1
|
Hung SH, Yang TH, Lin HC, Chen CS. Associations of Head and Neck Cancer with Prior Allergic Rhinitis. Cancers (Basel) 2025; 17:1000. [PMID: 40149334 PMCID: PMC11941638 DOI: 10.3390/cancers17061000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Chronic inflammation has been implicated in cancer development, but the association between allergic rhinitis (AR) and head and neck cancer (HNC) remains unclear. This study aims to investigate this potential relationship using a population-based dataset. Methods: Utilizing the Taiwan Longitudinal Health Insurance Database 2010, we conducted a case-control study encompassing 14,913 HNC patients and 59,652 propensity-score matched controls. Multivariate logistic regression analyses were performed to quantitatively evaluate the association between HNC and prior AR, adjusting for demographic factors and medical comorbidities such as hyperlipidemia, diabetes, hypertension, tobacco use disorder, HPV infection, and alcohol-related disorders. Results: This study identified that 20.19% of the entire cohort had a prior diagnosis of AR, with a significantly higher prevalence in HNC patients relative to controls (26.2% vs. 18.70%). The adjusted odds ratio (OR) for previous AR in HNC patients was 1.559 (95% CI = 1.494-1.627). Furthermore, site-specific analysis revealed increased odds ratios for AR among patients with cancers of the larynx (OR = 1.537, 95% CI = 1.307-1.807), hypopharynx (OR = 1.220, 95% CI = 1.035-1.437), nasopharynx (OR = 2.933, 95% CI = 2.722-3.160), sinonasal (OR = 3.100, 95% CI = 2.424-3.964), salivary glands (OR = 1.470, 95% CI = 1.158-1.865), and thyroid (OR = 1.566, 95% CI = 1.447-1.693). Conclusions: The findings robustly support a significant link between AR and an elevated risk of developing HNC, notably affecting the nasopharynx, sinonasal cavities, larynx, salivary glands, and thyroid.
Collapse
Affiliation(s)
- Shih-Han Hung
- Department of Otolaryngology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Otolaryngology, Wan Fang Hospital, Taipei 110, Taiwan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tzong-Hann Yang
- Department of Otorhinolaryngology, Taipei City Hospital, Taipei 106, Taiwan;
- Department of Speech, Language and Audiology, National Taipei University of Nursing and Health, Taipei 112, Taiwan
- Department of Exercise and Health Sciences, University of Taipei, Taipei 100, Taiwan
- Department of Otorhinolaryngology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Research Center of Data Science on Healthcare Industry, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Herng-Ching Lin
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei 110, Taiwan;
- Research Center of Sleep Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chin-Shyan Chen
- Research Center of Data Science on Healthcare Industry, College of Management, Taipei Medical University, Taipei 110, Taiwan
- Department of Economics, National Taipei University, New Taipei City 237, Taiwan
| |
Collapse
|
2
|
Tugizov S. HIV-1 Tat-induced disruption of epithelial junctions and epithelial-mesenchymal transition of oral and genital epithelial cells lead to increased invasiveness of neoplastic cells and the spread of herpes simplex virus and cytomegalovirus. Front Immunol 2025; 16:1541532. [PMID: 40018040 PMCID: PMC11866325 DOI: 10.3389/fimmu.2025.1541532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
Human immunodeficiency virus (HIV-1) transactivator Tat is a unique multi-functional viral protein secreted by infected cells. Although its primary function is to promote HIV-1 transcription, secreted Tat interacts with neighboring cells and induces numerous disease-associated pathological changes. Despite the substantial reduction of viral load and disease burden, Tat expression and secretion persist in people living with HIV who are undergoing treatment with highly effective combination antiretroviral therapy (cART). Tat interacts with both oral and genital epithelial cells and impairs their mucosal barrier functions, which facilitates the entry of other pathogenic viruses. Tat-mediated interactions with both human papillomavirus (HPV) -infected and HPV-negative neoplastic epithelial cells lead to epithelial-mesenchymal transition and increased invasiveness of malignant cells. Likewise, Tat-induced disruption of oral epithelial cell junctions leads to herpes simplex virus-1 (HSV-1) infection and spread via exposure of its receptor, nectin-1. HIV-1 Tat facilitates infection and spread of human cytomegalovirus (HCMV) by activating mitogen-activated protein kinases (MAPK) and promoting NF-κB signaling, both critical for the replication and production of progeny virions. HIV extracellular Tat also plays a critical role in human herpesvirus 8 (HHV8) -caused Kaposi sarcoma (KS) pathogenesis by synergizing with HHV-8 lytic proteins and promoting the proliferation, angiogenesis, and migration of endothelial cells. Collectively, these findings emphasize the critical impact of HIV-1 Tat on HIV/AIDS pathogenesis during the cART era and highlight the need for further research on the molecular mechanisms underlying Tat-mediated interactions with oral and genital mucosal epithelial cells.
Collapse
Affiliation(s)
- Sharof Tugizov
- Department of Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Garrec C, Arrindell J, Andrieu J, Desnues B, Mege JL, Omar Osman I, Devaux C. Preferential apical infection of Caco-2 intestinal cell monolayers by SARS-CoV-2 is associated with damage to cellular barrier integrity: Implications for the pathophysiology of COVID-19. PLoS One 2025; 20:e0313068. [PMID: 39928619 PMCID: PMC11809792 DOI: 10.1371/journal.pone.0313068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/17/2024] [Indexed: 02/12/2025] Open
Abstract
SARS-CoV-2 can infect different organs, including the intestine. In an in vitro model of Caco-2 intestinal cell line, we previously found that SARS-CoV-2 modulates the ACE2 receptor expression and affects the expression of molecules involved in intercellular junctions. To further explore the possibility that the intestinal epithelium can serve as an alternative infection route for SARS-CoV-2, we used a model of polarized monolayers of Caco-2 cells (or co-cultures of two intestinal cell lines: Caco-2 and HT29) grown on the polycarbonate membrane of Transwell inserts, inoculated with the virus either in the upper or lower chamber of culture to determine the tropism of the virus for the apical or basolateral pole of these cells. In both polarized Caco-2 cell monolayers and co-culture Caco-2/HT29 cell monolayer, apical SARS-CoV-2 inoculation was found to be much more effective in establishing infection than basolateral inoculation. In addition, apical SARS-CoV-2 infection triggers monolayer degeneration, as shown by histological examination, measurement of trans-epithelial electrical resistance, and cell adhesion molecule expression. During apical infection, the infectious viruses reach the lower chamber, suggesting either a transcytosis mechanism from the apical side to the basolateral side of cells, a paracellular trafficking of the virus after damage to intercellular junctions in the epithelial barrier, or both. Taken together, these data indicate a preferential tropism of SARS-CoV-2 for the apical pole of the human intestinal tract and suggest that infection via the intestinal lumen leads to a systemic infection.
Collapse
Affiliation(s)
- Clémence Garrec
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
| | - Jeffrey Arrindell
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
| | - Jonatane Andrieu
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
| | - Benoit Desnues
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
| | - Jean-Louis Mege
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
- Laboratory of Immunology, Assistance Publique Hôpitaux de Marseille (APHM), Marseille, France
| | - Ikram Omar Osman
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
| | - Christian Devaux
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), Marseille, France
| |
Collapse
|
4
|
Gopakumar G, Coppo MJC, Diaz-Méndez A, Hartley CA, Devlin JM. Clinical assessment and transcriptome analysis of host immune responses in a vaccination-challenge study using a glycoprotein G deletion mutant vaccine strain of infectious laryngotracheitis virus. Front Immunol 2025; 15:1458218. [PMID: 39926602 PMCID: PMC11802539 DOI: 10.3389/fimmu.2024.1458218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/17/2024] [Indexed: 02/11/2025] Open
Abstract
A glycoprotein-G-deleted live-attenuated vaccine strain of the infectious laryngotracheitis virus (ILTV), ΔgG-ILTV, is safe and efficacious against ILTV challenge. In the current study, the transcriptome of peripheral blood mononuclear cells (PBMCs) of the ΔgG-ILTV-vaccinated group of specific-pathogen-free chickens were compared to those of the nonvaccinated group at 7 days post-vaccination. Tracheal transcriptomes after challenge with virulent ILTV were compared between groups of the non-vaccinated-challenged and the vaccinated-challenged as well as the non-vaccinated-challenged and the uninfected chickens at 4 to 5 days post-challenge. The clinical outcomes after challenge between these groups were also evaluated. Significant differences were observed in the tracheal transcriptome of the non-vaccinated-challenged birds compared to the other two groups. Enriched gene ontologies and pathways that indicated heightened immune responses and impairments to ciliary and neuronal functions, cell junction components, and potential damages to cartilaginous and extracellular components in the trachea of the non-vaccinated-challenged birds were consistent with their severe tracheal pathology compared to the other two groups. On the contrary, the absence of any difference in the tracheal transcriptome between the vaccinated-challenged and the uninfected birds were reflected by the preservation of tracheal mucosal integrity in both groups and mild infiltration of leukocytes in the vaccinated-challenged birds. The results from this study demonstrated that vaccination with ΔgG-ILTV prevented the changes in tracheal transcriptome induced during ILTV challenge, resulting in clinical protection. Additionally, these results also provide insights into the molecular mechanisms underlying the tracheal pathology induced by ILTV infection.
Collapse
Affiliation(s)
- Gayathri Gopakumar
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Mauricio J. C. Coppo
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- Escuela de Medicina Veterinaria, Universidad Andrés Bello, Concepción, Chile
| | - Andrés Diaz-Méndez
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Carol A. Hartley
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Joanne M. Devlin
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Sáez‐Fuertes L, Rio‐Aige K, Massot‐Cladera M, Castell M, Knipping K, Garssen J, Bourdet‐Sicard R, Rodríguez‐Lagunas MJ, Collado MC, Pérez‐Cano FJ. Bifidobacterium breve M-16 V and scGOS/lcFOS Supplementation to Dams Ameliorates Infant Rotavirus Infection in Early Life. Mol Nutr Food Res 2024; 68:e2400377. [PMID: 39468988 PMCID: PMC11605786 DOI: 10.1002/mnfr.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/29/2024] [Indexed: 10/30/2024]
Abstract
The immune system of newborns is underdeveloped, leaving them susceptible to infections like rotavirus (RV). Despite vaccines, RV remains a leading cause of child mortality, especially in developing countries. Maternal immunity is transferred during pregnancy and breastfeeding to the offspring providing protection against RV infection. This study aims to explore how the maternal diet can enhance the newborn's ability to fight early infections. Pregnant rats received orally Bifidobacterium breve M-16 V and short chain galacto-oligosaccharides (scGOS)/long chain fructo-oligosaccharides (lcFOS). At day 5 of life pups are infected with RV and at day 8, samples are collected for the infection analysis. Pups whose mothers received the synbiotic have lower RV infection severity. The levels of immunoglobulins (Ig) IgG2c and IgA are raised in pups' plasma and digested milk, respectively. Synbiotic supplementation improves intestinal maturation and increases gene expression of immune-related genes. In conclusion, the administration of this synbiotic to gestating and lactating mothers ameliorates the incidence and severity of the pup's diarrhea caused by the RV infection by improving their immunity.
Collapse
Affiliation(s)
- Laura Sáez‐Fuertes
- Physiology Section, Department of Biochemistry and PhysiologyFaculty of Pharmacy and Food ScienceUniversity of Barcelona (UB)Barcelona08028Spain
- Nutrition and Food Safety Research Institute (INSA‐UB)Santa Coloma de Gramenet08921Spain
| | - Karla Rio‐Aige
- Physiology Section, Department of Biochemistry and PhysiologyFaculty of Pharmacy and Food ScienceUniversity of Barcelona (UB)Barcelona08028Spain
- Nutrition and Food Safety Research Institute (INSA‐UB)Santa Coloma de Gramenet08921Spain
| | - Malén Massot‐Cladera
- Physiology Section, Department of Biochemistry and PhysiologyFaculty of Pharmacy and Food ScienceUniversity of Barcelona (UB)Barcelona08028Spain
- Nutrition and Food Safety Research Institute (INSA‐UB)Santa Coloma de Gramenet08921Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and PhysiologyFaculty of Pharmacy and Food ScienceUniversity of Barcelona (UB)Barcelona08028Spain
- Nutrition and Food Safety Research Institute (INSA‐UB)Santa Coloma de Gramenet08921Spain
- Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Salud Carlos IIIMadrid28029Spain
| | - Karen Knipping
- Danone Research & InnovationUtrechtthe Netherlands
- Division of Pharmacology, Faculty of ScienceUtrecht Institute for Pharmaceutical SciencesUtrechtthe Netherlands
| | - Johan Garssen
- Danone Research & InnovationUtrechtthe Netherlands
- Division of Pharmacology, Faculty of ScienceUtrecht Institute for Pharmaceutical SciencesUtrechtthe Netherlands
| | | | - María José Rodríguez‐Lagunas
- Physiology Section, Department of Biochemistry and PhysiologyFaculty of Pharmacy and Food ScienceUniversity of Barcelona (UB)Barcelona08028Spain
- Nutrition and Food Safety Research Institute (INSA‐UB)Santa Coloma de Gramenet08921Spain
| | - María Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA‐CSIC), National Research CouncilValencia46980Spain
| | - Francisco José Pérez‐Cano
- Physiology Section, Department of Biochemistry and PhysiologyFaculty of Pharmacy and Food ScienceUniversity of Barcelona (UB)Barcelona08028Spain
- Nutrition and Food Safety Research Institute (INSA‐UB)Santa Coloma de Gramenet08921Spain
| |
Collapse
|
6
|
Harvey BJ, McElvaney NG. Sex differences in airway disease: estrogen and airway surface liquid dynamics. Biol Sex Differ 2024; 15:56. [PMID: 39026347 PMCID: PMC11264786 DOI: 10.1186/s13293-024-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Biological sex differences exist for many airway diseases in which females have either worse or better health outcomes. Inflammatory airway diseases such as cystic fibrosis (CF) and asthma display a clear male advantage in post-puberty while a female benefit is observed in asthma during the pre-puberty years. The influence of menstrual cycle stage and pregnancy on the frequency and severity of pulmonary exacerbations in CF and asthma point to a role for sex steroid hormones, particularly estrogen, in underpinning biological sex differences in these diseases. There are many ways by which estrogen may aggravate asthma and CF involving disturbances in airway surface liquid (ASL) dynamics, inappropriate hyper-immune and allergenic responses, as well as exacerbation of pathogen virulence. The deleterious effect of estrogen on pulmonary function in CF and asthma contrasts with the female advantage observed in airway diseases characterised by pulmonary edema such as pneumonia, acute respiratory distress syndrome (ARDS) and COVID-19. Airway surface liquid hypersecretion and alveolar flooding are hallmarks of ARDS and COVID-19, and contribute to the morbidity and mortality of severe forms of these diseases. ASL dynamics encompasses the intrinsic features of the thin lining of fluid covering the airway epithelium which regulate mucociliary clearance (ciliary beat, ASL height, volume, pH, viscosity, mucins, and channel activating proteases) in addition to innate defence mechanisms (pathogen virulence, cytokines, defensins, specialised pro-resolution lipid mediators, and metabolism). Estrogen regulation of ASL dynamics contributing to biological sex differences in CF, asthma and COVID-19 is a major focus of this review.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland.
- Department of Medicine, RCSI ERC, Beaumont Hospital, Dublin 2, Ireland.
| | - Noel G McElvaney
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland
| |
Collapse
|
7
|
Harvey BJ. Molecular mechanisms of dexamethasone actions in COVID-19: Ion channels and airway surface liquid dynamics. Steroids 2024; 202:109348. [PMID: 38049079 DOI: 10.1016/j.steroids.2023.109348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
The COVID-19 pandemic has been a global health crisis of unprecedented magnitude. In the battle against the SARS-CoV-2 coronavirus, dexamethasone, a widely used corticosteroid with potent anti-inflammatory properties, has emerged as a promising therapy in the fight against severe COVID-19. Dexamethasone is a synthetic glucocorticoid that exerts its therapeutic effects by suppressing the immune system and reducing inflammation. In the context of COVID-19, the severe form of the disease is often characterized by a hyperactive immune response, known as a cytokine storm. Dexamethasone anti-inflammatory properties make it a potent tool in modulating this exaggerated immune response. Lung inflammation may lead to excessive fluid accumulation in the airways which can reduce gas exchange and mucociliary clearance. Pulmonary oedema and flooding of the airways are hallmarks of severe COVID-19 lung disease. The volume of airway surface liquid is determined by a delicate balance of salt and water secretion and absorption across the airway epithelium. In addition to its anti-inflammatory actions, dexamethasone modulates the activity of ion channels which regulate electrolyte and water transport across the airway epithelium. The observations of dexamethasone activation of sodium ion absorption via ENaC Na+ channels and inhibition of chloride ion secretion via CFTR Cl- channels to decrease airway surface liquid volume indicate a novel therapeutic action of the glucocorticoid to reverse airway flooding. This brief review delves into the early non-genomic and late genomic signaling mechanisms of dexamethasone regulation of ion channels and airway surface liquid dynamics, shedding light on the molecular mechanisms underpinning the action of the glucocorticoid in managing COVID-19.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; Centro de Estudios Cientificos, Valdivia, Chile.
| |
Collapse
|
8
|
Rohrhofer J, Hauser L, Lettenmaier L, Lutz L, Koidl L, Gentile SA, Ret D, Stingl M, Untersmayr E. Immunological Patient Stratification in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Clin Med 2024; 13:275. [PMID: 38202282 PMCID: PMC10779792 DOI: 10.3390/jcm13010275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease characterized by profound fatigue, post-exertional malaise (PEM), and neurocognitive dysfunction. Immune dysregulation and gastrointestinal symptoms are commonly observed in ME/CFS patients. Despite affecting approximately 0.89% of the general population, the underlying pathophysiological mechanisms remain poorly understood. This study aimed to elucidate the relationship between immunological characteristics and intestinal barrier function in ME/CFS patients. ME/CFS patients were stratified into two groups based on their immune competence. After documentation of detailed medical records, serum and plasma samples were collected for the assessment of inflammatory immune mediators and biomarkers for intestinal barrier integrity by ELISA. We found reduced complement protein C4a levels in immunodeficient ME/CFS patients suggesting a subgroup-specific innate immune dysregulation. ME/CFS patients without immunodeficiencies exhibit a mucosal barrier leakage, as indicated by elevated levels of Lipopolysaccharide-binding protein (LBP). Stratifying ME/CFS patients based on immune competence enabled the distinction of two subgroups with different pathophysiological patterns. The study highlights the importance of emphasizing precise patient stratification in ME/CFS, particularly in the context of defining suitable treatment strategies. Given the substantial health and socioeconomic burden associated with ME/CFS, urgent attention and research efforts are needed to define causative treatment approaches.
Collapse
Affiliation(s)
- Johanna Rohrhofer
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (J.R.); (L.K.); (S.A.G.); (D.R.)
| | - Lisa Hauser
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (J.R.); (L.K.); (S.A.G.); (D.R.)
| | - Lisa Lettenmaier
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (J.R.); (L.K.); (S.A.G.); (D.R.)
| | - Lena Lutz
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (J.R.); (L.K.); (S.A.G.); (D.R.)
| | - Larissa Koidl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (J.R.); (L.K.); (S.A.G.); (D.R.)
| | - Salvatore Alessio Gentile
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (J.R.); (L.K.); (S.A.G.); (D.R.)
| | - Davide Ret
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (J.R.); (L.K.); (S.A.G.); (D.R.)
- Division of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, 1060 Vienna, Austria
| | | | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (J.R.); (L.K.); (S.A.G.); (D.R.)
| |
Collapse
|
9
|
Fang L, Zhou L, Kulić Ž, Lehner MD, Tamm M, Roth M. EPs ® 7630 Stimulates Tissue Repair Mechanisms and Modifies Tight Junction Protein Expression in Human Airway Epithelial Cells. Int J Mol Sci 2023; 24:11230. [PMID: 37446408 DOI: 10.3390/ijms241311230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Airway epithelium repair after infection consists of wound repair, re-synthesis of the extracellular matrix (ECM), and tight junction proteins. In humans, EPs® 7630 obtained from Pelargonium sidoides roots reduces the severity and duration of acute respiratory tract infections. The effect of EPs® 7630 on tissue repair of rhinovirus-16 (RV-16) infected and control human airway epithelial cells was assessed for: (i) epithelial cell proliferation by manual cell counts, (ii) epithelial wound repair by "scratch assay", (iii) ECM composition by Western-blotting and cell-based ELISA, and (iv) epithelial tight junction proteins by Western-blotting. EPs® 7630 stimulated cell proliferation through cAMP, CREB, and p38 MAPK. EPs® 7630 significantly improved wound repair. Pro-inflammatory collagen type-I expression was reduced by EPs® 7630, while fibronectin was increased. Virus-binding tight junction proteins desmoglein2, desmocollin2, ZO-1, claudin1, and claudin4 were downregulated by EPs® 7630. The RV16-induced shift of the ECM towards the pro-inflammatory type was prevented by EPs® 7630. Most of the effects of EPs® 7630 on tissue repair and regeneration were sensitive to inhibition of cAMP-induced signaling. The data suggest that EPs® 7630-dependent modification of epithelial cell metabolism and function might underlie the faster recovery time from viral infections, as reported by others in clinical studies.
Collapse
Affiliation(s)
- Lei Fang
- Pulmonary Cell Research, Department of Biomedicine & Clinic of Pneumology, University and University Hospital Basel, CH-4031 Basel, Switzerland
| | - Liang Zhou
- Pulmonary Cell Research, Department of Biomedicine & Clinic of Pneumology, University and University Hospital Basel, CH-4031 Basel, Switzerland
| | - Žarko Kulić
- Preclinical Research and Development, Dr. Willmar Schwabe GmbH & Co. KG, D-76227 Karlsruhe, Germany
| | - Martin D Lehner
- Preclinical Research and Development, Dr. Willmar Schwabe GmbH & Co. KG, D-76227 Karlsruhe, Germany
| | - Michael Tamm
- Pulmonary Cell Research, Department of Biomedicine & Clinic of Pneumology, University and University Hospital Basel, CH-4031 Basel, Switzerland
| | - Michael Roth
- Pulmonary Cell Research, Department of Biomedicine & Clinic of Pneumology, University and University Hospital Basel, CH-4031 Basel, Switzerland
| |
Collapse
|
10
|
Pantazopoulos I, Chalkias A, Miziou A, Spanos M, Gerovasileiou E, Rouka E, Gourgoulianis K. A Hypertonic Seawater Nasal Irrigation Solution Containing Algal and Herbal Natural Ingredients Reduces Viral Load and SARS-CoV-2 Detection Time in the Nasal Cavity. J Pers Med 2023; 13:1093. [PMID: 37511706 PMCID: PMC10381905 DOI: 10.3390/jpm13071093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Nasal irrigation is thought to decrease the viral load present in the nasal cavity. Our aim was to assess the effect of a hypertonic seawater solution [with algal and herbal natural ingredients (Sinomarin®)] on the viral load of nasopharynx in patients hospitalized with severe COVID-19 pneumonia. We conducted a prospective, randomized, controlled trial from June 2022 to December 2022. We allocated 56 patients with COVID-19 pneumonia into two groups (28 in each group)-the hypertonic seawater group [nasal irrigations with a hypertonic seawater solution (Sinomarin®) every 4 h for 16 h per day, for two consecutive days] and the control group (no nasal irrigations). A second nasopharyngeal swab was collected 48 h after the baseline nasopharyngeal swab (8 h after the last wash in the hypertonic seawater group) to estimate the SARS-CoV-2 viral load as determined by cycle threshold (Ct) values. In the hypertonic seawater group, the mean Ct values significantly increased two days after the initial measurement [ΔCt 48-0 h = 3.86 ± 3.03 cycles, p < 0.001 (95%CI: 2.69 to 5.04)]. No significant differences in the Ct values were observed in the control group [ΔCt 48-0 h = -0.14 ± 4.29, p = 0.866 (95%CI: -1.80 to -1.52)]. At follow-up, 17 patients from the hypertonic seawater group had negative test results compared to only 9 patients from the control group (p = 0.03). Nasal irrigations with a hypertonic seawater solution containing algal and herbal natural ingredients significantly decreased nasopharyngeal viral load and the detection time of SARS-CoV-2 in the nasal cavity.
Collapse
Affiliation(s)
- Ioannis Pantazopoulos
- Department of Emergency Medicine, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Athanasios Chalkias
- Department of Anaesthesiology, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Outcomes Research Consortium, Cleveland, OH 44195, USA
| | - Angeliki Miziou
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Michalis Spanos
- Department of Emergency Medicine, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Efrosyni Gerovasileiou
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Erasmia Rouka
- Faculty of Nursing, University of Thessaly, 45550 Larissa, Greece
| | | |
Collapse
|
11
|
Suter C, Colakovic M, Bieri J, Gultom M, Dijkman R, Ros C. Globoside and the mucosal pH mediate parvovirus B19 entry through the epithelial barrier. PLoS Pathog 2023; 19:e1011402. [PMID: 37220143 DOI: 10.1371/journal.ppat.1011402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
Parvovirus B19 (B19V) is transmitted primarily via the respiratory route, however, the mechanism involved remains unknown. B19V targets a restricted receptor expressed in erythroid progenitor cells in the bone marrow. However, B19V shifts the receptor under acidic conditions and targets the widely expressed globoside. The pH-dependent interaction with globoside may allow virus entry through the naturally acidic nasal mucosa. To test this hypothesis, MDCK II cells and well-differentiated human airway epithelial cell (hAEC) cultures were grown on porous membranes and used as models to study the interaction of B19V with the epithelial barrier. Globoside expression was detected in polarized MDCK II cells and the ciliated cell population of well-differentiated hAEC cultures. Under the acidic conditions of the nasal mucosa, virus attachment and transcytosis occurred without productive infection. Neither virus attachment nor transcytosis was observed under neutral pH conditions or in globoside knockout cells, demonstrating the concerted role of globoside and acidic pH in the transcellular transport of B19V. Globoside-dependent virus uptake involved VP2 and occurred by a clathrin-independent pathway that is cholesterol and dynamin-dependent. This study provides mechanistic insight into the transmission of B19V through the respiratory route and reveals novel vulnerability factors of the epithelial barrier to viruses.
Collapse
Affiliation(s)
- Corinne Suter
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Minela Colakovic
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Jan Bieri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Mitra Gultom
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Carlos Ros
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Tugizov SM. Molecular Pathogenesis of Human Immunodeficiency Virus-Associated Disease of Oropharyngeal Mucosal Epithelium. Biomedicines 2023; 11:1444. [PMID: 37239115 PMCID: PMC10216750 DOI: 10.3390/biomedicines11051444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The oropharyngeal mucosal epithelia have a polarized organization, which is critical for maintaining a highly efficient barrier as well as innate immune functions. In human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) disease, the barrier and innate immune functions of the oral mucosa are impaired via a number of mechanisms. The goal of this review was to discuss the molecular mechanisms of HIV/AIDS-associated changes in the oropharyngeal mucosa and their role in promoting HIV transmission and disease pathogenesis, notably the development of opportunistic infections, including human cytomegalovirus, herpes simplex virus, and Epstein-Barr virus. In addition, the significance of adult and newborn/infant oral mucosa in HIV resistance and transmission was analyzed. HIV/AIDS-associated changes in the oropharyngeal mucosal epithelium and their role in promoting human papillomavirus-positive and negative neoplastic malignancy are also discussed.
Collapse
Affiliation(s)
- Sharof M Tugizov
- Department of Medicine, School of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Kingsley C, Kourtidis A. Critical roles of adherens junctions in diseases of the oral mucosa. Tissue Barriers 2023; 11:2084320. [PMID: 35659464 PMCID: PMC10161952 DOI: 10.1080/21688370.2022.2084320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022] Open
Abstract
The oral cavity is directly exposed to a variety of environmental stimuli and contains a diverse microbiome that continuously interacts with the oral epithelium. Therefore, establishment and maintenance of the barrier function of the oral mucosa is of paramount importance for its function and for the body's overall health. The adherens junction is a cell-cell adhesion complex that is essential for epithelial barrier function. Although a considerable body of work has associated barrier disruption with oral diseases, the molecular underpinnings of these associations have not been equally investigated. This is critical, since adherens junction components also possess significant signaling roles in the cell, in addition to their architectural ones. Here, we summarize current knowledge involving adherens junction components in oral pathologies, such as cancer and oral pathogen-related diseases, while we also discuss gaps in the knowledge and opportunities for future investigation of the relationship between adherens junctions and oral diseases.
Collapse
Affiliation(s)
- Christina Kingsley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
14
|
Sodium butyrate protects against rotavirus-induced intestinal epithelial barrier damage by activating AMPK-Nrf2 signaling pathway in IPEC-J2 cells. Int J Biol Macromol 2023; 228:186-196. [PMID: 36565836 DOI: 10.1016/j.ijbiomac.2022.12.219] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Rotavirus (RV) mainly infects intestinal epithelial cells, which leads to diarrhea in newborn piglets with dysfunction in the intestinal mucosal mechanical barrier. Sodium butyrate (SB) is one of the metabolites excreted by gut microbes. However, the protective effect of SB on RV infection induced intestinal mucosal mechanical barrier injury and its potential mechanism has not been well elucidated. In the present study, IPEC-J2 cells with RV infection was a model of intestinal mucosal mechanical barrier injury. Our results demonstrated that the appropriate concentration of SB can effectively alleviate TJ structural damage and up-regulating the expression of TJ-related genes. Furthermore, the appropriate concentration of SB can effectively reverse the increase of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) level induced by RV infection. Meanwhile, the levels of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-px) and antioxidant proteins NAD(P)H dehydrogenase quinone 1 (NQO1) and heme oxygenase-1 (HO-1) were increased through SB treatment. In addition, we found that SB increased cellular antioxidant capacity by activating the adenosine monophosphate-activated protein kinase (AMPK)-nuclear factor erythroid 2-related factor (Nrf2) signaling pathway and the cytoprotective effect of SB is limited by GPR109A siRNA. Thus, our findings revealed that SB reduces oxidative stress caused by RV infection and restores the intestinal mucosal mechanical barrier function by activating the AMPK-Nrf2 signal pathway mediated by the receptor GPR109A.
Collapse
|
15
|
Gao N, Rezaee F. Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics 2022; 14:2619. [PMID: 36559113 PMCID: PMC9786141 DOI: 10.3390/pharmaceutics14122619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Intercellular contacts between epithelial cells are established and maintained by the apical junctional complexes (AJCs). AJCs conserve cell polarity and build epithelial barriers to pathogens, inhaled allergens, and environmental particles in the respiratory tract. AJCs consist of tight junctions (TJs) and adherens junctions (AJs), which play a key role in maintaining the integrity of the airway barrier. Emerging evidence has shown that different microorganisms cause airway barrier dysfunction by targeting TJ and AJ proteins. This review discusses the pathophysiologic mechanisms by which several microorganisms (bacteria and viruses) lead to the disruption of AJCs in airway epithelial cells. We present recent progress in understanding signaling pathways involved in the formation and regulation of cell junctions. We also summarize the potential chemical inhibitors and pharmacological approaches to restore the integrity of the airway epithelial barrier. Understanding the AJCs-pathogen interactions and mechanisms by which microorganisms target the AJC and impair barrier function may further help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Cleveland, OH 44195, USA
| |
Collapse
|
16
|
Mizenko RR, Brostoff T, Jackson K, Pesavento PA, Carney RP. Extracellular Vesicles (EVs) Are Copurified with Feline Calicivirus, yet EV-Enriched Fractions Remain Infectious. Microbiol Spectr 2022; 10:e0121122. [PMID: 35876590 PMCID: PMC9430557 DOI: 10.1128/spectrum.01211-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Feline calicivirus (FCV) is a major cause of upper respiratory disease in cats and is often used as a model for human norovirus, making it of great veterinary and human medical importance. However, questions remain regarding the route of entry of FCV in vivo. Increasing work has shown that extracellular vesicles (EVs) can be active in viral infectivity, yet there is no work examining the role of EVs in FCV infection. Here, we begin to address this knowledge gap by characterizing EVs produced by a feline mammary epithelial cell line (FMEC). We have confirmed that EVs are produced by infected and mock-infected FMECs and that both virions and EVs are coisolated with standard methods of virus purification. We also show that they can be enriched differentially by continuous iodixanol density gradient. EVs were enriched at a density of 1.10 g/mL confirmed by tetraspanin expression, size profile, and transmission electron microscopy (TEM). Maximum enrichment of FCV at a density of 1.18 g/mL was confirmed by titration, quantitative reverse transcriptase PCR (q-RT PCR), and TEM. However, infectious virus was recovered from nearly all samples. When used to infect in vitro epithelium, both EV-rich and virus-rich fractions had the same levels of infectiousness as determined by percentage of wells infected or titer achieved postinfection. These findings highlight the importance of coisolates during viral purification, showing that EVs may represent a parallel route of entry that has previously been overlooked. Additional experiments are necessary to explore the role of EVs in FCV infection. IMPORTANCE Feline calicivirus (FCV) is a common cause of upper respiratory infection in cats. Both healthy and infected cells produce small particles called extracellular vesicles (EVs), which are nanoparticles that act as messengers between cells and can be hijacked during viral infection. Historically, the role of EVs in viral infection has been overlooked, and subsequently no group has studied the role of EVs in FCV infection. We hypothesized that EVs may play a role in FCV infection. Here, we show that EVs are copurified with FCV when collecting virus. To study their individual effects, we successfully enrich for viral particles and EVs separately by taking advantage of their different densities. Our initial studies show that EV-enriched versus virus-enriched fractions are equally able to infect cells in culture. These findings highlight the need to both consider the purity of virus after purification and to further study EVs' role in natural FCV infection.
Collapse
Affiliation(s)
- Rachel R. Mizenko
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Terza Brostoff
- Department of Pathology, University of California, San Diego, California, USA
| | - Kenneth Jackson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Patricia A. Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Randy P. Carney
- Department of Biomedical Engineering, University of California, Davis, California, USA
| |
Collapse
|
17
|
Tassi AD, Ramos-González PL, Sinico TE, Kitajima EW, Freitas-Astúa J. Circulative Transmission of Cileviruses in Brevipalpus Mites May Involve the Paracellular Movement of Virions. Front Microbiol 2022; 13:836743. [PMID: 35464977 PMCID: PMC9019602 DOI: 10.3389/fmicb.2022.836743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Plant viruses transmitted by mites of the genus Brevipalpus are members of the genera Cilevirus, family Kitaviridae, or Dichorhavirus, family Rhabdoviridae. They produce non-systemic infections that typically display necrotic and/or chlorotic lesions around the inoculation loci. The cilevirus citrus leprosis virus C (CiLV-C) causes citrus leprosis, rated as one of the most destructive diseases affecting this crop in the Americas. CiLV-C is vectored in a persistent manner by the flat mite Brevipalpus yothersi. Upon the ingestion of viral particles with the content of the infected plant cell, virions must pass through the midgut epithelium and the anterior podocephalic gland of the mites. Following the duct from this gland, virions reach the salivary canal before their inoculation into a new plant cell through the stylet canal. It is still unclear whether CiLV-C multiplies in mite cells and what mechanisms contribute to its movement through mite tissues. In this study, based on direct observation of histological sections from viruliferous mites using the transmission electron microscope, we posit the hypothesis of the paracellular movement of CiLV-C in mites which may involve the manipulation of septate junctions. We detail the presence of viral particles aligned in the intercellular spaces between cells and the gastrovascular system of Brevipalpus mites. Accordingly, we propose putative genes that could control either active or passive paracellular circulation of viral particles inside the mites.
Collapse
Affiliation(s)
- Aline Daniele Tassi
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | | | - Thais Elise Sinico
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Centro de Citricultura Sylvio Moreira, Cordeirópolis, Brazil
| | - Elliot Watanabe Kitajima
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | - Juliana Freitas-Astúa
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Embrapa Mandioca e Fruticultura, Cruz das Almas, Brazil
| |
Collapse
|
18
|
Wang Y, Xu Y, Xu S, Yang J, Wang K, Zhan X. Bacillus subtilis DSM29784 Alleviates Negative Effects on Growth Performance in Broilers by Improving the Intestinal Health Under Necrotic Enteritis Challenge. Front Microbiol 2021; 12:723187. [PMID: 34603247 PMCID: PMC8481782 DOI: 10.3389/fmicb.2021.723187] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
Along with banning antibiotics, necrotic enteritis (NE), especially subclinical enteritis (SNE), poses a significant threat to the chicken industry; however, probiotics are a potentially promising intervention. We aimed to investigate the beneficial effects of Bacillus subtilis DSM29784 (BS) on the treatment of Clostridium perfringens (CP)-induced SNE in broilers. A total of 360 1-day-old broiler chicks were divided into three treatment groups, namely control (Ctr), SNE, and BS treatment (BST) groups, all of which were fed with a basal died for 21days, and then from day 22 onward, only the BST group had a BS supplemented diet (1×109 colony-forming units BS/kg). On day 15, all chicks, except the Ctr group, were challenged with a 20-fold dose coccidiosis vaccine and 1ml CP (2×108) on days 18–21 for SNE induction. Beneficial effects were observed on growth performance in BST compared to SNE broilers. BST treatment alleviated intestinal lesions and increased the villus height/crypt depth ratio. Further, BST broilers showed increased maltase activity in the duodenum compared with SNE chicks, and a significantly decreased caspase-3 protein expression in the jejunum mucosa. Moreover, an increased abundance of Ruminococcaceae and Bifidobacterium beneficial gut bacteria and an altered gut metabolome were observed. Taken together, we demonstrate that the manipulation of microbial gut composition using probiotics may be a promising prevention strategy for SNE by improving the composition and metabolism of the intestinal microbiota, intestinal structure, and reducing inflammation and apoptosis. Hence, BS potentially has active ingredients that may be used as antibiotic substitutes and effectively reduces the economic losses caused by SNE. The findings of this study provide a scientific foundation for BS application in broiler feed in the future.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yibin Xu
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shengliang Xu
- Haiyan Animal Husbandry and Veterinary Bureau, Haiyan, China
| | - Jinyong Yang
- Zhejiang Animal Husbandry Technology Extension and Livestock and Poultry Monitoring Station, Hangzhou, China
| | - Kaiying Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiuan Zhan
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|