegaal EME, van der Burg SH, Duhen T, de Miranda NFCC. CD103 and CD39 coexpression identifies neoantigen-specific cytotoxic T cells in colorectal cancers with low mutation burden. J Immunother Cancer 2023; 11:jitc-2022-005887. [PMID: 36792124 PMCID: PMC9933759 DOI: 10.1136/jitc-2022-005887] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Expression of CD103 and CD39 has been found to pinpoint tumor-reactive CD8+ T cells in a variety of solid cancers. We aimed to investigate whether these markers specifically identify neoantigen-specific T cells in colorectal cancers (CRCs) with low mutation burden. EXPERIMENTAL DESIGN Whole-exome and RNA sequencing of 11 mismatch repair-proficient (MMR-proficient) CRCs and corresponding healthy tissues were performed to determine the presence of putative neoantigens. In parallel, tumor-infiltrating lymphocytes (TILs) were cultured from the tumor fragments and, in parallel, CD8+ T cells were flow-sorted from their respective tumor digests based on single or combined expression of CD103 and CD39. Each subset was expanded and subsequently interrogated for neoantigen-directed reactivity with synthetic peptides. Neoantigen-directed reactivity was determined by flow cytometric analyses of T cell activation markers and ELISA-based detection of IFN-γ and granzyme B release. Additionally, imaging mass cytometry was applied to investigate the localization of CD103+CD39+ cytotoxic T cells in tumors. RESULTS Neoantigen-directed reactivity was only encountered in bulk TIL populations and CD103+CD39+ (double positive, DP) CD8+ T cell subsets but never in double-negative or single-positive subsets. Neoantigen-reactivity detected in bulk TIL but not in DP CD8+ T cells could be attributed to CD4+ T cells. CD8+ T cells that were located in direct contact with cancer cells in tumor tissues were enriched for CD103 and CD39 expression. CONCLUSION Coexpression of CD103 and CD39 is characteristic of neoantigen-specific CD8+ T cells in MMR-proficient CRCs with low mutation burden. The exploitation of these subsets in the context of adoptive T cell transfer or engineered T cell receptor therapies is a promising avenue to extend the benefits of immunotherapy to an increasing number of CRC patients.
Collapse
Affiliation(s)
- Jitske van den Bulk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manon van der Ploeg
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ruud van der Breggen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rebekka Duhen
- Basic Immunology Lab, Earle A Chiles Research Institute, Portland, Oregon, USA
| | - Koen C M J Peeters
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Els M E Verdegaal
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Duhen
- Anti-Cancer Immune Response Lab, Earle A Chiles Research Institute, Portland, Oregon, USA
| | | |
Collapse
|
12
|
Hudson WH, Wieland A. Technology meets TILs: Deciphering T cell function in the -omics era. Cancer Cell 2023; 41:41-57. [PMID: 36206755 PMCID: PMC9839604 DOI: 10.1016/j.ccell.2022.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Accepted: 09/15/2022] [Indexed: 01/17/2023]
Abstract
T cells are at the center of cancer immunology because of their ability to recognize mutations in tumor cells and directly mediate cancer cell killing. Immunotherapies to rejuvenate exhausted T cell responses have transformed the clinical management of several malignancies. In parallel, the development of novel multidimensional analysis platforms, such as single-cell RNA sequencing and high-dimensional flow cytometry, has yielded unprecedented insights into immune cell biology. This convergence has revealed substantial heterogeneity of tumor-infiltrating immune cells in single tumors, across tumor types, and among individuals with cancer. Here we discuss the opportunities and challenges of studying the complex tumor microenvironment with -omics technologies that generate vast amounts of data, highlighting the opportunities and limitations of these technologies with a particular focus on interpreting high-dimensional studies of CD8+ T cells in the tumor microenvironment.
Collapse
Affiliation(s)
- William H Hudson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Andreas Wieland
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
13
|
Massa D, Tosi A, Rosato A, Guarneri V, Dieci MV. Multiplexed In Situ Spatial Protein Profiling in the Pursuit of Precision Immuno-Oncology for Patients with Breast Cancer. Cancers (Basel) 2022; 14:4885. [PMID: 36230808 PMCID: PMC9562913 DOI: 10.3390/cancers14194885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many solid tumors. In breast cancer (BC), immunotherapy is currently approved in combination with chemotherapy, albeit only in triple-negative breast cancer. Unfortunately, most patients only derive limited benefit from ICIs, progressing either upfront or after an initial response. Therapeutics must engage with a heterogeneous network of complex stromal-cancer interactions that can fail at imposing cancer immune control in multiple domains, such as in the genomic, epigenomic, transcriptomic, proteomic, and metabolomic domains. To overcome these types of heterogeneous resistance phenotypes, several combinatorial strategies are underway. Still, they can be predicted to be effective only in the subgroups of patients in which those specific resistance mechanisms are effectively in place. As single biomarker predictive performances are necessarily suboptimal at capturing the complexity of this articulate network, precision immune-oncology calls for multi-omics tumor microenvironment profiling in order to identify unique predictive patterns and to proactively tailor combinatorial treatments. Multiplexed single-cell spatially resolved tissue analysis, through precise epitope colocalization, allows one to infer cellular functional states in view of their spatial organization. In this review, we discuss-through the lens of the cancer-immunity cycle-selected, established, and emerging markers that may be evaluated in multiplexed spatial protein panels to help identify prognostic and predictive patterns in BC.
Collapse
Affiliation(s)
- Davide Massa
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Anna Tosi
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| |
Collapse
|
14
|
Kousar K, Ahmad T, Naseer F, Kakar S, Anjum S. Review Article: Immune Landscape and Immunotherapy Options in Cervical Carcinoma. Cancers (Basel) 2022; 14:4458. [PMID: 36139618 PMCID: PMC9496890 DOI: 10.3390/cancers14184458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Carcinoma of the cervix is one of the most common cancers that claims women's lives every year. Despite preventive HPV vaccines and conventional cancer treatments, approximately 273,000 women succumb to cervical carcinoma every year. Immune system perturbations help malignant cells in immune evasion, tumor establishment, invasion, and metastasis. An insight into immune system players that promote or suppress cervical cancer is important for the development of more targeted therapies with the fewest side effects. Immunotherapy has emerged as the most compliant approach to target cancer because it utilizes a natural course of action to stimulate the immune system against cancer cells. The major immunotherapy approaches for cervical carcinoma include monoclonal antibodies, immune checkpoint blockade therapy, adoptive cell transfer therapies, and oncolytic viruses. In October 2021 the FDA approved pembrolizumab in combination with chemotherapy or bevacizumab as a first-line treatment for cervical cancer. A recent breakthrough has been made in the cancer immunotherapy regimen in which a monoclonal antibody dostarlimab was able to completely cure all colorectal cancer patients, with disease-free progression after 6 months and counting. This creates hope that immunotherapy may prove to be the final nail in the coffin of this centuries-long prevalent disease of "cancer".
Collapse
Affiliation(s)
- Kousain Kousar
- Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Tahir Ahmad
- Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Faiza Naseer
- Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad 44000, Pakistan
| | - Salik Kakar
- Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
- School of Health Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Sadia Anjum
- Department of Biology, University of Hail, Hail 81442, Saudi Arabia
| |
Collapse
|
15
|
Veatch JR, Lee SM, Shasha C, Singhi N, Szeto JL, Moshiri AS, Kim TS, Smythe K, Kong P, Fitzgibbon M, Jesernig B, Bhatia S, Tykodi SS, Hall ET, Byrd DR, Thompson JA, Pillarisetty VG, Duhen T, McGarry Houghton A, Newell E, Gottardo R, Riddell SR. Neoantigen-specific CD4 + T cells in human melanoma have diverse differentiation states and correlate with CD8 + T cell, macrophage, and B cell function. Cancer Cell 2022; 40:393-409.e9. [PMID: 35413271 PMCID: PMC9011147 DOI: 10.1016/j.ccell.2022.03.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/23/2021] [Accepted: 03/14/2022] [Indexed: 12/29/2022]
Abstract
CD4+ T cells that recognize tumor antigens are required for immune checkpoint inhibitor efficacy in murine models, but their contributions in human cancer are unclear. We used single-cell RNA sequencing and T cell receptor sequences to identify signatures and functional correlates of tumor-specific CD4+ T cells infiltrating human melanoma. Conventional CD4+ T cells that recognize tumor neoantigens express CXCL13 and are subdivided into clusters expressing memory and T follicular helper markers, and those expressing cytolytic markers, inhibitory receptors, and IFN-γ. The frequency of CXCL13+ CD4+ T cells in the tumor correlated with the transcriptional states of CD8+ T cells and macrophages, maturation of B cells, and patient survival. Similar correlations were observed in a breast cancer cohort. These results identify phenotypes and functional correlates of tumor-specific CD4+ T cells in melanoma and suggest the possibility of using such cells to modify the tumor microenvironment.
Collapse
Affiliation(s)
- Joshua R Veatch
- Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Sylvia M Lee
- Department of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Carolyn Shasha
- Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Naina Singhi
- Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Julia L Szeto
- Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ata S Moshiri
- Department of Dermatology, University of Washington, Seattle, WA, USA
| | - Teresa S Kim
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Kimberly Smythe
- Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Paul Kong
- Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Matthew Fitzgibbon
- Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brenda Jesernig
- Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shailender Bhatia
- Department of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Scott S Tykodi
- Department of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Evan T Hall
- Department of Medical Oncology, University of Washington, Seattle, WA, USA
| | - David R Byrd
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - John A Thompson
- Department of Medical Oncology, University of Washington, Seattle, WA, USA
| | | | - Thomas Duhen
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - A McGarry Houghton
- Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Evan Newell
- Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Raphael Gottardo
- Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stanley R Riddell
- Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|