1
|
Khamaysa M, El Mendili M, Marchand V, Querin G, Pradat PF. Quantitative spinal cord imaging: Early ALS diagnosis and monitoring of disease progression. Rev Neurol (Paris) 2025; 181:172-183. [PMID: 39547910 DOI: 10.1016/j.neurol.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons in the cortex, brainstem, and spinal cord. This degeneration leads to muscular weakness, progressively impairing motor functions and ultimately resulting in respiratory failure. The clinical, genetic, and pathological heterogeneity of ALS, combined with the absence of reliable biomarkers, significantly challenge the efficacy of therapeutic trials. Despite these hurdles, neuroimaging, and particularly spinal cord imaging, has emerged as a promising tool. It provides insights into the involvement of both upper and lower motor neurons. Quantitative spinal imaging has the potential to facilitate early diagnosis, enable accurate monitoring of disease progression, and refine the design of clinical trials. In this review, we explore the utility of spinal cord imaging within the broader context of developing spinal imaging biomarkers in ALS. We focus on a both diagnostic and prognostic biomarker in ALS, highlighting its pivotal role in elucidating the disease's underlying pathology. We also discuss the existing limitations and future avenues for research, aiming to bridge the translational gap between academic research and its application in clinical practice and therapeutic trials.
Collapse
Affiliation(s)
- M Khamaysa
- Laboratoire d'Imagerie Biomédicale, Inserm, Sorbonne Université, CNRS, Paris, France
| | - M El Mendili
- Laboratoire d'Imagerie Biomédicale, Inserm, Sorbonne Université, CNRS, Paris, France
| | - V Marchand
- Laboratoire d'Imagerie Biomédicale, Inserm, Sorbonne Université, CNRS, Paris, France
| | - G Querin
- Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, AP-HP, Paris, France
| | - P-F Pradat
- Laboratoire d'Imagerie Biomédicale, Inserm, Sorbonne Université, CNRS, Paris, France; Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, AP-HP, Paris, France.
| |
Collapse
|
2
|
Olofsson J, Bergström S, Mravinacová S, Kläppe U, Öijerstedt L, Zetterberg H, Blennow K, Ingre C, Nilsson P, Månberg A. Cerebrospinal fluid levels of NfM in relation to NfL and pNfH as prognostic markers in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2025; 26:113-123. [PMID: 39575564 DOI: 10.1080/21678421.2024.2428930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 01/18/2025]
Abstract
OBJECTIVE To evaluate the prognostic potential of neurofilament medium chain (NfM) in CSF from patients with ALS and explore its relationship with the extensively studied neurofilament light chain (NfL) and phosphorylated heavy chain (pNfH). METHOD CSF levels of NfL, NfM, and pNfH were analyzed in 235 samples from patients with ALS, ALS mimics, and healthy controls in a well-characterized cohort from Karolinska ALS Clinical Research Center in Stockholm, Sweden. NfM levels were analyzed using an antibody-based suspension bead-array and NfL and pNfH levels were measured using ELISA. Clinical data, including ALS Revised Functional Rating Scale (ALSFRS-R), and survival outcomes were utilized for disease progression estimations. RESULT Increased NfM levels were observed in patients with ALS compared with mimics and healthy controls. Similarly, higher NfM levels were found in fast compared with slow progressing patients for baseline and longitudinal progression when evaluating both total and subscores of ALSFRS-R. These findings were consistent with the results observed for NfL and pNfH. All three proteins, used individually as well as in combination, showed comparable performance when classifying fast vs slow progressing patients (AUCs 0.78-0.85). For all neurofilaments, higher survival probability was observed for patients with low CSF levels. CONCLUSION Based on this cross-sectional study, the prognostic value provided by NfM aligns with the more established markers, NfL and pNfH. Additional investigations with independent cohorts and longitudinal studies are needed to further assess the potential added value of NfM.
Collapse
Affiliation(s)
- Jennie Olofsson
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Sofia Bergström
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Sára Mravinacová
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Ulf Kläppe
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Linn Öijerstedt
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France, and
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Nilsson
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Anna Månberg
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| |
Collapse
|
3
|
Xu Z, Xu R. Current potential diagnostic biomarkers of amyotrophic lateral sclerosis. Rev Neurosci 2024; 35:917-931. [PMID: 38976599 DOI: 10.1515/revneuro-2024-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) currently lacks the useful diagnostic biomarkers. The current diagnosis of ALS is mainly depended on the clinical manifestations, which contributes to the diagnostic delay and be difficult to make the accurate diagnosis at the early stage of ALS, and hinders the clinical early therapeutics. The more and more pathogenesis of ALS are found at the last 30 years, including excitotoxicity, the oxidative stress, the mitochondrial dysfunction, neuroinflammation, the altered energy metabolism, the RNA misprocessing and the most recent neuroimaging findings. The findings of these pathogenesis bring the new clues for searching the diagnostic biomarkers of ALS. At present, a large number of relevant studies about the diagnostic biomarkers are underway. The ALS pathogenesis related to the diagnostic biomarkers might lessen the diagnostic reliance on the clinical manifestations. Among them, the cortical altered signatures of ALS patients derived from both structural and functional magnetic resonance imaging and the emerging proteomic biomarkers of neuronal loss and glial activation in the cerebrospinal fluid as well as the potential biomarkers in blood, serum, urine, and saliva are leading a new phase of biomarkers. Here, we reviewed these current potential diagnostic biomarkers of ALS.
Collapse
Affiliation(s)
- Zheqi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- The Clinical College of Nanchang Medical College, Nanchang 330006, China
- Medical College of Nanchang University, Nanchang 330006, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- The Clinical College of Nanchang Medical College, Nanchang 330006, China
- Medical College of Nanchang University, Nanchang 330006, China
| |
Collapse
|
4
|
Song Z, Zhang S, Pan H, Hu B, Liu X, Cui J, Zhang L. Global research trends on the links between NfL and neurological disorders: A bibliometric analysis and review. Heliyon 2024; 10:e34720. [PMID: 39157316 PMCID: PMC11327529 DOI: 10.1016/j.heliyon.2024.e34720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/22/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Background The global incidence of neurological diseases has been on the rise, creating an urgent need for a validated marker. Neurofilament Light Chain (NfL) holds promise as such a marker and has garnered significant attention in the field of neurological diseases over the past decades. Methods Corresponding articles from 2013 to 2023 were collected from the Web of Science database, and data were analyzed by CiteSpace and VOSviewer software. Results A total of 1350 articles were collected from 296 countries/regions, involving 7246 research organizations. Since 2013, among the top ten institutions and authors with the highest number of published papers, the most are from the US and the UK. The United States leads in the number of published papers, but England holds a more momentous position, because it has higher IF. Henrik Zetterberg is the most influential scholar in the field. Conclusions The output of papers mainly relies on researchers from developed countries, and scholars from the United States and England have contributed the largest number of papers. Until now, the importance of NfL in neurological diseases has attracted global attention. In addition, NfL contributes to the potential diagnosis of various neurological disorders and can be used to improve the accuracy of differential diagnosis and prognostic assessment as well as predict the response to treatments. More and more in-depth studies are highly needed in the future.
Collapse
Affiliation(s)
- Zhengxi Song
- Department of Neurology, The People' s Hospital of Jianyang city, Jianyang, 641400 China
| | - Shan Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - HongYu Pan
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Bingshuang Hu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - XinLian Liu
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, 610500, China
| | - Jia Cui
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, 610500, China
| | - LuShun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
5
|
Agnello L, Gambino CM, Ciaccio AM, Masucci A, Vassallo R, Tamburello M, Scazzone C, Lo Sasso B, Ciaccio M. Molecular Biomarkers of Neurodegenerative Disorders: A Practical Guide to Their Appropriate Use and Interpretation in Clinical Practice. Int J Mol Sci 2024; 25:4323. [PMID: 38673907 PMCID: PMC11049959 DOI: 10.3390/ijms25084323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Neurodegenerative disorders (NDs) represent a group of different diseases characterized by the progressive degeneration and death of the nervous system's cells. The diagnosis is challenging, especially in the early stages, due to no specific clinical signs and symptoms. In this context, laboratory medicine could support clinicians in detecting and differentiating NDs. Indeed, biomarkers could indicate the pathological mechanisms underpinning NDs. The ideal biofluid for detecting the biomarkers of NDs is cerebrospinal fluid (CSF), which has limitations, hampering its widespread use in clinical practice. However, intensive efforts are underway to introduce high-sensitivity analytical methods to detect ND biomarkers in alternative nonivasive biofluid, such as blood or saliva. This study presents an overview of the ND molecular biomarkers currently used in clinical practice. For some diseases, such as Alzheimer's disease or multiple sclerosis, biomarkers are well established and recommended by guidelines. However, for most NDs, intensive research is ongoing to identify reliable and specific biomarkers, and no consensus has yet been achieved.
Collapse
Affiliation(s)
- Luisa Agnello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.A.); (C.M.G.); (A.M.); (R.V.); (M.T.); (C.S.); (B.L.S.)
| | - Caterina Maria Gambino
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.A.); (C.M.G.); (A.M.); (R.V.); (M.T.); (C.S.); (B.L.S.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Anna Maria Ciaccio
- Internal Medicine and Medical Specialties “G. D’Alessandro”, Department of Health Promotion, Maternal and Infant Care, University of Palermo, 90127 Palermo, Italy;
| | - Anna Masucci
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.A.); (C.M.G.); (A.M.); (R.V.); (M.T.); (C.S.); (B.L.S.)
| | - Roberta Vassallo
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.A.); (C.M.G.); (A.M.); (R.V.); (M.T.); (C.S.); (B.L.S.)
| | - Martina Tamburello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.A.); (C.M.G.); (A.M.); (R.V.); (M.T.); (C.S.); (B.L.S.)
| | - Concetta Scazzone
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.A.); (C.M.G.); (A.M.); (R.V.); (M.T.); (C.S.); (B.L.S.)
| | - Bruna Lo Sasso
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.A.); (C.M.G.); (A.M.); (R.V.); (M.T.); (C.S.); (B.L.S.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Marcello Ciaccio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (L.A.); (C.M.G.); (A.M.); (R.V.); (M.T.); (C.S.); (B.L.S.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
6
|
Antonioni A, Raho EM, Lopriore P, Pace AP, Latino RR, Assogna M, Mancuso M, Gragnaniello D, Granieri E, Pugliatti M, Di Lorenzo F, Koch G. Frontotemporal Dementia, Where Do We Stand? A Narrative Review. Int J Mol Sci 2023; 24:11732. [PMID: 37511491 PMCID: PMC10380352 DOI: 10.3390/ijms241411732] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disease of growing interest, since it accounts for up to 10% of middle-age-onset dementias and entails a social, economic, and emotional burden for the patients and caregivers. It is characterised by a (at least initially) selective degeneration of the frontal and/or temporal lobe, generally leading to behavioural alterations, speech disorders, and psychiatric symptoms. Despite the recent advances, given its extreme heterogeneity, an overview that can bring together all the data currently available is still lacking. Here, we aim to provide a state of the art on the pathogenesis of this disease, starting with established findings and integrating them with more recent ones. In particular, advances in the genetics field will be examined, assessing them in relation to both the clinical manifestations and histopathological findings, as well as considering the link with other diseases, such as amyotrophic lateral sclerosis (ALS). Furthermore, the current diagnostic criteria will be explored, including neuroimaging methods, nuclear medicine investigations, and biomarkers on biological fluids. Of note, the promising information provided by neurophysiological investigations, i.e., electroencephalography and non-invasive brain stimulation techniques, concerning the alterations in brain networks and neurotransmitter systems will be reviewed. Finally, current and experimental therapies will be considered.
Collapse
Affiliation(s)
- Annibale Antonioni
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, 44121 Ferrara, Italy
| | - Emanuela Maria Raho
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| | - Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonia Pia Pace
- Institute of Radiology, Department of Medicine, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria-Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Emergency Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Martina Assogna
- Centro Demenze, Policlinico Tor Vergata, University of Rome 'Tor Vergata', 00133 Rome, Italy
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Daniela Gragnaniello
- Nuerology Unit, Neurosciences and Rehabilitation Department, Ferrara University Hospital, 44124 Ferrara, Italy
| | - Enrico Granieri
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| | - Maura Pugliatti
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| | - Francesco Di Lorenzo
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy
- Iit@Unife Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
- Section of Human Physiology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
7
|
Arvidsson Rådestig M, Skoog I, Skillbäck T, Zetterberg H, Kern J, Zettergren A, Andreasson U, Wetterberg H, Kern S, Blennow K. Cerebrospinal fluid biomarkers of axonal and synaptic degeneration in a population-based sample. Alzheimers Res Ther 2023; 15:44. [PMID: 36869347 PMCID: PMC9983206 DOI: 10.1186/s13195-023-01193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Neurofilament light (NfL) and neurogranin (Ng) are promising candidate AD biomarkers, reflecting axonal and synaptic damage, respectively. Since there is a need to understand the synaptic and axonal damage in preclinical Alzheimer's disease (AD), we aimed to determine the cerebrospinal fluid (CSF) levels of NfL and Ng in cognitively unimpaired elderly from the Gothenburg H70 Birth Cohort Studies classified according to the amyloid/tau/neurodegeneration (A/T/N) system. METHODS The sample consisted of 258 cognitively unimpaired older adults (age 70, 129 women and 129 men) from the Gothenburg Birth Cohort Studies. We compared CSF NfL and Ng concentrations in A/T/N groups using Student's T-test and ANCOVA. RESULTS CSF NfL concentration was higher in the A-T-N+ group (p=0.001) and the A-T+N+ group (p=0.006) compared with A-T-N-. CSF Ng concentration was higher in the A-T-N+, A-T+N+, A+T-N+, and A+T+N+ groups (p<0.0001) compared with A-T-N-. We found no difference in NfL or Ng concentration in A+ compared with A- (disregarding T- and N- status), whereas those with N+ had higher concentrations of NfL and Ng compared with N- (p<0.0001) (disregarding A- and T- status). CONCLUSIONS CSF NfL and Ng concentrations are increased in cognitively normal older adults with biomarker evidence of tau pathology and neurodegeneration.
Collapse
Affiliation(s)
- Maya Arvidsson Rådestig
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ingmar Skoog
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry, Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tobias Skillbäck
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden. .,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,UK Dementia Research Institute at UCL, London, WC1N 3BG, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Jürgen Kern
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Zettergren
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Hanna Wetterberg
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Silke Kern
- Department of Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry, Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
8
|
Fournier CN. Considerations for Amyotrophic Lateral Sclerosis (ALS) Clinical Trial Design. Neurotherapeutics 2022; 19:1180-1192. [PMID: 35819713 PMCID: PMC9275386 DOI: 10.1007/s13311-022-01271-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
Thoughtful clinical trial design is critical for efficient therapeutic development, particularly in the field of amyotrophic lateral sclerosis (ALS), where trials often aim to detect modest treatment effects among a population with heterogeneous disease progression. Appropriate outcome measure selection is necessary for trials to provide decisive and informative results. Investigators must consider the outcome measure's reliability, responsiveness to detect change when change has actually occurred, clinical relevance, and psychometric performance. ALS clinical trials can also be performed more efficiently by utilizing statistical enrichment techniques. Innovations in ALS prediction models allow for selection of participants with less heterogeneity in disease progression rates without requiring a lead-in period, or participants can be stratified according to predicted progression. Statistical enrichment can reduce the needed sample size and improve study power, but investigators must find a balance between optimizing statistical efficiency and retaining generalizability of study findings to the broader ALS population. Additional progress is still needed for biomarker development and validation to confirm target engagement in ALS treatment trials. Selection of an appropriate biofluid biomarker depends on the treatment mechanism of interest, and biomarker studies should be incorporated into early phase trials. Inclusion of patients with ALS as advisors and advocates can strengthen clinical trial design and study retention, but more engagement efforts are needed to improve diversity and equity in ALS research studies. Another challenge for ALS therapeutic development is identifying ways to respect patient autonomy and improve access to experimental treatment, something that is strongly desired by many patients with ALS and ALS advocacy organizations. Expanded access programs that run concurrently to well-designed and adequately powered randomized controlled trials may provide an opportunity to broaden access to promising therapeutics without compromising scientific integrity or rushing regulatory approval of therapies without adequate proof of efficacy.
Collapse
Affiliation(s)
- Christina N Fournier
- Department of Neurology, Emory University, Atlanta, GA, USA.
- Department of Veterans Affairs, Atlanta, GA, USA.
| |
Collapse
|
9
|
Zhang J, Cheng H, Liu W, Li H, Song Y, Jia L. Neurofilament light chain in cerebrospinal fluid or blood as a biomarker for mild cognitive impairment: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e28932. [PMID: 35244049 PMCID: PMC8896434 DOI: 10.1097/md.0000000000028932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND To allow early diagnosis and monitoring of disease progression, there is a need for biomarkers in mild cognitive impairment (MCI). Neurofilament light chain (NfL) is emerging protein biomarkers in neurodegenerative diseases and is of possible use in MCI. We aimed to assess the utility of NfL in blood and cerebrospinal fluid (CSF) as a biomarker in patients with MCI. METHODS A systematic search with comparison of NfL level between individuals with MCI and healthy controls were retrieved from PubMed, Embase, and Web of Science. The standard mean difference and 95% confidence interval were calculated using the random-effect model to analyze the differentiation of NfL between patients and controls. RESULTS A total of 7 studies were included. NfL was higher in 676 MCI than 504 healthy controls. Subgroup analysis according to sample type indicated that differentiation of NfL in CSF between patients with MCI and controls showed significant results but in blood. Moreover, the NfL increasing still existed when the NfL expression level was detected by enzyme-linked immunosorbent assay but single molecule array assay. However, no difference of NfL in MCI between Caucasian and Asian was found. CONCLUSIONS NfL expression level in CSF was increased in MCI individuals, which indicated that NfL in CSF could be a potential biomarker of MCI.
Collapse
Affiliation(s)
- Jing Zhang
- Changzhi Medical College, Changzhi, China
| | - Hongjiang Cheng
- Jincheng People's Hospital Affiliated to Shanxi Medical University, Jincheng, China
| | - Wei Liu
- Jincheng People's Hospital Affiliated to Shanxi Medical University, Jincheng, China
| | - Huimin Li
- Jincheng People's Hospital Affiliated to Shanxi Medical University, Jincheng, China
| | - Yi Song
- Changzhi Medical College, Changzhi, China
| | - Longbin Jia
- Jincheng People's Hospital Affiliated to Shanxi Medical University, Jincheng, China
| |
Collapse
|
10
|
Katzeff JS, Bright F, Phan K, Kril JJ, Ittner LM, Kassiou M, Hodges JR, Piguet O, Kiernan MC, Halliday GM, Kim WS. Biomarker discovery and development for frontotemporal dementia and amyotrophic lateral sclerosis. Brain 2022; 145:1598-1609. [PMID: 35202463 PMCID: PMC9166557 DOI: 10.1093/brain/awac077] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 11/12/2022] Open
Abstract
Frontotemporal dementia refers to a group of neurodegenerative disorders characterized by behaviour and language alterations and focal brain atrophy. Amyotrophic lateral sclerosis is a rapidly progressing neurodegenerative disease characterized by loss of motor neurons resulting in muscle wasting and paralysis. Frontotemporal dementia and amyotrophic lateral sclerosis are considered to exist on a disease spectrum given substantial overlap of genetic and molecular signatures. The predominant genetic abnormality in both frontotemporal dementia and amyotrophic lateral sclerosis is an expanded hexanucleotide repeat sequence in the C9orf72 gene. In terms of brain pathology, abnormal aggregates of TAR-DNA-binding protein-43 are predominantly present in frontotemporal dementia and amyotrophic lateral sclerosis patients. Currently, sensitive and specific diagnostic and disease surveillance biomarkers are lacking for both diseases. This has impeded the capacity to monitor disease progression during life and the development of targeted drug therapies for the two diseases. The purpose of this review is to examine the status of current biofluid biomarker discovery and development in frontotemporal dementia and amyotrophic lateral sclerosis. The major pathogenic proteins implicated in different frontotemporal dementia and amyotrophic lateral sclerosis molecular subtypes and proteins associated with neurodegeneration and the immune system will be discussed. Furthermore, the use of mass spectrometry-based proteomics as an emerging tool to identify new biomarkers in frontotemporal dementia and amyotrophic lateral sclerosis will be summarized.
Collapse
Affiliation(s)
- Jared S Katzeff
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Fiona Bright
- The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia.,Dementia Research Centre and Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Katherine Phan
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Jillian J Kril
- The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia.,Dementia Research Centre and Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Michael Kassiou
- The University of Sydney, School of Chemistry, Sydney, NSW, Australia
| | - John R Hodges
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia
| | - Olivier Piguet
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Psychology, Sydney, NSW, Australia
| | - Matthew C Kiernan
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Glenda M Halliday
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Woojin Scott Kim
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| |
Collapse
|
11
|
Heckler I, Venkataraman I. Phosphorylated Neurofilament Heavy Chain: A Potential Diagnostic Biomarker in Amyotrophic Lateral Sclerosis. J Neurophysiol 2022; 127:737-745. [PMID: 35138963 DOI: 10.1152/jn.00398.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuroaxonal damage is a feature of various neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Phosphorylated neurofilament heavy chain (pNfH) is a cytoskeletal structural protein released as a result of axonal damage into the CSF, and subsequently into the blood. Due to high specificity for neuronal cell damage, pNfH is advantageous over other biomarkers, for ALS disease identification. Here, we review the structure and function of neurofilaments and their role in detection of various neurodegenerative conditions. Additionally, a retrospective meta-analysis was performed to depict the significance of pNfH as a valuable diagnostic and prognostic biomarker in ALS.
Collapse
Affiliation(s)
- Ilana Heckler
- Euroimmun Medizinische Labordiagnostika (EUROIMMUN US), Mountain Lakes, NJ, United States
| | - Iswariya Venkataraman
- Euroimmun Medizinische Labordiagnostika (EUROIMMUN US), Mountain Lakes, NJ, United States
| |
Collapse
|
12
|
Sferruzza G, Bosco L, Falzone YM, Russo T, Domi T, Quattrini A, Filippi M, Riva N. Neurofilament light chain as a biological marker for amyotrophic lateral sclerosis: a meta-analysis study. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:446-457. [PMID: 34874217 DOI: 10.1080/21678421.2021.2007952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aim: The aim of the present metanalysis is to evaluate blood and CSF Neurofilament light chain (NfL) concentrations in ALS patients, compared to healthy controls, ALS mimic disorders (ALSmd) and other neurological diseases (OND), and to evaluate their diagnostic yield against ALSmd. Methods: Search engines were systematically investigated for relevant studies. A random effect model was applied to estimate the pooled standard mean difference in NfL levels between ALS and controls and a bivariate mixed-effects model was applied to estimate their diagnostic accuracy on blood and CSF. Results and conclusions: NfL CSF levels were higher in ALS compared with all other control groups. On blood, NfL levels were significantly higher in ALS patients compared with healthy controls and ALSmd. In a subgroup analysis, the use of SIMOA yielded to a better differentiation between ALS and controls on blood, compared with ELISA. Studies performed on CSF (AUC = 0.90) yielded to better diagnostic performances compared with those conducted on blood (AUC = 0.78). Further prospective investigations are needed to determine a diagnostic cutoff, exploitable in clinical practice.
Collapse
Affiliation(s)
- Giacomo Sferruzza
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Bosco
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy and.,Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Russo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy and.,Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| | - Teuta Domi
- Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy and
| | - Nilo Riva
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
13
|
Bergström S, Öijerstedt L, Remnestål J, Olofsson J, Ullgren A, Seelaar H, van Swieten JC, Synofzik M, Sanchez-Valle R, Moreno F, Finger E, Masellis M, Tartaglia C, Vandenberghe R, Laforce R, Galimberti D, Borroni B, Butler CR, Gerhard A, Ducharme S, Rohrer JD, Månberg A, Graff C, Nilsson P. A panel of CSF proteins separates genetic frontotemporal dementia from presymptomatic mutation carriers: a GENFI study. Mol Neurodegener 2021; 16:79. [PMID: 34838088 PMCID: PMC8626910 DOI: 10.1186/s13024-021-00499-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/01/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND A detailed understanding of the pathological processes involved in genetic frontotemporal dementia is critical in order to provide the patients with an optimal future treatment. Protein levels in CSF have the potential to reflect different pathophysiological processes in the brain. We aimed to identify and evaluate panels of CSF proteins with potential to separate symptomatic individuals from individuals without clinical symptoms (unaffected), as well as presymptomatic individuals from mutation non-carriers. METHODS A multiplexed antibody-based suspension bead array was used to analyse levels of 111 proteins in CSF samples from 221 individuals from families with genetic frontotemporal dementia. The data was explored using LASSO and Random forest. RESULTS When comparing affected individuals with unaffected individuals, 14 proteins were identified as potentially important for the separation. Among these, four were identified as most important, namely neurofilament medium polypeptide (NEFM), neuronal pentraxin 2 (NPTX2), neurosecretory protein VGF (VGF) and aquaporin 4 (AQP4). The combined profile of these four proteins successfully separated the two groups, with higher levels of NEFM and AQP4 and lower levels of NPTX2 in affected compared to unaffected individuals. VGF contributed to the models, but the levels were not significantly lower in affected individuals. Next, when comparing presymptomatic GRN and C9orf72 mutation carriers in proximity to symptom onset with mutation non-carriers, six proteins were identified with a potential to contribute to a separation, including progranulin (GRN). CONCLUSION In conclusion, we have identified several proteins with the combined potential to separate affected individuals from unaffected individuals, as well as proteins with potential to contribute to the separation between presymptomatic individuals and mutation non-carriers. Further studies are needed to continue the investigation of these proteins and their potential association to the pathophysiological mechanisms in genetic FTD.
Collapse
Affiliation(s)
- Sofia Bergström
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| | - Linn Öijerstedt
- Swedish FTD Initiative, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Unit of Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Julia Remnestål
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| | - Jennie Olofsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| | - Abbe Ullgren
- Swedish FTD Initiative, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Unit of Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | | | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Raquel Sanchez-Valle
- Alzheimer’s disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d’Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa Spain
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, QC, Canada
| | - Daniela Galimberti
- Fondazione IRCCS Ospedale Policlinico, Milan, Italy
- University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Chris R. Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg- Essen, Duisburg, Germany
| | - Simon Ducharme
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Québec Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec Canada
| | - Jonathan D. Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| | - Caroline Graff
- Swedish FTD Initiative, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Unit of Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| |
Collapse
|
14
|
Benussi A, Ashton NJ, Karikari TK, Alberici A, Saraceno C, Ghidoni R, Benussi L, Zetterberg H, Blennow K, Borroni B. Prodromal frontotemporal dementia: clinical features and predictors of progression. Alzheimers Res Ther 2021; 13:188. [PMID: 34782010 PMCID: PMC8594126 DOI: 10.1186/s13195-021-00932-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND The prodromal phase of frontotemporal dementia (FTD) is still not well characterized, and conversion rates to dementia and predictors of progression at 1-year follow-up are currently unknown. METHODS In this retrospective study, disease severity was assessed using the global CDR plus NACC FTLD. Prodromal FTD was defined to reflect mild cognitive or behavioural impairment with relatively preserved functional independence (global CDR plus NACC = 0.5) as well as mild, moderate and severe dementia (classified as global CDR plus NACC = 1, 2, 3, respectively). Disease progression at 1-year follow-up and serum NfL measurements were acquired in a subgroup of patients. RESULTS Of 563 participants, 138 were classified as prodromal FTD, 130 as mild, 175 as moderate and 120 as severe FTD. In the prodromal and mild phases, we observed an early increase in serum NfL levels followed by behavioural disturbances and deficits in executive functions. Negative symptoms, such as apathy, inflexibility and loss of insight, predominated in the prodromal phase. Serum NfL levels were significantly increased in the prodromal phase compared with healthy controls (average difference 14.5, 95% CI 2.9 to 26.1 pg/mL), but lower than in patients with mild FTD (average difference -15.5, 95% CI -28.4 to -2.7 pg/mL). At 1-year follow-up, 51.2% of patients in the prodromal phase had converted to dementia. Serum NfL measurements at baseline were the strongest predictors of disease progression at 1-year follow-up (OR 1.07, 95% CI 1.03 to 1.11, p < 0.001). CONCLUSIONS Prodromal FTD is a mutable stage with high rate of progression to fully symptomatic disease at 1-year follow-up. High serum NfL levels may support prodromal FTD diagnosis and represent a helpful marker to assess disease progression.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Nicholas J Ashton
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Mölndal, Sweden
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Antonella Alberici
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
| | - Claudia Saraceno
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy.
| |
Collapse
|
15
|
Vacchiano V, Mastrangelo A, Zenesini C, Masullo M, Quadalti C, Avoni P, Polischi B, Cherici A, Capellari S, Salvi F, Liguori R, Parchi P. Plasma and CSF Neurofilament Light Chain in Amyotrophic Lateral Sclerosis: A Cross-Sectional and Longitudinal Study. Front Aging Neurosci 2021; 13:753242. [PMID: 34744694 PMCID: PMC8569186 DOI: 10.3389/fnagi.2021.753242] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Neurofilament light chain (NfL) is a validated biofluid marker of neuroaxonal damage with great potential for monitoring patients with neurodegenerative diseases. We aimed to further validate the clinical utility of plasma (p) vs. CSF (c) NfL for distinguishing patients with Amyotrophic Lateral Sclerosis (ALS) from ALS mimics. We also assessed the association of biomarker values with clinical variables and survival and established the longitudinal changes of pNfL during the disease course. Methods: We studied 231 prospectively enrolled patients with suspected ALS who underwent a standardized protocol including neurological examination, electromyography, brain MRI, and lumbar puncture. Patients who received an alternative clinical diagnosis were considered ALS mimics. We classified the patients based on the disease progression rate (DPR) into fast (DPR > 1), intermediate (DPR 0.5–1), and slow progressors (DPR < 0.5). All patients were screened for the most frequent ALS-associated genes. Plasma and CSF samples were retrospectively analyzed; NfL concentrations were measured with the SIMOA platform using a commercial kit. Results: ALS patients (n = 171) showed significantly higher pNfL (p < 0.0001) and cNfL (p < 0.0001) values compared to ALS mimics (n = 60). Both cNfL and pNfL demonstrated a good diagnostic value in discriminating the two groups, although cNfL performed slightly better (cNfL: AUC 0.924 ± 0.022, sensitivity 86.8%, specificity 92.4; pNfL: AUC 0.873 ± 0.036, sensitivity 84.7%, specificity 83.3%). Fast progressors showed higher cNfL and pNfL as compared to intermediate (p = 0.026 and p = 0.001) and slow progressors (both p < 0.001). Accordingly, ALS patients with higher baseline cNfL and pNfL levels had a shorter survival (highest tertile of cNfL vs. lowest tertile, HR 4.58, p = 0.005; highest tertile of pNfL vs. lowest tertile, HR 2.59, p = 0.015). Moreover, there were positive associations between cNfL and pNfL levels and the number of body regions displaying UMN signs (rho = 0.325, p < 0.0001; rho = 0.308, p = 0.001). Finally, longitudinal analyses in 57 patients showed stable levels of pNfL during the disease course. Conclusion: Both cNfL and pNfL have excellent diagnostic and prognostic performance for symptomatic patients with ALS. The stable longitudinal trajectory of pNfL supports its use as a marker of drug effect in clinical trials.
Collapse
Affiliation(s)
- Veria Vacchiano
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Andrea Mastrangelo
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Marco Masullo
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Corinne Quadalti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Patrizia Avoni
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Barbara Polischi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Arianna Cherici
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sabina Capellari
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fabrizio Salvi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci 2021; 15:689938. [PMID: 34646114 PMCID: PMC8503617 DOI: 10.3389/fnins.2021.689938] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Biomarkers of neurodegeneration and neuronal injury have the potential to improve diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy. Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because they are major neuron-specific components that maintain structural integrity and are sensitive to neurodegeneration and neuronal injury across a wide range of neurologic diseases. Low levels of NfPs are constantly released from neurons into the extracellular space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological conditions throughout normal brain development, maturation, and aging. NfP levels in CSF and blood rise above normal in response to neuronal injury and neurodegeneration independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold more concentrated than in blood in healthy individuals. New ultra-sensitive methods now allow minimally invasive measurement of these low levels of NfPs in serum or plasma to track disease onset and progression in neurological disorders or nervous system injury and assess responses to therapeutic interventions. Any of the five Nf subunits - neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given neuropathological condition. In familial and sporadic Alzheimer's disease (AD), plasma NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years before sporadic AD. The major determinants of elevated levels of NfPs and degradation fragments in CSF and blood are the magnitude of damaged or degenerating axons of fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments at different stages of a given neurological disease or condition directly or indirectly affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs are rapidly emerging as transformative blood biomarkers in neurology providing novel insights into a wide range of neurological diseases and advancing clinical trials. Here we summarize the current understanding of intracellular NfP physiology, pathophysiology and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs and degradation fragments as biomarkers of neurodegeneration and neuronal injury.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
- Department of Cell Biology, New York University Grossman School of Medicine, (NYU), Neuroscience Institute, New York, NY, United States
| |
Collapse
|
17
|
CSF Diagnostics: A Potentially Valuable Tool in Neurodegenerative and Inflammatory Disorders Involving Motor Neurons: A Review. Diagnostics (Basel) 2021; 11:diagnostics11091522. [PMID: 34573864 PMCID: PMC8470638 DOI: 10.3390/diagnostics11091522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Cerebrospinal fluid (CSF) diagnostics has emerged as a valid tool for a variety of neurological diseases. However, CSF diagnostics has been playing a subordinate role in the diagnosis of many neurological conditions. Thus, in the multitude of neuromuscular diseases in which motor neurons are affected, a CSF sample is rarely taken routinely. However, CSF diagnostics has the potential to specify the diagnosis and monitor the treatment of neuromuscular disorders. In this review, we therefore focused on a variety of neuromuscular diseases, among them amyotrophic lateral sclerosis (ALS), peripheral neuropathies, and spinal muscular atrophy (SMA), for which CSF diagnostics has emerged as a promising option for determining the disease itself and its progression. We focus on potentially valuable biomarkers among different disorders, such as neurofilaments, cytokines, other proteins, and lipids to determine their suitability, differentiating between different neurological disorders and their potential to determine early disease onset, disease progression, and treatment outcome. We further recommend novel approaches, e.g., the use of mass spectrometry as a promising alternative techniques to standard ELISA assays, potentially enhancing biomarker significance in clinical applications.
Collapse
|
18
|
Duran-Aniotz C, Orellana P, Leon Rodriguez T, Henriquez F, Cabello V, Aguirre-Pinto MF, Escobedo T, Takada LT, Pina-Escudero SD, Lopez O, Yokoyama JS, Ibanez A, Parra MA, Slachevsky A. Systematic Review: Genetic, Neuroimaging, and Fluids Biomarkers for Frontotemporal Dementia Across Latin America Countries. Front Neurol 2021; 12:663407. [PMID: 34248820 PMCID: PMC8263937 DOI: 10.3389/fneur.2021.663407] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) includes a group of clinically, genetically, and pathologically heterogeneous neurodegenerative disorders, affecting the fronto-insular-temporal regions of the brain. Clinically, FTD is characterized by progressive deficits in behavior, executive function, and language and its diagnosis relies mainly on the clinical expertise of the physician/consensus group and the use of neuropsychological tests and/or structural/functional neuroimaging, depending on local availability. The modest correlation between clinical findings and FTD neuropathology makes the diagnosis difficult using clinical criteria and often leads to underdiagnosis or misdiagnosis, primarily due to lack of recognition or awareness of FTD as a disease and symptom overlap with psychiatric disorders. Despite advances in understanding the underlying neuropathology of FTD, accurate and sensitive diagnosis for this disease is still lacking. One of the major challenges is to improve diagnosis in FTD patients as early as possible. In this context, biomarkers have emerged as useful methods to provide and/or complement clinical diagnosis for this complex syndrome, although more evidence is needed to incorporate most of them into clinical practice. However, most biomarker studies have been performed using North American or European populations, with little representation of the Latin American and the Caribbean (LAC) region. In the LAC region, there are additional challenges, particularly the lack of awareness and knowledge about FTD, even in specialists. Also, LAC genetic heritage and cultures are complex, and both likely influence clinical presentations and may modify baseline biomarker levels. Even more, due to diagnostic delay, the clinical presentation might be further complicated by both neurological and psychiatric comorbidity, such as vascular brain damage, substance abuse, mood disorders, among others. This systematic review provides a brief update and an overview of the current knowledge on genetic, neuroimaging, and fluid biomarkers for FTD in LAC countries. Our review highlights the need for extensive research on biomarkers in FTD in LAC to contribute to a more comprehensive understanding of the disease and its associated biomarkers. Dementia research is certainly reduced in the LAC region, highlighting an urgent need for harmonized, innovative, and cross-regional studies with a global perspective across multiple areas of dementia knowledge.
Collapse
Affiliation(s)
- Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Tomas Leon Rodriguez
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernando Henriquez
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Victoria Cabello
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Tamara Escobedo
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Stefanie D. Pina-Escudero
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Oscar Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer S. Yokoyama
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Agustin Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mario A. Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
- Department of Neurology and Psychiatry, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
19
|
Verde F, Otto M, Silani V. Neurofilament Light Chain as Biomarker for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Neurosci 2021; 15:679199. [PMID: 34234641 PMCID: PMC8255624 DOI: 10.3389/fnins.2021.679199] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two related currently incurable neurodegenerative diseases. ALS is characterized by degeneration of upper and lower motor neurons causing relentless paralysis of voluntary muscles, whereas in FTD, progressive atrophy of the frontal and temporal lobes of the brain results in deterioration of cognitive functions, language, personality, and behavior. In contrast to Alzheimer's disease (AD), ALS and FTD still lack a specific neurochemical biomarker reflecting neuropathology ex vivo. However, in the past 10 years, considerable progress has been made in the characterization of neurofilament light chain (NFL) as cerebrospinal fluid (CSF) and blood biomarker for both diseases. NFL is a structural component of the axonal cytoskeleton and is released into the CSF as a consequence of axonal damage or degeneration, thus behaving in general as a relatively non-specific marker of neuroaxonal pathology. However, in ALS, the elevation of its CSF levels exceeds that observed in most other neurological diseases, making it useful for the discrimination from mimic conditions and potentially worthy of consideration for introduction into diagnostic criteria. Moreover, NFL correlates with disease progression rate and is negatively associated with survival, thus providing prognostic information. In FTD patients, CSF NFL is elevated compared with healthy individuals and, to a lesser extent, patients with other forms of dementia, but the latter difference is not sufficient to enable a satisfying diagnostic performance at individual patient level. However, also in FTD, CSF NFL correlates with several measures of disease severity. Due to technological progress, NFL can now be quantified also in peripheral blood, where it is present at much lower concentrations compared with CSF, thus allowing less invasive sampling, scalability, and longitudinal measurements. The latter has promoted innovative studies demonstrating longitudinal kinetics of NFL in presymptomatic individuals harboring gene mutations causing ALS and FTD. Especially in ALS, NFL levels are generally stable over time, which, together with their correlation with progression rate, makes NFL an ideal pharmacodynamic biomarker for therapeutic trials. In this review, we illustrate the significance of NFL as biomarker for ALS and FTD and discuss unsolved issues and potential for future developments.
Collapse
Affiliation(s)
- Federico Verde
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Vincenzo Silani
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
20
|
Dreger M, Steinbach R, Gaur N, Metzner K, Stubendorff B, Witte OW, Grosskreutz J. Cerebrospinal Fluid Neurofilament Light Chain (NfL) Predicts Disease Aggressiveness in Amyotrophic Lateral Sclerosis: An Application of the D50 Disease Progression Model. Front Neurosci 2021; 15:651651. [PMID: 33889072 PMCID: PMC8056017 DOI: 10.3389/fnins.2021.651651] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disorder. As previous therapeutic trials in ALS have been severely hampered by patients’ heterogeneity, the identification of biomarkers that reliably reflect disease progression represents a priority in ALS research. Here, we used the D50 disease progression model to investigate correlations between cerebrospinal fluid (CSF) neurofilament light chain (NfL) levels and disease aggressiveness. The D50 model quantifies individual disease trajectories for each ALS patient. The value D50 provides a unified measure of a patient’s overall disease aggressiveness (defined as time taken in months to lose 50% of functionality). The relative D50 (rD50) reflects the individual disease covered and can be calculated for any time point in the disease course. We analyzed clinical data from a well-defined cohort of 156 patients with ALS. The concentration of NfL in CSF samples was measured at two different laboratories using the same procedure. Based on patients’ individual D50 values, we defined subgroups with high (<20), intermediate (20–40), or low (>40) disease aggressiveness. NfL levels were compared between these subgroups via analysis of covariance, using an array of confounding factors: age, gender, clinical phenotype, frontotemporal dementia, rD50-derived disease phase, and analyzing laboratory. We found highly significant differences in NfL concentrations between all three D50 subgroups (p < 0.001), representing an increase of NfL levels with increasing disease aggressiveness. The conducted analysis of covariance showed that this correlation was independent of gender, disease phenotype, and phase; however, age, analyzing laboratory, and dementia significantly influenced NfL concentration. We could show that CSF NfL is independent of patients’ disease covered at the time of sampling. The present study provides strong evidence for the potential of NfL to reflect disease aggressiveness in ALS and in addition proofed to remain at stable levels throughout the disease course. Implementation of CSF NfL as a potential read-out for future therapeutic trials in ALS is currently constrained by its demonstrated susceptibility to (pre-)analytical variations. Here we show that the D50 model enables the discovery of correlations between clinical characteristics and CSF analytes and can be recommended for future studies evaluating potential biomarkers.
Collapse
Affiliation(s)
- Marie Dreger
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Robert Steinbach
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nayana Gaur
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Klara Metzner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| |
Collapse
|
21
|
Karantali E, Kazis D, Chatzikonstantinou S, Petridis F, Mavroudis I. The role of neurofilament light chain in frontotemporal dementia: a meta-analysis. Aging Clin Exp Res 2021; 33:869-881. [PMID: 32306372 DOI: 10.1007/s40520-020-01554-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Frontotemporal dementia (FTD) is the second most frequent dementia, after Alzheimer's, in patients under the age of 65. It encompasses clinical entities characterized by behavioral, language, and executive control dysfunction. Neurofilament light chain (NfL) is a new, non-disease specific, widely studied biomarker indicative of axonal injury and degeneration. Various studies have previously explored the role of NfL in the diagnostic process, monitoring, and prognosis of dementia. The current systematic review and meta-analysis include all the available data concerning the role of NfL in frontotemporal dementia and its use as a potential biomarker in differentiating patients with FTD from (a) healthy individuals, (b) Alzheimer's dementia, (c) Dementia with Lewy bodies, (d) Motor Neuron disease, (e) Parkinsonian syndromes, and (f) psychiatric disorders. We also analyze the utility of NfL in distinguishing specific FTD subgroups. Neurofilament light chain has a potential role in differentiating patients with frontotemporal dementia from healthy controls, patients with Alzheimer's dementia, and psychiatric disorders. Higher NfL levels were also noted in patients with semantic primary progressive aphasia (PPA) when compared with behavioral FTD and non-fluent PPA patients. Further studies exploring the use of NfL in frontotemporal dementia are needed.
Collapse
Affiliation(s)
- Eleni Karantali
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Fivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Mavroudis
- Leeds Teaching Hospitals, Leeds, UK
- Medical School, Cyprus University, Nicosia, Cyprus
| |
Collapse
|
22
|
Skillbäck T, Blennow K, Zetterberg H, Shams S, Machado A, Pereira J, Lindberg O, Mielke MM, Zettergren A, Ryden L, Westman E, Wahlund L, Skoog I, Kern S. Sex differences in CSF biomarkers for neurodegeneration and blood-brain barrier integrity. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12141. [PMID: 33748393 PMCID: PMC7968119 DOI: 10.1002/dad2.12141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/21/2020] [Accepted: 12/02/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION As cerebrospinal fluid (CSF) neurofilament light protein (NfL) and the CSF/serum albumin ratio (QAlb) are used in the clinical routine, the impact of demographic factors on these biomarkers is important to understand. METHODS Participants were derived from two Swedish samples: the population-based H70 Study (n = 308, age 70) and a clinical routine cohort (CSF NfL, n = 8995, QAlb, n = 39252, age 0 to 95). In the population-based study, QAlb and NfL were examined in relation to sex, cardiovascular risk factors, and cerebral white matter lesions (WMLs). In the clinical cohort, QAlb and NfL sex differences were tested in relation to age. RESULTS Men had higher QAlb and NfL concentrations and had higher QAlb and NfL concentrations from adolescence throughout life. NfL was not related to WML, but QAlb correlated positively with WMLs. DISCUSSION The CSF NfL sex difference could not be explained by vascular pathology. Future studies should consider using different reference limits for men and women.
Collapse
Affiliation(s)
- Tobias Skillbäck
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - Sara Shams
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Alejandra Machado
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Joana Pereira
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Olof Lindberg
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Michelle M. Mielke
- Department of Health Sciences ResearchDivision of Epidemiology and Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Anna Zettergren
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
| | - Lina Ryden
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
| | - Eric Westman
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
- Department of NeuroimagingCentre for Neuroimaging SciencesInstitute of PsychiatryPsychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Lars‐Olof Wahlund
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Ingmar Skoog
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
| | - Silke Kern
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
| |
Collapse
|
23
|
Prediction of Outcome After Endovascular Embolectomy in Anterior Circulation Stroke Using Biomarkers. Transl Stroke Res 2021; 13:65-76. [PMID: 33723754 PMCID: PMC8766380 DOI: 10.1007/s12975-021-00905-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 10/29/2022]
Abstract
Stroke is a major public health problem that can cause a long-term disability or death due to brain damage. Serious stroke is frequently caused by a large vessel occlusion in the anterior circulation, which should be treated by endovascular embolectomy if possible. In this study, we investigated the use of the brain damage biomarkers tau, NFL, NSE, GFAp, and S100B to understand the progression of nervous tissue damage and their relationship to outcome in such stroke after endovascular treatment. Blood samples were taken from 90 patients pre-treatment and 2 h, 24 h, 48 h, 72 h and 3 months after endovascular treatment. Stroke-related neurological deficit was estimated using the National Institute of Health Stroke Scale (NIHSS) at admission and at 24 h. Neurological outcome was evaluated at 3 months. After stroke, tau, NFL, GFAp and S100B increased in a time dependent manner, while NSE remained constant over time. At 3 months, tau and GFAp levels were back to normal whereas NFL was still high. Tau, NFL and GFAp correlated well to outcome, as well as to infarct volume and NIHSS at 24 h. The best time for prediction of poor outcome was different for each biomarker. However, the combination of NIHSS at 24 h with either tau, NFL or GFAp at 48 h gave the best prediction. The use of biomarkers in the early setting after endovascular treatment of stroke will lead to a simplified and standardized way to estimate the nervous tissue damage and possibly complement the clinical judgement in foreseeing the need of rehabilitation measures.
Collapse
|
24
|
Gagliardi D, Faravelli I, Meneri M, Saccomanno D, Govoni A, Magri F, Ricci G, Siciliano G, Pietro Comi G, Corti S. Diagnostic and prognostic value of CSF neurofilaments in a cohort of patients with motor neuron disease: A cross-sectional study. J Cell Mol Med 2021; 25:3765-3771. [PMID: 33609080 PMCID: PMC8051694 DOI: 10.1111/jcmm.16240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Motor neuron disease (MND) is a rare group of disorders characterized by degeneration of motor neurons (MNs). The most common form of MND, amyotrophic lateral sclerosis (ALS), is an incurable disease with a variable rate of progression. The search of robust biomarkers able to discriminate among different ALS forms is paramount to properly stratify patients, and to identify those who could most likely benefit from experimental therapies. Phosphorylated‐neurofilament heavy chain (p‐NfH) and neurofilament light chain (NfL) are neuron‐specific components of the cytoskeleton and may represent reliable markers of neuronal injury in neurological disorders. In this study, we described our cohort of ALS patients in order to investigate whether and how cerebrospinal fluid (CSF) p‐NfH and NfL levels may reflect progression rate, MN involvement and the extent of neurodegeneration. CSF p‐NfH and NfL were significantly increased in ALS compared with healthy and disease controls, including patients with other forms of MND, and were higher in patients with more aggressive disease course, reflecting progression rate. We also evaluated neurofilament diagnostic accuracy in our centre, identifying with high sensitivity and 100% specificity cut‐off values of 0.652 ng/mL for CSF p‐NfH (P < .0001) and of 1261 pg/mL for NfL (P < .0001) in discriminating ALS from healthy controls. CSF neurofilaments were significantly correlated with ALS progression rate. Overall, CSF neurofilaments appear to reflect the burden of neurodegeneration in MND and represent reliable diagnostic and prognostic biomarkers in ALS.
Collapse
Affiliation(s)
- Delia Gagliardi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Irene Faravelli
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Megi Meneri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Domenica Saccomanno
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Alessandra Govoni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Neurological Clinics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Magri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Giulia Ricci
- Neurological Clinics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Neurological Clinics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| |
Collapse
|
25
|
Rübsamen N, Maceski A, Leppert D, Benkert P, Kuhle J, Wiendl H, Peters A, Karch A, Berger K. Serum neurofilament light and tau as prognostic markers for all-cause mortality in the elderly general population-an analysis from the MEMO study. BMC Med 2021; 19:38. [PMID: 33583409 PMCID: PMC7883435 DOI: 10.1186/s12916-021-01915-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurofilament light chain (NfL) is a cytoskeletal protein component whose release into blood is indicative of neuronal damage. Tau is a microtubule-associated protein in neurons and strongly associated with overall brain degeneration. NfL and tau levels are associated with mortality in different neurological diseases, but studies in the general population are missing. We investigated whether NfL and tau serum levels could serve as prognostic markers for overall mortality in elderly individuals without pre-defined neurological conditions. Further, we investigated the cross-sectional associations between NfL, tau, neuropsychological functioning, and brain structures. METHODS In 1997, 385 inhabitants of Augsburg who were aged 65 years and older were included in the Memory and Morbidity in Augsburg Elderly (MEMO) study. They participated in a face-to-face medical interview including neuropsychological tests and magnetic resonance imaging (MRI) of the brain. NfL and tau were measured from non-fasting blood samples using highly sensitive single molecule array assays. To assess the prognostic accuracy of the biomarkers, concordance statistics based on the predicted 5-year survival probabilities were calculated for different Cox regression models. Associations between the biomarkers and the neuropsychological test scores or brain structures were investigated using linear or logistic regression. RESULTS NfL (HR 1.27, 95% CI [1.14-1.42]) and tau (1.20 [1.07-1.35]) serum levels were independently associated with all-cause mortality. NfL, but not tau, increased the prognostic accuracy when added to a model containing sociodemographic characteristics (concordance statistic 0.684 [0.612-0.755] vs. 0.663 [0.593-0.733]), but not when added to a model containing sociodemographic characteristics and brain atrophy or neuropsychological test scores. NfL serum levels were cross-sectionally associated with neuropsychological test scores and brain structures. CONCLUSIONS The association between NfL serum levels and brain atrophy and neuropsychological performance in individuals without overt neurological disease is similar to that seen in patients with neurodegenerative diseases. These findings support the concept of a continuum of physiological aging and incipient, subclinical pathology, and manifest disease. NfL, but not tau, serum levels might serve as a prognostic marker for all-cause mortality if no other clinical information is available.
Collapse
Affiliation(s)
- Nicole Rübsamen
- Institute of Epidemiology and Social Medicine, University of Münster, Domagkstraße 3, 48149, Münster, Germany.
| | - Aleksandra Maceski
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Pascal Benkert
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Spitalstr 12, 4031, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Straße 33, 48149, Münster, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München, Ingolstädter Landstr 1, 85764, Neuherberg, Germany
| | - André Karch
- Institute of Epidemiology and Social Medicine, University of Münster, Domagkstraße 3, 48149, Münster, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Domagkstraße 3, 48149, Münster, Germany
| |
Collapse
|
26
|
Kaeser SA, Lehallier B, Thinggaard M, Häsler LM, Apel A, Bergmann C, Berdnik D, Jeune B, Christensen K, Grönke S, Partridge L, Wyss-Coray T, Mengel-From J, Jucker M. A neuronal blood marker is associated with mortality in old age. ACTA ACUST UNITED AC 2021; 1:218-225. [PMID: 37118632 DOI: 10.1038/s43587-021-00028-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022]
Abstract
Neurofilament light chain (NfL) has emerged as a promising blood biomarker for the progression of various neurological diseases. NfL is a structural protein of nerve cells, and elevated NfL levels in blood are thought to mirror damage to the nervous system. We find that plasma NfL levels increase in humans with age (n = 122; 21-107 years of age) and correlate with changes in other plasma proteins linked to neural pathways. In centenarians (n = 135), plasma NfL levels are associated with mortality equally or better than previously described multi-item scales of cognitive or physical functioning, and this observation was replicated in an independent cohort of nonagenarians (n = 180). Plasma NfL levels also increase in aging mice (n = 114; 2-30 months of age), and dietary restriction, a paradigm that extends lifespan in mice, attenuates the age-related increase in plasma NfL levels. These observations suggest a contribution of nervous system functional deterioration to late-life mortality.
Collapse
|
27
|
El-Wahsh S, Finger EC, Piguet O, Mok V, Rohrer JD, Kiernan MC, Ahmed RM. Predictors of survival in frontotemporal lobar degeneration syndromes. J Neurol Neurosurg Psychiatry 2021; 92:jnnp-2020-324349. [PMID: 33441385 DOI: 10.1136/jnnp-2020-324349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
After decades of research, large-scale clinical trials in patients diagnosed with frontotemporal lobar degeneration (FTLD) are now underway across multiple centres worldwide. As such, refining the determinants of survival in FTLD represents a timely and important challenge. Specifically, disease outcome measures need greater clarity of definition to enable accurate tracking of therapeutic interventions in both clinical and research settings. Multiple factors potentially determine survival, including the clinical phenotype at presentation; radiological patterns of atrophy including markers on both structural and functional imaging; metabolic factors including eating behaviour and lipid metabolism; biomarkers including both serum and cerebrospinal fluid markers of underlying pathology; as well as genetic factors, including both dominantly inherited genes, but also genetic modifiers. The present review synthesises the effect of these factors on disease survival across the syndromes of frontotemporal dementia, with comparison to amyotrophic lateral sclerosis, progressive supranuclear palsy and corticobasal syndrome. A pathway is presented that outlines the utility of these varied survival factors for future clinical trials and drug development. Given the complexity of the FTLD spectrum, it seems unlikely that any single factor may predict overall survival in individual patients, further suggesting that a precision medicine approach will need to be developed in predicting disease survival in FTLD, to enhance drug target development and future clinical trial methodologies.
Collapse
Affiliation(s)
- Shadi El-Wahsh
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Elizabeth C Finger
- Department of Clinicial Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Olivier Piguet
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Mok
- Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Rebekah M Ahmed
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Fluid Biomarkers of Frontotemporal Lobar Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:123-139. [PMID: 33433873 DOI: 10.1007/978-3-030-51140-1_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A timely diagnosis of frontotemporal degeneration (FTD) is frequently challenging due to the heterogeneous symptomatology and poor phenotype-pathological correlation. Fluid biomarkers that reflect FTD pathophysiology could be instrumental in both clinical practice and pharmaceutical trials. In recent years, significant progress has been made in developing biomarkers of neurodegenerative diseases: amyloid-β and tau in cerebrospinal fluid (CSF) can be used to exclude Alzheimer's disease, while neurofilament light chain (NfL) is emerging as a promising, albeit nonspecific, marker of neurodegeneration in both CSF and blood. Gene-specific biomarkers such as PGRN in GRN mutation carriers and dipeptide repeat proteins in C9orf72 mutation carriers are potential target engagement markers in genetic FTD trials. Novel techniques capable of measuring very low concentrations of brain-derived proteins in peripheral fluids are facilitating studies of blood biomarkers as a minimally invasive alternative to CSF. A major remaining challenge is the identification of a biomarker that can be used to predict the neuropathological substrate in sporadic FTD patients.
Collapse
|
29
|
Wang SY, Chen W, Xu W, Li JQ, Hou XH, Ou YN, Yu JT, Tan L. Neurofilament Light Chain in Cerebrospinal Fluid and Blood as a Biomarker for Neurodegenerative Diseases: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2020; 72:1353-1361. [PMID: 31744001 DOI: 10.3233/jad-190615] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neurofilament light chain (NFL) as a potential biomarker of neurodegenerative diseases has been studied in a number of studies. Thus, a comprehensive meta-analysis is warranted to assess NFL performance in neurodegenerative diseases. OBJECTIVE To assess the performance of NFL in blood and cerebrospinal fluid (CSF) as a biomarker for neurodegenerative diseases. METHODS A total of 36 studies with comparison of NFL level between individuals with neurodegenerative diseases and controls were retrieved from PubMed, Web of Science and Science Direct, and the ratio of means method and delta method based on the random-effect model were used to analyze the differentiation of NFL between patients and controls. RESULTS Differentiation of CSF NFL between patients with neurodegenerative diseases and controls showed significant results. Although a few studies on blood NFL available were included in the meta-analysis, the results still showed a distinct possibility that NFL could be a potential biomarker for neurodegenerative diseases. NFL levels were increased significantly in dementias, amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, and Huntington's disease. By contrast, NFL levels were not increased in Parkinson's disease (PD), although they were increased significantly in PD-related disorders (multiple system atrophy and progressive supranuclear palsy). CONCLUSIONS In our study, in addition to PD, NFL was suggested to be a global diagnostic biomarker for neurodegenerative diseases. Moreover, it could be used in differential diagnosis of PD and PD-related disorders. However, it was worth noting that NFL was not appropriate for diagnosis or differential diagnosis without clinical symptoms and other auxiliary examinations.
Collapse
Affiliation(s)
- Shao-Yang Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Chen
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jie-Qiong Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Zucchi E, Bonetto V, Sorarù G, Martinelli I, Parchi P, Liguori R, Mandrioli J. Neurofilaments in motor neuron disorders: towards promising diagnostic and prognostic biomarkers. Mol Neurodegener 2020; 15:58. [PMID: 33059698 PMCID: PMC7559190 DOI: 10.1186/s13024-020-00406-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) are etiologically and biologically heterogeneous diseases. The pathobiology of motor neuron degeneration is still largely unknown, and no effective therapy is available. Heterogeneity and lack of specific disease biomarkers have been appointed as leading reasons for past clinical trial failure, and biomarker discovery is pivotal in today's MND research agenda.In the last decade, neurofilaments (NFs) have emerged as promising biomarkers for the clinical assessment of neurodegeneration. NFs are scaffolding proteins with predominant structural functions contributing to the axonal cytoskeleton of myelinated axons. NFs are released in CSF and peripheral blood as a consequence of axonal degeneration, irrespective of the primary causal event. Due to the current availability of highly-sensitive automated technologies capable of precisely quantify proteins in biofluids in the femtomolar range, it is now possible to reliably measure NFs not only in CSF but also in blood.In this review, we will discuss how NFs are impacting research and clinical management in ALS and other MNDs. Besides contributing to the diagnosis at early stages by differentiating between MNDs with different clinical evolution and severity, NFs may provide a useful tool for the early enrolment of patients in clinical trials. Due to their stability across the disease, NFs convey prognostic information and, on a larger scale, help to stratify patients in homogenous groups. Shortcomings of NFs assessment in biofluids will also be discussed according to the available literature in the attempt to predict the most appropriate use of the biomarker in the MND clinic.
Collapse
Affiliation(s)
- Elisabetta Zucchi
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Bonetto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gianni Sorarù
- Neuromuscular Center, Department of Neurosciences, University of Padova, Padua, Italy.,Clinica Neurologica, Azienda Ospedaliera di Padova, Padua, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria Modena, Modena, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero Universitaria Modena, Modena, Italy.
| |
Collapse
|
31
|
Chaudhry A, Houlden H, Rizig M. Novel fluid biomarkers to differentiate frontotemporal dementia and dementia with Lewy bodies from Alzheimer's disease: A systematic review. J Neurol Sci 2020; 415:116886. [PMID: 32428759 DOI: 10.1016/j.jns.2020.116886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE Frontotemporal dementia (FTD) and dementia with Lewy bodies (DLB) are two common forms of neurodegenerative dementia, subsequent to Alzheimer's disease (AD). AD is the only dementia that includes clinically validated cerebrospinal fluid (CSF) biomarkers in the diagnostic criteria. FTD and DLB often overlap with AD in their clinical and pathological features, making it challenging to differentiate between these conditions. AIM This systematic review aimed to identify if novel fluid biomarkers are useful in differentiating FTD and DLB from AD. Increasing the certainty of the differentiation between dementia subtypes would be advantageous clinically and in research. METHODS PubMed and Scopus were searched for studies that quantified and assessed diagnostic accuracy of novel fluid biomarkers in clinically diagnosed patients with FTD or DLB, in comparison to patients with AD. Meta-analyses were performed on biomarkers that were quantified in 3 studies or more. RESULTS The search strategy yielded 614 results, from which, 27 studies were included. When comparing bio-fluid levels in AD and FTD patients, neurofilament light chain (NfL) level was often higher in FTD, whilst brain soluble amyloid precursor protein β (sAPPβ) was higher in patients with AD. When comparing bio-fluid levels in AD and DLB patients, α-synuclein ensued heterogeneous findings, while the noradrenaline metabolite (MHPG) was found to be lower in DLB. Ratios of Aβ42/Aβ38 and Aβ42/Aβ40 were lower in AD than FTD and DLB and offered better diagnostic accuracy than raw amyloid-β (Aβ) concentrations. CONCLUSIONS Several promising novel biomarkers were highlighted in this review. Combinations of fluid biomarkers were more often useful than individual biomarkers in distinguishing subtypes of dementia. Considering the heterogeneity in methods and results between the studies, further validation, ideally with longitudinal prospective designs with large sample sizes and unified protocols, are fundamental before conclusions can be finalised.
Collapse
Affiliation(s)
- Aiysha Chaudhry
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| | - Henry Houlden
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| | - Mie Rizig
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom.
| |
Collapse
|
32
|
Delaby C, Alcolea D, Carmona-Iragui M, Illán-Gala I, Morenas-Rodríguez E, Barroeta I, Altuna M, Estellés T, Santos-Santos M, Turon-Sans J, Muñoz L, Ribosa-Nogué R, Sala-Matavera I, Sánchez-Saudinos B, Subirana A, Videla L, Benejam B, Sirisi S, Lehmann S, Belbin O, Clarimon J, Blesa R, Pagonabarraga J, Rojas-Garcia R, Fortea J, Lleó A. Differential levels of Neurofilament Light protein in cerebrospinal fluid in patients with a wide range of neurodegenerative disorders. Sci Rep 2020; 10:9161. [PMID: 32514050 PMCID: PMC7280194 DOI: 10.1038/s41598-020-66090-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/14/2020] [Indexed: 12/29/2022] Open
Abstract
Cerebrospinal fluid (CSF) biomarkers are useful in the diagnosis and the prediction of progression of several neurodegenerative diseases. Among them, CSF neurofilament light (NfL) protein has particular interest, as its levels reflect neuroaxonal degeneration, a common feature in various neurodegenerative diseases. In the present study, we analyzed NfL levels in the CSF of 535 participants of the SPIN (Sant Pau Initiative on Neurodegeneration) cohort including cognitively normal participants, patients with Alzheimer disease (AD), Down syndrome (DS), frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). We evaluated the differences in CSF NfL accross groups and its association with other CSF biomarkers and with cognitive scales. All neurogenerative diseases showed increased levels of CSF NfL, with the highest levels in patients with ALS, FTD, CBS and PSP. Furthermore, we found an association of CSF NfL levels with cognitive impairment in patients within the AD and FTD spectrum and with AD pathology in DLB and DS patients. These results have implications for the use of NfL as a marker in neurodegenerative diseases.
Collapse
Affiliation(s)
- C Delaby
- Université de Montpellier, CHU de Montpellier, Laboratoire de Biochimie-Protéomique clinique, INSERM U1183, Montpellier, France.,Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain
| | - D Alcolea
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - M Carmona-Iragui
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain.,Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - I Illán-Gala
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - E Morenas-Rodríguez
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - I Barroeta
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - M Altuna
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - T Estellés
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - M Santos-Santos
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - J Turon-Sans
- Department of Neurology, Neuromuscular Diseases Unit, MND Clinic, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras, Ciberer, Spain
| | - L Muñoz
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - R Ribosa-Nogué
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - I Sala-Matavera
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - B Sánchez-Saudinos
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - A Subirana
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - L Videla
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain.,Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - B Benejam
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain.,Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - S Sirisi
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - S Lehmann
- Université de Montpellier, CHU de Montpellier, Laboratoire de Biochimie-Protéomique clinique, INSERM U1183, Montpellier, France
| | - O Belbin
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - J Clarimon
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - R Blesa
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - J Pagonabarraga
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain.,Department of Neurology, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain
| | - R Rojas-Garcia
- Department of Neurology, Neuromuscular Diseases Unit, MND Clinic, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras, Ciberer, Spain
| | - J Fortea
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain.,Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - A Lleó
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain. .,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain.
| |
Collapse
|
33
|
Cajanus A, Katisko K, Kontkanen A, Jääskeläinen O, Hartikainen P, Haapasalo A, Herukka SK, Vanninen R, Solje E, Hall A, Remes AM. Serum neurofilament light chain in FTLD: association with C9orf72, clinical phenotype, and prognosis. Ann Clin Transl Neurol 2020; 7:903-910. [PMID: 32441885 PMCID: PMC7318100 DOI: 10.1002/acn3.51041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Objective The aim of the present study was to compare the levels of serum neurofilament light chain (sNfL) in frontotemporal lobar degeneration (FTLD) patients of different clinical subtypes (bvFTD, PPA, and FTLD‐MND) and with or without the C9orf72 repeat expansion, and to correlate sNfL levels to disease progression, assessed by the brain atrophy rate and survival time. Methods The sNfL levels were determined from 78 FTLD patients (C9orf72 repeat expansion carriers [n = 26] and non‐carriers [n = 52]) with Single Molecule Array (SIMOA). The progression of brain atrophy was evaluated using repeated T1‐weighted MRI scans and the survival time from medical records. Results In the total FTLD cohort, sNfL levels were significantly higher in C9orf72 repeat expansion carriers compared to non‐carriers. Considering clinical phenotypes, sNfL levels were higher in the C9orf72 repeat expansion carriers than in the non‐carriers in bvFTD and PPA groups. Furthermore, sNfL levels were the highest in the FTLD‐MND group (median 105 pg/mL) and the lowest in the bvFTD group (median 27 pg/mL). Higher sNfL levels significantly correlated with frontal cortical atrophy rate and subcortical grey matter atrophy rate. The higher sNfL levels also associated with shorter survival time. Interpretation Our results indicate that the C9orf72 repeat expansion carriers show elevated sNFL levels compared to non‐carriers and that the levels differ among different clinical phenotypes of FTLD. Higher sNfL levels correlated with a shorter survival time and cortical and subcortical atrophy rates. Thus, sNfL could prove as a potential prognostic biomarker in FTLD.
Collapse
Affiliation(s)
- Antti Cajanus
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Kasper Katisko
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Aleksi Kontkanen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Olli Jääskeläinen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Päivi Hartikainen
- Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Ritva Vanninen
- Department of Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Anette Hall
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Anne M Remes
- Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
34
|
Gordon BA. Neurofilaments in disease: what do we know? Curr Opin Neurobiol 2020; 61:105-115. [PMID: 32151970 PMCID: PMC7198337 DOI: 10.1016/j.conb.2020.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/25/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Neurofilaments are proteins selectively expressed in the cytoskeleton of neurons, and increased levels are a marker of damage. Elevated neurofilament levels can serve as a marker of ongoing disease activity as well as a tool to measure response to therapeutic intervention. The potential utility of neurofilaments has drastically increased as recent advances have made it possible to measure levels in both the cerebrospinal fluid and blood. There is mounting evidence that neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (NfH) are abnormal in a host of neurodegenerative diseases. In this review we examine how both of these proteins behave across diseases and what we know about how these biomarkers relate to in vivo white matter pathology and each other.
Collapse
Affiliation(s)
- Brian A Gordon
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA; Psychological & Brain Sciences, Washington University in St. Louis, MO, USA.
| |
Collapse
|
35
|
Baldacci F, Mazzucchi S, Della Vecchia A, Giampietri L, Giannini N, Koronyo-Hamaoui M, Ceravolo R, Siciliano G, Bonuccelli U, Elahi FM, Vergallo A, Lista S, Giorgi FS, Harald Hampel for the Alzheimer Precision Medicine Initiative (APMI). The path to biomarker-based diagnostic criteria for the spectrum of neurodegenerative diseases. Expert Rev Mol Diagn 2020; 20:421-441. [PMID: 32066283 PMCID: PMC7445079 DOI: 10.1080/14737159.2020.1731306] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Abstract
Introduction: The postmortem examination still represents the reference standard for detecting the pathological nature of chronic neurodegenerative diseases (NDD). This approach displays intrinsic conceptual limitations since NDD represent a dynamic spectrum of partially overlapping phenotypes, shared pathomechanistic alterations that often give rise to mixed pathologies.Areas covered: We scrutinized the international clinical diagnostic criteria of NDD and the literature to provide a roadmap toward a biomarker-based classification of the NDD spectrum. A few pathophysiological biomarkers have been established for NDD. These are time-consuming, invasive, and not suitable for preclinical detection. Candidate screening biomarkers are gaining momentum. Blood neurofilament light-chain represents a robust first-line tool to detect neurodegeneration tout court and serum progranulin helps detect genetic frontotemporal dementia. Ultrasensitive assays and retinal scans may identify Aβ pathology early, in blood and the eye, respectively. Ultrasound also represents a minimally invasive option to investigate the substantia nigra. Protein misfolding amplification assays may accurately detect α-synuclein in biofluids.Expert opinion: Data-driven strategies using quantitative rather than categorical variables may be more reliable for quantification of contributions from pathophysiological mechanisms and their spatial-temporal evolution. A systems biology approach is suitable to untangle the dynamics triggering loss of proteostasis, driving neurodegeneration and clinical evolution.
Collapse
Affiliation(s)
- Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, Paris, France
| | - Sonia Mazzucchi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Linda Giampietri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicola Giannini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fanny M. Elahi
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease (IM2A), Pitié-Salpêtrière Hospital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease (IM2A), Pitié-Salpêtrière Hospital, Paris, France
| | - Filippo Sean Giorgi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
36
|
Heller C, Foiani MS, Moore K, Convery R, Bocchetta M, Neason M, Cash DM, Thomas D, Greaves CV, Woollacott IO, Shafei R, Van Swieten JC, Moreno F, Sanchez-Valle R, Borroni B, Laforce R, Masellis M, Tartaglia MC, Graff C, Galimberti D, Rowe JB, Finger E, Synofzik M, Vandenberghe R, de Mendonca A, Tagliavini F, Santana I, Ducharme S, Butler CR, Gerhard A, Levin J, Danek A, Frisoni G, Sorbi S, Otto M, Heslegrave AJ, Zetterberg H, Rohrer JD. Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia. J Neurol Neurosurg Psychiatry 2020; 91:263-270. [PMID: 31937580 DOI: 10.1136/jnnp-2019-321954] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND There are few validated fluid biomarkers in frontotemporal dementia (FTD). Glial fibrillary acidic protein (GFAP) is a measure of astrogliosis, a known pathological process of FTD, but has yet to be explored as potential biomarker. METHODS Plasma GFAP and neurofilament light chain (NfL) concentration were measured in 469 individuals enrolled in the Genetic FTD Initiative: 114 C9orf72 expansion carriers (74 presymptomatic, 40 symptomatic), 119 GRN mutation carriers (88 presymptomatic, 31 symptomatic), 53 MAPT mutation carriers (34 presymptomatic, 19 symptomatic) and 183 non-carrier controls. Biomarker measures were compared between groups using linear regression models adjusted for age and sex with family membership included as random effect. Participants underwent standardised clinical assessments including the Mini-Mental State Examination (MMSE), Frontotemporal Lobar Degeneration-Clinical Dementia Rating scale and MRI. Spearman's correlation coefficient was used to investigate the relationship of plasma GFAP to clinical and imaging measures. RESULTS Plasma GFAP concentration was significantly increased in symptomatic GRN mutation carriers (adjusted mean difference from controls 192.3 pg/mL, 95% CI 126.5 to 445.6), but not in those with C9orf72 expansions (9.0, -61.3 to 54.6), MAPT mutations (12.7, -33.3 to 90.4) or the presymptomatic groups. GFAP concentration was significantly positively correlated with age in both controls and the majority of the disease groups, as well as with NfL concentration. In the presymptomatic period, higher GFAP concentrations were correlated with a lower cognitive score (MMSE) and lower brain volume, while in the symptomatic period, higher concentrations were associated with faster rates of atrophy in the temporal lobe. CONCLUSIONS Raised GFAP concentrations appear to be unique to GRN-related FTD, with levels potentially increasing just prior to symptom onset, suggesting that GFAP may be an important marker of proximity to onset, and helpful for forthcoming therapeutic prevention trials.
Collapse
Affiliation(s)
- Carolin Heller
- UK Dementia Research Institute, Department of Neurodegenerative Disease, University College London, London, UK
| | - Martha S Foiani
- UK Dementia Research Institute, Department of Neurodegenerative Disease, University College London, London, UK
| | - Katrina Moore
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Rhian Convery
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Mollie Neason
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK.,Centre for Medical Image Computing, University College London, London, UK
| | - David Thomas
- Neuradiological Academic Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Caroline V Greaves
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Ione Oc Woollacott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Rachelle Shafei
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - John C Van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, País Vasco, Spain
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire du CHU de Québec, Département des Sciences Neurologiques, Université Laval, Québec, Québec, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
| | - Caroline Graff
- Department of Geriatric Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Centro Dino Ferrari, Milan, Italy.,Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabel Santana
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Simon Ducharme
- Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | | | - Alex Gerhard
- Faculty of Medical and Human Sciences, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | | | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research, and Child Health, University of Florence, Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Amanda J Heslegrave
- UK Dementia Research Institute, Department of Neurodegenerative Disease, University College London, London, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, Department of Neurodegenerative Disease, University College London, London, UK.,Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | | |
Collapse
|
37
|
Hanstock C, Sun K, Choi C, Eurich D, Camicioli R, Johnston W, Kalra S. Spectroscopic markers of neurodegeneration in the mesial prefrontal cortex predict survival in ALS. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:246-251. [PMID: 32067510 DOI: 10.1080/21678421.2020.1727926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background and objective: N-acetylaspartate (NAA) and myo-inositol (mIns) are spectroscopic markers of neuronal integrity and astrogliosis, respectively. We performed a survival analysis to determine the prognostic value of the NAA/mIns metabolite ratio in ALS after a period of two and five years. Methods: Twenty-four patients with ALS (two with ALS-FTD) were recruited to participate in a high-field MR spectroscopy study of the mesial prefrontal cortex. Univariate and multivariate Cox proportional hazards analyses were used to assess NAA/mIns as a predictor of survival alongside other demographic and clinical measures. Census dates were set at two and five years after the time of MR scan for each patient. Survival curves were calculated using the Kaplan-Meier method. Results: After a five-year observation period, 19 patients had died and five were still alive. Median survival time from date of scan was 1.95 years. Univariate and multivariate Cox analysis showed NAA/mIns to be a significant independent predictor of survival at two years after scanning, but not at five years. Conclusion: Cerebral degeneration in the mesial prefrontal cortex as detected by the NAA/mIns metabolite ratio is predictive of survival in ALS in a time-dependent manner.
Collapse
Affiliation(s)
- Chris Hanstock
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Kerry Sun
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Changho Choi
- South-Western Medical Center, University of Texas, Dallas, TX, USA
| | - Dean Eurich
- School of Public Health, University of Alberta, Edmonton, AB, Canada, and
| | - Richard Camicioli
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Wendy Johnston
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Sanjay Kalra
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada.,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
38
|
Olsson B, Portelius E, Cullen NC, Sandelius Å, Zetterberg H, Andreasson U, Höglund K, Irwin DJ, Grossman M, Weintraub D, Chen-Plotkin A, Wolk D, McCluskey L, Elman L, Shaw LM, Toledo JB, McBride J, Hernandez-Con P, Lee VMY, Trojanowski JQ, Blennow K. Association of Cerebrospinal Fluid Neurofilament Light Protein Levels With Cognition in Patients With Dementia, Motor Neuron Disease, and Movement Disorders. JAMA Neurol 2020; 76:318-325. [PMID: 30508027 DOI: 10.1001/jamaneurol.2018.3746] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Importance Neuronal and axonal destruction are hallmarks of neurodegenerative diseases, but it is difficult to estimate the extent and progress of the damage in the disease process. Objective To investigate cerebrospinal fluid (CSF) levels of neurofilament light (NFL) protein, a marker of neuroaxonal degeneration, in control participants and patients with dementia, motor neuron disease, and parkinsonian disorders (determined by clinical criteria and autopsy), and determine its association with longitudinal cognitive decline. Design, Setting, and Participants In this case-control study, we investigated NFL levels in CSF obtained from controls and patients with several neurodegenerative diseases. Collection of samples occurred between 1996 and 2014, patients were followed up longitudinally for cognitive testing, and a portion were autopsied in a single center (University of Pennsylvania). Data were analyzed throughout 2016. Exposures Concentrations of NFL in CSF. Main Outcomes and Measures Levels of CSF NFL and correlations with cognition scores. Results A total of 913 participants (mean [SD] age, 68.7 [10.0] years; 456 [49.9%] women) were included: 75 control participants plus 114 patients with mild cognitive impairment (MCI), 397 with Alzheimer disease, 96 with frontotemporal dementia, 68 with amyotrophic lateral sclerosis, 41 with Parkinson disease (PD), 19 with PD with MCI, 29 with PD dementia, 33 with dementia with Lewy bodies, 21 with corticobasal syndrome, and 20 with progressive supranuclear palsy. Cognitive testing follow-up occurred for 1 to 18 years (mean [SD], 0.98 [2.25] years); autopsy-verified diagnoses were available for 120 of 845 participants with diseases (14.2%). There was a stepwise increase in CSF NFL levels between control participants (median [range] score, 536 [398-777] pg/mL), participants with MCI (831 [526-1075] pg/mL), and those with Alzheimer disease (951 [758-1261] pg/mL), indicating that NFL levels increase with increasing cognitive impairment. Levels of NFL correlated inversely with baseline Mini-Mental State Examination scores (ρ, -0.19; P < .001) in the full cohort (n = 822) and annual score decline in the full cohort (ρ, 0.36, P < .001), participants with AD (ρ, 0.25; P < .001), and participants with FTD (ρ, 0.46; P = .003). Concentrations of NFL were highest in participants with amyotrophic lateral sclerosis (median [range], 4185 [2207-7453] pg/mL) and frontotemporal dementia (2094 [230-7744] pg/mL). In individuals with parkinsonian disorders, NFL concentrations were highest in those with progressive supranuclear palsy (median [range], 1578 [1287-3104] pg/mL) and corticobasal degeneration (1281 [828-2713] pg/mL). The NFL concentrations in CSF correlated with TDP-43 load in 13 of 17 brain regions in the full cohort. Adding NFL to β-amyloid 42, total tau, and phosphorylated tau increased accuracy of discrimination of diseases. Conclusions and Relevance Levels of CSF NFL are associated with cognitive impairments in patients with Alzheimer disease and frontotemporal dementia. In other neurodegenerative disorders, NFL levels appear to reflect the intensity of the neurodegenerative processes.
Collapse
Affiliation(s)
- Bob Olsson
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas C Cullen
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Åsa Sandelius
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom.,United Kingdom Dementia Research Institute, London, United Kingdom
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kina Höglund
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - David J Irwin
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia
| | - Daniel Weintraub
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.,Parkinson's Disease Research, Education and Cinical Centers, Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania.,Mental Illness Research, Education and Cinical Centers, Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Alice Chen-Plotkin
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia
| | - David Wolk
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia
| | - Leo McCluskey
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia
| | - Lauren Elman
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia
| | - Jon B Toledo
- Department of Pathology and Laboratory Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia.,Department of Neurology, Houston Methodist Hospital, Houston, Texas
| | - Jennifer McBride
- Department of Pathology and Laboratory Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia
| | - Pilar Hernandez-Con
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
39
|
Engel S, Steffen F, Uphaus T, Scholz-Kreisel P, Zipp F, Bittner S, Luessi F. Association of intrathecal pleocytosis and IgG synthesis with axonal damage in early MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/3/e679. [PMID: 32019769 PMCID: PMC7051198 DOI: 10.1212/nxi.0000000000000679] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Objective To investigate the association of serum neurofilament light chain (sNfL) levels with CSF parameters in clinically isolated syndrome (CIS) and early relapsing-remitting MS (RRMS), taking into account radiologic and clinical parameters of disease activity. Methods Simultaneously collected serum and CSF samples of 112 untreated patients newly diagnosed with CIS or RRMS were included in this cross-sectional study. CSF parameters were obtained as part of routine diagnostic tests. sNfL levels of patients and of 62 healthy donors were measured by highly sensitive single molecule array (SiMoA) immunoassay. Results Patients with RRMS (n = 91, median 10.13 pg/mL, interquartile range [IQR] 6.67–17.77 pg/mL) had higher sNfL levels than healthy donors (n = 62, median 5.25 pg/mL, IQR 4.05–6.81 pg/mL, p < 0.001) and patients with CIS (n = 21, median 5.69 pg/mL, IQR 4.73–9.07 pg/mL, p < 0.001). Patients positive for oligoclonal bands (OCBs) (n = 101, median 9.19 pg/mL, IQR 6.34–16.38 pg/mL) had higher sNfL levels than OCB-negative patients (n = 11, median 5.93 pg/mL, IQR 2.93–8.56 pg/mL, p = 0.001). sNfL levels correlated with CSF immunoglobulin G (IgG) levels (r = 0.317, p = 0.002), IgG ratio (QIgG) (r = 0.344, p < 0.001), and CSF leukocyte count (r = 0.288, p = 0.002). In linear regression modeling, the CSF leukocyte count combined with the number of contrast-enhancing lesions in MRI predicted sNfL levels best. Conclusions In active MS, sNfL levels correlate with intrathecal pleocytosis and IgG synthesis, indicating that axonal damage is associated with both acute and chronic CNS-intrinsic inflammation.
Collapse
Affiliation(s)
- Sinah Engel
- From the Department of Neurology (S.E., F.S., T.U., F.Z., S.B., F.L.), Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University; and Institute of Medical Biostatistics (P.S.-K.), Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Falk Steffen
- From the Department of Neurology (S.E., F.S., T.U., F.Z., S.B., F.L.), Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University; and Institute of Medical Biostatistics (P.S.-K.), Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Timo Uphaus
- From the Department of Neurology (S.E., F.S., T.U., F.Z., S.B., F.L.), Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University; and Institute of Medical Biostatistics (P.S.-K.), Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Peter Scholz-Kreisel
- From the Department of Neurology (S.E., F.S., T.U., F.Z., S.B., F.L.), Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University; and Institute of Medical Biostatistics (P.S.-K.), Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Frauke Zipp
- From the Department of Neurology (S.E., F.S., T.U., F.Z., S.B., F.L.), Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University; and Institute of Medical Biostatistics (P.S.-K.), Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stefan Bittner
- From the Department of Neurology (S.E., F.S., T.U., F.Z., S.B., F.L.), Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University; and Institute of Medical Biostatistics (P.S.-K.), Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Felix Luessi
- From the Department of Neurology (S.E., F.S., T.U., F.Z., S.B., F.L.), Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University; and Institute of Medical Biostatistics (P.S.-K.), Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
40
|
Lambertsen KL, Soares CB, Gaist D, Nielsen HH. Neurofilaments: The C-Reactive Protein of Neurology. Brain Sci 2020; 10:brainsci10010056. [PMID: 31963750 PMCID: PMC7016784 DOI: 10.3390/brainsci10010056] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Neurofilaments (NFs) are quickly becoming the biomarkers of choice in the field of neurology, suggesting their use as an unspecific screening marker, much like the use of elevated plasma C-reactive protein (CRP) in other fields. With sensitive techniques being readily available, evidence is growing regarding the diagnostic and prognostic value of NFs in many neurological disorders. Here, we review the latest literature on the structure and function of NFs and report the strengths and pitfalls of NFs as markers of neurodegeneration in the context of neurological diseases of the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Kate L. Lambertsen
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (K.L.L.); (C.B.S.); (D.G.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st, 5000 Odense C, Denmark
- BRIDGE—Brain Research—Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsloewsvej 19, 3. sal, 5000 Odense C, Denmark
| | - Catarina B. Soares
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (K.L.L.); (C.B.S.); (D.G.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st, 5000 Odense C, Denmark
| | - David Gaist
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (K.L.L.); (C.B.S.); (D.G.)
- BRIDGE—Brain Research—Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsloewsvej 19, 3. sal, 5000 Odense C, Denmark
- Department of Clinical Research, Neurology Research Unit, Faculty of Health Sciences, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Helle H. Nielsen
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (K.L.L.); (C.B.S.); (D.G.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st, 5000 Odense C, Denmark
- BRIDGE—Brain Research—Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsloewsvej 19, 3. sal, 5000 Odense C, Denmark
- Department of Clinical Research, Neurology Research Unit, Faculty of Health Sciences, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Correspondence:
| |
Collapse
|
41
|
Parbo P, Madsen LS, Ismail R, Zetterberg H, Blennow K, Eskildsen SF, Vorup-Jensen T, Brooks DJ. Low plasma neurofilament light levels associated with raised cortical microglial activation suggest inflammation acts to protect prodromal Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2020; 12:3. [PMID: 31898549 PMCID: PMC6941285 DOI: 10.1186/s13195-019-0574-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Plasma and cerebrospinal fluid levels of neurofilament light (NfL), a marker of axonal degeneration, have previously been reported to be raised in patients with clinically diagnosed Alzheimer's disease (AD). Activated microglia, an intrinsic inflammatory response to brain lesions, are also known to be present in a majority of Alzheimer or mild cognitive impaired (MCI) subjects with raised β-amyloid load on their positron emission tomography (PET) imaging. It is now considered that the earliest phase of inflammation may be protective to the brain, removing amyloid plaques and remodelling synapses. Our aim was to determine whether the cortical inflammation/microglial activation load, measured with the translocator protein marker 11C-PK11195 PET, was correlated with plasma NfL levels in prodromal and early Alzheimer subjects. METHODS Twenty-seven MCI or early AD cases with raised cortical β-amyloid load had 11C-(R)-PK11195 PET, structural and diffusion magnetic resonance imaging, and levels of their plasma NfL measured. Correlation analyses were performed using surface-based cortical statistics. RESULTS Statistical maps localised areas in MCI cases where levels of brain inflammation correlated inversely with plasma NfL levels. These areas were localised in the frontal, parietal, precuneus, occipital, and sensorimotor cortices. Brain inflammation correlated negatively with mean diffusivity (MD) of water with regions overlapping. CONCLUSION We conclude that an inverse correlation between levels of inflammation in cortical areas and plasma NfL levels indicates that microglial activation may initially be protective to axons in AD. This is supported by the finding of an inverse association between cortical water diffusivity and microglial activation in the same regions. Our findings suggest a rationale for stimulating microglial activity in early and prodromal Alzheimer cases-possibly using immunotherapy. Plasma NfL levels could be used as a measure of the protective efficacy of immune stimulation and for monitoring efficacy of putative neuroprotective agents.
Collapse
Affiliation(s)
- Peter Parbo
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark. .,Department of Clinical Physiology, Viborg Regional Hospital, Viborg, Denmark.
| | - Lasse Stensvig Madsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Rola Ismail
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Simon F Eskildsen
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- Department of Biomedicine/Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - David J Brooks
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark.,Institute of Neuroscience, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| |
Collapse
|
42
|
Boxer AL, Gold M, Feldman H, Boeve BF, Dickinson SLJ, Fillit H, Ho C, Paul R, Pearlman R, Sutherland M, Verma A, Arneric SP, Alexander BM, Dickerson BC, Dorsey ER, Grossman M, Huey ED, Irizarry MC, Marks WJ, Masellis M, McFarland F, Niehoff D, Onyike CU, Paganoni S, Panzara MA, Rockwood K, Rohrer JD, Rosen H, Schuck RN, Soares HD, Tatton N. New directions in clinical trials for frontotemporal lobar degeneration: Methods and outcome measures. Alzheimers Dement 2020; 16:131-143. [PMID: 31668596 PMCID: PMC6949386 DOI: 10.1016/j.jalz.2019.06.4956] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Frontotemporal lobar degeneration (FTLD) is the most common form of dementia for those under 60 years of age. Increasing numbers of therapeutics targeting FTLD syndromes are being developed. METHODS In March 2018, the Association for Frontotemporal Degeneration convened the Frontotemporal Degeneration Study Group meeting in Washington, DC, to discuss advances in the clinical science of FTLD. RESULTS Challenges exist for conducting clinical trials in FTLD. Two of the greatest challenges are (1) the heterogeneity of FTLD syndromes leading to difficulties in efficiently measuring treatment effects and (2) the rarity of FTLD disorders leading to recruitment challenges. DISCUSSION New personalized endpoints that are clinically meaningful to individuals and their families should be developed. Personalized approaches to analyzing MRI data, development of new fluid biomarkers and wearable technologies will help to improve the power to detect treatment effects in FTLD clinical trials and enable new, clinical trial designs, possibly leveraged from the experience of oncology trials. A computational visualization and analysis platform that can support novel analyses of combined clinical, genetic, imaging, biomarker data with other novel modalities will be critical to the success of these endeavors.
Collapse
Affiliation(s)
- Adam L. Boxer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | | | - Howard Feldman
- Department of Neurosciences, University of California San Diego, San Diego, CA
| | | | | | | | - Carole Ho
- Denali Therapeutics, San Francisco, CA
| | | | | | | | | | | | | | | | - Earl Ray Dorsey
- Center for Health and Technology, University of Rochester, Rochester, NY
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Edward D. Huey
- Departments of Psychiatry and Neurology, Columbia University, NY
| | | | - William J. Marks
- Clinical Neurology, Verily Life Sciences, South San Francisco, CA
| | - Mario Masellis
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, ON, Canada; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, ON, Canada
| | | | - Debra Niehoff
- Association for Frontotemporal Degeneration, Radnor, PA
| | - Chiadi U. Onyike
- Department Geriatric Psychiatry and Neuropsychiatry, Johns Hopkins University, Baltimore, MD
| | - Sabrina Paganoni
- Healey Center for ALS, Massachusetts General Hospital, Boston, MA
| | | | - Kenneth Rockwood
- Division of Geriatric Medicine, Dalhousie University, Halifax, NS
| | - Jonathan D. Rohrer
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Howard Rosen
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Robert N. Schuck
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, FDA, Silver Spring, MD
| | | | - Nadine Tatton
- Association for Frontotemporal Degeneration, Radnor, PA
| |
Collapse
|
43
|
Forgrave LM, Ma M, Best JR, DeMarco ML. The diagnostic performance of neurofilament light chain in CSF and blood for Alzheimer's disease, frontotemporal dementia, and amyotrophic lateral sclerosis: A systematic review and meta-analysis. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2019; 11:730-743. [PMID: 31909174 PMCID: PMC6939029 DOI: 10.1016/j.dadm.2019.08.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction A systematic review and meta-analysis was performed regarding the diagnostic performance of neurofilament light chain (NfL) in CSF and blood. Methods A database search was conducted for NfL biomarker studies in the context of Alzheimer's disease (AD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS) compared with controls (i.e., cognitively unimpaired, mild cognitive impairment, or disease mimics). Results In groups with a sufficient number of studies, the performance of NfL in blood and CSF was similar. Compared with disease mimics, we observed that CSF NfL had strong discriminatory power for ALS, modest discriminatory power for FTD, and no discriminatory power for AD. NfL provided the greatest separation between ALS and cognitively unimpaired controls in both the blood and CSF, followed by FTD (CSF and blood), then AD (blood and CSF). Discussion Comparable performance of CSF and blood NfL in many groups demonstrates the promise of NfL as a noninvasive biomarker of neurodegeneration; however, its utility in clinically meaningful scenarios requires greater scrutiny. Toward clinical implementation, a more comprehensive understanding of NfL concentrations in disease subtypes with overlapping phenotypes and at defined stages of disease, and the development of a harmonization program, are warranted.
Collapse
Affiliation(s)
- Lauren M Forgrave
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Matthew Ma
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - John R Best
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Mari L DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Providence Health Care, Vancouver, Canada
| |
Collapse
|
44
|
Mielke MM, Syrjanen JA, Blennow K, Zetterberg H, Skoog I, Vemuri P, Machulda MM, Graff-Radford J, Knopman DS, Jack CR, Petersen RC, Kern S. Comparison of variables associated with cerebrospinal fluid neurofilament, total-tau, and neurogranin. Alzheimers Dement 2019; 15:1437-1447. [PMID: 31668594 PMCID: PMC6874755 DOI: 10.1016/j.jalz.2019.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Three cerebrospinal fluid (CSF) markers of neurodegeneration (N) (neurofilament light [NfL], total-tau [T-tau], and neurogranin [Ng]) have been proposed under the AT(N) scheme of the National Institute on Aging-Alzheimer's Association Research Framework. METHODS We examined, in a community-based population (N = 777, aged 50-95) (1) what variables were associated with each of the CSF (N) markers, and (2) whether the variables associated with each marker differed by increased brain amyloid. CSF T-tau was measured with an automated electrochemiluminescence Elecsys immunoassay; NfL and Ng were measured with in-house enzyme-linked immunosorbent assays. RESULTS Multiple variables were differentially associated with CSF NfL and T-tau levels, but not Ng. Most associations were attenuated after adjustment for age and sex. T-tau had the strongest association with cognition in the presence of amyloidosis, followed by Ng. Variables associations with NfL did not differ by amyloid status. DISCUSSION Understanding factors that influence CSF (N) markers will assist in the interpretation and utility of these markers in clinical practice.
Collapse
Affiliation(s)
- Michelle M Mielke
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
| | - Jeremy A Syrjanen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL (H.Z.), London, UK
| | - Ingmar Skoog
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | | | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Silke Kern
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
45
|
Cantó E, Barro C, Zhao C, Caillier SJ, Michalak Z, Bove R, Tomic D, Santaniello A, Häring DA, Hollenbach J, Henry RG, Cree BAC, Kappos L, Leppert D, Hauser SL, Benkert P, Oksenberg JR, Kuhle J. Association Between Serum Neurofilament Light Chain Levels and Long-term Disease Course Among Patients With Multiple Sclerosis Followed up for 12 Years. JAMA Neurol 2019; 76:1359-1366. [PMID: 31403661 DOI: 10.1001/jamaneurol.2019.2137] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Importance Blood sample-based biomarkers that are associated with clinically meaningful outcomes for patients with multiple sclerosis (MS) have not been developed. Objective To evaluate the potential of serum neurofilament light chain (sNFL) measurements as a biomarker of disease activity and progression in a longitudinal MS data set. Design, Setting, and Participants Single-center, ongoing, prospective observational cohort study of 607 patients with MS from the longitudinal EPIC (Expression, Proteomics, Imaging, Clinical) study at the University of California, San Francisco from July 1, 2004, through August 31, 2017. Clinical evaluations and sample collection were performed annually for 5 years, then at different time points for up to 12 years, with a median follow-up duration of 10 (interquartile range, 7-11) years. Serum NFL levels were measured using a sensitive single molecule array platform and compared with clinical and magnetic resonance imaging variables with the use of univariable and multivariable analyses. Main Outcomes and Measures The main outcomes were disability progression defined as clinically significant worsening on the Expanded Disability Status Scale (EDSS) score and brain fraction atrophy. Results Mean (SD) age of the 607 study participants at study entry was 42.5 (9.8) years; 423 (69.7%) were women; and all participants were of non-Hispanic European descent. Of 3911 samples sequentially collected, 3904 passed quality control for quantification of sNFL. Baseline sNFL levels showed significant associations with EDSS score (β, 1.080; 95% CI, 1.047-1.114; P < .001), MS subtype (β, 1.478; 95% CI, 1.279-1.707; P < .001), and treatment status (β, 1.120; 95% CI, 1.007-1.245; P = .04). A significant interaction between EDSS worsening and change in levels of sNFL over time was found (β, 1.015; 95% CI, 1.007-1.023; P < .001). Baseline sNFL levels alone were associated with approximately 11.6% of the variance in brain fraction atrophy at year 10. In a multivariable analysis that considered sex, age, and disease duration, baseline sNFL levels were associated with 18.0% of the variance in brain fraction atrophy at year 10. After 5 years' follow-up, active treatment was associated with lower levels of sNFL, with high-potency treatments associated with the greater decreases in sNFL levels compared with platform therapies (high-potency vs untreated: β, 0.946; 95% CI, 0.915-0.976; P < .001; high-potency vs platform: β, 0.972; 95% CI, 0.948-0.998; P = .04). Conclusions and Relevance This study found that statistically significant associations of sNFL with relevant clinical and neuroimaging outcomes in MS were confirmed and extended, supporting the potential of sNFL as an objective surrogate of ongoing MS disease activity. In this data set of patients with MS who received early treatment, the prognostic power of sNFL for relapse activity and long-term disability progression was limited. Further prospective studies are necessary to assess the assay's utility for decision-making in individual patients.
Collapse
Affiliation(s)
- Ester Cantó
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco
| | - Christian Barro
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Chao Zhao
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco
| | - Stacy J Caillier
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco
| | - Zuzanna Michalak
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Riley Bove
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco
| | | | - Adam Santaniello
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco
| | | | - Jill Hollenbach
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco
| | - Roland G Henry
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco
| | - Bruce A C Cree
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stephen L Hauser
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco
| | - Pascal Benkert
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jorge R Oksenberg
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
46
|
|
47
|
Meeter LHH, Steketee RME, Salkovic D, Vos ME, Grossman M, McMillan CT, Irwin DJ, Boxer AL, Rojas JC, Olney NT, Karydas A, Miller BL, Pijnenburg YAL, Barkhof F, Sánchez-Valle R, Lladó A, Borrego-Ecija S, Diehl-Schmid J, Grimmer T, Goldhardt O, Santillo AF, Hansson O, Vestberg S, Borroni B, Padovani A, Galimberti D, Scarpini E, Rohrer JD, Woollacott IOC, Synofzik M, Wilke C, de Mendonca A, Vandenberghe R, Benussi L, Ghidoni R, Binetti G, Niessen WJ, Papma JM, Seelaar H, Jiskoot LC, de Jong FJ, Donker Kaat L, Del Campo M, Teunissen CE, Bron EE, Van den Berg E, Van Swieten JC. Clinical value of cerebrospinal fluid neurofilament light chain in semantic dementia. J Neurol Neurosurg Psychiatry 2019; 90:997-1004. [PMID: 31123142 PMCID: PMC6820157 DOI: 10.1136/jnnp-2018-319784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/12/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Semantic dementia (SD) is a neurodegenerative disorder characterised by progressive language problems falling within the clinicopathological spectrum of frontotemporal lobar degeneration (FTLD). The development of disease-modifying agents may be facilitated by the relative clinical and pathological homogeneity of SD, but we need robust monitoring biomarkers to measure their efficacy. In different FTLD subtypes, neurofilament light chain (NfL) is a promising marker, therefore we investigated the utility of cerebrospinal fluid (CSF) NfL in SD. METHODS This large retrospective multicentre study compared cross-sectional CSF NfL levels of 162 patients with SD with 65 controls. CSF NfL levels of patients were correlated with clinical parameters (including survival), neuropsychological test scores and regional grey matter atrophy (including longitudinal data in a subset). RESULTS CSF NfL levels were significantly higher in patients with SD (median: 2326 pg/mL, IQR: 1628-3593) than in controls (577 (446-766), p<0.001). Higher CSF NfL levels were moderately associated with naming impairment as measured by the Boston Naming Test (rs =-0.32, p=0.002) and with smaller grey matter volume of the parahippocampal gyri (rs =-0.31, p=0.004). However, cross-sectional CSF NfL levels were not associated with progression of grey matter atrophy and did not predict survival. CONCLUSION CSF NfL is a promising biomarker in the diagnostic process of SD, although it has limited cross-sectional monitoring or prognostic abilities.
Collapse
Affiliation(s)
- Lieke H H Meeter
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Rebecca M E Steketee
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | - Dina Salkovic
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Maartje E Vos
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Murray Grossman
- Penn FTD Center, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Corey T McMillan
- Penn FTD Center, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David J Irwin
- Penn FTD Center, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Adam L Boxer
- Neurology, Memory and Aging Center University of California San Francisco, San Francisco, California, USA
| | - Julio C Rojas
- Neurology, Memory and Aging Center University of California San Francisco, San Francisco, California, USA
| | - Nicholas T Olney
- Neurology, University of California San Francisco Memory and Aging Center, San Francisco, California, USA
| | - Anna Karydas
- Neurology, University of California San Francisco Memory and Aging Center, San Francisco, California, USA
| | - Bruce L Miller
- Neurology, Memory and Aging Center University of California San Francisco, San Francisco, California, USA
| | - Yolande A L Pijnenburg
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Neurology and Healthcare Engineering, University College London Medical School, London, UK
| | - Raquel Sánchez-Valle
- Department of Neurology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Albert Lladó
- Department of Neurology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Sergi Borrego-Ecija
- Department of Neurology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Alexander F Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Barbara Borroni
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
- Biomedical, Surgical and Dental Sciences, University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Elio Scarpini
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
- Pathophysiology and Transplantation, University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Ione O C Woollacott
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Carlo Wilke
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Alexandre de Mendonca
- Institute of Molecular Medicine and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Rik Vandenberghe
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Vlaanderen, Belgium
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- MAC Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Wiro J Niessen
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
- Imaging Physics, Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Janne M Papma
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Harro Seelaar
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Lize C Jiskoot
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Frank Jan de Jong
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Laura Donker Kaat
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
- Department of Clinical Genetics, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Marta Del Campo
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Esther E Bron
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | - Esther Van den Berg
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - John C Van Swieten
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
48
|
Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H. Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry 2019; 90:870-881. [PMID: 30967444 DOI: 10.1136/jnnp-2018-320106] [Citation(s) in RCA: 775] [Impact Index Per Article: 129.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022]
Abstract
In the management of neurological diseases, the identification and quantification of axonal damage could allow for the improvement of diagnostic accuracy and prognostic assessment. Neurofilament light chain (NfL) is a neuronal cytoplasmic protein highly expressed in large calibre myelinated axons. Its levels increase in cerebrospinal fluid (CSF) and blood proportionally to the degree of axonal damage in a variety of neurological disorders, including inflammatory, neurodegenerative, traumatic and cerebrovascular diseases. New immunoassays able to detect biomarkers at ultralow levels have allowed for the measurement of NfL in blood, thus making it possible to easily and repeatedly measure NfL for monitoring diseases' courses. Evidence that both CSF and blood NfL may serve as diagnostic, prognostic and monitoring biomarkers in neurological diseases is progressively increasing, and NfL is one of the most promising biomarkers to be used in clinical and research setting in the next future. Here we review the most important results on CSF and blood NfL and we discuss its potential applications and future directions.
Collapse
Affiliation(s)
- Lorenzo Gaetani
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Kaj Blennow
- Institute of Neuroscience and Physiology Department of Psychiatry and Neurochemistry, The Sahlgrenska AcademyUniversity of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Paolo Calabresi
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy.,Laboratory of Neurophysiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Lucilla Parnetti
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology Department of Psychiatry and Neurochemistry, The Sahlgrenska AcademyUniversity of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, United Kingdom
| |
Collapse
|
49
|
Merluzzi AP, Vogt NM, Norton D, Jonaitis E, Clark LR, Carlsson CM, Johnson SC, Asthana S, Blennow K, Zetterberg H, Bendlin BB. Differential effects of neurodegeneration biomarkers on subclinical cognitive decline. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2019; 5:129-138. [PMID: 31011623 PMCID: PMC6462765 DOI: 10.1016/j.trci.2019.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Neurodegeneration appears to be the biological mechanism most proximate to cognitive decline in Alzheimer's disease. We test whether t-tau and alternative biomarkers of neurodegeneration-neurogranin and neurofilament light protein (NFL)-add value in predicting subclinical cognitive decline. METHODS One hundred fifty cognitively unimpaired participants received a lumbar puncture for cerebrospinal fluid and at least two neuropsychological examinations (mean age at first visit = 59.3 ± 6.3 years; 67% female). Linear mixed effects models were used with cognitive composite scores as outcomes. Neurodegeneration interactions terms were the primary predictors of interest: age × NFL or age × neurogranin or age × t-tau. Models were compared using likelihood ratio tests. RESULTS Age × NFL accounted for a significant amount of variation in longitudinal change on preclinical Alzheimer's cognitive composite scores, memory composite scores, and learning scores, whereas age × neurogranin and age × t-tau did not. DISCUSSION These data suggest that NFL may be more sensitive to subclinical cognitive decline compared to other proposed biomarkers for neurodegeneration.
Collapse
Affiliation(s)
- Andrew P. Merluzzi
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Nicholas M. Vogt
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Derek Norton
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI, USA
| | - Erin Jonaitis
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI, USA
| | - Lindsay R. Clark
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran's Hospital, Madison, WI, USA
| | - Cynthia M. Carlsson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran's Hospital, Madison, WI, USA
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran's Hospital, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran's Hospital, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neurology, University College London, Queen Square, London, UK
- UK Dementia Research Institute, London, UK
| | - Barbara B. Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
50
|
Verber NS, Shepheard SR, Sassani M, McDonough HE, Moore SA, Alix JJP, Wilkinson ID, Jenkins TM, Shaw PJ. Biomarkers in Motor Neuron Disease: A State of the Art Review. Front Neurol 2019; 10:291. [PMID: 31001186 PMCID: PMC6456669 DOI: 10.3389/fneur.2019.00291] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022] Open
Abstract
Motor neuron disease can be viewed as an umbrella term describing a heterogeneous group of conditions, all of which are relentlessly progressive and ultimately fatal. The average life expectancy is 2 years, but with a broad range of months to decades. Biomarker research deepens disease understanding through exploration of pathophysiological mechanisms which, in turn, highlights targets for novel therapies. It also allows differentiation of the disease population into sub-groups, which serves two general purposes: (a) provides clinicians with information to better guide their patients in terms of disease progression, and (b) guides clinical trial design so that an intervention may be shown to be effective if population variation is controlled for. Biomarkers also have the potential to provide monitoring during clinical trials to ensure target engagement. This review highlights biomarkers that have emerged from the fields of systemic measurements including biochemistry (blood, cerebrospinal fluid, and urine analysis); imaging and electrophysiology, and gives examples of how a combinatorial approach may yield the best results. We emphasize the importance of systematic sample collection and analysis, and the need to correlate biomarker findings with detailed phenotype and genotype data.
Collapse
Affiliation(s)
- Nick S Verber
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Stephanie R Shepheard
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Matilde Sassani
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Harry E McDonough
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Sophie A Moore
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - James J P Alix
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Iain D Wilkinson
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Tom M Jenkins
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|