1
|
Tebibi K, Ben Laamari R, Saied Z, Maghrebi O, Touzi H, Meddeb Z, Ben Sassi S, Triki H, Belghith M, Rezig D. Profile of Cytokines and T Cell Subsets Transcription Factors in Cerebrospinal Fluid of Patients with Viral Encephalitis. Viral Immunol 2024; 37:459-469. [PMID: 39527011 DOI: 10.1089/vim.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
This study investigates the demographic, clinical characteristics, virological profiles, and immunological responses of patients with viral encephalitis (VE) compared with a control group. The VE group displayed a wide range of neurological symptoms. Virological analysis revealed the predominance of Herpesviridae family viruses. Immune responses in cerebrospinal fluid (CSF) from patients with VE were examined, highlighting an immunological shift toward T helper 1 (Th1) cells dominance, altered T helper 17 cells/regulatory T cells (Th17/Tregs) balance, and high interleukin-6 expression. These findings provide insights into the complex immunological landscape of VE, highlighting the role of specific cytokines and T cell subsets in its pathogenesis and potentially guiding targeted therapeutic strategies.
Collapse
Affiliation(s)
- Khadija Tebibi
- Research Laboratory "Virus, Vectors and Hosts: One Health Approach and Technological Innovation for a Better Health", Pasteur Institute of Tunis, Tunis, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rafika Ben Laamari
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Transmission, Control, and Immunobiology of Infections, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Zakaria Saied
- Neurological Department of Mongi Ben Hmida Institute, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Olfa Maghrebi
- Laboratory of Transmission, Control, and Immunobiology of Infections, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Henda Touzi
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia
| | - Zina Meddeb
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia
| | - Samia Ben Sassi
- Neurological Department of Mongi Ben Hmida Institute, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Henda Triki
- Research Laboratory "Virus, Vectors and Hosts: One Health Approach and Technological Innovation for a Better Health", Pasteur Institute of Tunis, Tunis, Tunisia
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia
| | - Meriam Belghith
- Laboratory of Transmission, Control, and Immunobiology of Infections, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Dorra Rezig
- Research Laboratory "Virus, Vectors and Hosts: One Health Approach and Technological Innovation for a Better Health", Pasteur Institute of Tunis, Tunis, Tunisia
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia
| |
Collapse
|
2
|
Hu Y, Hu Y, Yin A, Lv Y, Li J, Fan J, Qian B, Song J, Zhang Y. IP-10 acts early in CV-A16 infection to induce BBB destruction and promote virus entry into the CNS by increasing TNF-α expression. Front Immunol 2024; 15:1374447. [PMID: 39559356 PMCID: PMC11570546 DOI: 10.3389/fimmu.2024.1374447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
The mechanisms underlying pathological changes in the central nervous system (CNS) following Coxsackievirus A16 (CV-A16) infection have not yet been elucidated. IFN-γ-inducible protein-10 (IP-10) is often used as a predictive factor to monitor early virus infection. It has also been reported that IP-10 plays a pivotal role in neuroinflammation. In this study, we aimed to explore the role of IP-10 in the neuropathogenesis of CV-A16 infection. We observed that the level of IP-10, as well as the TLR3-TRIF-TRAF3-TBK1-NF-κB and RIG-I/MDA5-MAVS-TRAFS-TBK1-NF-κB pathways, which are the upstream of IP-10, were significantly elevated during the course of CV-A16 infection. This increase was accompanied by an increase in a series of inflammatory cytokines at different time-points during CV-A16 infection. To determine whether IP-10 influences BBB integrity, we examined junctional complexes. Our results revealed that the expression levels of Claudin5, Occludin, ZO-1 and VE-Cadherin were notably decreased in CV-A16-infected HUVECs, but these indicators were restored in CV-A16-infected HUVECs with Eldelumab treatment. Nevertheless, IP-10 is only a chemokine that primarily traffics CXCR3-positive immune cells to inflammatory sites or promotes the production of inflammatory cytokines. Therefore, the interactions between IP-10 and inflammatory cytokines were evaluated. Our data revealed that IP-10 mediated the production of TNF-α, which was also observed to change the junctional complexes. Moreover, in a suckling mouse model, IP-10 and TNF-α treatments exacerbated clinical symptoms, mortality and pathological changes in the brain of CV-A16-infected mice, but Anti-IP-10 and Anti-TNF-α treatments alleviated these changes. Our data also revealed that IP-10 may be detected early in CV-A16 infection, whereas TNF-α was detected late in CV-A16 infection, and the production of TNF-α was also found to be positively correlated with IP-10. In addition, IP-10 and TNF-α were observed to reduce junctional complexes and enhance virus entry into the CNS. Taken together, this study provides the first evidence that CV-A16 activates the IP-10/TNF-α regulatory axis to cause BBB damage and accelerate the formation of neuroinflammation in infected hosts, which not only provides a new understanding of the neuropathogenesis caused by CV-A16, but also offers a promising target for the development of CV-A16 antiviral drugs.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yunguang Hu
- National and Local Engineering Center for Infectious Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Anguo Yin
- National and Local Engineering Center for Infectious Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yaming Lv
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiang Li
- National and Local Engineering Center for Infectious Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jingyuan Fan
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Baojiang Qian
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Song
- National and Local Engineering Center for Infectious Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
3
|
Jantakee K, Panwong S, Sattayawat P, Sumankan R, Saengmuang S, Choowongkomon K, Panya A. Clinacanthus nutans (Burm. f.) Lindau Extract Inhibits Dengue Virus Infection and Inflammation in the Huh7 Hepatoma Cell Line. Antibiotics (Basel) 2024; 13:705. [PMID: 39200005 PMCID: PMC11350823 DOI: 10.3390/antibiotics13080705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 09/01/2024] Open
Abstract
Dengue virus (DENV) infection has emerged as a global health problem, with no specific treatment available presently. Clinacanthus nutans (Burm. f.) Lindau extract has been used in traditional medicine for its anti-inflammatory and antiviral properties. We thus hypothesized C. nutans had a broad-ranged activity to inhibit DENV and the liver inflammation caused by DENV infection. The study showed that treatment using C. nutans extract during DENV infection (co-infection step) showed the highest efficiency in lowering the viral antigen concentration to 22.87 ± 6.49% at 31.25 μg/mL. In addition, the virus-host cell binding assay demonstrated that C. nutans treatment greatly inhibited the virus after its binding to Huh7 cells. Moreover, it could remarkably lower the expression of cytokine and chemokine genes, including TNF-α, CXCL10, IL-6, and IL-8, in addition to inflammatory mediator COX-2 genes. Interestingly, the activation of the NF-κB signaling cascade after C. nutans extract treatment was dramatically decreased, which could be the underlying mechanism of its anti-inflammatory activity. The HPLC profile showed that gallic acid was the bioactive compound of C. nutans extract and might be responsible for the antiviral properties of C. nutans. Taken together, our results revealed the potential of C. nutans extract to inhibit DENV infection and lower inflammation in infected cells.
Collapse
Affiliation(s)
- Kanyaluck Jantakee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (P.S.)
| | - Suthida Panwong
- Doctoral of Philosophy Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (P.S.)
- Cell Engineering for Cancer Therapy Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ratchaneewan Sumankan
- Graduate Master’s Degree Program in Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.S.); (S.S.)
| | - Sasithorn Saengmuang
- Graduate Master’s Degree Program in Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.S.); (S.S.)
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (P.S.)
- Cell Engineering for Cancer Therapy Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Foo IJH, Chua BY, Clemens EB, Chang SY, Jia X, McQuilten HA, Yap AHY, Cabug AF, Ashayeripanah M, McWilliam HEG, Villadangos JA, Evrard M, Mackay LK, Wakim LM, Fazakerley JK, Kedzierska K, Kedzierski L. Prior infection with unrelated neurotropic virus exacerbates influenza disease and impairs lung T cell responses. Nat Commun 2024; 15:2619. [PMID: 38521764 PMCID: PMC10960853 DOI: 10.1038/s41467-024-46822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Immunity to infectious diseases is predominantly studied by measuring immune responses towards a single pathogen, although co-infections are common. In-depth mechanisms on how co-infections impact anti-viral immunity are lacking, but are highly relevant to treatment and prevention. We established a mouse model of co-infection with unrelated viruses, influenza A (IAV) and Semliki Forest virus (SFV), causing disease in different organ systems. SFV infection eight days before IAV infection results in prolonged IAV replication, elevated cytokine/chemokine levels and exacerbated lung pathology. This is associated with impaired lung IAV-specific CD8+ T cell responses, stemming from suboptimal CD8+ T cell activation and proliferation in draining lymph nodes, and dendritic cell paralysis. Prior SFV infection leads to increased blood brain barrier permeability and presence of IAV RNA in brain, associated with increased trafficking of IAV-specific CD8+ T cells and establishment of long-term tissue-resident memory. Relative to lung IAV-specific CD8+ T cells, brain memory IAV-specific CD8+ T cells have increased TCR repertoire diversity within immunodominant DbNP366+CD8+ and DbPA224+CD8+ responses, featuring suboptimal TCR clonotypes. Overall, our study demonstrates that infection with an unrelated neurotropic virus perturbs IAV-specific immune responses and exacerbates IAV disease. Our work provides key insights into therapy and vaccine regimens directed against unrelated pathogens.
Collapse
Affiliation(s)
- Isabelle Jia-Hui Foo
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - So Young Chang
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Ashley Huey Yiing Yap
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Aira F Cabug
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Mitra Ashayeripanah
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Pharmacology; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - John K Fazakerley
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
5
|
Rani A, Ergün S, Karnati S, Jha HC. Understanding the link between neurotropic viruses, BBB permeability, and MS pathogenesis. J Neurovirol 2024; 30:22-38. [PMID: 38189894 DOI: 10.1007/s13365-023-01190-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.
| |
Collapse
|
6
|
Uribe FR, González VPI, Kalergis AM, Soto JA, Bohmwald K. Understanding the Neurotrophic Virus Mechanisms and Their Potential Effect on Systemic Lupus Erythematosus Development. Brain Sci 2024; 14:59. [PMID: 38248274 PMCID: PMC10813552 DOI: 10.3390/brainsci14010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Central nervous system (CNS) pathologies are a public health concern, with viral infections one of their principal causes. These viruses are known as neurotropic pathogens, characterized by their ability to infiltrate the CNS and thus interact with various cell populations, inducing several diseases. The immune response elicited by neurotropic viruses in the CNS is commanded mainly by microglia, which, together with other local cells, can secrete inflammatory cytokines to fight the infection. The most relevant neurotropic viruses are adenovirus (AdV), cytomegalovirus (CMV), enterovirus (EV), Epstein-Barr Virus (EBV), herpes simplex virus type 1 (HSV-1), and herpes simplex virus type 2 (HSV-2), lymphocytic choriomeningitis virus (LCMV), and the newly discovered SARS-CoV-2. Several studies have associated a viral infection with systemic lupus erythematosus (SLE) and neuropsychiatric lupus (NPSLE) manifestations. This article will review the knowledge about viral infections, CNS pathologies, and the immune response against them. Also, it allows us to understand the relevance of the different viral proteins in developing neuronal pathologies, SLE and NPSLE.
Collapse
Affiliation(s)
- Felipe R. Uribe
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Valentina P. I. González
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma, Santiago 8910060, Chile
| |
Collapse
|
7
|
Zhang Z, Li J, Jiang S, Xu M, Ma T, Sun Z, Zhang J. Lactobacillus fermentum HNU312 alleviated oxidative damage and behavioural abnormalities during brain development in early life induced by chronic lead exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114543. [PMID: 36640575 DOI: 10.1016/j.ecoenv.2023.114543] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Lead exposure is a global public health safety issue that severely disrupts brain development and causes damage to the nervous system in early life. Probiotics and gut microbes have been highlighted for their critical roles in mitigating lead toxicity. However, the underlying mechanisms by which they work yet to be fully explored. Here, we designed a two-stage experiment using the probiotic Lactobacillus fermentum HNU312 (Lf312) to uncover how probiotics alleviate lead toxicity to the brain during early life. First, we explored the tolerance and adsorption of Lf312 to lead in vitro. Second, the adsorption capacity of the strain was determined and confirmed in vivo. The shotgun metagenome sequencing showed lead exposure-induced imbalance and dysfunction of the gut microbiome. In contrast, Lf312 intake significantly modulated the structure of the microbiome, increased the abundance of beneficial bacteria and short-chain fatty acids (SCFAs)-producing bacteria, and upregulated function-related metabolic pathways such as antioxidants. Notably, Lf312 enhanced the integrity of the blood-brain barrier by increasing the levels of SCFAs in the gut, alleviated inflammation in the brain, and ultimately improved anxiety-like and depression-like behaviours induced by lead exposure in mice. Subsequently, the effective mechanism was confirmed, highlighting that Lf312 worked through integrated strategies, including ionic adsorption and microbiota-gut-brain axis regulation. Collectively, this work elucidated the mechanism by which the gut microbiota mitigates the toxic effects of lead in the brain and provides preventive measures and intervention measures for brain damage due to mass lead poisoning in children.
Collapse
Affiliation(s)
- Zeng Zhang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Jiahe Li
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Shuaiming Jiang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Meng Xu
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Teng Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Jiachao Zhang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
8
|
Bohmwald K, Andrade CA, Gálvez NMS, Mora VP, Muñoz JT, Kalergis AM. The Causes and Long-Term Consequences of Viral Encephalitis. Front Cell Neurosci 2021; 15:755875. [PMID: 34916908 PMCID: PMC8668867 DOI: 10.3389/fncel.2021.755875] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Reports regarding brain inflammation, known as encephalitis, have shown an increasing frequency during the past years. Encephalitis is a relevant concern to public health due to its high morbidity and mortality. Infectious or autoimmune diseases are the most common cause of encephalitis. The clinical symptoms of this pathology can vary depending on the brain zone affected, with mild ones such as fever, headache, confusion, and stiff neck, or severe ones, such as seizures, weakness, hallucinations, and coma, among others. Encephalitis can affect individuals of all ages, but it is frequently observed in pediatric and elderly populations, and the most common causes are viral infections. Several viral agents have been described to induce encephalitis, such as arboviruses, rhabdoviruses, enteroviruses, herpesviruses, retroviruses, orthomyxoviruses, orthopneumovirus, and coronaviruses, among others. Once a neurotropic virus reaches the brain parenchyma, the resident cells such as neurons, astrocytes, and microglia, can be infected, promoting the secretion of pro-inflammatory molecules and the subsequent immune cell infiltration that leads to brain damage. After resolving the viral infection, the local immune response can remain active, contributing to long-term neuropsychiatric disorders, neurocognitive impairment, and degenerative diseases. In this article, we will discuss how viruses can reach the brain, the impact of viral encephalitis on brain function, and we will focus especially on the neurocognitive sequelae reported even after viral clearance.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina P Mora
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José T Muñoz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Dahal B, Lehman CW, Akhrymuk I, Bracci NR, Panny L, Barrera MD, Bhalla N, Jacobs JL, Dinman JD, Kehn-Hall K. PERK Is Critical for Alphavirus Nonstructural Protein Translation. Viruses 2021; 13:892. [PMID: 34065980 PMCID: PMC8151226 DOI: 10.3390/v13050892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is an alphavirus that causes encephalitis. Previous work indicated that VEEV infection induced early growth response 1 (EGR1) expression, leading to cell death via the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) arm of the unfolded protein response (UPR) pathway. Loss of PERK prevented EGR1 induction and decreased VEEV-induced death. The results presented within show that loss of PERK in human primary astrocytes dramatically reduced VEEV and eastern equine encephalitis virus (EEEV) infectious titers by 4-5 log10. Loss of PERK also suppressed VEEV replication in primary human pericytes and human umbilical vein endothelial cells, but it had no impact on VEEV replication in transformed U87MG and 293T cells. A significant reduction in VEEV RNA levels was observed as early as 3 h post-infection, but viral entry assays indicated that the loss of PERK minimally impacted VEEV entry. In contrast, the loss of PERK resulted in a dramatic reduction in viral nonstructural protein translation and negative-strand viral RNA production. The loss of PERK also reduced the production of Rift Valley fever virus and Zika virus infectious titers. These data indicate that PERK is an essential factor for the translation of alphavirus nonstructural proteins and impacts multiple RNA viruses, making it an exciting target for antiviral development.
Collapse
Affiliation(s)
- Bibha Dahal
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
| | - Caitlin W. Lehman
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ivan Akhrymuk
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Nicole R. Bracci
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Lauren Panny
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Michael D. Barrera
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
| | - Nishank Bhalla
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
| | | | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA;
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
10
|
Bond P. Ethnicity and the relationship between covid-19 and the herpes simplex viruses. Med Hypotheses 2020; 146:110447. [PMID: 33383524 PMCID: PMC8086127 DOI: 10.1016/j.mehy.2020.110447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022]
Abstract
The pathogen burden, defined by the frequency of antibodies to several viruses and a parasite, is greater in Hispanic whites and black populations than it is in non-Hispanic whites, in the USA. The poor and those without higher education also have higher pathogen burdens. The most frequent pathogen that was measured, was the Herpes simplex virus type 1 (HSV-1). This virus can inactivate most of the elements in the immune system, that are designed to protect against the incursions of viruses, bacteria and other pathogens. HSV-1 can also damage the blood brain barrier (BBB), which prevents the entry of pathogens into the central nervous system. Without the help of HSV-1, the COVID-19 virus may not be able to cause serious illness or death in humans. A prophylactic treatment to contain HSV-1, could be vital in the fight against COVID-19.
Collapse
Affiliation(s)
- Peter Bond
- Holly House, Farm St., Fladbury, Pershore, Worcestershire WR10 2QD, United Kingdom
| |
Collapse
|
11
|
Mora P, Hollier PL, Guimbal S, Abelanet A, Diop A, Cornuault L, Couffinhal T, Horng S, Gadeau AP, Renault MA, Chapouly C. Blood-brain barrier genetic disruption leads to protective barrier formation at the Glia Limitans. PLoS Biol 2020; 18:e3000946. [PMID: 33253145 PMCID: PMC7728400 DOI: 10.1371/journal.pbio.3000946] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/10/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation of the central nervous system (CNS) induces endothelial blood–brain barrier (BBB) opening as well as the formation of a tight junction barrier between reactive astrocytes at the Glia Limitans. We hypothesized that the CNS parenchyma may acquire protection from the reactive astrocytic Glia Limitans not only during neuroinflammation but also when BBB integrity is compromised in the resting state. Previous studies found that astrocyte-derived Sonic hedgehog (SHH) stabilizes the BBB during CNS inflammatory disease, while endothelial-derived desert hedgehog (DHH) is expressed at the BBB under resting conditions. Here, we investigated the effects of endothelial Dhh on the integrity of the BBB and Glia Limitans. We first characterized DHH expression within endothelial cells at the BBB, then demonstrated that DHH is down-regulated during experimental autoimmune encephalomyelitis (EAE). Using a mouse model in which endothelial Dhh is inducibly deleted, we found that endothelial Dhh both opens the BBB via the modulation of forkhead box O1 (FoxO1) transcriptional activity and induces a tight junctional barrier at the Glia Limitans. We confirmed the relevance of this glial barrier system in human multiple sclerosis active lesions. These results provide evidence for the novel concept of “chronic neuroinflammatory tolerance” in which BBB opening in the resting state is sufficient to stimulate a protective barrier at the Glia Limitans that limits the severity of subsequent neuroinflammatory disease. In summary, genetic disruption of the BBB generates endothelial signals that drive the formation under resting conditions of a secondary barrier at the Glia Limitans with protective effects against subsequent CNS inflammation. The concept of a reciprocally regulated CNS double barrier system has implications for treatment strategies in both the acute and chronic phases of multiple sclerosis pathophysiology. This study uncovers a critical role for the signaling molecule desert hedgehog (Dhh) in maintaining tightness of the blood-brain barrier and highlights a reciprocally regulated double barrier system in the central nervous system that relies on crosstalk between endothelial cells and astrocytes.
Collapse
MESH Headings
- Adherens Junctions/pathology
- Adherens Junctions/physiology
- Animals
- Antigens, CD/genetics
- Antigens, CD/physiology
- Astrocytes/pathology
- Astrocytes/physiology
- Blood-Brain Barrier/physiology
- Blood-Brain Barrier/physiopathology
- Cadherins/genetics
- Cadherins/physiology
- Capillary Permeability/genetics
- Capillary Permeability/physiology
- Claudin-5/genetics
- Claudin-5/physiology
- Down-Regulation
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Endothelial Cells/pathology
- Endothelial Cells/physiology
- Female
- Hedgehog Proteins/deficiency
- Hedgehog Proteins/genetics
- Hedgehog Proteins/physiology
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Multiple Sclerosis/pathology
- Multiple Sclerosis/physiopathology
- Neuroglia/pathology
- Neuroglia/physiology
- Tight Junctions/pathology
- Tight Junctions/physiology
Collapse
Affiliation(s)
- Pierre Mora
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, Pessac, France
| | | | - Sarah Guimbal
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, Pessac, France
| | - Alice Abelanet
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, Pessac, France
| | - Aïssata Diop
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, Pessac, France
| | - Lauriane Cornuault
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, Pessac, France
| | - Thierry Couffinhal
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, Pessac, France
| | - Sam Horng
- Department of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | | | - Marie-Ange Renault
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, Pessac, France
| | - Candice Chapouly
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, Pessac, France
- * E-mail:
| |
Collapse
|
12
|
Salomão N, Rabelo K, Basílio-de-Oliveira C, Basílio-de-Oliveira R, Geraldo L, Lima F, dos Santos F, Nuovo G, Oliveira ERA, Paes M. Fatal Dengue Cases Reveal Brain Injury and Viral Replication in Brain-Resident Cells Associated with the Local Production of Pro-Inflammatory Mediators. Viruses 2020; 12:E603. [PMID: 32486462 PMCID: PMC7354550 DOI: 10.3390/v12060603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Dengue is an arboviral disease caused by dengue virus (DENV), which is transmitted to humans by Aedes aegypti mosquitoes. Infection by DENV most commonly results in a mild flu-like illness; however, the disease has been increasingly associated with neurological symptomatology. This association draws attention to further investigations on the impact of DENV infection in the host's central nervous system. Here, we analyzed brain samples of three fatal dengue cases that occurred in 2002 during an outbreak in Rio de Janeiro, Brazil. Brain tissues of these cases were marked by histopathological alterations, such as degenerated neurons, demyelination, hemorrhage, edema, and increased numbers of astrocytes and microglial cells. Samples were also characterized by lymphocytic infiltrates mainly composed of CD8 T cells. DENV replication was evidenced in neurons, microglia and endothelial cells through immunohistochemistry and in situ hybridization techniques. Pro-inflammatory cytokines, such as TNF-α and IFN-γ were detected in microglia, while endothelial cells were marked by the expression of RANTES/CCL5. Cytoplasmic HMGB1 and the production of nitric oxide were also found in neurons and microglial cells. This work highlights the possible participation of several local pro-inflammatory mediators in the establishment of dengue neuropathogenesis.
Collapse
Affiliation(s)
- Natália Salomão
- Interdisciplinary Medical Research Laboratory Rio de Janeiro, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, Brazil;
| | - Kíssila Rabelo
- Ultrastructure and Tissue Biology Laboratory Rio de Janeiro, Rio de Janeiro State University, 20551-030 Rio de Janeiro, Brazil;
| | - Carlos Basílio-de-Oliveira
- Pathological Anatomy, Gaffrée Guinle University Hospital Rio de Janeiro, Federal University of the State of Rio de Janeiro, 20270-004 Rio de Janeiro, Brazil; (C.B.-d.-O.); (R.B.-d.-O.)
| | - Rodrigo Basílio-de-Oliveira
- Pathological Anatomy, Gaffrée Guinle University Hospital Rio de Janeiro, Federal University of the State of Rio de Janeiro, 20270-004 Rio de Janeiro, Brazil; (C.B.-d.-O.); (R.B.-d.-O.)
| | - Luiz Geraldo
- Glial Cell Biology Laboratory, Institute of Biomedical Sciences Rio de Janeiro, Federal University of Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil; (L.G.); (F.L.)
| | - Flávia Lima
- Glial Cell Biology Laboratory, Institute of Biomedical Sciences Rio de Janeiro, Federal University of Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil; (L.G.); (F.L.)
| | - Flávia dos Santos
- Viral Immunology Laboratory, Oswaldo Cruz Institute Rio de Janeiro, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, Brazil;
| | - Gerard Nuovo
- Ohio State University Comprehensive Cancer Center, Ohio State University Foundation, Columbus, OH 43210, USA;
- Phylogeny Medical Laboratory Columbus, Ohio State University Foundation, Columbus, OH 43214, USA
| | - Edson R. A. Oliveira
- Department of Microbiology and Immunology Chicago, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Marciano Paes
- Interdisciplinary Medical Research Laboratory Rio de Janeiro, Oswaldo Cruz Foundation, 21040-900 Rio de Janeiro, Brazil;
| |
Collapse
|
13
|
Calderón-Peláez MA, Velandia-Romero ML, Bastidas-Legarda LY, Beltrán EO, Camacho-Ortega SJ, Castellanos JE. Dengue Virus Infection of Blood-Brain Barrier Cells: Consequences of Severe Disease. Front Microbiol 2019; 10:1435. [PMID: 31293558 PMCID: PMC6606788 DOI: 10.3389/fmicb.2019.01435] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
More than 500 million people worldwide are infected each year by any of the four-dengue virus (DENV) serotypes. The clinical spectrum caused during these infections is wide and some patients may develop neurological alterations during or after the infection, which could be explained by the cryptic neurotropic and neurovirulent features of flaviviruses like DENV. Using in vivo and in vitro models, researchers have demonstrated that DENV can affect the cells from the blood-brain barrier (BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be compromised during infection; however, it is not clear whether the damage is due to the infection per se or to the local and/or systemic inflammatory response established or activated by the BBB cells. Similarly, the kinetics and cascade of events that trigger tissue damage, and the cells that initiate it, are unknown. This review presents evidence of the BBB cell infection with DENV and the response established toward it by these cells; it also describes the consequences of this response on the nervous tissue, compares these evidence with the one reported with neurotropic viruses of the Flaviviridae family, and shows the complexity and unpredictability of dengue and the neurological alterations induced by it. Clinical evidence and in vitro and in vivo models suggest that this virus uses the bloodstream to enter nerve tissue where it infects the different cells of the neurovascular unit. Each of the cell populations respond individually and collectively and control infection and inflammation, in other cases this response exacerbates the damage leaving irreversible sequelae or causing death. This information will allow us to understand more about the complex disease known as dengue, and its impact on a specialized and delicate tissue like is the nervous tissue.
Collapse
|
14
|
Abstract
Endothelins were discovered more than thirty years ago as potent vasoactive compounds. Beyond their well-documented cardiovascular properties, however, the contributions of the endothelin pathway have been demonstrated in several neuroinflammatory processes and the peptides have been reported as clinically relevant biomarkers in neurodegenerative diseases. Several studies report that endothelin-1 significantly contributes to the progression of neuroinflammatory processes, particularly during infections in the central nervous system (CNS), and is associated with a loss of endothelial integrity at the blood brain barrier level. Because of the paucity of clinical trials with endothelin-1 antagonists in several infectious and non-infectious neuroinflammatory diseases, it remains an open question whether the 21 amino acid peptide is a mediator/modulator rather than a biomarker of the progression of neurodegeneration. This review focuses on the potential roles of endothelins in the pathology of neuroinflammatory processes, including infectious diseases of viral, bacterial or parasitic origin in which the synthesis of endothelins or its pharmacology have been investigated from the cell to the bedside in several cases, as well as in non-infectious inflammatory processes such as neurodegenerative disorders like Alzheimers Disease or central nervous system vasculitis.
Collapse
|
15
|
Chen Z, Chen S, Liu J. The role of T cells in the pathogenesis of Parkinson's disease. Prog Neurobiol 2018; 169:1-23. [PMID: 30114440 DOI: 10.1016/j.pneurobio.2018.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/24/2018] [Accepted: 08/12/2018] [Indexed: 02/06/2023]
Abstract
Recent evidence has shown that neuroinflammation plays a key role in the pathogenesis of Parkinson's disease (PD). However, different components of the brain's immune system may exert diverse effects on neuroinflammatory events in PD. The adaptive immune response, especially the T cell response, can trigger type 1 pro-inflammatory activities and suppress type 2 anti-inflammatory activities, eventually resulting in deregulated neuroinflammation and subsequent dopaminergic neurodegeneration. Additionally, studies have increasingly shown that therapies targeting T cells can alleviate neurodegeneration and motor behavior impairment in animal models of PD. Therefore, we conclude that abnormal T cell-mediated immunity is a fundamental pathological process that may be a promising translational therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
16
|
Soong L, Shelite TR, Xing Y, Kodakandla H, Liang Y, Trent BJ, Horton P, Smith KC, Zhao Z, Sun J, Bouyer DH, Cai J. Type 1-skewed neuroinflammation and vascular damage associated with Orientia tsutsugamushi infection in mice. PLoS Negl Trop Dis 2017; 11:e0005765. [PMID: 28742087 PMCID: PMC5542690 DOI: 10.1371/journal.pntd.0005765] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/03/2017] [Accepted: 06/30/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Scrub typhus is a life-threatening disease, due to infection with O. tsutsugamushi, a Gram-negative bacterium that preferentially replicates in endothelial cells and professional phagocytes. Meningoencephalitis has been reported in scrub typhus patients and experimentally-infected animals; however, the neurological manifestation and its underlying mechanisms remain poorly understood. To address this issue, we focused on Orientia tsutsugamushi Karp strain (OtK), and examined host responses in the brain during lethal versus self-healing scrub typhus disease in our newly established murine models. PRINCIPLE FINDINGS Following inoculation with a lethal dose of OtK, mice had a significant increase in brain transcripts related to pathogen-pattern recognition receptors (TLR2, TLR4, TLR9), type-1 responses (IFN-γ, TNF-α, CXCL9, CXCR3), and endothelial stress/damage such as angiopoietins, but a rapid down-regulation of Tie2. Sublethal infection displayed similar trends, implying the development of type 1-skewed proinflammatory responses in infected brains, independent of time and disease outcomes. Focal hemorrhagic lesions and meningitis were evident in both infection groups, but pathological changes were more diffuse and frequent in lethal infection. At 6-10 days of lethal infection, the cortex and cerebellum sections had increased ICAM-1-positive staining in vascular cells, as well as increased detection of CD45+ leukocytes, CD3+ T cells, IBA1+ phagocytes, and GFAP+ astrocytes, but a marked loss of occludin-positive tight junction staining, implying progressive endothelial activation/damage and cellular recruitment in inflamed brains. Orientia were sparse in the brains, but readily detectable within lectin+ vascular and IBA-1+ phagocytic cells. These CNS alterations were consistent with type 1-skewed, IL-13-suppressed responses in lethally-infected mouse lungs. SIGNIFICANCE This is the first report of type 1-skewed neuroinflammation and cellular activation, accompanied with vascular activation/damage, during OtK infection in C57BL/6 mice. This study not only enhances our understanding of the pathophysiological mechanisms of scrub typhus, but also correlates the impact of immune and vascular dysfunction on disease pathogenesis.
Collapse
Affiliation(s)
- Lynn Soong
- Department of Microbiology and Immunology, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| | - Thomas R. Shelite
- Department of Microbiology and Immunology, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Internal Medicine/Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yan Xing
- Department of Microbiology and Immunology, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Pediatrics Department, People's Hospital of Henan Province, Zheng Zhou, Henan, China
| | - Harica Kodakandla
- School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yuejin Liang
- Department of Microbiology and Immunology, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Brandon J. Trent
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Paulina Horton
- Department of Microbiology and Immunology, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kathryn C. Smith
- Center in Environmental Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Zhenyang Zhao
- Department of Ophthalmology, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jiaren Sun
- Department of Microbiology and Immunology, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Donald H. Bouyer
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jiyang Cai
- Department of Ophthalmology, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
17
|
A Protective Role for Interleukin-1 Signaling during Mouse Adenovirus Type 1-Induced Encephalitis. J Virol 2017; 91:JVI.02106-16. [PMID: 27903802 DOI: 10.1128/jvi.02106-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/24/2016] [Indexed: 12/21/2022] Open
Abstract
Interleukin-1β (IL-1β), an inflammatory cytokine and IL-1 receptor ligand, has diverse activities in the brain. We examined whether IL-1 signaling contributes to the encephalitis observed in mouse adenovirus type 1 (MAV-1) infection, using mice lacking the IL-1 receptor (Il1r1-/- mice). Il1r1-/- mice demonstrated reduced survival, greater disruption of the blood-brain barrier (BBB), higher brain viral loads, and higher brain inflammatory cytokine and chemokine levels than control C57BL/6J mice. We also examined infections of mice defective in IL-1β production (Pycard-/- mice) and mice defective in trafficking of Toll-like receptors to the endosome (Unc93b1-/- mice). Pycard-/- and Unc93b1-/- mice showed lower survival (similar to Il1r1-/- mice) than control mice but, unlike Il1r1-/- mice, did not have increased brain viral loads or BBB disruption. Based on the brain cytokine levels, MAV-1-infected Unc93b1-/- mice had a very different inflammatory profile from infected Il1r1-/- and Pycard-/- mice. Histological examination demonstrated pathological findings consistent with encephalitis in control and knockout mice; however, intranuclear viral inclusions were seen only in Il1r1-/- mice. A time course of infection of control and Il1r1-/- mice evaluating the kinetics of viral replication and cytokine production revealed differences between the mouse strains primarily at 7 to 8 days after infection, when mice began succumbing to MAV-1 infection. In the absence of IL-1 signaling, we noted an increase in the transcription of type I interferon (IFN)-stimulated genes. Together, these results indicate that IL-1 signaling is important during MAV-1 infection and suggest that, in its absence, increased IFN-β signaling may result in increased neuroinflammation. IMPORTANCE The investigation of encephalitis pathogenesis produced by different viruses is needed to characterize virus and host-specific factors that contribute to disease. MAV-1 produces viral encephalitis in its natural host, providing a good model for studying factors involved in encephalitis development. We investigated the role of IL-1 signaling during MAV-1-induced encephalitis. Unexpectedly, the lack of IL-1 signaling increased the mortality and inflammation in mice infected with MAV-1. Also, there was an increase in the transcription of type I IFN-stimulated genes that correlated with the observed increased mortality and inflammation. The findings highlight the complex nature of encephalitis and suggests that IL-1 has a protective effect for the development of MAV-1-induced encephalitis.
Collapse
|
18
|
Affiliation(s)
- Inge S Zuhorn
- University of Groningen, University Medical Center Groningen, Department of Cell Biology; Groningen, the Netherlands
| |
Collapse
|