1
|
Yang H, Xuan L, Wang S, Luo H, Duan X, Guo J, Cui S, Xin J, Hao J, Li X, Chen J, Sun F, Hu X, Li S, Zhang Y, Jiao L, Yang B, Sun L. LncRNA CCRR maintains Ca 2+ homeostasis against myocardial infarction through the FTO-SERCA2a pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1601-1619. [PMID: 38761356 DOI: 10.1007/s11427-023-2527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/11/2024] [Indexed: 05/20/2024]
Abstract
Cardiac conduction regulatory RNA (CCRR) has been documented as an antiarrhythmic lncRNA in our earlier investigation. This study aimed to evaluate the effects of CCRR on SERCA2a and the associated Ca2+ homeostasis in myocardial infarction (MI). Overexpression of CCRR via AAV9-mediated delivery not only partially reversed ischemia-induced contractile dysfunction but also alleviated abnormal Ca2+ homeostasis and reduced the heightened methylation level of SERCA2a following MI. These effects were also observed in CCRR over-expressing transgenic mice. A conserved sequence domain of CCRR mimicked the protective function observed with the full length. Furthermore, silencing CCRR in healthy mice led to intracellular Ca2+ overloading of cardiomyocytes. CCRR increased SERCA2a protein stability by upregulating FTO expression. The direct interaction between CCRR and FTO protein was characterized by RNA-binding protein immunoprecipitation (RIP) analysis and RNA pulldown experiments. Activation of NFATc3 was identified as an upstream mechanism responsible for CCRR downregulation in MI. This study demonstrates that CCRR is a protective lncRNA that acts by maintaining the function of FTO, thereby reducing the m6A RNA methylation level of SERCA2a, ultimately preserving calcium homeostasis for myocardial contractile function in MI. Therefore, CCRR may be considered a promising therapeutic strategy with a beneficial role in cardiac pathology.
Collapse
Affiliation(s)
- Hua Yang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lina Xuan
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shengjie Wang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Huishan Luo
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaomeng Duan
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jianjun Guo
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shijia Cui
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jieru Xin
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Junwei Hao
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiufang Li
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jun Chen
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Feihan Sun
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaolin Hu
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Siyun Li
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying Zhang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lei Jiao
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Baofeng Yang
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Lihua Sun
- Department of Pharmacology, Harbin Medical University (State Key Laboratory of Frigid Zone Cardiovascular Disease, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
E Y, Zhang X, Ma H, Dong F. Long Non-coding RNA Prader Willi/Angelman Region RNA 6 Suppresses Glioma Development by Modulating MicroRNA-106a-5p. Biochem Genet 2024; 62:1365-1378. [PMID: 37610693 DOI: 10.1007/s10528-023-10479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023]
Abstract
As one of the most frequent intracranial tumors, glioma showed invasive development and poor prognosis. lncRNAs have been illustrated to serve as biomarkers in various cancers. Whether the long non-coding RNA Prader Willi/Angelman region RNA 6 (PWAR6) was involved in glioma development and the underlying mechanism was investigated. PWAR6 in glioma was evaluated by polymerase chain reaction and its clinical significance was assessed with a series of statistical analyses. The biological function of PWAR6 was investigated with the cell counting kit 8 and Transwell assay. The potential underlying mechanism was studied with the luciferase reporter assay. The significant downregulation of PWAR6 was observed in glioma, which showed a close relationship with the major clinicopathological features and poor prognosis of patients. PWAR6 restrained cell growth, migration and invasion of glioma, which was alleviated by the overexpression of microRNA-106a-5p (miR-106a-5p). PWAR6 functioned as a prognostic biomarker and tumor suppressor of glioma through regulating miR-106a-5p.
Collapse
Affiliation(s)
- Yongjun E
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121000, Liaoning, China
| | - Xianglin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121000, Liaoning, China.
| | - Heji Ma
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121000, Liaoning, China
| | - Furen Dong
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121000, Liaoning, China
| |
Collapse
|
3
|
Li G, Feng Z, Song H, Wang Y, Zhu L, Li Y. Long non-coding RNA expression in PBMCs of patients with active pulmonary tuberculosis. Front Microbiol 2023; 14:1257267. [PMID: 38156018 PMCID: PMC10753990 DOI: 10.3389/fmicb.2023.1257267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023] Open
Abstract
Purpose Mycobacterium tuberculosis (Mtb) infection is the primary cause of the chronic infectious illness tuberculosis (TB). Long non-coding RNAs (lncRNAs) are functional RNA molecules that cannot be translated into proteins and play a crucial role in regulating the immune system's innate and adaptive responses. It has been demonstrated that the dysregulation of lncRNA expression is associated with various human diseases. However, the mechanism underlying the involvement of so many lncRNAs in the immune response to TB infection remains unclear. The objective of our current study was to identify a number of significantly differentially expressed lncRNAs in peripheral blood mononuclear cells (PBMCs) from TB patients and to select the most indicative lncRNAs as potential biomarkers for active pulmonary tuberculosis. Methods Microarray analysis was performed to determine the lncRNA and mRNA expression profiles in TB patients using a case-control model. The differentially expressed lncRNAs were subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to investigate potential roles and pathways associated with the pathogenesis of TB infection, and to screen lncRNAs specifically linked to TB infection. Using real-time fluorescence quantitative PCR (QRT-PCR), specific lncRNAs were identified in TB patients and latent infections. Results Our findings revealed that various signaling pathways were differentially expressed in TB-infected individuals, suggesting a potential role for lncRNAs in the immunological responses driven by TB infection. This study provides crucial guidelines for future functional research. Upregulated lncRNAs were mainly enriched in Neutrophil extracellular trap formation and Chemokine signaling pathways, while downregulated lncRNAs were enriched in Neuroactive ligand-receptor interaction and Cushing syndrome in TB PBMCs. Furthermore, we found that lnc-XPNPEP1-5, lnc-CASKIN2-2, lnc-HSPA13-6, lnc-CLIC5-1, and LINC02502 were significantly downregulated in TB-infected patients, while LINC00528, lnc-SLC45A4-3, and LINC00926 were significantly upregulated in TB patients and latent infections. These eight lncRNAs, identified as novel biological marker candidates for diagnosing TB infection, were validated by real-time fluorescence quantitative PCR (QRT-PCR). Conclusion The abnormally expressed lncRNAs identified in this research may provide crucial information for understanding the pathophysiological characteristics of TB patients and the dysfunction of PBMCs. Our findings reveal potential targets for early TB diagnosis and therapy, as well as offer new insights into the mechanisms underlying TB infection.
Collapse
Affiliation(s)
- Guoli Li
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Zhelong Feng
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Honghuan Song
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yajing Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Limei Zhu
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yan Li
- Integrated Service and Management Office, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
4
|
Chen Y, Chen C, Gao G, Zeng C, Chen Z, Lin G, Yao G, Nian S, Chen X, Weng S, Gu X, Lin C. Identification and validation of N6-methyladenosine (m6A)-related lncRNAs signature for predicting the prognosis of laryngeal carcinoma, especially for smoking patients. Front Genet 2023; 14:1292164. [PMID: 38028627 PMCID: PMC10666777 DOI: 10.3389/fgene.2023.1292164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Laryngeal cancer (LC), a highly fatal tumor in the head and neck region, has been the focus of research in recent years. The study of LC has primarily focused on the role of long non-coding RNAs (lncRNAs) in regulating gene expression, as they have emerged as pivotal factors in this biological process. Additionally, a reversible RNA modification called N6-methyladenosine (m6A) has been observed to have a significant impact on gene expression as well. The purpose of this research is to investigate the impact of m6A-related lncRNAs on the prognosis of laryngeal squamous cell carcinoma (LSCC). Specifically, this investigation analyzed the m6A-related regulators' patterns of expression and mutation, encompassing a total of 15 regulators. Drawing upon the expression levels of prognostic m6A-regulated lncRNAs, two distinct lncRNA clusters were identified. Further analysis revealed differentially expressed lncRNAs between these clusters. In addition to studying the expression of lncRNAs, the researchers also examined the distribution of clinical characteristics and the tumor microenvironment (TME) in relation to the identified lncRNA clusters. This provided valuable insights into potential associations between lncRNA expression patterns and the clinical features of LSCC. Through the establishment of a risk model associated with lncRNAs, we were able to further investigate their clinical features, prognosis, and immune status. Additionally, we conducted a separate analysis of LINC00528, a lncRNA associated with smoking, examining its expression, overall survival time, correlated mRNAs, and conducting enrichment of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), as well as determining the sensitivity of related drugs. RT-qPCR results also indicated an increase in LINC00528 expression among smoking LSCC patients. The findings suggest that a high expression level of LINC00528 in LSCC patients may lead to a more favorable prognosis, providing new insights for the management and treatment of LSCC patients, particularly those with high expression of LINC00528. Overall, this research sheds light on the prognostic impact of m6A-regulated lncRNAs in LSCC. The implications of these findings for the advancement of innovative therapeutic approaches for LSCC patients are noteworthy.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Chenyu Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Gufeng Gao
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Chaojun Zeng
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Zhifeng Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Gongbiao Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Guangnan Yao
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Shenqing Nian
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Xihang Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Simin Weng
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Xi Gu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| | - Chang Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Clinical Medical Research Center for Ear, Nose and Throat Difficulty Diseases, Fuzhou, Fujian, China
| |
Collapse
|
5
|
An F, Sun B, Liu Y, Wang C, Wang X, Wang J, Liu Y, Yan C. Advances in understanding effects of miRNAs on apoptosis, autophagy, and pyroptosis in knee osteoarthritis. Mol Genet Genomics 2023; 298:1261-1278. [PMID: 37914978 DOI: 10.1007/s00438-023-02077-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs. MicroRNAs-mediated signaling pathways play a critical regulatory role in inducing apoptosis, autophagy, and pyroptosis in developing knee osteoarthritis (KOA). Given this, we searched databases, such as PubMed, using keywords including "miRNA," "knee osteoarthritis," "apoptosis," "autophagy," "pyroptosis", and their combinations. Through an extensive literature review, we conclude that miRNAs can be modulated through various signaling pathways, such as Wnt/β-catenin, TGF-β, PI3K/AKT/mTOR, and NLRP3/Caspase-1, to regulate apoptosis, autophagy, and pyroptosis in KOA. Furthermore, we note that P2X7R and HMGB1 may be crucial regulatory molecules involved in the interconnected regulation of apoptosis, autophagy, and pyroptosis in KOA. Additionally, we describe that miR-140-5p and miR-107 can modulate the advancement of KOA chondrocytes by targeting distinct molecules involved in apoptosis, autophagy, and pyroptosis, respectively. Therefore, we conclude that miRNAs may be potential biomarkers and therapeutic targets for the early prediction, diagnosis, and effective therapeutic approaches of KOA.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China
| | - Bai Sun
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China
| | - Ying Liu
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China
| | - Chunmei Wang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China
| | - Xiaxia Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China
| | - Jiayu Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China
| | - Yongqi Liu
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China.
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China.
- Research Center of Traditional Chinese Medicine of Gansu, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China.
| |
Collapse
|
6
|
Shen Y, Jiang B, Luo B, Jiang X, Zhang Y, Wang Q. Circular RNA-FK501 binding protein 51 boosts bone marrow mesenchymal stem cell proliferation and osteogenic differentiation via modulating microRNA-205-5p/Runt-associated transcription factor 2 axis. J Orthop Surg Res 2023; 18:782. [PMID: 37853466 PMCID: PMC10583363 DOI: 10.1186/s13018-023-04242-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023] Open
Abstract
OBJECTIVE Osteogenesis is the key process of bone homeostasis differentiation. Numerous studies have manifested that circular RNA (circRNA) is a critical regulator of osteogenesis. The research was to explore circRNA-mediated mechanisms in osteogenesis. METHODS Bone marrow mesenchymal stem cells (BMSCs) were cultured and induced to osteogenic differentiation (OD). Then, oe-circ-FKBP5, oe-NC, si-circ-FKBP5, si-NC, miR-205-5p mimic, mimic NC, miR-205-5p inhibitor, inhibitor NC, sh-RUNX2, or sh-NC were transfected into BMSCs. Alkaline phosphatase (ALP) activity was detected by ALP staining, cell mineralization was detected by alizarin red staining, cell proliferation was detected by CCK-8, and cell apoptosis was detected by flow cytometry. Then, the expression of circ-FKBP5, miR-205-5p, RUNX2 and osteogenic marker genes was detected by RT-qPCR, and the expression of RUNX2 protein was detected by Western blot. Finally, the targeting relationship between miR-205-5p and circ-FKBP5 or RUNX2 was verified by bioinformation website analysis and dual luciferase reporter gene detection. RESULTS Circ-FK501 binding protein 51 (FKBP5) was distinctly elevated during OD of BMSCs. Elevated circ-FKBP5 boosted the proliferation and OD, as well as expression of osteogenic marker genes while reduced apoptosis of BMSCs. Down-regulation of circ-FKBP5 inhibited BMSCs proliferation, OD and osteogenic marker gene expression, and promoted apoptosis of BMSCs. Subsequently, circ-FKBP5 combined with miR-205-5p and constrained miR-205-5p expression. Silenced miR-205-5p boosted proliferation, OD, and expression of osteogenic marker genes and suppressed apoptosis of BMSCs. However, up-regulation of miR-205-5p inhibited BMSC proliferation, OD and osteogenic marker gene expression, and promoted apoptosis. Additionally, miR-205-5p targeted Runt-associated transcription factor 2 (RUNX2). Repression of RUNX2 turned around the effect of circ-FKBP5 overexpression on BMSCs. CONCLUSION In brief, circ-FKBP5 boosted BMSC proliferation and OD by mediating the miR-205-5p/RUNX2 axis.
Collapse
Affiliation(s)
- Yingchao Shen
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, Changshu City, 210023, Jiangsu Province, China
| | - Bo Jiang
- Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, Suzhou City, 215004, Jiangsu Province, China
| | - Bin Luo
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, Changshu City, 210023, Jiangsu Province, China
| | - Xiaowei Jiang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, Changshu City, 210023, Jiangsu Province, China.
| | - Yang Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, No. 99, South Third Ring Road, Changshu City, 215500, Jiangsu Province, China.
| | - Qiang Wang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, Changshu City, 210023, Jiangsu Province, China
| |
Collapse
|
7
|
An F, Wang X, Wang C, Liu Y, Sun B, Zhang J, Gao P, Yan C. Research progress on the role of lncRNA-miRNA networks in regulating adipogenic and osteogenic differentiation of bone marrow mesenchymal stem cells in osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1210627. [PMID: 37645421 PMCID: PMC10461560 DOI: 10.3389/fendo.2023.1210627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
Osteoporosis (OP) is characterized by a decrease in osteoblasts and an increase in adipocytes in the bone marrow compartment, alongside abnormal bone/fat differentiation, which ultimately results in imbalanced bone homeostasis. Bone marrow mesenchymal stem cells (BMSCs) can differentiate into osteoblasts and adipocytes to maintain bone homeostasis. Several studies have shown that lncRNAs are competitive endogenous RNAs that form a lncRNA-miRNA network by targeting miRNA for the regulation of bone/fat differentiation in BMSCs; this mechanism is closely related to the corresponding treatment of OP and is important in the development of novel OP-targeted therapies. However, by reviewing the current literature, it became clear that there are limited summaries discussing the effects of the lncRNA-miRNA network on osteogenic/adipogenic differentiation in BMSCs. Therefore, this article provides a review of the current literature to explore the impact of the lncRNA-miRNA network on the osteogenic/adipogenic differentiation of BMSCs, with the aim of providing a new theoretical basis for the treatment of OP.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaxia Wang
- School of Tradional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunmei Wang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ying Liu
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bai Sun
- School of Tradional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
8
|
Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, Xu H, Asemi Z. Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract 2023; 248:154669. [PMID: 37422971 DOI: 10.1016/j.prp.2023.154669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Heart failure is a condition that affects the cardio vascular system and occurs if the heart cannot adequately pump the oxygen and blood to the body. Myocardial infarction, reperfusion injury, and this disease is the only a few examples of the numerous cardiovascular illnesses that are impacted by the closely controlled cell deletion process known as apoptosis. Attention has been paid to the creation of alternative diagnostic and treatment modalities for the condition. Recent evidences have shown that some non-coding RNAs (ncRNAs) influence the stability of proteins, control of transcription factors, and HF apoptosis through a variety of methods. Exosomes make a significant paracrine contribution to the regulation of illnesses as well as to the communication between nearby and distant organs. However, it has not yet been determined whether exosomes regulate the cardiomyocyte-tumor cell interaction in ischemia HF to limit the vulnerability of malignancy to ferroptosis. Here, we list the numerous ncRNAs in HF that are connected to apoptosis. In addition, we emphasize the significance of exosomal ncRNAs in the HF.
Collapse
Affiliation(s)
- Ketao Li
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Liping Ma
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhe'jiang 310000, China
| | - Laixing Yan
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing 400051, China
| | - Bing Wang
- Department of cardiology, Zouping People's Hospital, Zouping, Shandong 256299, China
| | - Huiju Xu
- Department of cardiology, Hangzhou Mingzhou Hospital, Hangzhou, Zhe'jiang 311215, China.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
9
|
Chen Y, Zhou W, Gong Y, Ou X. Identification of ASF1B as a prognostic marker for liver cancer by meta-analysis and its immune value revealed by a comprehensive pan-cancer analysis of 33 human cancers. PRZEGLAD GASTROENTEROLOGICZNY 2023; 18:249-265. [PMID: 37937108 PMCID: PMC10626391 DOI: 10.5114/pg.2023.124423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2023]
Abstract
Introduction As one of the most common malignant tumours, liver cancer is difficult to detect in the early stage, with strong metastasis and poor prognosis. Anti-silencing function protein 1 was originally discovered in yeast as a histone H3-H4 chaperone, and studies have shown that ASF1B may be a target for inhibiting the growth of hepatocellular carcinoma cells. Aim To evaluate the diagnostic and prognostic significance of ASF1B expression in human LIHC on the basis of TCGA data. Material and methods A meta-analysis revealed that high ASF1B expression was strongly associated with better overall survival. A comprehensive pan-cancer analysis of 33 human cancers revealed the immunotherapeutic value of ASF1B. Results In this study, we observed a significant upregulation of ASF1B expression in LIHC samples compared to non-cancer samples. Clinical analysis showed that high expression of ASF1B was associated with age, tumour status, and clinical stage. Survival analysis showed that patients with high ASF1B expression had worse overall survival and progression-free survival than patients with low ASF1B expression. The AUCs of the 1-year, 3-year, and 5-year survival-related ROC curves were 0.672, 0.590, and 0.591, respectively. Conclusions Our study shows that ASF1B may provide new ideas for the diagnosis and prognosis of liver cancer patients, as well as providing a new direction for the application of ASF1B in tumour immunotherapy.
Collapse
Affiliation(s)
- Yiyang Chen
- Department of Hepatopancreatobiliary Surgery, Anhui Medical University, College of Clinical College of Shenzhen Hospital of Peking University, China
| | - Wanbang Zhou
- Department of Hepatopancreatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yiju Gong
- Department of Hepatopancreatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xi Ou
- Department of Hepatopancreatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
10
|
Ye L, Wang L, Zeng Y. LINC00511
aggravates the malignancy of lung adenocarcinoma through sponging
microRNA miR
‐4739 to regulate pyrroline‐5‐carboxylate reductase 1 expression. J Clin Lab Anal 2022; 36:e24760. [DOI: 10.1002/jcla.24760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Lu Ye
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College China National Nuclear Corporation 416 Hospital Chengdu China
| | - Linxiu Wang
- Department of Orthopedics, The Second Affiliated Hospital of Chengdu Medical College China National Nuclear Corporation 416 Hospital Chengdu China
| | - Yu Zeng
- Department of Oncology, Jintang First People's Hospital West China Hospital Sichuan University Jintang Hospital Chengdu China
| |
Collapse
|
11
|
González-López P, Ares-Carral C, López-Pastor AR, Infante-Menéndez J, González Illaness T, Vega de Ceniga M, Esparza L, Beneit N, Martín-Ventura JL, Escribano Ó, Gómez-Hernández A. Implication of miR-155-5p and miR-143-3p in the Vascular Insulin Resistance and Instability of Human and Experimental Atherosclerotic Plaque. Int J Mol Sci 2022; 23:ijms231810253. [PMID: 36142173 PMCID: PMC9499612 DOI: 10.3390/ijms231810253] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Cardiovascular diseases (CVDs) are the main cause of death in developed countries, being atherosclerosis, a recurring process underlying their apparition. MicroRNAs (miRNAs) modulate the expression of their targets and have emerged as key players in CVDs; (2) Methods: 18 miRNAs were selected (Pubmed and GEO database) for their possible role in promoting atherosclerosis and were analysed by RT-qPCR in the aorta from apolipoprotein E-deficient (ApoE−/−) mice. Afterwards, the altered miRNAs in the aorta from 18 weeks-ApoE−/− mice were studied in human aortic and carotid samples; (3) Results: miR-155-5p was overexpressed and miR-143-3p was downregulated in mouse and human atherosclerotic lesions. In addition, a significant decrease in protein kinase B (AKT), target of miR-155-5p, and an increase in insulin-like growth factor type II receptor (IGF-IIR), target of miR-143-3p, were noted in aortic roots from ApoE−/− mice and in carotid plaques from patients with advanced carotid atherosclerosis (ACA). Finally, the overexpression of miR-155-5p reduced AKT levels and its phosphorylation in vascular smooth muscle cells, while miR-143-3p overexpression decreased IGF-IIR reducing apoptosis in vascular cells; (4) Conclusions: Our results suggest that miR-155-5p and miR-143-3p may be implicated in insulin resistance and plaque instability by the modulation of their targets AKT and IGF-IIR, contributing to the progression of atherosclerosis.
Collapse
Affiliation(s)
- Paula González-López
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Carla Ares-Carral
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Andrea R. López-Pastor
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jorge Infante-Menéndez
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Tamara González Illaness
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Melina Vega de Ceniga
- Department of Angiology and Vascular Surgery, Hospital de Galdakao-Usansolo, 48960 Galdakao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Leticia Esparza
- Department of Angiology and Vascular Surgery, Hospital de Galdakao-Usansolo, 48960 Galdakao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Nuria Beneit
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - José Luis Martín-Ventura
- IIS-Fundation Jimenez-Diaz, Autonoma University of Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Óscar Escribano
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (Ó.E.); (A.G.-H.); Tel.: +34-91-3941853 (Ó.E. & A.G.-H.)
| | - Almudena Gómez-Hernández
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (Ó.E.); (A.G.-H.); Tel.: +34-91-3941853 (Ó.E. & A.G.-H.)
| |
Collapse
|
12
|
Wan J, Lin S, Yu Z, Song Z, Lin X, Xu R, Du S. Protective Effects of MicroRNA-200b-3p Encapsulated by Mesenchymal Stem Cells-Secreted Extracellular Vesicles in Myocardial Infarction Via Regulating BCL2L11. J Am Heart Assoc 2022; 11:e024330. [PMID: 35699193 PMCID: PMC9238663 DOI: 10.1161/jaha.121.024330] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Extracellular vesicles (EVs) are a popular treatment candidate for myocardial injury. This work investigated the effects of mesenchymal stem cells (MSCs)-secreted EVs-derived miR-200b-3p on cardiomyocyte apoptosis and inflammatory response after myocardial infarction (MI) through targeting BCL2L11 (Bcl-2-like protein 11) . Methods and Results EVs from MSCs were isolated and identified. EVs from MSCs with transfection of miR-200b-3p for overexpression were injected into MI mice. The effect of miR-200b-3p on cardiac function, infarction area, myocardial fibrosis, cardiomyocyte apoptosis, and inflammatory response was determined in MI mice. The targeting relationship between miR-200b-3p and BCL2L11 was verified, and the interaction between BCL2L11 and NLR family pyrin domain containing 1 (NLRP1) was also verified. MI mice were injected with an overexpressing BCL2L11 lentiviral vector to clarify whether BCL2L11 can regulate the effect of miR-200b-3p on MI mice. EVs from MSCs were successfully extracted. MSCs-EVs improved cardiac function and reduced infarction area, apoptosis of cardiomyocytes, myocardial fibrosis, and inflammation in MI mice. Upregulation of miR-200b-3p further enhanced the effects of MSCs-EVs on the myocardial injury of MI mice. BCL2L11 was targeted by miR-200b-3p and bound to NLRP1. Upregulation of BCL2L11 negated the role of miR-200b-3p-modified MSCs-EVs in MI mice. Conclusions A summary was obtained that miR-200b-3p-encapsulated MSCs-EVs protect against MI-induced apoptosis of cardiomyocytes and inflammation via suppressing BCL2L11.
Collapse
Affiliation(s)
- Jun Wan
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Shaoyan Lin
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Zhuo Yu
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Zhengkun Song
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Xuefeng Lin
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Rongning Xu
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Songlin Du
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| |
Collapse
|
13
|
Liu C, Xu R. Dexmedetomidine protects H9C2 rat cardiomyocytes against hypoxia/reoxygenation injury by regulating the long non-coding RNA colon cancer-associated transcript 1/microRNA-8063/Wnt/β-catenin axis. Bioengineered 2022; 13:13300-13311. [PMID: 35635079 PMCID: PMC9275899 DOI: 10.1080/21655979.2022.2080420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dexmedetomidine (Dex) protects the heart from ischemia/reperfusion (I/R) injury. The differential expression of long non-coding RNAs (lncRNAs) is associated with myocardial injury, but whether the lncRNA colon cancer-associated transcript 1 (CCAT1) is associated with Dex-mediated myocardial protection remains unclear. In this study, a hypoxia/reoxygenation (H/R) H9C2 model was established to simulate the in vitro characteristics of I/R. CCAT1 and microRNA (miR)-8063 expression levels in H/R H9C2 cells pretreated with Dex were determined via quantitative reverse transcription-polymerase chain reaction. The survival and apoptotic rates of H9C2 cells were determined via cell counting kit-8 and flow cytometry assays. Wnt3a, Wnt5a, and β-catenin protein levels were measured via western blotting. Luciferase and RNA immunoprecipitation assays were used to explore the binding relationship between miR-8063 and CCAT1. Dex pretreatment increased H/R H9C2 cell viability and CCAT1 expression, while decreasing the cell apoptosis and Wnt3a, Wnt5a, and β-catenin protein levels. Knockdown of CCAT1 abolished the protective effects of Dex on H/R H9C2 cells, and the downregulation of miR-8063 expression eliminated the effect of CCAT1 knockdown. These results revealed that CCAT1, a sponge for miR-8063, is involved in Dex-mediated H9C2 cell H/R injury by negatively targeting miR-8063 and inactivating the Wnt/β-catenin pathway. Dex protects H9C2 cells from H/R impairment by regulating the lncRNA CCAT1/miR-8063/Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Chundong Liu
- Department of Anesthesiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Rui Xu
- Department of Anesthesiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| |
Collapse
|
14
|
Fu Q, Wang F, Yang J, Sun W, Hu Z, Xu L, Chu H, Wang X, Zhang W. Long non-coding RNA-PCGEM1 contributes to prostate cancer progression by sponging microRNA miR-129-5p to enhance chromatin licensing and DNA replication factor 1 expression. Bioengineered 2022; 13:9411-9424. [PMID: 35412947 PMCID: PMC9162030 DOI: 10.1080/21655979.2022.2059936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022] Open
Abstract
PCGEM1 facilitates prostate cancer (PCa) progression. This study aimed to elucidate the mechanism of action of PCGEM1 in PCa. The expression of PCGEM1, microRNA miR-129-5p, chromatin licensing, and DNA replication factor 1 (CDT1) was detected by quantitative reverse transcription-PCR (qRT-PCR). A series of function experiments including cell counting kit-8 (CCK-8), caspase-3 activity, and cell cycle assays were performed to evaluate the influence of PCGEM1, miR-129-5p, and CDT1 on the biological processes of PCa cells. CyclinD1, cyclin dependent kinase 4 (CDK4), Bax, and Bcl-2 protein levels were measured by western blotting. Subcellular isolation revealed the distribution of PCa cells. The connections between PCGEM1, miR-129-5p, and CDT1 were evaluated by luciferase, RIP assay, and Pearson correlation analysis. Both PCGEM1 and CDT1 were upregulated in PCa, while miR-129-5p was downregulated and negatively correlated with PCGEM1 and CDT1. Downregulation of PCGEM1 or CDT1 inhibited the viability, promoted apoptosis and cycle arrest of PCa cells in vitro, and controlled tumor growth in vivo. PCGEM1 plays a crucial role in the progression of PCa by sponging miR-129-5p as a ceRNA of CDT1. PCGEM1 is a CDT1-dependent PCa promoter site that absorbs miR-129-5p.
Collapse
Affiliation(s)
- Qiao Fu
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Fangfang Wang
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Jun Yang
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Wei Sun
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Zhi Hu
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Lv Xu
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Hao Chu
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Xiao Wang
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Wei Zhang
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| |
Collapse
|
15
|
Identification of Prognostic Markers of N6-Methylandenosine-Related Noncoding RNAs in Non-Small-Cell Lung Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3657349. [PMID: 35401751 PMCID: PMC8993551 DOI: 10.1155/2022/3657349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022]
Abstract
Background Non-small-cell lung cancer (NSCLC) is a major type of lung carcinoma that threatens the health and life of humans worldwide. We aimed to establish an n6-methyladenosine (m6A)-relevant ncRNA model to effectively evaluate the outcome of patients. Methods m6A-Related ncRNAs (lncRNA/miRNA) were acquired from the UCSC Xena database. Pearson's correlation analysis among 21 m6A regulatory factors and ncRNAs were implemented to explore m6A-relevant ncRNAs. Weighted gene co-expression network analysis (WGCNA) identified hub modules of gene associated with prognosis of NSCLC patients. Univariate Cox regression analysis identified 80 m6A-related ncRNAs. Least absolute shrinkage and selector operation (LASSO) filtered out redundant factors and established a risk score model (m6A-NSCLC) in the TCGA training data set. Validation of prognostic ability was performed using testing data sets from the TCGA database. We also conducted a correlation analysis among the risk score and different clinical traits. Both univariate and multivariate Cox analyses were combined to verify prognostic factors which have independent value, and a nomogram on the basis of m6A-NSCLC risk scores and clinical traits was constructed to assess the prognosis of patients. In addition, we screened differentially expressed genes (DEGs) based on different risk scores and performed enrichment analysis. Finally, 21 m6A regulators were detected to be differentially expressed between two risk groups. Results An m6A-NSCLC risk model with 18 ncRNAs was constructed. By comparison with low-risk patients, high-risk score patients had poor prognosis. The distribution of risk score in the tumor size and extent (T), number of near lymph nodes (N), clinical stage, sex, and tumor types was significantly different. The risk score could act as an independent prognostic factor with the nomogram assessing overall survival in NSCLC. DEGs inherent to cell movement and immune regulation were involved in NSCLC development. Furthermore, 18 of 21 m6A regulators were differentially expressed, implying their correlation to survival prognosis. Conclusion The m6A-NSCLC could be effectively utilized for evaluation of prognosis of patients.
Collapse
|
16
|
Ding C, Shi T, Wu G, Man J, Han H, Cui Y. The anti-cancer role of microRNA-143 in papillary thyroid carcinoma by targeting high mobility group AT-hook 2. Bioengineered 2022; 13:6629-6640. [PMID: 35213273 PMCID: PMC8973723 DOI: 10.1080/21655979.2022.2044277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Papillary thyroid carcinoma (PTC), a common thyroid cancer (TC) subtype, rapidly increases in occurrence. MicroRNAs (miRNAs), which are non-coding small RNAs, have been demonstrated to play a role in cancer pathogenic mechanisms. Although miR-143 is involved in suppressing certain malignant tumor progression, its biological role is unknown in PTC. The present study found that miR-143 levels were strongly lower in PTC patient samples and cell lines, implying that miR-143 may play a biological role in PTC. Down-regulation of miR-143 resulted in the increased expression of HMGA2. Furthermore, HMGA2 was found to be a direct target of miR-143. A dual-luciferase assay confirmed a direct binding site for miR-143 was confirmed on HMGA2 using a dual-luciferase assay. Next, over-expression of miR-143 suppressed PTC cell growth as analyzed by MTT, clone formation, and Ki-67 immunofluorescence staining assays. miR-143 mimics transfection downregulated the expression of PCNA, CDK4, CDK1, and Cyclin E1. In addition, wound healing and trans-well assays revealed that miR-143 up-regulation inhibited PTC cells invasion and migration. Co-transfection of HMGA2 expression vector restored HMGA2 expression and rescued PTC cells proliferation capability in miR-143 mimics transfected PTC cells, indicating that miR-143 inhibited PTC cells proliferation via HMGA2. These observations were also obtained in xenografts experiments in nude mice. Altogether, our study shed light on miR-143ʹs anti-cancer biological functions in PTC progression through targeting HMGA2, suggesting that restoration of miR-143 could be a potential therapeutic approach for PTC treatment.
Collapse
Affiliation(s)
- Chao Ding
- Departments of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tiefeng Shi
- Departments of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gang Wu
- Departments of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianting Man
- Departments of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongyu Han
- Departments of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunfu Cui
- Departments of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
17
|
Huang T, Wang Y, Li M, Wang W, Qi Z, Li J. Circular RNA hsa_circ_0119412 contributes to tumorigenesis of gastric cancer via the regulation of the miR-1298-5p/zinc finger BED-type containing 3 (ZBED3) axis. Bioengineered 2022; 13:5827-5842. [PMID: 35200111 PMCID: PMC8974131 DOI: 10.1080/21655979.2022.2036406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Circular RNAs (circRNAs) are associated with the progression of gastric cancer (GC). This study investigates the regulation of the circular RNA, hsa_circ_0119412 in GC and its effects on GC cells. The expression of hsa_circ_0119412, microRNA (miR)-1298-5p, and zinc finger BED-type containing 3 (ZBED3) were measured by quantitative reverse transcription-PCR (qRT-PCR) and Western blotting. The cell counting kit-8 (CCK-8) assay, flow cytometry, transwell, and animal assays were performed to identify the roles of hsa_circ_0119412, miR-1298-5p, and ZBED3 in the viability, apoptosis, invasion, and growth of GC cells. The relationship between hsa_circ_0119412, miR-1298-5p, and ZBED3 was confirmed by luciferase, RNA immunoprecipitation (RIP), and RNA pull-down assays. Our data revealed that hsa_circ_0119412 and ZBED3 expression was upregulated in GC, while miR-1298-5p expression was downregulated. Both the knockdown of hsa_circ_0119412/ZBED3 and miR-1298-5p overexpression inhibited GC cell growth and invasion, and enhanced cell apoptosis, while miR-1298-5p interference or ZBED3 overexpression showed the opposite trend. Mechanistically, hsa_circ_0119412 sponges miR-1298-5p, which regulates ZBED3 expression. Silencing hsa_circ_0119412 inhibits the progression of GC, at least in part, by targeting the miR-1298-5p/ZBED3 axis.
Collapse
Affiliation(s)
- Ting Huang
- Department of Oncology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yacheng Wang
- Department of Oncology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miao Li
- Department of Oncology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenjie Wang
- Department of Oncology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhaozhen Qi
- Department of Oncology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Li
- Department of Oncology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
18
|
Tang W, Zhang L, Li J, Guan Y. AFAP1 antisense RNA 1 promotes retinoblastoma progression by sponging microRNA miR-545-3p that targets G protein subunit beta 1. Bioengineered 2022; 13:5638-5652. [PMID: 35193469 PMCID: PMC8974164 DOI: 10.1080/21655979.2022.2033464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The oncogenic role of actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) has been reported in retinoblastoma (RB). However, the underlying regulatory mechanisms remain poorly understood. In this study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting were performed to analyze the expression of AFAP1-AS1, microRNA miR-545-3p, or G protein subunit beta 1 (GNB1). Cell Counting Kit-8 (CCK-8) and Transwell migration assays were used to detect cell proliferation and migration. In addition, caspase-3 activity was monitored by caspase-3 activity assay. Luciferase reporter assays combined with RNA immunoprecipitation (RIP) and pull-down assays were performed to elucidate the target relationship between miR-545-3p and AFAP1-AS1 or GNB1. Xenograft tumor experiments were performed to evaluate RB cell growth in vivo. Increased AFAP1-AS1 and GNB1 expression in RB tissues and cells was confirmed by RT-qPCR; conversely, miR-545-3p was found to be downregulated in RB tissues and cells. AFAP1-AS1 overexpression resulted in increased proliferation and migration of RB cells, whereas AFAP1-AS1 silencing resulted in decreased proliferation and migration of RB cells. Moreover, AFAP1-AS1 was found to target miR-545-3p. The anti-miR-545-3p treatment phenocopied the effect of AFAP1-AS1 overexpression and promoted RB cell growth in vivo. miR-545-3p was found to directly target GNB1. GNB1 silencing resulted in reduced proliferation and migration of RB cells and attenuated the oncogenic effect of the miR-545-3p inhibitor. Thus, in this study, a novel ceRNA regulation network of AFAP1-AS1 in RB was identified, where AFAP1-AS1 regulated GNB1 expression by targeting miR-545-3p, ultimately driving RB progression.
Collapse
Affiliation(s)
- Wenting Tang
- Department of Ophthalmology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Li Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jing Li
- Department of Ophthalmology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yu Guan
- Department of Ophthalmology, Nuclear Industry 416th Hospital, Chengdu, China
| |
Collapse
|
19
|
Ji F, Dai C, Xin M, Zhang J, Zhang Y, Liu S. Long intergenic non-protein coding RNA 115 (LINC00115) aggravates retinoblastoma progression by targeting microRNA miR-489-3p that downregulates 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2). Bioengineered 2022; 13:5330-5343. [PMID: 35184643 PMCID: PMC8973781 DOI: 10.1080/21655979.2022.2037362] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Fang Ji
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Chunhua Dai
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Meng Xin
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Jing Zhang
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yuru Zhang
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shu Liu
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| |
Collapse
|
20
|
Cheng Z, Hong J, Tang N, Liu F, Gu S, Feng Z. Long non-coding RNA p53 upregulated regulator of p53 levels (PURPL) promotes the development of gastric cancer. Bioengineered 2022; 13:1359-1376. [PMID: 35012438 PMCID: PMC8805877 DOI: 10.1080/21655979.2021.2017588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gastric cancer (GC), one of the most prevalent malignancies across the world, has an increasing incidence rate. Long non-coding RNA (lncRNA) PURPL (also referred to as LINC01021) has been demonstrated to influence malignant GC behaviors and partake in other cancers. Notwithstanding, reports pertaining to the underlying mechanism of PURPL in GC haven’t been rarely seen. Presently, in-vivo and ex-vivo experiments were implemented to examine the PURPL-miR-137-ZBTB7A-PI3K-AKT-NF-κB regulatory axis in GC. Our statistics revealed that PURPL presented a high expression in GC tissues and cell lines. PURPL overexpression remarkably exacerbated colony formation, migration, and invasion and repressed apoptosis in GC cells (AGS and MNK-45). In-vivo experiments also corroborated that cell growth was boosted by PURPL up-regulation. Mechanistic investigations verified that PURPL interacted with miR-137 and lowered its profile in GC cell lines. miR-137 overexpression or ZBTB7A knockdown upended the oncogenic function mediated by PURPL. PURPL initiated the PI3K/AKT/NF-κB pathway. PI3K and NF-κB inhibition impaired the promoting impact on GC cells elicited by PURPL overexpression and contributed to PURPL down-regulation. These findings disclosed that PURPL serves as an oncogene in the context of GC via miR-137-ZBTB7A-PI3K-AKT-NF-κB axis modulation.
Collapse
Affiliation(s)
- Zhonghua Cheng
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jing Hong
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Nan Tang
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Fenghua Liu
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shuo Gu
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhen Feng
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
21
|
Liu W, Lin W, Yu L. Long non-coding RNA muscleblind like splicing regulator 1 antisense RNA 1 (LncRNA MBNL1-AS1) promotes the progression of acute myocardial infarction by regulating the microRNA-132-3p/SRY-related high-mobility-group box 4 (SOX4) axis. Bioengineered 2022; 13:1424-1435. [PMID: 34978261 PMCID: PMC8805923 DOI: 10.1080/21655979.2021.2018974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNA muscleblind like splicing regulator 1 antisense RNA 1 (LncRNA MBNL1-AS1) exerts vital role in various physiological processes. However, its functions in acute myocardial infarction (AMI) are not elucidated. AMI model was constructed using Wistar rats and it was found that LncRNA MBNL1-AS1 was upregulated in AMI model according to the quantitative real-time polymerase chain reaction (qRT-PCR) results. The left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP) and maximum rate of rise/fall of left ventricle pressure (±dp/dt max) were detected through hemodynamics test, which showed that knockdown of MBNL1-AS1 improved cardiac function in AMI model. Next, the myocardial infarction area was estimated by triphenyltetrazole chloride (TTC) staining, and the levels of cardiac troponin I (cTn-I) and creatine kinase-MB (CK-MB) were detected by enzyme-linked immunosorbent assay (ELISA) kit. The results revealed that silencing MBLN1-AS1 alleviated myocardial injury in AMI model. Additionally, MBNL1-AS1 knockdown inhibited apoptosis of myocardial cells and reduced the expression of apoptotic proteins. According to DIANA database and luciferase reporter assay, miR-132-3p was the direct target of MBNL1-AS1 and was negatively regulated by MBNL1-AS1. Furthermore, Targetscan database predicted that SRY-related high-mobility-group box 4 (SOX4) was the direct target of miR-132-3p and was regulated by MBNL1-AS1 through miR-132-3p. Moreover, overexpression of SOX4 partially eliminated effects of MBNL1-AS1 on myocardial cells. In conclusion, this investigation for the first time revealed that LncRNA MBNL1-AS1 was the potential target for treating AMI and expounded the underlying mechanisms of it.
Collapse
Affiliation(s)
- Weifeng Liu
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao Medical College, Qingdao University, Yantai, China
| | - Wenyuan Lin
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao Medical College, Qingdao University, Yantai, China
| | - Liangliang Yu
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao Medical College, Qingdao University, Yantai, China
| |
Collapse
|
22
|
Song Z, Wang J. LncRNA ASMTL-AS1/microRNA-1270 differentiate prognostic groups in gastric cancer and influence cell proliferation, migration and invasion. Bioengineered 2022; 13:1507-1517. [PMID: 34986743 PMCID: PMC8805870 DOI: 10.1080/21655979.2021.2021063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to determine the expression levels of ASMTL-AS1 and miR-1270 in gastric cancer, and to explore whether ASMTL-AS1 and miR-1270 is associated with cancer prognosis and progression or not. ASMTL-AS1 and miR-1270 expression were quantified in gastric cancer tissues and adjacent normal tissues (n = 167) and cell lines. The potential of ASMTL-AS1 and miR-1270 as prognostic biomarkers was evaluated by the receiver operating characteristic (ROC) curve, Kaplan-Meier, and multivariate Cox regression analyses. The binding between ASMTL-AS1 and miR-1270 was verified by the Luciferase reporter assay and RNA pull-down assay. Functional roles of ASMTL-AS1/miR-1270 on cells were investigated in HGC-27 and NCI-N87 cells by MTS viability, Transwell migration, and Matrigel invasion assay. ASMTL-AS1 was significantly downregulated while miR-1270 was upregulated in gastric cancer tissues as compared with normal tissue and cell lines. According to the studies, ASMTL-AS1 and miR-1270 were related to unfavorable clinical parameters, such as the advanced TNM stage. Downregulated ASMTL-AS1 and upregulated miR-1270 were associated with reduced 5-year overall survival. Functional studies suggested that ASMTL-AS1 inhibits proliferation, migration, and invasion of HGC-27 and NCI-N87 cells by regulation of miR-1270. In summary, ASMTL-AS1 and miR-1270 are associated with poor prognosis of patients with gastric cancer. ASMTL-AS1 inhibited gastric cancer progression by regulating miR-1270. Therefore, ASMTL-AS1/miR-1270 may be a potential prognostic biomarker and novel strategy for gastric cancer targeted therapy.
Collapse
Affiliation(s)
- Zhenhe Song
- Department of Gastroenterology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Jian Wang
- Department of Laboratory, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| |
Collapse
|
23
|
Zhang J, Lei H, Li X. The protective effects of S14G-humanin (HNG) against mono-sodium urate (MSU) crystals- induced gouty arthritis. Bioengineered 2022; 13:345-356. [PMID: 34965184 PMCID: PMC8805931 DOI: 10.1080/21655979.2021.2001911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
Gout is a common and complex form of arthritis that has brought great inconveniences to the normal lives of patients. It is reported that oxidative stress and nod-like receptor family protein 3 (NLRP3) inflammasome-mediated inflammatory reactions are involved in the pathogenesis of gout arthritis. S14G-humanin (S14G-HNG) is a modified peptide of HNG with higher inhibitory activity on the accumulation and deposition of Aβ. Recently, S14G-HNG has been reported to exert great anti-inflammatory effects. The present study proposed to explore the possible therapeutic property of S14G-HNG against gout arthritis. An animal model was established by stimulation with mono-sodium urate (MSU) crystals, followed by treatment with colchicine and S14G-HNG, respectively. The elevated Gait score promoted synovitis score and activated myeloperoxidase (MPO) observed in MSU crystals-treated mice were significantly reversed by colchicine and S14G-HNG. Bone marrow-derived macrophages (BMDMs) were isolated from mice and stimulated with MSU crystals, followed by being treated with 25 and 50 μM S14G-HNG. The increased mitochondrial reactive oxygen species (ROS) and Malondialdehyde (MDA) levels, upregulated NADPH oxidase-4 (NOX-4), activated NLRP3 inflammasome, and elevated production of inflammatory factors in MSU crystals-treated BMDMs were dramatically reversed by S14G-HNG, accompanied by the upregulation of sirtuin type-1 (SIRT1). Lastly, the protective effects of S14G-HNG against MSU crystals-induced NLRP3 inflammasome activation were significantly abolished by the knockdown of SIRT1. In conclusion, our data reveal that S14G-HNG could possess potential benefits against MSU crystals-induced gout arthritis, with colchicine displaying a better effect.
Collapse
Affiliation(s)
- Jihui Zhang
- Department of Rheumatism and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Hongwei Lei
- Department of Rheumatism and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Xiu Li
- Department of Rheumatism and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, China
| |
Collapse
|
24
|
Liu Y, Sun J, Qi P, Liu Y. Long non-coding RNA titin-antisense RNA1 contributes to growth and metastasis of cholangiocarcinoma by suppressing microRNA-513a-5p to upregulate stratifin. Bioengineered 2021; 12:12611-12624. [PMID: 34903127 PMCID: PMC8810091 DOI: 10.1080/21655979.2021.2011014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cholangiocarcinoma (CCA) is one of the most common histological types of primary hepatic malignancy and is associated with poor overall prognosis, causing a ponderous burden on human life. Hence, it is necessary to elucidate the pathogenesis of CCA. The objective of our research was to shed light on the mechanism through which long non-coding RNA titin-antisense RNA1 (lncRNA TTN-AS1) is involved in the development of CCA. Reverse transcription quantitative polymerase chain reaction was used to detect TTN-AS1 expression in CCA samples and cells. Functional experiments were performed using the Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, transwell, and in vivo tumor growth assays. The relationship between TTN-AS1, miR-513a-5p, and stratifin (SFN) was explored using a dual luciferase reporter assay, RNA immunoprecipitation (RIP) experiment, and Pearson correlation analysis. The result showed that TTN-AS1 and SFN are highly expressed in CCA tissues. Bioinformatics analysis, luciferase reporter and RIP experiments revealed the correlation between TTN-AS1, miR-513a-5p, and SFN. In addition, silencing TTN-AS1 mitigated CCA cell proliferation and migration. Mechanistically, miR-513a-5p is sponged by TTN-AS1. The miR-513a-5p inhibitor abolished the effect of TTN-AS1 silencing on the aggressive behaviors of CCA cells. Furthermore, we showed that miR-513a-5p is a regulator of CCA by targeting SFN. TTN-AS1 induced CCA cell growth and metastasis via the miR-513a-5p/SFN pathway, which offers a new strategy for therapeutic interventions for CCA.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hepatobiliary Surgery, Huanggang Center Hospital, Huanggang, Hubei, China
| | - Jiangyang Sun
- Department of Hepatobiliary Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Qi
- Department of General Surgery, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Yang Liu
- Department of General Surgery, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| |
Collapse
|
25
|
Shi X, Xu X, Shi N, Chen Y, Fu M. MicroRNA-520d-3p suppresses melanoma cells proliferation by inhibiting the anti-silencing function 1B histone chaperone. Bioengineered 2021; 12:10703-10715. [PMID: 34872448 PMCID: PMC8809954 DOI: 10.1080/21655979.2021.2001914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As the most common and aggressive malignant form of skin cancer, melanoma has a poor prognosis in its late stage. MicroRNA (miR)-520d-3p has been reported as a key modulator that regulates the development of different types of cancer, but its role in melanoma remains unclear. The purpose of this study was to investigate the role and mechanism of miR-520d-3p in melanoma. The expression of anti-silencing function 1B histone chaperone (ASF1B) and miR-520d-3p in melanoma tissues and cells was detected by reverse transcription-quantitative polymerase chain reaction. The interaction between ASF1B and miR-520d-3p was verified by luciferase activity detection. Cell counting kit-8, bromodeoxyuridine, fluorescein isothiocyanate, and cell adhesion assays were performed to detect cell viability, proliferation, apoptosis, and adhesion in melanoma cells. ASF1B expression was evidently increased, whereas miR-520d-3p level was downregulated in melanoma tissues and cells. Overexpression of ASF1B enhanced cell growth and adhesion and hampered cell apoptosis in melanoma cells. Furthermore, miR-520d-3p suppressed the tumorigenic effects of melanoma cells. Moreover, miR-520d-3p suppressed the expression of ASF1B to suppress melanoma tumorigenesis. In conclusion, we have found out that miR-520d-3p suppressed melanoma tumorigenesis by inhibiting ASF1B, which could be a promising target for melanoma therapy.
Collapse
Affiliation(s)
- Xian Shi
- Department of Dermatology, Huangshi Central Hospital, Huangshi, China
| | - Xidan Xu
- Department of Dermatology, Huangshi Central Hospital, Huangshi, China
| | - Nian Shi
- Department of Dermatology, Huangshi Central Hospital, Huangshi, China
| | - Yongjun Chen
- Department of Dermatology, Huangshi Central Hospital, Huangshi, China
| | - Manni Fu
- Department of Dermatology, Huangshi Central Hospital, Huangshi, China
| |
Collapse
|
26
|
Mao S, Tian S, Luo X, Zhou M, Cao Z, Li J. Overexpression of PLK1 relieved the myocardial ischemia-reperfusion injury of rats through inducing the mitophagy and regulating the p-AMPK/FUNDC1 axis. Bioengineered 2021; 12:2676-2687. [PMID: 34115550 PMCID: PMC8806532 DOI: 10.1080/21655979.2021.1938500] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022] Open
Abstract
Myocardial cell injury caused by myocardial ischemia and reperfusion is one of the main causes of the occurrence and development of heart disease. Recent study has shown that inducing mitophagy of cardiomyocytes is a crucial method to alleviate ischemia-reperfusion injury. While, Polo-like kinase 1 (PLK1) can induce the mitophagy of breast cancer cells. Moreover, PLK1 was able to promote the expression of p-AMPK and FUNDC1, which are the protective factors for myocardium. Therefore, the mouse model of ischemia/reperfusion was established and the effect of PLK1 on ischemia reperfusion induced myocardial damage was investigated. The PLK1 was overexpressed in H9c2 cells and rat model of ischemia/reperfusion. Ischemia reperfusion inhibited the expression of PLK1. While overexpression of PLK1 relieved the myocardial infarction and myocardium apoptosis through inducing mitophagy in rats model of ischemia reperfusion. In vitro, the H9c2 cells overexpressing the PLK1 were treated with the hypoxia and reoxygenation and the apoptosis, survival rate and expression of mitophagy-related proteins of H9c2 cells were detected using the flow cytometry, CCK-8 assay and western blotting. The results reveled that overexpression of PLK1 alleviated the hypoxia and reoxygenation induced apoptosis of H9c2 cells and promoted the expression of mitophagy-related proteins. In addition, enhanced PLK1 expression promoted the expression of p-AMPK and FUNDC1 in H9c2 cells. However, the inhibition of FUNDC1 abolished the positive effect of PLK1 on H9c2 cells mentioned above. In conclusion, PLK1 alleviated the ischemia reperfusion induced myocardial damage by inducing the mitophagy in a p-AMPK/FUNDC1 signaling dependent pathway.
Collapse
Affiliation(s)
- Shan Mao
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Shuning Tian
- Department of Anesthesiology, Jiangmen Central Hospital Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen City, Guangdong Province, China
| | - Xianghong Luo
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Ming Zhou
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Zheng Cao
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Ji Li
- Department of Cardiovascular Internal Medicine, The Second Affiliated Hospital of Guizhou Medical University, Kaili City, Guizhou Province, China
| |
Collapse
|
27
|
Zhang H, Yu Z, Wu B, Sun F. Circular RNA circFOXP1 promotes angiogenesis by regulating microRNA -127-5p/CDKN2AIP signaling pathway in osteosarcoma. Bioengineered 2021; 12:9991-9999. [PMID: 34637672 PMCID: PMC8810073 DOI: 10.1080/21655979.2021.1989258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma is known to have a high metastatic potential, which is closely related to angiogenesis. circRNAs are closely associated with osteosarcoma metastasis. This study aims to investigate the role of Circular RNA circFOXP1 in angiogenesis in osteosarcoma. We detected circFOXP1 expression in osteosarcoma, as well as its prognostic value. Tube formation assay and immunohistochemistry staining were conducted to determine the condition of tube formation. RT-qPCR was performed to explore targeted genes. Luciferase reporter assays were carried out to explore the interaction between miR-127-5p, ircFOXP1, and CDKN2AIP, respectively. In vivo studies further confirmed the relationship between circFOXP1 and tumor angiogenesis in osteosarcoma. We found that circFOXP1 expression was increased in osteosarcoma, and could promote angiogenesis in osteosarcoma through upregulating CDKN2AIP expression. Moreover, circFOXP1 could directly bind to miR-127-5p, which further targets CDKN2AIP directly. In conclusion, circFOXP1 promoted angiogenesis by regulating miR-127-5p/CDKN2AIP signaling pathway in osteosarcoma.
Collapse
Affiliation(s)
- Haiping Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Ziliang Yu
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Bingbing Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Farui Sun
- Department of Orthopedics, Huangshi Central Hospital of East Hubei Medical Group Affiliated to Hubei Institute of Technology, Huangshi, China
| |
Collapse
|
28
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
29
|
Abstract
MicroRNAs (miRNAs) regulate osteogenic differentiation and influence osteoporosis (OP). The aim of this study was to determine the potential role of miR-874-3p in OP. The expression levels of miR-874-3p and leptin (LEP) in the femoral neck trabeculae of 35 patients with or without OP were measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The effects of miR-874-3p or LEP on the cell proliferation and alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and osterix (OSX) levels were observed by upregulating miR-874-3p in human bone marrow mesenchymal stem cells (hBMSCs). Additionally, calcium deposition levels were evaluated using alizarin red staining (ARS). Molecular mechanisms of miR-874-3p and LEP underlying the osteogenic differentiation of hBMSCs were also evaluated using bioinformatics analysis, luciferase reporter assays, and RNA pull-down assays. The miR-874-3p levels were significantly lower in the femoral neck trabeculae of patients with OP than those of the control group, while the opposite was observed regarding the levels of LEP. Expression levels of miR-874-3p in hBMSCs were upregulated during osteogenic differentiation, while those of LEP were downregulated. Moreover, miR-874-3p upregulation promoted ALP, RUNX2, OCN, and OSX mRNA expression, cell proliferation, and calcium deposition in hBMSCs. LEP was found to be a target gene of miR-874-3p. Overexpression of LEP inhibited the expression of osteoblast markers and reversed the effect of osteogenic differentiation induced by the upregulation of miR-874-3p. In conclusion, miR-874-3p promoted the proliferation and differentiation of hBMSCs by downregulating the expression of LEP, thus inhibiting OP. Abbreviations : miRNAs: microRNAs; OP: osteoporosis; hBMSCs: human Bone Marrow Mesenchymal stem cells; LEP: leptin; DEGs: differentially expressed genes
Collapse
Affiliation(s)
- Ling Mei
- Department of Orthopedic, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Min Li
- Department of Cardiovascular, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Tao Zhang
- The First Clinical Medical College, Hubei University of Chinese Medicines, Wuhan, Hubei, China
| |
Collapse
|
30
|
Fu Y, Hu X, Gao Y, Li K, Fu Q, Liu Q, Liu D, Zhang Z, Qiao J. LncRNA ROR/miR-145-5p axis modulates the osteoblasts proliferation and apoptosis in osteoporosis. Bioengineered 2021; 12:7714-7723. [PMID: 34617877 PMCID: PMC8806809 DOI: 10.1080/21655979.2021.1982323] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis (OP) is a systemic bone metabolic disease. Promotion of osteoblast proliferation and inhibition of cell apoptosis may be helpful for the prevention and clinical treatment of OP. In the current study, we focused on the expression changes and clinical values of lncRNA ROR and miR-145-5p in OP clinical serum samples, and investigated the interactive modulation effect of ROR/miR-145-5p on osteoblast function. Serum samples were obtained from 82 OP patients and 79 healthy individuals. MC3T3-E1 was applied for the cell experiments. Levels of lncRNA ROR and miR-145-5p were detected using qRT-PCR. Transient transfection was performed to regulate gene levels in cells, and cell proliferation and apoptosis were detected. A reciprocal correlation between lncRNA ROR and miR-145-5p was explored. LncRNA ROR was downregulated, and miR-145-5p was overexpressed in OP patients. The combined diagnosis of ROR and miR-145-5p showed good diagnostic value for OP. ROR knockdown promoted the MC3T3-E1 cell apoptosis and inhibited cell proliferation. Luciferase reporting assay verified the target relationship between ROR and miR-145-5p. MiR-145-5p downregulation reversed ROR silence mediated effect on MC3T3-E1 cell proliferation and apoptosis. LncRNA ROR is downregulated and miR-145-5p is highly expressed in OP patients. ROR knockdown may inhibit osteoblast proliferation via targeting miR-145-5p. It may provide a theoretical basis and experimental basis for ROR to be a potential target for the treatment of OP.
Collapse
Affiliation(s)
- Yin Fu
- Department of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyang Hu
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanyu Gao
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Kai Li
- Department of Interventional Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qiang Fu
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qingpeng Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Liu
- Brown University RI Hospital Liver Research Center, Providence, RI, USA
| | - Zhijia Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiutao Qiao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Sun M, Chen Y, Liu X, Cui Y. LncRNACASC9 promotes proliferation, metastasis, and cell cycle inovarian carcinoma cells through cyclinG1/TP53/MMP7 signaling. Bioengineered 2021; 12:8006-8019. [PMID: 34595994 PMCID: PMC8806755 DOI: 10.1080/21655979.2021.1981795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ovarian cancer (OC) brings about serious physical and psychological burden for female patients. LncRNA CASC9 has been reported to be intimately linked with the occurrence and development of several tumors. However, the biological role of lncRNA CASC9 in OC still lacks sufficient evidence. The expressions of CASC9 and miR-488-3p in OC cell lines and xenograft mice were detected by qRT-PCR assay. Cell Counting Kit-8 (CCK-8) assay was used to assess cell inhibition rate and cell proliferation in OVCAR-3 and OVCAR-3/DDP cells. Wound healing assay and transwell assay were performed to evaluate the capacity of migration and invasion, respectively. In addition, cell apoptosis was measured by TUNEL assay and cell cycle was assessed by flow cytometric analysis. Moreover, western blotting was carried out to detect the cyclinG1 (CCNG1)/TP53/MMP7 signaling and apoptosis-related proteins. Furthermore, luciferase reporter assay was performed to verify the combination of CASC9 with CCNG1 and miR-488-3p. The results of our study revealed that CASC9 expression was upregulated while miR-488-3p and CCNG1 expression was downregulated in OC cells with significant higher TP53 and MMP7 protein levels compared with normal ovarian surface epithelial cells. Additionally, luciferase reporter assay confirmed CASC9 bond to miR-488-3p/CCNG1. CASC9 silencing inhibited cell proliferation, migration, and invasion whereas promoted cell inhibition rate and apoptosis in vitro and in vivo. However, CASC9 overexpression showed the opposite effects. In summary, LncRNA CASC9 played a regulative role in ovarian carcinoma by cyclinG1/TP53/MMP7 signaling via binding to miR-488-3p in vivo and in vitro.
Collapse
Affiliation(s)
- Min Sun
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an P.R.China
| | - Yanan Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing P.R.China
| | - Xiaobei Liu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing P.R.China
| | - Yajie Cui
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an P.R.China
| |
Collapse
|
32
|
Hu X, Wang P, Qu C, Zhang H, Li L. Circular RNA Circ_0000677 promotes cell proliferation by regulating microRNA-106b-5p/CCND1 in non-small cell lung cancer. Bioengineered 2021; 12:6229-6239. [PMID: 34519258 PMCID: PMC8806897 DOI: 10.1080/21655979.2021.1965697] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Recently, circular RNAs (circRNAs) have become an intense focus of research and large numbers of circRNAs have been identified, awaiting functional elucidation. Thus, the present study aims to examine the regulation of circRNAs and its molecular mechanism in lung cancer growth. Here, we show that circular RNA circ_0000677 was overexpressed and correlated with poor prognosis in non‐small cell lung cancer (NSCLC) patients. Functionally, circ_0000677 knockdown markedly inhibited proliferation of NSCLC cells by observing of immunofluorescence staining of Ki67, clone formation assay, and xenograft experiments. In mechanism, circ_0000677 acted as a sponge of microRNA-106b and further regulated CCDND1 gene expression in NSCLC cells by dual luciferase activity assay and their expression examination. Taken together, these findings suggest a role for circ_0000677/miR-106b/CCND1 regulation axis in promoting NSCLC growth and progression.
Collapse
Affiliation(s)
- Xin Hu
- Department Of Internal Medicine, Nantong Maternity And Child Health Hospital, Nantong, China
| | - Ping Wang
- Department Of Internal Medicine, Nantong Maternity And Child Health Hospital, Nantong, China
| | - Chen Qu
- Department Of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haibo Zhang
- Department Of Internal Medicine, Nantong Maternity And Child Health Hospital, Nantong, China
| | - Liang Li
- Department Of Emergency Medicine, Shanghai Seventh People's Hospital, Shanghai, China
| |
Collapse
|
33
|
Yu J, Li Y, Leng D, Cao C, Yu Y, Wang Y. microRNA-3646 serves as a diagnostic marker and mediates the inflammatory response induced by acute coronary syndrome. Bioengineered 2021; 12:5632-5640. [PMID: 34519257 PMCID: PMC8806520 DOI: 10.1080/21655979.2021.1967066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Acute coronary syndrome (ACS) is one of the main syndromes of coronary artery disease with high mortality. The identification of biomarkers associated with disease occurrence and progression could improve early detection and risk prediction. This study was aimed to reveal the clinical significance and function of miR-3646 in ACS. The expression of miR-3646 was evaluated in ACS patients, healthy volunteers, and non-ACS patients and estimated the clinical significance of miR-3646. The ACS modeling rats were also established in this study to explore the potential mechanism underlying the function of miR-3646. miR-3646 was upregulated in ACS patients compared with healthy volunteers and non-ACS patients. The expression of miR-3646 was positively correlated with the severity and progression of ACS patients and could discriminate ACS patients from healthy volunteers and non-ACS patients. The knockdown of miR-3646 could reverse the inflammatory response induced by ACS.miR-3646 serves as a diagnostic biomarker for ACS. The knockdown of miR-3646 could alleviate ACS by reversing inflammatory response. These results provide a potential therapeutic target of ACS.
Collapse
Affiliation(s)
- Jinming Yu
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Yongmei Li
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Deguo Leng
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Cheng Cao
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Yongzhi Yu
- Department of Cardiology, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Yijuan Wang
- Department of Clinical Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| |
Collapse
|
34
|
Chen G, Wang M, Ruan Z, Zhu L, Tang C. Mesenchymal stem cell-derived exosomal miR-143-3p suppresses myocardial ischemia-reperfusion injury by regulating autophagy. Life Sci 2021; 280:119742. [PMID: 34166712 DOI: 10.1016/j.lfs.2021.119742] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
AIMS Myocardial ischemia-reperfusion (I/R) injury is considered as a major obstacle of myocardial perfusion to save acute myocardial infarction, and causes a serious threat to human health. An extensive body of evidence has unveiled that mesenchymal stem cells (MSCs) as adult stem cells play a vital role in the field of damaged myocardial regeneration and repair. However, the biological role of MSCs derived-exosomes in the protection of myocardial I/R injury has not been elucidated. MAIN METHODS In this study, we isolated and characterized MSCs from the bone marrow of rats femur and tibia. H9c2 cells were administrated to established the cellular hypoxia-reoxygenation (H/R) model, and co-cultured with MSCs and MSCs-derived exosomes. KEY FINDINGS Functional experiments revealed that MSCs and MSCs-derived exosomes inhibited H/R-induced cell apoptosis and cell autophagy. Interestingly, rapamycin as an activator of autophagy reversed the positive effects of MSCs-derived exosomes, while 3-methyladenine (3-MA) as autophagy inhibitor further promoted the effects of MSCs-derived exosomes, indicating MSCs exerted its function on H/R injury by mediating autophagy. Subsequently, we found that CHK2-Beclin2 pathway participated in H/R-induced autophagy. Mechanistically, miR-143-3p directly targeted CHK2 and negatively regulated CHK2 expression. Moreover, repression of exosomal miR-143-3p promoted H/R-induced autophagy via CHK2-Beclin2 pathway. Consistent with the results of in vitro experiments, in vivo experiments confirmed that exosomal miR-143-3p effectively reduced cell apoptosis by regulating autophagy via CHK2-Beclin2 pathway. SIGNIFICANCE Collectively, our results indicated that MSCs-derived exosomal miR-143-3p might represent a promising option for the treatment of I/R injury.
Collapse
Affiliation(s)
- Gecai Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu Province 210009, China; Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, China.
| | - Meixiang Wang
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, China
| | - Zhongbao Ruan
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, China
| | - Li Zhu
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu Province 225300, China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu Province 210009, China.
| |
Collapse
|
35
|
Xiao SH, Wang Y, Cao X, Su Z. Long non-coding RNA LUCAT1 inhibits myocardial oxidative stress and apoptosis after myocardial infarction via targeting microRNA-181a-5p. Bioengineered 2021; 12:4546-4555. [PMID: 34414854 PMCID: PMC8806849 DOI: 10.1080/21655979.2021.1966351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
This study hoped to explore the effects and mechanism of long non-coding RNA (lncRNA) LUCAT1 regulating microRNA-181a-5p (miR-181a-5p) on oxidative stress and apoptosis of cardiomyocytes induced by H2O2. Totally, 72 patients with acute myocardial infarction (AMI) were included. H9c2 cardiomyocytes were cultured in vitro, and the H2O2 model of cardiomyocytes was established. The expression levels of LUCAT1 and miR-181a-5p were detected by qRT-PCR after H2O2 induction. The contents of reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) in cells were detected. The survival rate of the cells was detected by the Cell Counting Kit-8 (CCK-8) method; the apoptosis was detected by flow cytometry. The luciferase reporter experiment and quantitative real-time PCR (qRT-PCR) were used to verify the targeted relationship between LUCAT1 and miR-181a-5p. LUCAT1 was lowly expressed in the AMI patients. After H2O2 induction, the expression of LUCAT1 in H9c2 cells lessened significantly, while the expression of miR-181a-5p elevated significantly (P < 0.001). Transfection of p-LUCAT1 significantly reversed the decreased SOD levels, the increased MDA and ROS content, and the elevated tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) in H2O2-stimulated cells (P < 0.001). Upregulation of LUCAT1 contributed to the mitigation of H2O2 injury by promoting viable cells and repressing apoptotic cells (P < 0.01). LUCAT1 targeted miR-181a-5p and negatively regulated miR-181a-5p expression (P < 0.001). Collectively, LUCAT1 played a protective role on oxidative stress injury, inflammation, viability, and apoptosis of cardiomyocytes induced by H2O2 via regulating miR-181a-5p.
Collapse
Affiliation(s)
- Shi-Hui Xiao
- Department of Internal Medicine-Cardiovascular, Ganzhou People's Hospital, Ganzhou, Jiangxi Province, China.,Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Ying Wang
- Department of Cardiology, Affiliated Hospital of Gansu Medical College, Pingliang, Gansu Province, China
| | - Xuecai Cao
- Department of Obstetrics, Yidu Central Hospital of Weifang, Weifang, Shandong Province, China
| | - Zhe Su
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
36
|
Nie S, Cui X, Guo J, Ma X, Zhi H, Li S, Li Y. Long non-coding RNA AK006774 inhibits cardiac ischemia-reperfusion injury via sponging miR-448. Bioengineered 2021; 12:4972-4982. [PMID: 34369259 PMCID: PMC8806428 DOI: 10.1080/21655979.2021.1954135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In recent years, the incidence and mortality of myocardial infarction (MI) have been increasing throughout the world, threatening public health. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play critical roles in the progression of MI. The present study aimed to investigate the role of lncRNA AK006774 in the progression of myocardial infarction and find out novel therapeutic or diagnostic target of myocardial infarction. A mouse ischemia/reperfusion (I/R) model and 2,3,5-Triphenyte-trazoliumchloride (TTC) staining were performed to evaluate the effects of AK006774 on I/R injury in vivo. Hypoxia/reoxygenation (H/R) models using primary cardiomyocytes have been established. Flow cytometry and Terminal Deoxynucleotide Transferase dUTP Nick End Labeling (TUNEL) assays were performed to evaluate the effects of AK006774 on cardiomyocyte apoptosis. Luciferase and RNA pull-down assays were performed to verify the interaction between miR-448 and its targets. Western blotting and quantitative PCR were performed to determine protein and gene expression, respectively. We first found that AK006774 overexpression reduced I/R-induced infarct area and cardiomyocyte apoptosis in vivo. Accordingly, AK006774 inhibited apoptosis and oxidative stress in cardiomyocytes subjected to H/R treatment in vitro. Mechanistically, AK006774 modulated the expression of bcl-2 by sponging miR-448. Overexpression of miR-448 antagonized the effects of AK006774 on cardiomyocyte apoptosis. The AK006774/miR-448/bcl-2 signaling axis acts as a key regulator of I/R injury and may be a potential therapeutic or diagnostic target for the treatment of MI.
Collapse
Affiliation(s)
- Shen Nie
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, China
| | - Xiaoya Cui
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, China
| | - Jinping Guo
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, China
| | - Xiaohua Ma
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, China
| | - Haijun Zhi
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, China
| | - Shilei Li
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, China
| | - Yong Li
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
37
|
Bai L, Yang J, Zhang H, Liao W, Cen Y. PTB domain and leucine zipper motif 1 (APPL1) inhibits myocardial ischemia/hypoxia-reperfusion injury via inactivation of apoptotic protease activating factor-1 (APAF-1)/Caspase9 signaling pathway. Bioengineered 2021; 12:4385-4396. [PMID: 34304702 PMCID: PMC8806591 DOI: 10.1080/21655979.2021.1954841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Myocardial ischemia/hypoxia-reperfusion injury mediates the progression of multiple cardiovascular diseases. It has been reported that knockdown of adaptor protein containing a PH domain, PTB domain and leucine zipper motif 1 (APPL1) is a significant factor for the progression of myocardial injury. However, the role of APPL1 in myocardial ischemia remains unclear. Hence, the aim of the present study was to investigate the specific mechanism underlying the role of APPL1 in myocardial ischemia.In our study, the mRNA level of APPL1 was detected by quantitative real-time PCR (RT-qPCR). The expressions of APPL1, Apoptotic protease activating factor-1 (APAF-1), cleaved caspase9 and other inflammation- and apoptosis-related proteins were determined by western blotting. The secretion of inflammatory cytokines and lactate dehydrogenase (LDH) levels were measured by commercial assay kits. The H9C2 cell viability was analyzed by cell counting kit-8 (CCK-8) assay. The apoptosis rate of H9C2 cells was analyzed by TUNEL assay. The interaction between APPL1 and APAF-1/caspase9 was determined by Immunoprecipitation (IP).Our findings demonstrated that APPL1 was low expressed in myocardial ischemia tissues and cells. APPL1 knockdown suppressed the viability of myocardial ischemia cells and aggravated hypoxia/reperfusion-induced LDH hypersecretion, inflammation and apoptosis. In addition, the overexpression of APPL1 induced inactivation of APAF-1/Caspase9 signaling pathway. Significantly, APAF1 inhibitor reversed the effect of APPL1 knockdown on viability, LDH secretion, inflammation and apoptosis.We conclude that APPL1 inhibits myocardial ischemia/hypoxia-reperfusion injury via inactivation of APAF-1/Caspase9 signaling pathway. Hence, APPL1 may be a novel and effective target for the treatment of myocardial ischemia.
Collapse
Affiliation(s)
- Lina Bai
- Department of Cardiology, Tianjin Nankai Hospital, Tianjin, PR China
| | - Junhua Yang
- Department of Cardiology, Tianjin Nankai Hospital, Tianjin, PR China
| | - Hong Zhang
- Department of Cardiology, Tianjin Nankai Hospital, Tianjin, PR China
| | - Wei Liao
- Department of Medical Ultrasonics, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, PR China
| | - Yunguang Cen
- Center of Geriatrics, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, PR China
| |
Collapse
|
38
|
Tang D, Geng L, Ma J. lncRNA PROX1-AS1 mediates the migration and invasion of placental trophoblast cells via the miR-211-5p/caspase-9 axis. Bioengineered 2021; 12:4100-4110. [PMID: 34288800 PMCID: PMC8806442 DOI: 10.1080/21655979.2021.1953213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Preeclampsia (PE) is a potentially fatal pregnancy complication; however, its pathogenesis remains unclear. Long non-coding RNAs (lncRNAs) are associated with occurrence and progression of PE. Therefore, this study aimed to explore the function of the lncRNA prospero homeobox 1-antisense RNA 1 (PROX1-AS1) and elucidate its underlying molecular mechanism of action. We found that the expression levels of PROX1-AS1 were elevated in both the placental tissues and blood samples of the patients with PE. Moreover, the results of the flow cytometry and transwell assay showed that the knockdown of PROX1-AS1 inhibited the apoptosis and promoted the migration and invasion of HTR-8/SVneo cells. We also assessed the interactions between PROX1-AS1, caspase-9, and microRNA (miR)-211-5p via dual-luciferase reporter and RNA pull-down analyses. The data indicated that PROX1-AS1 acted as a sponge for miR-211-5p to regulate the expression of caspase-9. Moreover, the expression of miR-211-5p was reduced in PE and negatively related to PROX1-AS1, while that of caspase-9 was increased in PE and negatively regulated by miR-211-5p. Furthermore, inhibition of miR-211-5p rescued the facilitation of cell apoptosis, migration and invasion induced by the knockdown of PROX1-AS1. We also found that caspase-9 improved the apoptosis rate, and suppressed the cell migration and invasion induced by the overexpression of miR-211-5p. In conclusion, the knockdown of PROX1-AS1 promoted the cell morbidity of the trophoblast cells by modulating the miR-211-5p/caspase-9 axis, which may alleviate the progression of PE. This novel regulatory network may contribute to the pathogenesis and progression of PE.
Collapse
Affiliation(s)
- Dan Tang
- Obstetrics Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Geng
- Obstetrics Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Ma
- Obstetrics Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
39
|
Zhu X, Zhang H, Xu J. Long noncoding RNA SNHG20 regulates cell migration, invasion, and proliferation via the microRNA-19b-3p/RAB14 axis in oral squamous cell carcinoma. Bioengineered 2021; 12:3993-4003. [PMID: 34282711 PMCID: PMC8806619 DOI: 10.1080/21655979.2021.1950278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common digestive tumors, which has high mortality rate. Long non-coding RNAs (lncRNA) and MicroRNAs (miRNAs) are associated with the cell cycle and differentiation during the occurrence and development of malignant tumors. This research aimed to investigate the effects of lncRNA SNHG20 on the progress of oral squamous cell carcinoma (OSCC) cells. Ninety pairs of tumor tissues and paracancerous tissues were collected from patients with OSCC and the CAL27 and SCC25 OSCC cells were selected for the following experiments. RT-qPCR was used for detecting the expression of SNHG20, miR-19b-3p, and RAB14. Western blotting was used to detect the protein levels of RAB14. MTT assay was employed to assess cell proliferation. Transwell assay was used to determine the cell migration and invasion abilities. Furthermore, luciferase reporter and RNA pull-down assays were used to verify the binding of SNHG20/RAB14 to miR-19b-3p. Then, the function of the SNHG20/miR-19b-3p/RAB14 axis in OSCC was explored. The results indicated that lncRNA SNHG20 was upregulated in the tissues. Furthermore, bioinformatic analysis showed that both SNHG20 and RAB14 could bind to miR-19b-3p. RAB14 was upregulated, and miR-19b-3p was downregulated in the tissues. The knockdown of SNHG20 inhibited cell proliferation, migration, and invasion. Contrarily, the knockdown of miR-19b-3p reversed the effects of si-SNHG20 on cell proliferation, migration, and invasion, and the overexpression of RAB14 reversed the effects of miR-19b-3p mimic on the cell biological functions. LncRNA SNHG20 affects cell proliferation, migration, and invasion via the miR-19b-3p/RAB14 axis in OSCC.
Collapse
Affiliation(s)
- Xiaomi Zhu
- Department of Stomatology, Hubei Hospital of Traditional Chinese Medicine, Wuhan, Hubei, PRR China
| | - Hanzhong Zhang
- Department of Stomatology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, PRR China
| | - Juan Xu
- Department of Stomatology, People Hospital of Lishui, PRR China
| |
Collapse
|
40
|
Zhou R, Miao S, Xu J, Sun L, Chen Y. Circular RNA circ_0000020 promotes osteogenic differentiation to reduce osteoporosis via sponging microRNA miR-142-5p to up-regulate Bone Morphogenetic Protein BMP2. Bioengineered 2021; 12:3824-3836. [PMID: 34266353 PMCID: PMC8806581 DOI: 10.1080/21655979.2021.1949514] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study was designed to study functions of Circ_0000020 during osteogenic differentiation. First, we used RT-qPCR to detect the expression of Circ_0000020, miR-142-5p and osteogenesis-related genes, whereas western blot analysis detected the expression of osteogenesis markers after the osteogenic differentiation of primary BMSCs isolated from rats. Alkaline phosphatase (ALP) activity and alizarin red Sstaining validated osteoblast phenotypes. Flow cytometry was used to detect cell apoptosis. Sh-Circ_0000020 was used to study the function of Circ_0000020 in osteogenic differentiation of BMSCs. Luciferase assay and RNA immunoprecipitation were used to validate the interaction between Circ_0000020 and miR-142-5p, and BMP2 and miR-142-5p. Co-transfection of miR-142-5p and sh-Circ_0000020 was used to verify the downstream signaling pathway. Circ_0000020 expression was up-regulated during osteogenic differentiation, whereas miR-142-5p expression was significantly decreased. Silencing Circ_0000020 inhibited osteogenic differentiation and promoted apoptosis, and inhibited ALP activity and mineralization ability. Moreover, Circ_0000020 interacts directly with miR-142-5p which binds to the BMP2 3ʹUTR and inhibits its expression. Additionally, co-transfection of miR-142-5p inhibitors and sh-Circ_0000020 rescued down-regulated BMP2, increased the expression osteogenesis-related gene expressions, and thereby rescued the inhibition of osteogenic differentiation induced by Circ_0000020 silencing. Furthermore, co-transfection of miR-142-5p inhibitors and sh-Circ_0000020 reversed Circ_0000020 silencing-induced downregulation of p-Smad1/5/8, Runx2, and Osterix protein levels. Circ_0000020 regulates BMP2 expression through sponging miR-142-5p as ceRNA, thereby positively regulating BMSCs osteogenic differentiation through Circ_0000020/miR-142-5p/BMP2/SMAD-dependent signaling pathway.
Collapse
Affiliation(s)
- Rongkui Zhou
- Department of Orthopedic, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin City, Jiangsu Province, China
| | - Shichang Miao
- Department of Orthopedic, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin City, Jiangsu Province, China
| | - Jun Xu
- Department of Orthopedic, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin City, Jiangsu Province, China
| | - Liping Sun
- Department of Orthopedic, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin City, Jiangsu Province, China
| | - Yaofei Chen
- Department of Orthopedic, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin City, Jiangsu Province, China
| |
Collapse
|
41
|
Yao Y, Zhao J, Zhou X, Hu J, Wang Y. Potential role of a three-gene signature in predicting diagnosis in patients with myocardial infarction. Bioengineered 2021; 12:2734-2749. [PMID: 34130601 PMCID: PMC8806758 DOI: 10.1080/21655979.2021.1938498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this study, we evaluated the diagnostic value of key genes in myocardial infarction (MI) based on data from the Gene Expression Omnibus (GEO) database. We used data from GSE66360 to identify a set of significant differentially expressed genes (DEGs) between MI and healthy controls. Logistic regression, least absolute shrinkage and selection operator (LASSO) regression, support vector machine recursive feature elimination (SVM-RFE), and SignalP 3.0 server were used to identify the potential role of genes in predicting diagnosis in patients with MI. Principal component analysis (PCA), receiver operating characteristic (ROC) curve analyses, area under the curve (AUC) analyses, and C-index were used to estimate the diagnostic value of genes in patients with MI. The association was validated using six other independent data sets. Subsequently, bioinformatics analysis was conducted based on the aforementioned potential genes. A meta-analysis was performed to evaluate the diagnostic value of the genes in MI. Forty-four DEGs were selected from the GSE66360 dataset. A three-gene signature consisting of CCL20, IL1R2, and ITLN1 could effectively distinguish patients with MI. The three-gene signature was validated in seven independent cohorts. Functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to reveal the involvement of the three-gene signature in inflammation-related biological processes and pathways. Moreover, diagnostic meta-analysis results of the three-gene signature showed that the pooled sensitivity, specificity, and AUC for MI were 0.80, 0.90, and 0.93, respectively. These results suggest that the three-gene signature is a novel candidate biomarker for distinguishing MI from healthy controls.
Collapse
Affiliation(s)
- Yinhui Yao
- Department of Pharmacy, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Jingyi Zhao
- Department of Functional Center, Chengde Medical College, Chengde, China
| | - Xiaohui Zhou
- School of Basic Medicine, Chengde Medical College, Chengde, China
| | - Junhui Hu
- Department of Pharmacy, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Ying Wang
- Department of Pharmacy, The Affiliated Hospital of Chengde Medical College, Chengde, China
| |
Collapse
|
42
|
Pu Z, Ge F, Wang Y, Jiang Z, Zhu S, Qin S, Dai Q, Liu H, Hua H. Ginsenoside-Rg3 inhibits the proliferation and invasion of hepatoma carcinoma cells via regulating long non-coding RNA HOX antisense intergenic. Bioengineered 2021; 12:2398-2409. [PMID: 34130594 PMCID: PMC8806740 DOI: 10.1080/21655979.2021.1932211] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ginsenoside Rg3, a natural compound, has been reported to function as an anticancer agent for hepatoma carcinoma, while the mechanisms underlying the anticancer effects are not clear. Therefore, the objective of our study was to explore the impact of RG3 on cell migration and invasion by regulating the lncRNA HOX antisense intergenic (HOTAIR) expression involving PI3K/AKT signaling pathway. qRT-PCR was utilized to measure the mRNA expression of HOTAIR. Furthermore, HOTAIR overexpression plasmids were transfected to SMMC-7721 and SK-Hep-1 cells. Additionally, MTT assay was used to evaluate the proliferation of transfected cells. The scratch and transwell assays were used to determine the migration and invasion ability of the cell. The protein levels were determined with Western blot. lncRNA HOTAIR was overexpressed in SMMC-7721 and SK-Hep-1 cells. Ginsenoside-Rg3 reduced the level of lncRNA HOTAIR. Overexpressed lncRNA HOTAIR offset ginsenoside-Rg3 inhibited proliferation, migration and invasion of HCC cells. Furthermore, ginsenoside-Rg3 decreased the expression of p-AKT, p-PI3K, matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-9 (MMP9), which was reversed after the treatment of HOTAIR. LncRNA HOTAIR was overexpressed in SMMC-7721 cells. Ginsenoside-Rg3 could reduce the expression of lncRNA HOTAIR, resulting in the inhibited cell proliferation, migration and invasion. Furthermore, ginsenoside-Rg3 inhibited cell proliferation and invasion ability through the PI3k/AKT pathway. Thus, ginsenoside-Rg3 might be a potential and effective treatment for HCC.
Collapse
Affiliation(s)
- Zhongjian Pu
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Fei Ge
- Department of Gastroenterology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Yajun Wang
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Ziyu Jiang
- Department of Oncology, Hospital of Integrated Traditional Chinese Medicine and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shilin Zhu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Shukui Qin
- Department of Oncology, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qijun Dai
- Department of Neurology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Haiqing Hua
- Department of Oncology, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Chen MY, Fan K, Zhao LJ, Wei JM, Gao JX, Li ZF. Long non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) sponges microRNA-124-3p to up-regulate phosphodiesterase 4B (PDE4B) to accelerate the progression of Parkinson's disease. Bioengineered 2021; 12:708-719. [PMID: 33522352 PMCID: PMC8806245 DOI: 10.1080/21655979.2021.1883279] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reportedly, long non-coding RNA (lncRNA) are crucial modulators in neurodegenerative diseases. Herein, we investigated the role of lncRNA nuclear enriched abundant transcript 1 (NEAT1) in Parkinson's disease (PD). In-vitro PD model was established based on SH-SY5Y cells treated with 1-methyl-4-phenylpyridinium (MPP+). NEAT1, microRNA (miR) -124-3p and phosphodiesterase 4B (PDE4B) expression levels were examined by qRT-PCR. CCK-8 assay and LDH release assay were adopted to delve into the cell viability and cytotoxicity, respectively. Besides, western blot was utilized to determine mTOR, p-mTOR and PDE4B expression levels. ELISA was executed to detect the levels of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6). Dual-luciferase reporter assay and RIP assay were used to probe the relationship between miR-124-3p and NEAT1 or PDE4B. We demonstrated that, in SH-SY5Y cells treated with MPP+, NEAT1 and PDE4B expression levels were raised, while miR-124-3p expression was repressed; NEAT1 depletion or miR-124-3p overexpression increased the cell viability and suppressed cell injury. Besides, miR-124-3p was confirmed as the direct target of NEAT1, and its down-regulation counteracted the impact of NEAT1 depletion on SH-SY5Y cells. PDE4B was as the downstream target of miR-124-3p, and its overexpression weakens the impact of miR-124-3p on SH-SY5Y cells. Additionally, NEAT1 decoyed miR-124-3p to modulate PDE4B expression. Collectively, in MPP+-induced SH-SY5Y cells, NEAT1 depletion increases cell viability, represses cytotoxicity and reduces inflammatory response by regulating miR-124-3p and PDE4B expression levels, suggesting that NEAT1 may be a promising target for treating PD.
Collapse
Affiliation(s)
- Ming-Yu Chen
- Department of Neurology, Linyi Central Hospital, Linyi City Shandong, China
| | - Kai Fan
- Department of Neurology, The Third People's Hospital of Linyi, Linyi City Shandong, China
| | - Lian-Jiang Zhao
- Department of Neurology, The Third People's Hospital of Linyi, Linyi City Shandong, China
| | - Jie-Mei Wei
- Department of Neurology, Linyi Central Hospital, Linyi City Shandong, China
| | - Ji-Xu Gao
- Department of Laboratory, Linyi Cancer Hospital, Linyi City Shandong, China
| | - Zhen-Fu Li
- Department of Neurology, Linyi Central Hospital, Linyi City Shandong, China
| |
Collapse
|
44
|
Li D, Zhong S, Zhu Z, Jiang X, Zhang J, Gu J, Chen F. LncRNA MAFG-AS1 Promotes the Progression of Bladder Cancer by Targeting the miR-143-3p/COX-2 Axis. Pathobiology 2020; 87:345-355. [PMID: 33238264 DOI: 10.1159/000509957] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/05/2020] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are potential biomarkers that are very important for the development of cancer. Studies show that lncRNAs are significantly correlated with the carcinogenesis and progression of bladder cancer (BLCA). In this research, we aimed at probing into the role of lncRNA MAFG-AS1 in the tumorigenesis of BLCA. METHODS RT-qPCR was employed to detect MAFG-AS1 expression in BLCA tissues and cells. MAFG-AS1 siRNA and overexpression plasmid were transfected into 5637 and T24 BLCA cell lines to inhibit or upregulate MAFG-AS1 expression, respectively, and then the regulatory functions of MAFG-AS1 on BLCA cell proliferation, migration, and invasion were assessed using cell counting kit-8 (CCK-8) assay, EdU method, and Transwell experiments, respectively. Dual-luciferase reporter assay and RNA immunoprecipitation were conducted to validate the targeting relationships between MAFG-AS1 and miR-143-3p, and miR-143-3p and COX-2. In addition, miR-143-3p was repressed in MAFG-AS1-silenced 5637 and T24 cell lines, and the function of MAFG-AS1/miR-143-3p axis in BLCA cells was further evaluated. The regulatory effects of MAFG-AS1 and miR-143-3p on the expression of COX-2 protein were detected by Western blot. RESULTS MAFG-AS1 was remarkably upregulated in BLCA patient tissues and cell lines, and its high expression was closely related to histological grade, tumor size, and lymph node metastasis. Silencing of MAFG-AS1 inhibited BLCA cell proliferation, metastasis, and invasion, while overexpression of MAFG-AS1 in BLCA cells had opposite biological effects. MAFG-AS1 was proved to target miR-143-3p to repress its expression. Moreover, it was confirmed that MAFG-AS1 and miR-143-3p could modulate COX-2 expression. CONCLUSION The MAFG-AS1/miR-143-3p/COX-2 axis contributes to BLCA progression.
Collapse
Affiliation(s)
- Dengbao Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China,
| | - Siwen Zhong
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhiqiang Zhu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xinan Jiang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Junhao Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jiang Gu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fangmin Chen
- Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| |
Collapse
|
45
|
Identification of Key Genes Involved in Acute Myocardial Infarction by Comparative Transcriptome Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1470867. [PMID: 33083450 PMCID: PMC7559508 DOI: 10.1155/2020/1470867] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/26/2020] [Accepted: 09/11/2020] [Indexed: 11/26/2022]
Abstract
Background Acute myocardial infarction (AMI) is regarded as an urgent clinical entity, and identification of differentially expressed genes, lncRNAs, and altered pathways shall provide new insight into the molecular mechanisms behind AMI. Materials and Methods Microarray data was collected to identify key genes and lncRNAs involved in AMI pathogenesis. The differential expression analysis and gene set enrichment analysis (GSEA) were employed to identify the upregulated and downregulated genes and pathways in AMI. The protein-protein interaction network and protein-RNA interaction analysis were utilized to reveal key long noncoding RNAs. Results In the present study, we utilized gene expression profiles of circulating endothelial cells (CEC) from 49 patients of AMI and 50 controls and identified a total of 552 differentially expressed genes (DEGs). Based on these DEGs, we also observed that inflammatory response-related genes and pathways were highly upregulated in AMI. Mapping the DEGs to the protein-protein interaction (PPI) network and identifying the subnetworks, we found that OMD and WDFY3 were the hub nodes of two subnetworks with the highest connectivity, which were found to be involved in circadian rhythm and organ- or tissue-specific immune response. Furthermore, 23 lncRNAs were differentially expressed between AMI and control groups. Specifically, we identified some functional lncRNAs, including XIST and its antisense RNA, TSIX, and three lncRNAs (LINC00528, LINC00936, and LINC01001), which were predicted to be interacting with TLR2 and participate in Toll-like receptor signaling pathway. In addition, we also employed the MMPC algorithm to identify six gene signatures for AMI diagnosis. Particularly, the multivariable SVM model based on the six genes has achieved a satisfying performance (AUC = 0.97). Conclusion In conclusion, we have identified key regulatory lncRNAs implicated in AMI, which not only deepens our understanding of the lncRNA-related molecular mechanism of AMI but also provides computationally predicted regulatory lncRNAs for AMI researchers.
Collapse
|