1
|
Siew ZY, Ong GK, Wong ST, Leong PP, Tan BS, Leong CO, Chupri JB, Fang CM, Voon K. Safety profile of sikamat virus and its oncolytic potential in leukemic cells and cancer stem cells. Sci Rep 2025; 15:13817. [PMID: 40258869 PMCID: PMC12012088 DOI: 10.1038/s41598-025-96061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
Leukaemia remains a global health concern. The oncotherapy resistance of leukaemia might be due to the existence of cancer stem cell populations. This study investigated the therapeutic potential of Sikamat virus (PRV7S), a Pteropine orthoreovirus, as an oncolytic virus against acute myeloid leukaemia (AML) and chronic myeloid leukaemia (CML). Using AML and CML cell lines (THP-1 and K562), as well as an AML-M5-derived cancer stem cell (CSC) model, PRV7S was shown to infect these leukaemic cells, replicate within them, and reduce their viability. PRV7S-induced cell death was associated with caspase-mediated apoptosis without significant cell cycle arrest. Transcriptomic and proteomic analyses revealed that PRV7S infection altered several cell death pathways, including apoptosis and necroptosis, highlighting its complex cell death mechanisms. PRV7S replicated efficiently in infected cells, though it did not cause persistent infection. An in vivo safety evaluation in immunocompetent mice demonstrated that PRV7S was well-tolerated, showing no adverse effects on survival, body weight, or histopathology, and no evidence of viral persistence. These findings suggest PRV7S as a promising oncolytic candidate for myeloid leukaemia, with potential efficacy against CSCs and a favourable safety profile. In conclusion, the study provides new insights into the cellular pathways involved in PRV7S-mediated oncolysis and supports further exploration of PRV7S's potential against resistant leukaemic and solid tumours.
Collapse
MESH Headings
- Animals
- Neoplastic Stem Cells/virology
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/metabolism
- Humans
- Oncolytic Virotherapy/methods
- Oncolytic Viruses/physiology
- Mice
- Cell Line, Tumor
- Apoptosis
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Cell Survival
Collapse
Affiliation(s)
- Zhen Yun Siew
- School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| | - Ghee Khang Ong
- School of Medicine, IMU University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Siew Tung Wong
- School of Medicine, IMU University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Pooi Pooi Leong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Boon Shing Tan
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Juita Binti Chupri
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Chee-Mun Fang
- School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Kenny Voon
- School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
- School of Medicine, IMU University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Siew ZY, Loh A, Segeran S, Leong PP, Voon K. Oncolytic Reoviruses: Can These Emerging Zoonotic Reoviruses Be Tamed and Utilized? DNA Cell Biol 2023. [PMID: 37015068 DOI: 10.1089/dna.2022.0561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Orthoreovirus is a nonenveloped double-stranded RNA virus under the Reoviridae family. This group of viruses, especially mammalian orthoreovirus (MRV), are reported with great therapeutic values due to their oncolytic effects. In this review, the life cycle and oncolytic effect of MRV and a few emerging reoviruses were summarized. This article also highlights the challenges and strategies of utilizing MRV and the emerging reoviruses, avian orthoreovirus (ARV) and pteropine orthoreovirus (PRV), as oncolytic viruses (OVs). Besides, the emergence of potential ARV and PRV as OVs were discussed in comparison to MRV. Finally, the risk of reovirus as zoonosis or reverse zoonosis (zooanthroponosis) were debated, and concerns were raised in this article, which warrant continue surveillance of reovirus (MRV, ARV, and PRV) in animals, humans, and the environment.
Collapse
Affiliation(s)
- Zhen Yun Siew
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Alson Loh
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Sharrada Segeran
- School of Medicine, Australian National University, Canberra, Australia
| | - Pooi Pooi Leong
- Faculty of Medicine and Health Sciences, Universiti of Tunku Abdul Rahman, Kajang, Malaysia
| | - Kenny Voon
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
3
|
Tee KK, Chan PQ, Loh AMK, Singh S, Teo CH, Iyadorai T, Chook JB, Ng KT, Takebe Y, Chan KG, Sam IC, Voon K. Surveillance, isolation and genomic characterization of Pteropine orthoreovirus of probable bat origin among patients with acute respiratory infection in Malaysia. J Med Virol 2023; 95:e28520. [PMID: 36691929 DOI: 10.1002/jmv.28520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
Pteropine orthoreovirus (PRV), an emerging bat-borne virus, has been linked to cases of acute respiratory infections (ARI) in humans. The prevalence, epidemiology and genomic diversity of PRV among ARI of unknown origin were studied. Among 632 urban outpatients tested negative for all known respiratory viruses, 2.2% were PRV-positive. Patients mainly presented with moderate to severe forms of cough, sore throat and muscle ache, but rarely with fever. Phylogenetic analysis revealed that over 90% of patients infected with the Melaka virus (MelV)-like PRV, while one patient infected with the Pulau virus previously found only in fruit bats. Human oral keratinocytes and nasopharyngeal epithelial cells were susceptible to clinical isolates of PRV, including the newly isolated MelV-like 12MYKLU1034. Whole genome sequence of 12MYKLU1034 using Nanopore technique revealed a novel reassortant strain. Evolutionary analysis of the global PRV strains suggests the continuous evolution of PRV through genetic reassortment among PRV strains circulating in human, bats and non-human primate hosts, creating a spectrum of reassortant lineages with complex evolutionary characteristics. In summary, the role of PRV as a common etiologic agent of ARI is evident. Continuous monitoring of PRV prevalence, pathogenicity and diversity among human and animal hosts is important to trace the emergence of novel reassortants.
Collapse
Affiliation(s)
- Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Special Resource Centre, Institute for Medical Research, Ministry of Health, Shah Alam, Malaysia
| | - Po Qhuan Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Alson Mun-Khin Loh
- School of Medicine, Pathology Division, International Medical University, Kuala Lumpur, Malaysia
| | - Sarbhan Singh
- Special Resource Centre, Institute for Medical Research, Ministry of Health, Shah Alam, Malaysia
| | - Chee How Teo
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Thevambiga Iyadorai
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jack Bee Chook
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Kim Tien Ng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yutaka Takebe
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,International Genome Centre, Jiangsu University, Zhenjiang, China
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kenny Voon
- School of Medicine, Pathology Division, International Medical University, Kuala Lumpur, Malaysia.,School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
4
|
Gamage AM, Chan WOY, Zhu F, Lim YT, Long S, Ahn M, Tan CW, Hiang Foo RJ, Sia WR, Lim XF, He H, Zhai W, Anderson DE, Sobota RM, Dutertre CA, Wang LF. Single-cell transcriptome analysis of the in vivo response to viral infection in the cave nectar bat Eonycteris spelaea. Immunity 2022; 55:2187-2205.e5. [PMID: 36351376 DOI: 10.1016/j.immuni.2022.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/19/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Bats are reservoir hosts of many zoonotic viruses with pandemic potential. We utilized single-cell transcriptome sequencing (scRNA-seq) to analyze the immune response in bat lungs upon in vivo infection with a double-stranded RNA virus, Pteropine orthoreovirus PRV3M. Bat neutrophils were distinguished by high basal IDO1 expression. NK cells and T cells were the most abundant immune cells in lung tissue. Three distinct CD8+ effector T cell populations could be delineated by differential expression of KLRB1, GFRA2, and DPP4. Select NK and T clusters increased expression of genes involved in T cell activation and effector function early after viral infection. Alveolar macrophages and classical monocytes drove antiviral interferon signaling. Infection expanded a CSF1R+ population expressing collagen-like genes, which became the predominant myeloid cell type post-infection. This work uncovers features relevant to viral disease tolerance in bats, lays a foundation for future experimental work, and serves as a resource for comparative immunology studies.
Collapse
Affiliation(s)
- Akshamal M Gamage
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wharton O Y Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Sandy Long
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Matae Ahn
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Randy Jee Hiang Foo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Xiao Fang Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Haopeng He
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, P.R. China; Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, 138672, Singapore, Singapore
| | - Danielle E Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Victoria, Australia
| | - Radoslaw Mikolaj Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Charles-Antoine Dutertre
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Singhealth Duke-NUS Global Health Institute, Singapore, Singapore.
| |
Collapse
|
5
|
Tarigan R, Katta T, Takemae H, Shimoda H, Maeda K, Iida A, Hondo E. Distinct interferon response in bat and other mammalian cell lines infected with Pteropine orthoreovirus. Virus Genes 2021; 57:510-520. [PMID: 34432209 PMCID: PMC8386163 DOI: 10.1007/s11262-021-01865-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/09/2021] [Indexed: 12/24/2022]
Abstract
Bats serve as natural hosts of Pteropine orthoreovirus (PRV), an emerging group of bat-borne, zoonotic viruses. Bats appear to possess unique innate immune system responses that can inhibit viral replication, thus reducing clinical symptoms. We examined the innate immune response against PRV and assessed viral replication in cell lines derived from four bat species (Miniopterus fuliginosus, Pteropus dasymallus, Rhinolophus ferrumequinum, and Rousettus leschenaultii), one rodent (Mesocricetous auratus), and human (Homo sapiens). The expression levels of pattern recognition receptors (PRRs) (TLR3, RIG-I, and MDA5) and interferons (IFNB1 and IFNL1) were higher and PRV replication was lower in cell lines derived from M. fuliginosus, R. ferrumequinum, and R. leschenaultii. Reduction of IFNB1 expression by the knockdown of PRRs in the cell line derived from R. ferrumequinum was associated with increased PRV replication. The knockdown of RIG-I led to the most significant reduction in viral replication for all cell lines. These results suggest that RIG-I production is important for antiviral response against PRV in R. ferrumequinum.
Collapse
Affiliation(s)
- Ronald Tarigan
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Tetsufumi Katta
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hitoshi Takemae
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ken Maeda
- Division of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsuo Iida
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
6
|
Leong WJ, Quek XF, Tan HY, Wong KM, Muhammad HS, Mohamed NA, Wong ST, Abdullah ML, Leong PP, Wang L, Voon K. Seroprevalence of Pteropine orthoreovirus in humans remain similar after nearly two decades (2001-2002 vs. 2017) in Tioman Island, Malaysia. J Med Virol 2021; 94:771-775. [PMID: 34708881 DOI: 10.1002/jmv.27422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/18/2021] [Accepted: 10/25/2021] [Indexed: 11/06/2022]
Abstract
Pteropine orthoreovirus (PRV) is an emerging zoonotic respiratory virus that can be transmitted from bats to humans. In Malaysia, aside from PRV2P (Pulau virus) being isolated from Pteropus hypomelanus sampled in Tioman Island, PRV3M (Melaka virus), PRV4K (Kampar virus), and PRV7S (Sikamat virus) were all isolated from samples of patients who reported having a disease spectrum from acute respiratory distress to influenza-like illness and sometimes even with enteric symptoms such as diarrhea and abdominal pain. Screening of sera collected from human volunteers on Tioman Island in 2001-2002 demonstrated that 12.8% (14/109) were positive for PRV2P and PRV3M. Taking all these together, we aim to investigate the serological prevalence of PRV (including PRV4K and PRV7S) among Tioman Island inhabitants again with the assumption that the seroprevalence rate will remain nearly similar to the above reported if human exposure to bats is still happening in the island. Using sera collected from human volunteers on the same island in 2017, we demonstrated seroprevalence of 17.8% (28/157) against PRV2P and PRV3M, respectively. Seropositivity of 11.4% among Tioman Island inhabitants against PRV4K and PRV7S, respectively, was described in this study. In addition, the seroprevalence of 89.5% (17/19), 73.6% (14/19), 63.0% (12/19), and 73.6% (14/19) against PRV2P, PRV3M, PRV4K, and PRV7S, respectively, were observed among pteropid bats in the island. We revealed that the seroprevalence of PRV among island inhabitants remains nearly similar after nearly two decades, suggesting that potential spill-over events in bat-human interface areas in the Tioman Island. We are unclear whether such spillover was directly from bats to humans, as suspected for the PRV3M human cases, or from an intermediate host(s) yet to be identified. There is a high possibility of the viruses circulating among the bats as demonstrated by high seroprevalence against PRV in the bats.
Collapse
Affiliation(s)
- Wai J Leong
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Xin F Quek
- School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Hui Y Tan
- School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Kim M Wong
- School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Hariz S Muhammad
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan, Malaysia
| | - Nurul A Mohamed
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan, Malaysia
| | - Siew T Wong
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Mohd L Abdullah
- Department of Wildlife and National Parks, National Wildlife Forensic Laboratory, Kuala Lumpur, Malaysia
| | - Pooi P Leong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Linfa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Kenny Voon
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Bennett AJ, Goldberg TL. Pteropine Orthoreovirus in an Angolan Soft-Furred Fruit Bat ( Lissonycteris angolensis) in Uganda Dramatically Expands the Global Distribution of an Emerging Bat-Borne Respiratory Virus. Viruses 2020; 12:E740. [PMID: 32659960 PMCID: PMC7412351 DOI: 10.3390/v12070740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023] Open
Abstract
Pteropine orthoreovirus (PRV; Reoviridae: Spinareovirinae) is an emerging bat-borne zoonotic virus that causes influenza-like illness (ILI). PRV has thus far been found only in Australia and Asia, where diverse old-world fruit bats (Pteropodidae) serve as hosts. In this study, we report the discovery of PRV in Africa, in an Angolan soft-furred fruit bat (Lissonycteris angolensis ruwenzorii) from Bundibugyo District, Uganda. Metagenomic characterization of a rectal swab yielded 10 dsRNA genome segments, revealing this virus to cluster within the known diversity of PRV variants detected in bats and humans in Southeast Asia. Phylogeographic analyses revealed a correlation between geographic distance and genetic divergence of PRVs globally, which suggests a geographic continuum of PRV diversity spanning Southeast Asia to sub-Saharan Africa. The discovery of PRV in an African bat dramatically expands the geographic range of this zoonotic virus and warrants further surveillance for PRVs outside of Southeast Asia.
Collapse
Affiliation(s)
- Andrew J. Bennett
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Global Health Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Lyu C, Li WD, Wang SW, Peng JM, Yang YB, Tian ZJ, Cai XH. Host BAG3 Is Degraded by Pseudorabies Virus pUL56 C-Terminal 181L- 185L and Plays a Negative Regulation Role during Viral Lytic Infection. Int J Mol Sci 2020; 21:ijms21093148. [PMID: 32365661 PMCID: PMC7247713 DOI: 10.3390/ijms21093148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 11/16/2022] Open
Abstract
Bcl2-associated athanogene (BAG) 3, which is a chaperone-mediated selective autophagy protein, plays a pivotal role in modulating the life cycle of a wide variety of viruses. Both positive and negative modulations of viruses by BAG3 were reported. However, the effects of BAG3 on pseudorabies virus (PRV) remain unknown. To investigate whether BAG3 could modulate the PRV life cycle during a lytic infection, we first identified PRV protein UL56 (pUL56) as a novel BAG3 interactor by co-immunoprecipitation and co-localization analyses. The overexpression of pUL56 induced a significant degradation of BAG3 at protein level via the lysosome pathway. The C-terminal mutations of 181L/A, 185L/A, or 181L/A-185L/A in pUL56 resulted in a deficiency in pUL56-induced BAG3 degradation. In addition, the pUL56 C-terminal mutants that lost Golgi retention abrogated pUL56-induced BAG3 degradation, which indicates a Golgi retention-dependent manner. Strikingly, BAG3 was not observed to be degraded in either wild-type or UL56-deleted PRV infected cells as compared to mock infected ones, whereas the additional two adjacent BAG3 cleaved products were found in the infected cells in a species-specific manner. Overexpression of BAG3 significantly suppressed PRV proliferation, while knockdown of BAG3 resulted in increased viral yields in HEK293T cells. Thus, these data indicated a negative regulation role of BAG3 during PRV lytic infection. Collectively, our findings revealed a novel molecular mechanism on host protein degradation induced by PRV pUL56. Moreover, we identified BAG3 as a host restricted protein during PRV lytic infection in cells.
Collapse
|