1
|
Zebrowski K, June K, Thomas D, Djuric Z, Ballinger T, Kleer CG. Expression of EZH2 and Fatty Acid Synthase in Breast Tissues From Healthy Women With Breast Cancer Risk Factors. Appl Immunohistochem Mol Morphol 2025:00129039-990000000-00220. [PMID: 40181650 DOI: 10.1097/pai.0000000000001250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/31/2024] [Indexed: 04/05/2025]
Abstract
Tissue-based biomarkers that identify women with increased breast cancer risk are needed for cancer prevention. Enhancer of zeste 2 (EZH2) and fatty acid synthase (FASN) are associated with breast cancer aggressiveness, but their expression in normal breast tissues and association with breast cancer risk factors are unclear. Further, there is a need to characterize healthy breast tissue cohorts for unbiased biomarker evaluation. In this study, we employed the Susan G. Komen healthy volunteer tissue bank to evaluate EZH2 and FASN expression and their relationship to breast cancer risk factors. Normal breast core biopsies from 40 healthy donors with low or high Gail scores (<11 or >20, respectively) and normal or obese body mass index (BMI, <25 kg/m 2 or >30 kg/m 2 , respectively) were stained for H&E, EZH2, and FASN and scored independently and blindly using the Allred method. We analyzed the associations between EZH2 and FASN with Gail score, BMI, menopausal status, hormone replacement therapy (HRT), and family history of breast cancer. None of the donors had BRCA1/2 mutations or developed breast cancer after 5 to 9 years. We found that premenopausal women had significantly higher expression of FASN and that EZH2 was higher with increasing Gail risk scores, compared with postmenopausal women. In postmenopausal women, increased EZH2 expression was associated with >5 years of HRT compared with <1 year or no HRT. No associations were found with BMI. This study provides validation of a healthy breast tissue cohort and initial characterization of EZH2 and FASN and their associations with breast cancer risk factors.
Collapse
Affiliation(s)
| | - Kaleb June
- Departments of Family Medicine and Nutritional Sciences, University of Michigan
| | - Dafydd Thomas
- Department of Pathology, University of Michigan Medical School
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Zora Djuric
- Departments of Family Medicine and Nutritional Sciences, University of Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Tarah Ballinger
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Celina G Kleer
- Department of Pathology, University of Michigan Medical School
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
2
|
Kelson CO, Tessmann JW, Geisen ME, He D, Wang C, Gao T, Evers BM, Zaytseva YY. Upregulation of Fatty Acid Synthase Increases Activity of β-Catenin and Expression of NOTUM to Enhance Stem-like Properties of Colorectal Cancer Cells. Cells 2024; 13:1663. [PMID: 39404424 PMCID: PMC11475157 DOI: 10.3390/cells13191663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Dysregulated fatty acid metabolism is an attractive therapeutic target for colorectal cancer (CRC). We previously reported that fatty acid synthase (FASN), a key enzyme of de novo synthesis, promotes the initiation and progression of CRC. However, the mechanisms of how upregulation of FASN promotes the initiation and progression of CRC are not completely understood. Here, using Apc/VillinCre and ApcMin mouse models, we show that upregulation of FASN is associated with an increase in activity of β-catenin and expression of multiple stem cell markers, including Notum. Genetic and pharmacological downregulation of FASN in mouse adenoma organoids decreases the activation of β-catenin and expression of Notum and significantly inhibits organoid formation and growth. Consistently, we demonstrate that NOTUM is highly expressed in human CRC and its expression positively correlates with the expression of FASN in tumor tissues. Utilizing overexpression and shRNA-mediated knockdown of FASN, we demonstrate that upregulation of FASN increases β-catenin transcriptional activity, NOTUM expression and secretion, and enhances stem-like properties of human CRC cells. Pharmacological inhibition of NOTUM decreases adenoma organoids growth and proliferation of cancer cells. In summary, upregulation of FASN enhances β-catenin signaling, increases NOTUM expression and stem-like properties of CRC cells, thus suggesting that targeting FASN upstream of the β-catenin/NOTUM axis may be an effective preventative therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Courtney O. Kelson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (C.O.K.); (J.W.T.); (M.E.G.)
| | - Josiane Weber Tessmann
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (C.O.K.); (J.W.T.); (M.E.G.)
| | - Mariah E. Geisen
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (C.O.K.); (J.W.T.); (M.E.G.)
| | - Daheng He
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (D.H.); (C.W.)
| | - Chi Wang
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (D.H.); (C.W.)
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (T.G.); (B.M.E.)
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (T.G.); (B.M.E.)
| | - Yekaterina Y. Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (C.O.K.); (J.W.T.); (M.E.G.)
| |
Collapse
|
3
|
Hwang JY, Jeong HH, Baek J, Lee J, Ryu H, Kim JI, Lee B. The Inhibitory Effects of Maclurin on Fatty Acid Synthase and Adipocyte Differentiation. Int J Mol Sci 2024; 25:8579. [PMID: 39201266 PMCID: PMC11354920 DOI: 10.3390/ijms25168579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Obesity is a complex health condition characterized by excessive adipose tissue accumulation, leading to significant metabolic disturbances such as insulin resistance and cardiovascular diseases. Fatty acid synthase (FAS), a key enzyme in lipogenesis, has been identified as a potential therapeutic target for obesity due to its role in adipocyte differentiation and lipid accumulation. This study employed a multidisciplinary approach involving in silico and in vitro analyses to investigate the anti-adipogenic properties of maclurin, a natural phenolic compound derived from Morus alba. Using SwissDock software (ChEMBL version 23), we predicted protein interactions and demonstrated a high probability (95.6%) of maclurin targeting FAS, surpassing the interaction rates of established inhibitors like cerulenin. Docking simulations revealed maclurin's superior binding affinity to FAS, with a binding score of -7.3 kcal/mol compared to -6.7 kcal/mol for cerulenin. Subsequent in vitro assays confirmed these findings, with maclurin effectively inhibiting FAS activity in a concentration-dependent manner in 3T3-L1 adipocytes, without compromising cell viability. Furthermore, maclurin treatment resulted in significant reductions in lipid accumulation and the downregulated expression of critical adipogenic genes such as PPARγ, C/EBPα, and FAS, indicating the suppression of adipocyte differentiation. Maclurin shows potential as a novel FAS inhibitor with significant anti-adipogenic effects, offering a promising therapeutic avenue for the treatment and prevention of obesity.
Collapse
Affiliation(s)
- Ji Young Hwang
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (J.Y.H.); (H.H.J.)
| | - Hyeon Hak Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (J.Y.H.); (H.H.J.)
| | - Jiwon Baek
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.B.); (J.L.); (H.R.); (J.-I.K.)
| | - Jiyun Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.B.); (J.L.); (H.R.); (J.-I.K.)
| | - Heeyeon Ryu
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.B.); (J.L.); (H.R.); (J.-I.K.)
| | - Jae-Il Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.B.); (J.L.); (H.R.); (J.-I.K.)
| | - Bonggi Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (J.Y.H.); (H.H.J.)
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.B.); (J.L.); (H.R.); (J.-I.K.)
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
4
|
Ma L, Zhang X, Liu Y, Jin H, Li D, Zhang H, Feng L, Zuo J, Wang Y, Liu J, Han J. The ratio of PKM1/PKM2 is the key factor affecting the glucose metabolism and biological function of colorectal cancer cells. Transl Cancer Res 2024; 13:3522-3535. [PMID: 39145079 PMCID: PMC11319957 DOI: 10.21037/tcr-24-154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/30/2024] [Indexed: 08/16/2024]
Abstract
Background Despite evidence suggesting a significant role of pyruvate kinase muscle isozyme (PKM) in cancer development, its particular function in colorectal cancer (CRC) remains unclear. This study aimed to elucidate the specific role and mechanism of PKM and its isoforms, PKM1 and PKM2, in the progression of CRC. Methods We analyzed PKM, PKM1, and PKM2 expression in CRC tissues and their correlation with clinicopathological features. Plasmids were constructed to modulate these isoforms' expression in CRC cells. Cellular behavior changes, including glucose metabolism alterations, were assessed using the Seahorse Energy Meter, and the Cell Counting Kit-8 (CCK8) assay to determine the inhibitory concentration of 5-fluorouracil (5-FU) on different CRC cell groups. Results Our results showed significant PKM overexpression in CRC tissues, which was correlated with negative prognostic factors such as advanced T stages and lymph node metastasis. A lower PKM1/PKM2 ratio was associated with these adverse outcomes. Functionally, PKM1 overexpression decreased cell migration and invasion, increasing 5-FU sensitivity. Conversely, PKM2 overexpression promoted malignant traits and reduced 5-FU sensitivity. Intriguingly, the introduction of glycolysis inhibitors attenuated the impact of PKM on the biological functions of CRC cells, suggesting a glycolysis-dependent mechanism. Conclusions This study establishes the PKM1/PKM2 ratio as crucial in CRC progression and 5-FU response. PKM1 overexpression reduces CRC malignancy and increases 5-FU sensitivity, while PKM2 does the opposite. Notably, glycolysis inhibitors lessen PKM's impact on CRC cells, highlighting a glycolysis-dependent mechanism. These insights suggest targeting PKM isoforms and glycolysis pathways as a promising CRC therapeutic strategy, potentially enhancing treatment efficacy.
Collapse
Affiliation(s)
- Liang Ma
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue Zhang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Liu
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Jin
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan Li
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Zhang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Feng
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Zuo
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yudong Wang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiayin Liu
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Han
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Gupta A, Das D, Taneja R. Targeting Dysregulated Lipid Metabolism in Cancer with Pharmacological Inhibitors. Cancers (Basel) 2024; 16:1313. [PMID: 38610991 PMCID: PMC11010992 DOI: 10.3390/cancers16071313] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic plasticity is recognised as a hallmark of cancer cells, enabling adaptation to microenvironmental changes throughout tumour progression. A dysregulated lipid metabolism plays a pivotal role in promoting oncogenesis. Oncogenic signalling pathways, such as PI3K/AKT/mTOR, JAK/STAT, Hippo, and NF-kB, intersect with the lipid metabolism to drive tumour progression. Furthermore, altered lipid signalling in the tumour microenvironment contributes to immune dysfunction, exacerbating oncogenesis. This review examines the role of lipid metabolism in tumour initiation, invasion, metastasis, and cancer stem cell maintenance. We highlight cybernetic networks in lipid metabolism to uncover avenues for cancer diagnostics, prognostics, and therapeutics.
Collapse
Affiliation(s)
| | | | - Reshma Taneja
- Department of Physiology, Healthy Longevity and NUS Centre for Cancer Research Translation Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 2 Medical Drive, MD9, Singapore 117593, Singapore
| |
Collapse
|
6
|
Menendez JA, Cuyàs E, Encinar JA, Vander Steen T, Verdura S, Llop‐Hernández À, López J, Serrano‐Hervás E, Osuna S, Martin‐Castillo B, Lupu R. Fatty acid synthase (FASN) signalome: A molecular guide for precision oncology. Mol Oncol 2024; 18:479-516. [PMID: 38158755 PMCID: PMC10920094 DOI: 10.1002/1878-0261.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The initial excitement generated more than two decades ago by the discovery of drugs targeting fatty acid synthase (FASN)-catalyzed de novo lipogenesis for cancer therapy was short-lived. However, the advent of the first clinical-grade FASN inhibitor (TVB-2640; denifanstat), which is currently being studied in various phase II trials, and the exciting advances in understanding the FASN signalome are fueling a renewed interest in FASN-targeted strategies for the treatment and prevention of cancer. Here, we provide a detailed overview of how FASN can drive phenotypic plasticity and cell fate decisions, mitochondrial regulation of cell death, immune escape and organ-specific metastatic potential. We then present a variety of FASN-targeted therapeutic approaches that address the major challenges facing FASN therapy. These include limitations of current FASN inhibitors and the lack of precision tools to maximize the therapeutic potential of FASN inhibitors in the clinic. Rethinking the role of FASN as a signal transducer in cancer pathogenesis may provide molecularly driven strategies to optimize FASN as a long-awaited target for cancer therapeutics.
Collapse
Affiliation(s)
- Javier A. Menendez
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Jose Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC)Miguel Hernández University (UMH)ElcheSpain
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| | - Sara Verdura
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Àngela Llop‐Hernández
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Júlia López
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Eila Serrano‐Hervás
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
- ICREABarcelonaSpain
| | - Begoña Martin‐Castillo
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- Unit of Clinical ResearchCatalan Institute of OncologyGironaSpain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| |
Collapse
|
7
|
Zhang L, Zheng Y, Chien W, Ziman B, Billet S, Koeffler HP, Lin DC, Bhowmick NA. ARID1A Deficiency Regulates Anti-Tumor Immune Response in Esophageal Adenocarcinoma. Cancers (Basel) 2023; 15:5377. [PMID: 38001638 PMCID: PMC10670331 DOI: 10.3390/cancers15225377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
ARID1A, a member of the chromatin remodeling SWI/SNF complex, is frequently lost in many cancer types, including esophageal adenocarcinoma (EAC). Here, we study the impact of ARID1A deficiency on the anti-tumor immune response in EAC. We find that EAC tumors with ARID1A mutations are associated with enhanced tumor-infiltrating CD8+ T cell levels. ARID1A-deficient EAC cells exhibit heightened IFN response signaling and promote CD8+ T cell recruitment and cytolytic activity. Moreover, we demonstrate that ARID1A regulates fatty acid metabolism genes in EAC, showing that fatty acid metabolism could also regulate CD8+ T cell recruitment and CD8+ T cell cytolytic activity in EAC cells. These results suggest that ARID1A deficiency shapes both tumor immunity and lipid metabolism in EAC, with significant implications for immune checkpoint blockade therapy in EAC.
Collapse
Affiliation(s)
- Le Zhang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (Y.Z.); (W.C.); (B.Z.); (S.B.); (H.P.K.)
| | - Yueyuan Zheng
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (Y.Z.); (W.C.); (B.Z.); (S.B.); (H.P.K.)
| | - Wenwen Chien
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (Y.Z.); (W.C.); (B.Z.); (S.B.); (H.P.K.)
| | - Benjamin Ziman
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (Y.Z.); (W.C.); (B.Z.); (S.B.); (H.P.K.)
- Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Sandrine Billet
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (Y.Z.); (W.C.); (B.Z.); (S.B.); (H.P.K.)
| | - H. Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (Y.Z.); (W.C.); (B.Z.); (S.B.); (H.P.K.)
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (Y.Z.); (W.C.); (B.Z.); (S.B.); (H.P.K.)
- Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Neil A. Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (Y.Z.); (W.C.); (B.Z.); (S.B.); (H.P.K.)
| |
Collapse
|
8
|
Chaturvedi S, Biswas M, Sadhukhan S, Sonawane A. Role of EGFR and FASN in breast cancer progression. J Cell Commun Signal 2023:10.1007/s12079-023-00771-w. [PMID: 37490191 DOI: 10.1007/s12079-023-00771-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
Breast cancer (BC) emerged as one of the life-threatening diseases among females. Despite notable improvements made in cancer detection and treatment worldwide, according to GLOBACAN 2020, BC is the fifth leading cancer, with an estimated 1 in 6 cancer deaths, in a majority of countries. However, the exact cause that leads to BC progression still needs to be determined. Here, we reviewed the role of two novel biomarkers responsible for 50-70% of BC progression. The first one is epidermal growth factor receptor (EGFR) which belongs to the ErbB tyrosine kinases family, signalling pathways associated with it play a significant role in regulating cell proliferation and division. Another one is fatty acid synthase (FASN), a key enzyme responsible for the de novo lipid synthesis required for cancer cell development. This review presents a rationale for the EGFR-mediated pathways, their interaction with FASN, communion of these two biomarkers with BC, and improvements to overcome drug resistance caused by them.
Collapse
Affiliation(s)
- Suchi Chaturvedi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh, 453552, India
| | - Mainak Biswas
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678623, India.
- Physical & Chemical Biology Laboratory and Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678623, India.
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh, 453552, India.
| |
Collapse
|
9
|
Terado T, Kim CJ, Ushio A, Minami K, Tambe Y, Kageyama S, Kawauchi A, Tsunoda T, Shirasawa S, Tanaka H, Inoue H. Cryptotanshinone suppresses tumorigenesis by inhibiting lipogenesis and promoting reactive oxygen species production in KRAS‑activated pancreatic cancer cells. Int J Oncol 2022; 61:108. [PMID: 35894141 PMCID: PMC9339489 DOI: 10.3892/ijo.2022.5398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/15/2022] [Indexed: 11/14/2022] Open
Abstract
Pyruvate dehydrogenase kinase 4 (PDK4) is an important regulator of energy metabolism. Previously, knockdown of PDK4 by specific small interfering RNAs (siRNAs) have been shown to suppress the expression of Kirsten rat sarcoma viral oncogene homolog (KRAS) and the growth of lung and colorectal cancer cells, indicating that PDK4 is an attractive target of cancer therapy by altering energy metabolism. The authors previously reported that a novel small molecule, cryptotanshinone (CPT), which inhibits PDK4 activity, suppresses the in vitro three-dimensional (3D)-spheroid formation and in vivo tumorigenesis of KRAS-activated human pancreatic and colorectal cancer cells. The present study investigated the molecular mechanism of CPT-induced tumor suppression via alteration of glutamine and lipid metabolism in human pancreatic and colon cancer cell lines with mutant and wild-type KRAS. The antitumor effect of CPT was more pronounced in the cancer cells containing mutant KRAS compared with those containing wild-type KRAS. CPT treatment decreased glutamine and lipid metabolism, affected redox regulation and increased reactive oxygen species (ROS) production in the pancreatic cancer cell line MIAPaCa-2 containing mutant KRAS. Suppression of activated KRAS by specific siRNAs decreased 3D-spheroid formation, the expression of acetyl-CoA carboxylase 1 and fatty acid synthase (FASN) and lipid synthesis. The suppression also reduced glutathione-SH/glutathione disulfide and increased the production of ROS. Knockdown of FASN suppressed lipid synthesis in MIAPaCa-2 cells, partially promoted ROS production and mildly suppressed 3D-spheroid formation. These results indicated that CPT reduced tumorigenesis by inhibiting lipid metabolism and promoting ROS production in a mutant KRAS-dependent manner. This PDK4 inhibitor could serve as a novel therapeutic drug for KRAS-driven intractable cancers via alteration of cell metabolism.
Collapse
Affiliation(s)
- Tokio Terado
- Division of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Setatsukinowa‑cho, Otsu, Shiga 520‑2192, Japan
| | - Chul Jang Kim
- Department of Urology, Kohka Public Hospital, Minakuchi‑cho, Koka‑shi, Shiga 528‑0074, Japan
| | - Akiyo Ushio
- Division of Microbiology and Infectious Diseases, Shiga University of Medical Science, Setatsukinowa‑cho, Otsu, Shiga 520‑2192, Japan
| | - Kahori Minami
- Division of Microbiology and Infectious Diseases, Shiga University of Medical Science, Setatsukinowa‑cho, Otsu, Shiga 520‑2192, Japan
| | - Yukihiro Tambe
- Division of Microbiology and Infectious Diseases, Shiga University of Medical Science, Setatsukinowa‑cho, Otsu, Shiga 520‑2192, Japan
| | - Susumu Kageyama
- Department of Urology, Shiga University of Medical Science, Setatsukinowa‑cho, Otsu, Shiga 520‑2192, Japan
| | - Akihiro Kawauchi
- Department of Urology, Shiga University of Medical Science, Setatsukinowa‑cho, Otsu, Shiga 520‑2192, Japan
| | - Toshiyuki Tsunoda
- Department of Cell Biology, Faculty of Medicine, Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Jonan‑ku, Fukuoka 814‑0180, Japan
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Jonan‑ku, Fukuoka 814‑0180, Japan
| | - Hiroyuki Tanaka
- Department of Business Communication, Shiga Junior College, Otsu, Shiga 520‑0803, Japan
| | - Hirokazu Inoue
- Division of Microbiology and Infectious Diseases, Shiga University of Medical Science, Setatsukinowa‑cho, Otsu, Shiga 520‑2192, Japan
| |
Collapse
|
10
|
Schroeder B, Vander Steen T, Espinoza I, Venkatapoorna CMK, Hu Z, Silva FM, Regan K, Cuyàs E, Meng XW, Verdura S, Arbusà A, Schneider PA, Flatten KS, Kemble G, Montero J, Kaufmann SH, Menendez JA, Lupu R. Fatty acid synthase (FASN) regulates the mitochondrial priming of cancer cells. Cell Death Dis 2021; 12:977. [PMID: 34675185 PMCID: PMC8531299 DOI: 10.1038/s41419-021-04262-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022]
Abstract
Inhibitors of the lipogenic enzyme fatty acid synthase (FASN) have attracted much attention in the last decade as potential targeted cancer therapies. However, little is known about the molecular determinants of cancer cell sensitivity to FASN inhibitors (FASNis), which is a major roadblock to their therapeutic application. Here, we find that pharmacological starvation of endogenously produced FAs is a previously unrecognized metabolic stress that heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors. Evaluation of the death decision circuits controlled by the BCL-2 family of proteins revealed that FASN inhibition is accompanied by the upregulation of the pro-death BH3-only proteins BIM, PUMA, and NOXA. Cell death triggered by FASN inhibition, which causally involves a palmitate/NADPH-related redox imbalance, is markedly diminished by concurrent loss of BIM or PUMA, suggesting that FASN activity controls cancer cell survival by fine-tuning the BH3 only proteins-dependent mitochondrial threshold for apoptosis. FASN inhibition results in a heightened mitochondrial apoptosis priming, shifting cells toward a primed-for-death state "addicted" to the anti-apoptotic protein BCL-2. Accordingly, co-administration of a FASNi synergistically augments the apoptosis-inducing activity of the dual BCL-XL/BCL-2 inhibitor ABT-263 (navitoclax) and the BCL-2 specific BH3-mimetic ABT-199 (venetoclax). FASN inhibition, however, fails to sensitize breast cancer cells to MCL-1- and BCL-XL-selective inhibitors such as S63845 and A1331852. A human breast cancer xenograft model evidenced that oral administration of the only clinically available FASNi drastically sensitizes FASN-addicted breast tumors to ineffective single-agents navitoclax and venetoclax in vivo. In summary, a novel FASN-driven facet of the mitochondrial priming mechanistically links the redox-buffering mechanism of FASN activity to the intrinsic apoptotic threshold in breast cancer cells. Combining next-generation FASNis with BCL-2-specific BH3 mimetics that directly activate the apoptotic machinery might generate more potent and longer-lasting antitumor responses in a clinical setting.
Collapse
Affiliation(s)
- Barbara Schroeder
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.,Mayo Clinic Cancer Center, Rochester, MN, 55905, USA.,Helmholtz Pioneer Campus, Heimholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1 D-85764 Neuherberg, Munich, Germany
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ingrid Espinoza
- Department of Preventive Medicine, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS, 39216, USA.,Cancer Institute, School of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Chandra M Kurapaty Venkatapoorna
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Nutrition, Dietetics, and Hospital Management, Auburn University, Auburn, AL, 36849, USA
| | - Zeng Hu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.,Radiation Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Fernando Martín Silva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Kevin Regan
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Elisabet Cuyàs
- Girona Biomedical Research Institute, 17190, Salt, Girona, Spain.,Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism & Cancer Group, Catalan Institute of Oncology, 17007, Girona, Spain
| | - X Wei Meng
- Deparment of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sara Verdura
- Girona Biomedical Research Institute, 17190, Salt, Girona, Spain.,Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism & Cancer Group, Catalan Institute of Oncology, 17007, Girona, Spain
| | - Aina Arbusà
- Girona Biomedical Research Institute, 17190, Salt, Girona, Spain.,Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism & Cancer Group, Catalan Institute of Oncology, 17007, Girona, Spain
| | | | - Karen S Flatten
- Deparment of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - George Kemble
- Sagimet Biosciences (formerly 3-V Biosciences), San Mateo, CA, 94402, USA
| | - Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Scott H Kaufmann
- Mayo Clinic Cancer Center, Rochester, MN, 55905, USA.,Deparment of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Javier A Menendez
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, 55905, USA. .,Girona Biomedical Research Institute, 17190, Salt, Girona, Spain.
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA. .,Mayo Clinic Cancer Center, Rochester, MN, 55905, USA. .,Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Laboratory, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
Pulla LSS, Begum Ahil S. Review on target domains and natural compound-based inhibitors of fatty acid synthase for anticancer drug discovery. Chem Biol Drug Des 2021; 98:869-884. [PMID: 34459114 DOI: 10.1111/cbdd.13942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022]
Abstract
Cancer cells require a higher amount of energy in the form of fatty acids for their uncontrolled proliferation and growth. Fatty acid synthase (FASN) plays a crucial role in the synthesis of palmitate, which is involved in most of the critical malignant pathways. Hence, by targeting FASN, tumour growth can be controlled. By designing and developing FASN inhibitors with catalytic domain specificity, safe and potential anticancer drugs can be achieved. The article draws light towards the catalytic domains of FASN, their active site residues and interaction of some of the reported natural FASN inhibitors (resveratrol, lavandulyl flavonoids, catechins, stilbene derivatives, etc). The rationality (structure-activity relationship) behind the variation in the activity of the reported natural FASN inhibitors (butyrolactones, polyphenolics, galloyl esters and thiolactomycins) has also been covered. Selective, safe and potentially active FASN inhibitors could be developed by: (i) having proper understanding of the function of all catalytic domains of FASN (ii) studying the upstream and downstream FASN regulators (iii) identifying cancer-specific FASN biomarkers (that are non-essential/absent in the normal healthy cells) (iv) exploring the complete protein structure of FASN, e-screening of the compounds prior to synthesis and study their ADME properties (v) predicting the selectivity based on their strong affinity at the catalytic site of FASN.
Collapse
Affiliation(s)
- Lakshmi Soukya Sai Pulla
- Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad, India
| | - Sajeli Begum Ahil
- Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad, India
| |
Collapse
|
12
|
Jiang W, Xing XL, Zhang C, Yi L, Xu W, Ou J, Zhu N. MET and FASN as Prognostic Biomarkers of Triple Negative Breast Cancer: A Systematic Evidence Landscape of Clinical Study. Front Oncol 2021; 11:604801. [PMID: 34123778 PMCID: PMC8190390 DOI: 10.3389/fonc.2021.604801] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/30/2021] [Indexed: 12/31/2022] Open
Abstract
Background To know the expression of Mesenchymal–Epithelial Transition factor (MET) and Fatty Acid Synthase (FASN) in Triple Negative Breast Cancer (TNBC) patients, as well as its relationship with clinical pathological characteristic and prognosis. Methods we used immunohistochemistry staining to detect the expression of MET and FASN for those 218 TNBC patients, and analyze their relationship with the clinical pathological characteristic and prognosis. Results 130 and 65 out of 218 TNBC patients were positive for MET in the cancer and adjacent tissues respectively. 142 and 30 out of 218 TNBC patients were positive for FASN in the cancer and adjacent tissues respectively. Positive expression of MET and FASN were significantly correlated with lymph node metastasis, pathological TNM, and pathological Stage. In addition, the positive expression of MET and FASN were correlated with recurrence and metastasis. The combined use of MET and FASN can better predict the survival condition. Conclusions Our results indicated that MET and FASN showed good predictive ability for TNBC. Combined use of MET and FASN were recommended in order to make a more accurate prognosis for TNBC.
Collapse
Affiliation(s)
- Weihua Jiang
- The Affiliated Tumor Hospital of Xinjiang Medical University, Wulumuqi, China
| | | | - Chenguang Zhang
- The Affiliated Tumor Hospital of Xinjiang Medical University, Wulumuqi, China
| | - Lina Yi
- The Affiliated Tumor Hospital of Xinjiang Medical University, Wulumuqi, China
| | - Wenting Xu
- The Affiliated Tumor Hospital of Xinjiang Medical University, Wulumuqi, China
| | - Jianghua Ou
- The Affiliated Tumor Hospital of Xinjiang Medical University, Wulumuqi, China
| | - Ning Zhu
- Hunan University of Medicine, Huaihua, China
| |
Collapse
|
13
|
Vamecq J, Pigny P. Emerging considerations on mitochondrial and cytosolic metabolic features in SDH-deficient cancer cells. Mol Genet Metab Rep 2021; 26:100721. [PMID: 33552913 PMCID: PMC7859288 DOI: 10.1016/j.ymgmr.2021.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Joseph Vamecq
- Inserm, Univ. Lille EA 7364 RADEME, CHU Lille, HMNO, CBP, Lille, France
- Corresponding authors.
| | - Pascal Pigny
- Univ. Lille, Inserm, CHU Lille-HMNO, UMR-S1277 CANTHER, F-59000 Lille, France
- Corresponding authors.
| |
Collapse
|
14
|
Huang J, Tang Y, Zou X, Lu Y, She S, Zhang W, Ren H, Yang Y, Hu H. Identification of the fatty acid synthase interaction network via iTRAQ-based proteomics indicates the potential molecular mechanisms of liver cancer metastasis. Cancer Cell Int 2020; 20:332. [PMID: 32699531 PMCID: PMC7372886 DOI: 10.1186/s12935-020-01409-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Background Fatty acid synthase (FASN) is highly expressed in various types of cancer and has an important role in carcinogenesis and metastasis. To clarify the mechanisms of FASN in liver cancer invasion and metastasis, the FASN protein interaction network in liver cancer was identified by targeted proteomic analysis. Methods Wound healing and Transwell assays was performed to observe the effect of FASN during migration and invasion in liver cancer. Isobaric tags for relative and absolute quantitation (iTRAQ)-based mass spectrometry were used to identify proteins interacting with FASN in HepG2 cells. Differential expressed proteins were validated by co-immunoprecipitation, western blot analyses and confocal microscopy. Western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were performed to demonstrate the mechanism of FASN regulating metastasis. Results FASN knockdown inhibited migration and invasion of HepG2 and SMMC7721 cells. A total of, 79 proteins interacting with FASN were identified. Additionally, gene ontology term enrichment analysis indicated that the majority of biological regulation and cellular processes that the FASN-interacting proteins were associated with. Co-precipitation and co-localization of FASN with fascin actin-bundling protein 1 (FSCN1), signal-induced proliferation-associated 1 (SIPA1), spectrin β, non-erythrocytic 1 (SPTBN1) and CD59 were evaluated. Knockdown of FASN in liver cancer reduced the expression of FSCN1, SIPA1, SPTBN1 and CD59. Furthermore, inhibition of FASN, FSCN1 or SPTBN1 expression in liver cancer resulted in alterations of epithelial–mesenchymal transition (EMT)-associated markers E-cadherin, N-cadherin, vimentin and transcription factors, Snail and Twist, at the mRNA level, and changes in matrix metallopeptidase (MMP)-2 and MMP-9 protein expression. Conclusion The results suggested that the FASN-interacting protein network produced by iTRAQ-based proteomic analyses may be involved in regulating invasion and metastasis in liver cancer by influencing EMT and the function of MMPs.
Collapse
Affiliation(s)
- Juan Huang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Yao Tang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Xiaoqin Zou
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Yi Lu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Sha She
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Wenyue Zhang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Hong Ren
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China
| | - Yixuan Yang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China.,The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400010 China
| | - Huaidong Hu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016 People's Republic of China.,The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400010 China
| |
Collapse
|