1
|
Neal J, Rodrigues S, Denton JSS, Bronson A. Skeletal labyrinth morphology of four species of living elasmobranchs. Anat Rec (Hoboken) 2025; 308:1319-1330. [PMID: 39324429 DOI: 10.1002/ar.25582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Despite detailed descriptions of cranial anatomy in representatives of most major chondrichthyan groups, the inner ear has been described infrequently and most often from the soft tissue of the membranous labyrinth. However, skeletal labyrinth morphology has been linked with ecology in several groups of vertebrates, and shark skeletal labyrinths bear several specializations for detecting low frequency sounds. Without description of these structures across a broad sample of taxa, future exploration of the ecomorphology of ear shape is not possible. We used high-resolution CT scanning to generate three-dimensional models of the endocranial anatomy in four elasmobranchs: the Nurse Shark (Ginglymostoma cirratum), the Japanese Tope Shark (Hemitriakis japanica), the Horn Shark (Heterodontus francisci), and the Zebra Shark (Stegostoma tigrinum). Major differences are apparent between the skeletal labyrinths of these taxa, which might be ascribed to either phylogenetic history or lifestyle. In particular, the size of the skeletal labyrinth relative to the cranium dramatically differs among these chondrichthyans, as does the diameter and angle of the semicircular canals and the size of the canals relative to the vestibule. Based on the separation of the anterior and posterior semicircular canals, and the lack thereof in S. tigrinum, the degree of specialization for low frequency sound detection may also vary.
Collapse
Affiliation(s)
- Jordyn Neal
- Department of Biological Science, California State University Fullerton, Fullerton, California, USA
| | - Samantha Rodrigues
- Department of Biological Sciences, California State Polytechnic University Humboldt, Arcata, California, USA
| | - John S S Denton
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- Department of Ichthyology, American Museum of Natural History, New York, New York, USA
| | - Allison Bronson
- Department of Biological Sciences, California State Polytechnic University Humboldt, Arcata, California, USA
- Division of Paleontology, American Museum of Natural History, New York, New York, USA
| |
Collapse
|
2
|
Lopes BF, Gomes GV, Jerdy H, Hauser-Davis RA, Queiroz de Carvalho EC. Macro- and microscopic morphology of the rectal gland of the Brazilian guitarfish (Pseudobatos horkelii) from Southeastern Brazil. Tissue Cell 2025; 93:102769. [PMID: 39938426 DOI: 10.1016/j.tice.2025.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/14/2025]
Abstract
Sharks and rays present an osmoregulatory mechanism essentially exercised by a rectal salt gland. Histological assessments of this gland, however, are notoriously lacking. In this sense, histological assessments of the rectal gland of the Brazilian guitarfish, Pseudobatos horkelii obtained from off the coast of Rio de Janeiro, Brazil, were carried out herein. Rectal gland samples were histologically processed with hematoxylin/eosin and special Masson's Trichrome stain. Three main regions were identified: the capsule, secretory parenchyma and central duct. Highly vascularized connective tissue was observed in the capsular region, surrounded by a superficial epithelium composed of a layer of cubic cells. Lymphoid tissue was present outside the capsule. The capsule presented connective tissue invaginations, forming interlobular septa. Each septum, surrounded by fibroelastic tissue, delimited the secretory lobes filled with secretory tubules, whose lumens exhibited a larger diameter and a greater number of secretory cells as they approached the central duct. The duct to which the organ's secretory tubules open, at the center of the rectal gland, presents a lumen lined with stratified epithelium, containing acidophilic intraepithelial and mucous cells. Most analyzed morphological characteristics are in accordance with morphological aspects reported in previous ray studies concerning other species presenting similar phylogeny, habitat and feeding characteristics as P. horkelii. These assessments are paramount in understanding species-specific osmoregulation and informing conservation strategies, particularly for threatened species like the Brazilian guitarfish.
Collapse
Affiliation(s)
- Beatriz França Lopes
- Animal Morphology and Pathology Laboratory, Center for Agricultural Sciences and Technologies (CCTA)/Animal Pathology Sector (SPA), North Fluminense State University Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Géssica Vieira Gomes
- Universidade Estadual Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Hassan Jerdy
- Laboratório de Microscopia, Universidade Federal do Sul e Sudeste do Pará, Rua Alberto Santos Dumont, Xinguara, PA, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| | | |
Collapse
|
3
|
Hart NS, Pozo-Montoro M, Seeger O, Ryan LA, Tosetto L, Huveneers C, Peddemors VM, Williamson JE, Gaston TF. Widespread and Convergent Evolution of Cone Monochromacy in Galeomorph Sharks. Mol Biol Evol 2025; 42:msaf043. [PMID: 39937658 PMCID: PMC11886822 DOI: 10.1093/molbev/msaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/12/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
Color vision is widespread in marine vertebrates but is notably lacking in whales, dolphins, seals, and apparently also sharks. All sharks studied to date possess only a single spectral class of cone and are thus potentially totally color blind. The reason why sharks lack color vision is unclear, but as the visual pigments of only a handful of this large and ecologically diverse taxon have been studied, more data are required to address this question. Here, we assembled the retinal transcriptomes of 9 species from 7 families and 3 orders within the superorder Galeomorphii to screen for visual opsin and phototransduction genes. We reveal that cone monochromacy is widespread in galeomorph sharks, but the type of cone opsin expressed varies, with lamniform and orectolobiform sharks expressing a long-wavelength-sensitive (LWS) opsin, and carcharhiniform and heterodontiform sharks expressing a rhodopsin-like 2 (RH2) opsin. Cone monochromacy has evolved from a dichromatic ancestral state at least 4 times, implying strong selection pressure to prioritize achromatic over chromatic vision. While all species express the GRK1A and GRK7 isoforms of G protein-coupled receptor kinase, only sharks with the LWS cone opsin express the GRK1B isoform, which suggests that nonspectral functions of photoreception may have influenced, or result from, the opsin complement in the shark retina. Finally, we show that the shark rod (RH1) opsin gene shows evidence of positive selection at sites known to influence pigment kinetics (i.e. metarhodopsin II stability) and that the rate of retinal release likely differs substantially between species in ways that reflect their physiology and ecology.
Collapse
Affiliation(s)
- Nathan S Hart
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Maria Pozo-Montoro
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Olivia Seeger
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Laura A Ryan
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Louise Tosetto
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Victor M Peddemors
- Fisheries Research, New South Wales Department of Primary Industries, Sydney Institute of Marine Science, Mosman, New South Wales 2088, Australia
| | - Jane E Williamson
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Troy F Gaston
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, New South Wales 2258, Australia
| |
Collapse
|
4
|
López-Romero FA, Villalobos-Segura E, Türtscher J, Berio F, Stumpf S, Dearden RP, Kriwet J, Maldonado E. Evolution of the batoidea pectoral fin skeleton: convergence, modularity, and integration driving disparity trends. Evol Ecol 2025:s10682-025-10330-x. [PMID: 40026440 PMCID: PMC7617449 DOI: 10.1007/s10682-025-10330-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/12/2025] [Indexed: 03/05/2025]
Abstract
Batoids (skates and rays) are the most speciose group of cartilaginous fishes with a diverse array of ecological adaptations and swimming modes. Early skeletal fossil remains and recent phylogenetic analyses suggest that convergence among batoids has occurred independently multiple times. The drivers for such disparity patterns and possible association with modularity and phenotypic integration among batoids are not fully understood. Here we employed geometric morphometrics and phylogenetic comparative methods to characterize the evolutionary trends in the basal fin skeleton of extinct and extant batoids and dorsoventrally flattened sharks. We found that the most speciose orders of batoids, Myliobatiformes and Rajiformes, display the lowest levels of morphological disparity, while Torpediniformes and Rhinopristitiformes have the highest disparity. Differences in evolutionary rates by habitat indicate that both reef and freshwater species evolved faster than deep-sea and shelf-distributed species. We further explored the differences based on swimming modes and found that species with oscillatory swimming exhibit higher evolutionary rates on their coracoid bar. We found that specific groups underwent different rates of evolution on each element of the pectoral fin. This was corroborated by the modularity and integration analyses, which indicate differences in the covariation between structures among the analyzed groups. The convergence analysis does not support the resemblance between flattened sharks and batoids; however we found convergence between extinct batoids and modern guitarfishes. Our findings suggest that habitat and swimming mode have shaped the pectoral fin evolution among batoids.
Collapse
Affiliation(s)
- Faviel A. López-Romero
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos C.P. 77580, Quintana Roo, México
| | - Eduardo Villalobos-Segura
- Evolutionary Morphology Research Group, Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Josef-Holaubek-Platz 2, 1190Vienna, Austria
| | - Julia Türtscher
- Evolutionary Morphology Research Group, Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Josef-Holaubek-Platz 2, 1190Vienna, Austria
| | - Fidji Berio
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 114 18Stockholm, Sweden
| | - Sebastian Stumpf
- Evolutionary Morphology Research Group, Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Josef-Holaubek-Platz 2, 1190Vienna, Austria
| | - Richard P. Dearden
- Vertebrate Evolution, Development, and Ecology, Naturalis Biodiversity Center, Darwinweg 2, 2333 CRLeiden, The Netherlands
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Jürgen Kriwet
- Evolutionary Morphology Research Group, Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Josef-Holaubek-Platz 2, 1190Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Djerassiplatz 1, 1030Vienna, Austria
| | - Ernesto Maldonado
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos C.P. 77580, Quintana Roo, México
| |
Collapse
|
5
|
Fee K, Zabransky K, Burgess E, Baeza JA. The complete mitochondrial genome of the imperiled Bullnose ray Myliobatis freminvillei (Myliobatiformes: Myliobatidae) with comments on its phylogenetic position and claims of diversifying selection affecting protein coding genes in a closely related species. Gene 2025; 933:148902. [PMID: 39214320 DOI: 10.1016/j.gene.2024.148902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/02/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The Bullnose ray Myliobatis freminvillei is a bentho-pelagic eagle ray that inhabits the north Gulf of Mexico and the Western Atlantic Ocean Coast, discontinuously, from Massachusetts, USA to Buenos Aires, Argentina. Myliobatis freminvillei is currently listed as vulnerable by the 2019 IUCN Red List of Threatened Species given that it is often captured as bycatch by artisanal and commercial fisheries, along the coasts of Argentina, Brazil, and Venezuela. This study, for the first time, assembled and characterized the mitochondrial genome of M. fremnvillei. The A+T rich mitochondrial genome of M. fremnvillei is 18,356 bp long and encodes 22 transfer RNA genes (tRNA), 2 ribosomal RNA genes (12S ribosomal RNA and 16S ribosomal RNA), 13 protein coding genes (PCGs), and also contains a non coding control region 2,617 bp long. Nonsynonomous codon usage with a preference for A+T rich codons was observed in all 13 PCGs. Leu (CTA), Ile (ATC), Phe (TTC), Thr (ACA), and Ala (GCC) were the most frequently used codons. Ka/Ks ratios estimated for all 13 PCGs exhibited values < 1, indicating strong purifying selection affecting all these genes. In contrast to the results of a previous study that claimed diversifying selective pressure in two mitochondrial PCGs of Mobula tarapacana, reanalysis of the Ka/Ks values for the same species indicated purifying selection in all 13 PCGs. Of the 22 tRNA genes, all have a cloverleaf secondary structure except tRNA-Ser1 which has a truncated dihydrouridine arm. In the control region, A+T rich microsatellites (n = 42) and short tandem repeats (n = 6) were identified, and the secondary structure of the same region contained numerous hairpin loops. Phylomitogenomic analyses supported the monophyletic status of the order Myliobatiformes and family Myliobatidae. The assembled mitochondrial genome will assist with conservation efforts in Myliobatis fremnvillei.
Collapse
Affiliation(s)
- Kate Fee
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| | - Katrina Zabransky
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| | - Evan Burgess
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| | - J A Baeza
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA; Smithsonian Marine Station at Fort Pierce , 701 Seaway Drive, Fort Pierce, FL 34949, USA; Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.
| |
Collapse
|
6
|
Kamal SA, Baeza JA. Detailed characterization of the complete mitochondrial genome of the oceanic whitetip shark Carcharhinus longimanus (Poey, 1861). Mol Biol Rep 2024; 51:826. [PMID: 39030452 PMCID: PMC11271432 DOI: 10.1007/s11033-024-09780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/04/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND The oceanic whitetip shark Carcharhinus longimanus (family Carcharhinidae) is one of the largest sharks inhabiting all tropical and subtropical oceanic regions. Due to their life history traits and mortality attributed to pelagic longline fishing practices, this species is experiencing substantial population decline. Currently, C. longimanus is considered by the IUCN Red List of Threatened Species as "vulnerable" throughout its range and "critically endangered" in the western north Atlantic. This study sequences and describes the complete mitochondrial genome of C. longimanus in detail. METHODS AND RESULTS The mitochondrial genome of C. longimanus was assembled through next-generation sequencing and then analyzed using specialized bioinformatics tools. The circular, double-stranded AT-rich mitogenome of C. longimanus is 16,704 bp long and contains 22 tRNA genes, 2 rRNA genes, 13 protein coding genes and a 1,065 bp long control region (CR). Out of the 22 tRNA genes, only one (tRNA-Ser1) lacked a typical 'cloverleaf' secondary structure. The prevalence of TTA (Leu), ATT (Ile) and CTA (Leu) codons in the PCGs likely contributes to the AT-rich nature of this mitogenome. In the CR, ten microsatellites were detected but no tandem repeats were found. Stem-and-loop secondary structures were common along the entire length of the CR. Ka/Ks values estimated for all PCGs were < 1, indicating that all the PCGs experience purifying selection. A phylomitogenomic analysis based on translated PCGs confirms the sister relationship between C. longimanus and C. obscurus. The analysis did not support the monophyly of the genus Carcharhinus. CONCLUSIONS The assembled mitochondrial genome of this pelagic shark can provide insight into the phylogenetic relationships in the genus Carcharhinus and aid conservation and management efforts in the Central Pacific Ocean.
Collapse
Affiliation(s)
- Sadia A Kamal
- Department of Fisheries Biology and Genetics, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - J Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.
- Smithsonian Marine Station at Fort Pierce, Smithsonian Institution, Fort Pierce, FL, USA.
- Departamento de Biología Marina, Universidad Catolica del Norte, Coquimbo, Chile.
| |
Collapse
|
7
|
Appleby M, Raoult V, Broadhurst MK, Gaston T. Can denticle morphology help identify southeastern Australian elasmobranchs? JOURNAL OF FISH BIOLOGY 2024; 104:1848-1859. [PMID: 38491854 DOI: 10.1111/jfb.15704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Elasmobranchs are covered in scale-like structures called dermal denticles, comprising dentine and enameloid. These structures vary across the body of an individual and between species, and are frequently shed and preserved in marine sediments. With a good understanding of denticle morphology, current and historical elasmobranch diversity and abundance might be assessed from sediment samples. Here, replicate samples of denticles from the bodies of several known (deceased) shark species were collected and characterized for morphology before being assigned morphotypes. These data were used to expand the established literature describing denticles and to investigate intra- and interspecific variability, with the aim of increasing the viability of using sediment samples to assess elasmobranch diversity and abundance. Denticle morphology was influenced more by life-history traits than by species, where demersal species were largely characterized by generalized function and defense denticles, whereas pelagic and benthopelagic species were characterized by drag-reduction denticles. Almost all species possessed abrasion strength or defense denticles on the snout, precluding their utility for separating species. In a separate manipulative experiment, samples of denticles were collected from sediments in two aquaria with known elasmobranchs to determine their utility for reliably separating species. Visual examination of denticles, morphometric measurements, scaled photographs, and reference collections allowed for some precise identification, but not always to the species level. Ongoing work to develop denticle reference collections could help to identify past and present families and, in some cases, species.
Collapse
Affiliation(s)
- Mariah Appleby
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, New South Wales, Australia
| | - Vincent Raoult
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, New South Wales, Australia
- Marine Ecology Group, School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Matt K Broadhurst
- NSW Department of Primary Industries, Fisheries Conservation Technology Unit, National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Troy Gaston
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, New South Wales, Australia
| |
Collapse
|
8
|
Capretz Batista Da Silva JP, Medeiros J, Araújo MVG, Lima DP, Mianutti LF, Mafaldo H, De Lima A, Naylor GJP. The appendicular skeleton of the enigmatic shark Leptocharias smithii in comparison with other sharks of the order Carcharhiniformes (Elasmobranchii: Leptochariidae). J Morphol 2024; 285:e21744. [PMID: 38850202 DOI: 10.1002/jmor.21744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Leptocharias smithii has been poorly explored in anatomical terms. This species bears a mosaic of morphological characters and is considered to represent an intermediate condition between other carcharhiniform clades. In the present paper, the anatomy of the appendicular skeleton of the species is thoroughly investigated and compared with other representatives of the order Carcharhiniformes. Leptocharias bears exclusive characteristics, such as the visible separation of the pro- and mesopterygia but it also has an aplesodic pectoral fin, a condition shared with carcharhiniforms placed at the base of the phylogenetic tree and at the same time a chevron-shaped coracoid bar, a condition characteristic of charcharhiniforms placed at the apex of the phylogenetic tree. Additionally, in an attempt to understand the evolution of its appendicular skeleton and of other carcharhiniforms, 20 characters of the paired fins and girdles are explored and discussed in light of two recent phylogenetic hypotheses. Most of these characters were not previously explored and support not only the monophyly of Carcharhiniformes, such as the mesopterygium overlapping the metapterygium in ventral view, but also the monophyly of the less inclusive clade Hemigaleidae + (Galeocerdonidae + (Carcharhinidae+Sphyrnidae)), such as the morphology and arrangement of the distal radials, which are pointed and spaced.
Collapse
Affiliation(s)
| | - Jade Medeiros
- Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Marcus Vinícius Gonçalves Araújo
- Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Danilo Pinto Lima
- Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Laura Franco Mianutti
- Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Henrique Mafaldo
- Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Arthur De Lima
- Museu de Zoologia da Universidade de São Paulo, São Paulo, Brazil
| | - Gavin J P Naylor
- Florida Program for Shark Research, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Itoigawa A, Toda Y, Kuraku S, Ishimaru Y. Evolutionary origins of bitter taste receptors in jawed vertebrates. Curr Biol 2024; 34:R271-R272. [PMID: 38593768 DOI: 10.1016/j.cub.2024.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 04/11/2024]
Abstract
Taste is a sense that detects information about nutrients and toxins in foods. Of the five basic taste qualities, bitterness is associated with the detection of potentially harmful substances like plant alkaloids. In bony vertebrates, type 2 taste receptors (T2Rs), which are G-protein-coupled receptors (GPCRs), act as bitter taste receptors1,2. In vertebrates, six GPCR gene families are described as chemosensory receptor genes, encoding taste receptor families (T1Rs and T2Rs) and olfactory receptor families (ORs, V1Rs, V2Rs, and TAARs). These families of receptors have been found in all major jawed vertebrate lineages, except for the T2Rs, which are confined to bony vertebrates3. Therefore, T2Rs are believed to have emerged later than the other chemosensory receptor genes in the bony vertebrate lineage. So far, only the genomes of two cartilaginous fish species have been mined for TAS2R genes, which encode T2Rs4. Here, we identified novel T2Rs in elasmobranchs, namely selachimorphs (sharks) and batoids (rays, skates, and their close relatives) by an exhaustive search covering diverse cartilaginous fishes. Using functional and mRNA expression analyses, we demonstrate that their T2Rs are expressed in the oral taste buds and contribute to the detection of bitter compounds. This finding indicates the early origin of T2Rs in the common ancestor of jawed vertebrates.
Collapse
Affiliation(s)
- Akihiro Itoigawa
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan; Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Yasuka Toda
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Shigehiro Kuraku
- Molecular Life History Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, SOKENDAI (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Yoshiro Ishimaru
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan.
| |
Collapse
|
10
|
Ermakova GV, Meyntser IV, Zaraisky AG, Bayramov AV. Loss of noggin1, a classic embryonic inducer gene, in elasmobranchs. Sci Rep 2024; 14:3805. [PMID: 38360907 PMCID: PMC10869764 DOI: 10.1038/s41598-024-54435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
Secreted proteins of the Noggin family serve as pivotal regulators of early development and cell differentiation in all multicellular animals, including vertebrates. Noggin1 was identified first among all Noggins. Moreover, it was described as the first known embryonic inducer specifically secreted by the Spemann organizer and capable of inducing a secondary body axis when expressed ectopically. In the classical default model of neural induction, Noggin1 is presented as an antagonist of BMP signalling, playing a role as a neural inducer. Additionally, Noggin1 is involved in the dorsalization of embryonic mesoderm and later controls the differentiation of various tissues, including muscles, bones, and neural crest derivatives. Hitherto, noggin1 was found in all studied vertebrates. Here, we report the loss of noggin1 in elasmobranchs (sharks, rays and skates), which is a unique case among vertebrates. noggin2 and noggin4 retained in this group and studied in the embryos of the grey bamboo shark Chiloscyllium griseum revealed similarities in expression patterns and functional properties with their orthologues described in other vertebrates. The loss of noggin1 in elasmobranchs may be associated with histological features of the formation of their unique internal cartilaginous skeleton, although additional research is required to establish functional connections between these events.
Collapse
Affiliation(s)
- Galina V Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Irina V Meyntser
- Moskvarium Center for Oceanography and Marine Biology, Moscow, 129223, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia.
| | - Andrey V Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
11
|
Winn JC, Maduna SN, Bester-van der Merwe AE. A comprehensive phylogenomic study unveils evolutionary patterns and challenges in the mitochondrial genomes of Carcharhiniformes: A focus on Triakidae. Genomics 2024; 116:110771. [PMID: 38147941 DOI: 10.1016/j.ygeno.2023.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
The complex evolutionary patterns in the mitochondrial genome (mitogenome) of the most species-rich shark order, the Carcharhiniformes (ground sharks) has led to challenges in the phylogenomic reconstruction of the families and genera belonging to the order, particularly the family Triakidae (houndsharks). The current state of Triakidae phylogeny remains controversial, with arguments for both monophyly and paraphyly within the family. We hypothesize that this variability is triggered by the selection of different a priori partitioning schemes to account for site and gene heterogeneity within the mitogenome. Here we used an extensive statistical framework to select the a priori partitioning scheme for inference of the mitochondrial phylogenomic relationships within Carcharhiniformes, tested site heterogeneous CAT + GTR + G4 models and incorporated the multi-species coalescent model (MSCM) into our analyses to account for the influence of gene tree discordance on species tree inference. We included five newly assembled houndshark mitogenomes to increase resolution of Triakidae. During the assembly procedure, we uncovered a 714 bp-duplication in the mitogenome of Galeorhinus galeus. Phylogenetic reconstruction confirmed monophyly within Triakidae and the existence of two distinct clades of the expanded Mustelus genus. The latter alludes to potential evolutionary reversal of reproductive mode from placental to aplacental, suggesting that reproductive mode has played a role in the trajectory of adaptive divergence. These new sequences have the potential to contribute to population genomic investigations, species phylogeography delineation, environmental DNA metabarcoding databases and, ultimately, improved conservation strategies for these ecologically and economically important species.
Collapse
Affiliation(s)
- Jessica C Winn
- Molecular Breeding and Biodiversity Group, Department of Genetics, Stellenbosch University, Stellenbosch, Western Cape 7602, South Africa
| | - Simo N Maduna
- Department of Ecosystems in the Barents Region, Svanhovd Research Station, Norwegian Institute of Bioeconomy Research, 9925 Svanvik, Norway
| | - Aletta E Bester-van der Merwe
- Molecular Breeding and Biodiversity Group, Department of Genetics, Stellenbosch University, Stellenbosch, Western Cape 7602, South Africa.
| |
Collapse
|
12
|
da Silva JPCB, Vaz DFB. Morphology and phylogenetic significance of the pelvic articular region in elasmobranchs (Chondrichthyes). Cladistics 2023; 39:155-197. [PMID: 36856203 DOI: 10.1111/cla.12528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 03/02/2023] Open
Abstract
The morphology of paired fins is commonly overlooked in morphological studies, particularly the pelvic girdle and fins. Consequently, previous phylogenetic studies incorporating morphological data used few skeletal characters from this complex. In this paper, the phylogenetic significance of pelvic articular characters for elasmobranchs is discussed in light of the morphological variation observed in 130 species, the most comprehensive study exploring the morphology of the pelvic girdle done so far. The 10 morphological characters proposed herein for the pelvic articulation were incorporated into a molecular matrix of NADH2 sequences and submitted to an analysis of maximum parsimony employing extended implied weighting. The most stable tree was selected based on the distortion coefficients, SPR distances (subtree pruning and regrafting) and fit values. Some of the striking synapomorphies recovered within elasmobranchs include the presence of an articular surface for the first enlarged pelvic radial supporting Elasmobranchii and the pelvic articular region for the basipterygium extending from the posterolatral margin of the pelvic girdle over its lateral surface in Echinorhinus + Hexanchiformes. Additionally, the proposed characters and their distributions are discussed considering the relationships recovered and also compared with previous morphological and molecular phylogenetic hypotheses.
Collapse
Affiliation(s)
- João Paulo C B da Silva
- Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Castelo Branco, João Pessoa, 58051-900, Brazil
| | - Diego F B Vaz
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02143, USA.,Biorepository Collaboratorium Guam EPSCoR, Marine Laboratory, University of Guam, 303 University Dr, UOG Station, Mangilao, GU, 96923, USA
| |
Collapse
|
13
|
Jambura PL, Villalobos-Segura E, Türtscher J, Begat A, Staggl MA, Stumpf S, Kindlimann R, Klug S, Lacombat F, Pohl B, Maisey JG, Naylor GJP, Kriwet J. Systematics and Phylogenetic Interrelationships of the Enigmatic Late Jurassic Shark Protospinax annectans Woodward, 1918 with Comments on the Shark-Ray Sister Group Relationship. DIVERSITY 2023; 15:311. [PMID: 36950326 PMCID: PMC7614347 DOI: 10.3390/d15030311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The Late Jurassic elasmobranch Protospinax annectans is often regarded as a key species to our understanding of crown group elasmobranch interrelationships and the evolutionary history of this group. However, since its first description more than 100 years ago, its phylogenetic position within the Elasmobranchii (sharks and rays) has proven controversial, and a closer relationship between Protospinax and each of the posited superorders (Batomorphii, Squalomorphii, and Galeomorphii) has been proposed over the time. Here we revise this controversial taxon based on new holomorphic specimens from the Late Jurassic Konservat-Lagerstätte of the Solnhofen Archipelago in Bavaria (Germany) and review its skeletal morphology, systematics, and phylogenetic interrelationships. A data matrix with 224 morphological characters was compiled and analyzed under a molecular backbone constraint. Our results indicate a close relationship between Protospinax, angel sharks (Squatiniformes), and saw sharks (Pristiophoriformes). However, the revision of our morphological data matrix within a molecular framework highlights the lack of morphological characters defining certain groups, especially sharks of the order Squaliformes, hampering the phylogenetic resolution of Protospinax annectans with certainty. Furthermore, the monophyly of modern sharks retrieved by molecular studies is only weakly supported by morphological data, stressing the need for more characters to align morphological and molecular studies in the future.
Collapse
Affiliation(s)
- Patrick L. Jambura
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | | | - Julia Türtscher
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Arnaud Begat
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Manuel Andreas Staggl
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Sebastian Stumpf
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - René Kindlimann
- Haimuseum und Sammlung R. Kindlimann, 8607 Aathal-Seegräben, Switzerland
| | - Stefanie Klug
- School of Science (GAUSS), Georg–August Universität Göttingen, 37077 Göttingen, Germany
| | | | - Burkhard Pohl
- Interprospekt Group, 1724 Ferpicloz, Switzerland
- Wyoming Dinosaur Center, Thermopolis, WY 82443, USA
| | - John G. Maisey
- Department of Vertebrate Paleontology, American Natural History Museum, New York, NY 10024, USA
| | - Gavin J. P. Naylor
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Jürgen Kriwet
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
14
|
Determinants of diversity and composition of the tapeworm fauna of blue sharks, Prionace glauca: a geographical and host-specificity analysis. J Helminthol 2022; 96:e87. [PMID: 36475451 DOI: 10.1017/s0022149x22000803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blue sharks, Prionace glauca, are cosmopolitan, extremely vagile sharks and the species among elasmobranchs for which most surveys containing tapeworm community data are available worldwide. In this study we report on the tapeworm fauna of three samples of blue sharks (n = 37) from two new regions (one sample from Galicia, north-east Atlantic, and two from Valencia, western Mediterranean), and compared it with previous studies, assessing the relative role of the ecological and evolutionary factors in structuring local tapeworm assemblages. Nine cestode taxa were identified, of which four included adult specimens, that is, Platybothrium auriculatum, Prosobothrium armigerum, Anthobothrium caseyi and Molicola horridus. The abundance of these species, and Brillouin's diversity index, differed significantly among samples without a clear geographical signal. A comparison with six previous surveys revealed that tapeworm assemblages were composed of the same 'core' taxa, with mean species richness typically ranging from two to four species. Global records of adult tapeworms in blue sharks included: 15 taxa identified at species level, of which only eight (generalist trypanorhynchs) were shared with other sympatric host species; five mostly with other carcharhinids; and three with large lamnid sharks sharing the blue sharks' habitat. The composition of tapeworm communities of blue sharks is thus highly constrained by strong host specificity, with composition and abundance varying across localities depending on idiosyncratic environmental conditions.
Collapse
|
15
|
Gilman E, Chaloupka M, Benaka LR, Bowlby H, Fitchett M, Kaiser M, Musyl M. Phylogeny explains capture mortality of sharks and rays in pelagic longline fisheries: a global meta-analytic synthesis. Sci Rep 2022; 12:18164. [PMID: 36307432 PMCID: PMC9616952 DOI: 10.1038/s41598-022-21976-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022] Open
Abstract
Apex and mesopredators such as elasmobranchs are important for maintaining ocean health and are the focus of conservation efforts to mitigate exposure to fishing and other anthropogenic hazards. Quantifying fishing mortality components such as at-vessel mortality (AVM) is necessary for effective bycatch management. We assembled a database for 61 elasmobranch species and conducted a global meta-synthesis to estimate pelagic longline AVM rates. Evolutionary history was a significant predictor of AVM, accounting for up to 13% of variance in Bayesian phylogenetic meta-regression models for Lamniformes and Carcharhiniformes clades. Phylogenetically related species may have a high degree of shared traits that explain AVM. Model-estimated posterior mean AVM rates ranged from 5% (95% HDI 0.1%-16%) for pelagic stingrays and 76% (95% HDI 49%-90%) for salmon sharks. Measures that reduce catch, and hence AVM levels, such as input controls, bycatch quotas and gear technology to increase selectivity are appropriate for species with higher AVM rates. In addition to reducing catchability, handling-and-release practices and interventions such as retention bans in shark sanctuaries and bans on shark finning and trade hold promise for species with lower AVM rates. Robust, and where applicable, phylogenetically-adjusted elasmobranch AVM rates are essential for evidence-informed bycatch policy.
Collapse
Affiliation(s)
- Eric Gilman
- The Safina Center, Honolulu, USA.
- The Lyell Centre, Heriot-Watt University, Edinburgh, UK.
| | - Milani Chaloupka
- Ecological Modelling Services Pty Ltd and Marine Spatial Ecology Lab, University of Queensland, Brisbane, Australia
| | - Lee R Benaka
- Office of Science and Technology, U.S. NOAA Fisheries, Silver Spring, USA
| | - Heather Bowlby
- Bedford Institute of Oceanography, Fisheries and Oceans, Dartmouth, Canada
| | - Mark Fitchett
- Western Pacific Regional Fishery Management Council, Honolulu, USA
| | - Michel Kaiser
- The Lyell Centre, Heriot-Watt University, Edinburgh, UK
| | | |
Collapse
|
16
|
Staggl MA, Abed-Navandi D, Kriwet J. Cranial morphology of the orectolobiform shark, Chiloscyllium punctatum Müller & Henle, 1838. VERTEBRATE ZOOLOGY 2022; 72:311-370. [PMID: 35693755 PMCID: PMC7612840 DOI: 10.3897/vz.72.e84732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Elasmobranchs, comprising sharks, skates, and rays, have a long evolutionary history extending back into the Palaeozoic. They are characterized by various unique traits including a predominantly cartilaginous skeleton, superficial prismatic phosphatic layer, and permanent tooth replacement. Moreover, they exhibit a more or less marked sexual dimorphism. Especially the morphology of the chondrocranium and the elements of the whole cranial region of extant and extinct chondrichthyans can provide valuable information about corresponding functions, e.g. the feeding apparatus might reflect the diet of the animals. However, studies on sexual dimorphisms are lacking in orectolobiform sharks, therefore, little is known about possible sexual dimorphic characters in the cranial region in this group. For this reason, we present in this study a comprehensive morphological description of the cranial region of the brownbanded bamboo shark Chiloscyllium punctatum Müller & Henle, 1838, with a special focus on its sexual dimorphic characters. Our results reveal clear morphological differences in both sexes of the examined C. punctatum specimens, particularly in the chondrocranium and the mandibular arch. The female specimen shows a comparatively more robust and compact morphology of the chondrocranium. This pattern is also evident in the mandibular arch, especially in the palatoquadrate. The present study is the first to describe the morphology of an orectolobiform shark species in detail using both manual dissection and micro-CT data. The resulting data furthermore provide a starting point for pending studies and are intended to be a first step in a series of comparative studies on the morphology of the cranial region of orectolobiform sharks, including the determination of possible sexual dimorphic characteristics.
Collapse
|
17
|
López-Romero FA, Berio F, Abed-Navandi D, Kriwet J. Early shape divergence of developmental trajectories in the jaw of galeomorph sharks. Front Zool 2022; 19:7. [PMID: 35123488 PMCID: PMC8818243 DOI: 10.1186/s12983-022-00452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The onset of morphological differences between related groups can be tracked at early stages during embryological development. This is expressed in functional traits that start with minor variations, but eventually diverge to defined specific morphologies. Several processes during this period, like proliferation, remodelling, and apoptosis for instance, can account for the variability observed between related groups. Morphological divergence through development is often associated with the hourglass model, in which early stages display higher variability and reach a conserved point with reduced variability from which divergence occurs again to the final phenotype.
Results
Here we explored the patterns of developmental shape changes in the lower jaw of two shark species, the bamboo shark (Chiloscyllium punctatum) and the catshark (Scyliorhinus canicula). These two species present marked differences in their foraging behaviour, which is reflected in their adult jaw morphology. By tracing the developmental sequence of the cartilage condensation, we identified the onset of cartilage for both species at around stage 31. Other structures that developed later without a noticeable anlage were the labial cartilages, which appear at around stage 33. We observed that the lower jaw displays striking differences in shape from the earliest moments, without any overlap in shape through the compared stages.
Conclusions
The differences observed are also reflected in the functional variation in feeding mechanism between both species. Likewise, the trajectory analysis shows that the main differences are in the magnitude of the shape change through time. Both species follow a unique trajectory, which is explained by the timing between stages.
Collapse
|
18
|
Branching patterns of the afferent branchial arteries and their phylogenetic significance in rays (Batoidea). Sci Rep 2021; 11:23236. [PMID: 34853331 PMCID: PMC8636609 DOI: 10.1038/s41598-021-02145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022] Open
Abstract
Rays of the superorder Batoidea comprise the most diverse group of chondrichthyans in terms of valid species and morphological disparity. Up to the present little agreement is observed in studies based on morphological and molecular data focused on uncovering the interrelationships within Batoidea. Morphology-based phylogenies of batoids have not included characters related to the afferent branchial arteries, and little is known about the variation in this anatomical complex in rays. Herein, representatives of 32 genera from 19 families currently recognized of rays were examined as well as some shark taxa. Seven new characters are proposed and tested in two different analyses, one on their own and in the other they were added to the morphological data matrix of the most recent analysis of interrelationships within Batoidea. The arrangement of afferent branchial arteries differs mainly among orders and families of batoids. The absence of a common trunk from which the three posteriormost afferent arteries branch is interpreted as a synapomorphy for Myliobatiformes and the presence of a coronary cranial artery as an autapomorphy for Mobula hypostoma. A close spatial relationship between the second and third afferent arteries within the common branch from the ventral aorta is proposed as a synapomorphy for Rajiformes with a secondary modification in Sympterygia. Data about patterns in afferent branchial arteries in additional taxa such as Squaliformes and Chimaeriformes are needed to better understand the evolution of this character complex among chondrichthyans.
Collapse
|
19
|
Cribb TH, Cutmore SC, Bray RA. The biodiversity of marine trematodes: then, now and in the future. Int J Parasitol 2021; 51:1085-1097. [PMID: 34757087 DOI: 10.1016/j.ijpara.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 10/19/2022]
Abstract
Trematodes are the richest class of platyhelminths in the marine environment, infecting all classes of marine vertebrates as sexual adults and many phyla of marine invertebrates as part of their life cycles. Despite the cryptic nature of their existence (almost all marine trematodes are internal parasites), they have been the focus of study for almost 250 years, with the first species described in 1774. Here we review progress in the study of the "biodiversity" of these parasites, contrasting the progress made in the last 50 years (post-1971) to that in the almost 200 years before it (pre-1972). We consider an understanding of biodiversity to require knowledge of the species present in the system, an understanding of their evolutionary relationships (which informs higher classification), and, specifically for trematodes, an understanding of their complex life cycles. The fauna is now large, comprising well over 5,000 species. Although species description continues, we see evidence of a slow-down in all aspects of discovery. There has been only one completely new family identified since 1984 and the proposal of new genera is in decline as is the description of new species, especially for those of tetrapods. However, the extent to which this slow-down reflects an approach to the richness asymptote is made uncertain by changes in the field; reduced effort and difficulty of study may be important components of the effect. Regardless of how close we are to a complete description of the fauna, we infer that the outline is well-understood although the details are not. Adoption of molecular methodologies over the last 40 years have complemented morphometric analyses to facilitate objective recognition of species; however, despite these objective data, there is still inconsistency between authors on species delimitation. Molecular methodologies have also completely revolutionised inference of relationships at all levels, from within genera to between orders, and underpinned elucidation of novel life cycles. We expect the next 50 years to produce further dividends from technological innovations. The backdrop to the field will be global environmental concerns and the growing problem of funding for basic biodiversity studies.
Collapse
Affiliation(s)
- Thomas H Cribb
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland 4072, Australia.
| | - Scott C Cutmore
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland 4072, Australia
| | - Rodney A Bray
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
20
|
Crobe V, Ferrari A, Hanner R, Leslie RW, Steinke D, Tinti F, Cariani A. Molecular Taxonomy and Diversification of Atlantic Skates (Chondrichthyes, Rajiformes): Adding More Pieces to the Puzzle of Their Evolutionary History. Life (Basel) 2021; 11:life11070596. [PMID: 34206388 PMCID: PMC8303890 DOI: 10.3390/life11070596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 11/16/2022] Open
Abstract
Conservation and long-term management plans of marine species need to be based upon the universally recognized key-feature of species identity. This important assignment is particularly challenging in skates (Rajiformes) in which the phenotypic similarity between some taxa and the individual variability in others, hampers accurate species identification. Here, 432 individual skate samples collected from four major ocean areas of the Atlantic were barcoded and taxonomically analysed. A BOLD project ELASMO ATL was implemented with the aim of establishing a new fully available and well curated barcode library containing both biological and molecular information. The evolutionary histories of the 38 skate taxa were estimated with two concatenated mitochondrial markers (COI and NADH2) through Maximum Likelihood and Bayesian inference. New evolutionary lineages within the genus Raja were discovered off Angola, where paleogeographic history coupled with oceanographic discontinuities could have contributed to the establishment of isolated refugia, playing a fundamental role among skates' speciation events. These data successfully resolved many taxonomic ambiguities, identified cryptic diversity within valid species and demonstrated a highly cohesive monophyletic clustering among the order, laying the background for further inference of evolutionary patterns suitable for addressing management and conservation issues.
Collapse
Affiliation(s)
- Valentina Crobe
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 240126 Bologna, Italy; (A.F.); (A.C.)
- Correspondence: (V.C.); (F.T.)
| | - Alice Ferrari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 240126 Bologna, Italy; (A.F.); (A.C.)
| | - Robert Hanner
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Robin W. Leslie
- Department of Agriculture, Forestry and Fisheries (DAFF), Branch Fisheries Management, Cape Town 8018, South Africa;
- Department of Ichthyology and Fisheries Science (DIFS), Rhodes University, Grahamstown 6139, South Africa
| | - Dirk Steinke
- Department of Integrative Biology, Centre for Biodiversity Genomics, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Fausto Tinti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 240126 Bologna, Italy; (A.F.); (A.C.)
- Correspondence: (V.C.); (F.T.)
| | - Alessia Cariani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 240126 Bologna, Italy; (A.F.); (A.C.)
| |
Collapse
|
21
|
Ellis JR, Barker J, McCully Phillips SR, Meyers EKM, Heupel M. Angel sharks (Squatinidae): A review of biological knowledge and exploitation. JOURNAL OF FISH BIOLOGY 2021; 98:592-621. [PMID: 33174197 DOI: 10.1111/jfb.14613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Angel sharks (Squatina spp.) are distributed in warm temperate to tropical waters around the world. Many species occur in shelf seas and exhibit seasonal inshore-offshore migrations, moving inshore to give birth. Consequently, there can be high spatial overlap of angel shark populations with fisheries and other human activities. Their dorso-ventrally flattened body shape, large size (most species attain >100 cm total length, LT ) and demersal nature means that they may be taken in a variety of demersal fishing gears from birth. Available data indicate that angel sharks typically have a biennial reproductive cycle, with litter sizes generally <20 and the young born at c. 20-30 cm. The biological characteristics of angel sharks render them susceptible to overexploitation, as exemplified by the decline of Squatina squatina from many parts of its former range in the north-east Atlantic and Mediterranean Sea. Currently, half of the 22 recognized extant species of angel shark are classed as Threatened on the International Union for Conservation of Nature (IUCN) Red List (with a further three classified as Data Deficient). Given the biological vulnerability of angel sharks, and that many species are data-limited, the current paper provides a review of available biological information and fisheries data pertaining to this family.
Collapse
Affiliation(s)
- Jim R Ellis
- Centre for Environment, Fisheries and Aquaculture Science, Suffolk, UK
| | | | | | - Eva K M Meyers
- Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Michelle Heupel
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
22
|
Complete Mitochondrial DNA Genome of Nine Species of Sharks and Rays and Their Phylogenetic Placement among Modern Elasmobranchs. Genes (Basel) 2021; 12:genes12030324. [PMID: 33668210 PMCID: PMC7995966 DOI: 10.3390/genes12030324] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
Chondrichthyes occupy a key position in the phylogeny of vertebrates. The complete sequence of the mitochondrial genome (mitogenome) of four species of sharks and five species of rays was obtained by whole genome sequencing (DNA-seq) in the Illumina HiSeq2500 platform. The arrangement and features of the genes in the assembled mitogenomes were identical to those found in vertebrates. Both Maximum Likelihood (ML) and Bayesian Inference (BI) analyses were used to reconstruct the phylogenetic relationships among 172 species (including 163 mitogenomes retrieved from GenBank) based on the concatenated dataset of 13 individual protein coding genes. Both ML and BI analyses did not support the “Hypnosqualea” hypothesis and confirmed the monophyly of sharks and rays. The broad notion in shark phylogeny, namely the division of sharks into Galeomorphii and Squalomorphii and the monophyly of the eight shark orders, was also supported. The phylogenetic placement of all nine species sequenced in this study produced high statistical support values. The present study expands our knowledge on the systematics, genetic differentiation, and conservation genetics of the species studied, and contributes to our understanding of the evolutionary history of Chondrichthyes.
Collapse
|
23
|
Mikula O, Nicolas V, Šumbera R, Konečný A, Denys C, Verheyen E, Bryjová A, Lemmon AR, Moriarty Lemmon E, Bryja J. Nuclear phylogenomics, but not mitogenomics, resolves the most successful Late Miocene radiation of African mammals (Rodentia: Muridae: Arvicanthini). Mol Phylogenet Evol 2021; 157:107069. [PMID: 33421615 DOI: 10.1016/j.ympev.2021.107069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 01/09/2023]
Abstract
The tribe Arvicanthini (Muridae: Murinae) is a highly diversified group of rodents (ca. 100 species) and with 18 African genera (plus one Asiatic) represents probably the most successful adaptive radiation of extant mammals in Africa. They colonized a broad spectrum of habitats (from rainforests to semi-deserts) in whole sub-Saharan Africa and their members often belong to most abundant parts of mammal communities. Despite intensive efforts, the phylogenetic relationships among major lineages (i.e. genera) remained obscured, which was likely caused by the intensive radiation of the group, dated to the Late Miocene. Here we used genomic scale data (377 nuclear loci; 581,030 bp) and produced the first fully resolved species tree containing all currently delimited genera of the tribe. Mitogenomes were also extracted, and while the results were largely congruent, there was less resolution at basal nodes of the mitochondrial phylogeny. Results of a fossil-based divergence dating analysis suggest that the African radiation started early after the colonization of Africa by a single arvicanthine ancestor from Asia during the Messinian stage (ca. 7 Ma), and was likely linked with a fragmentation of the pan-African Miocene forest. Some lineages remained in the rain forest, while many others successfully colonized broad spectrum of new open habitats (e.g. savannas, wetlands or montane moorlands) that appeared at the beginning of Pliocene. One lineage even evolved partially arboricolous life style in savanna woodlands, which allowed them to re-colonize equatorial forests. We also discuss delimitation of genera in Arvicanthini and propose corresponding taxonomic changes.
Collapse
Affiliation(s)
- Ondřej Mikula
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 603 65 Brno, Czech Republic; Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP51, 75005 Paris, France
| | - Radim Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Adam Konečný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Christiane Denys
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP51, 75005 Paris, France
| | - Erik Verheyen
- Royal Belgian Institute for Natural Sciences, Operational Direction Taxonomy and Phylogeny, 1000 Brussels, Belgium; Evolutionary Ecology Group, Biology Department, University of Antwerp, 2020 Antwerp, Belgium
| | - Anna Bryjová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL 32306-4295, United States
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, PO Box 3064295, Tallahassee, FL 32306-4295, United States
| | - Josef Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 603 65 Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic.
| |
Collapse
|
24
|
Evolutionary trends of the conserved neurocranium shape in angel sharks (Squatiniformes, Elasmobranchii). Sci Rep 2020; 10:12582. [PMID: 32724124 PMCID: PMC7387474 DOI: 10.1038/s41598-020-69525-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/19/2020] [Indexed: 11/24/2022] Open
Abstract
Elasmobranchii (i.e., sharks, skates, and rays) forms one of the most diverse groups of marine predators. With a fossil record extending back into the Devonian, several modifications in their body plan illustrate their body shape diversity through time. The angel sharks, whose fossil record dates back to the Late Jurassic, some 160 Ma, have a dorsoventrally flattened body, similar to skates and rays. Fossil skeletons of this group show that the overall morphology was well established earlier in its history. By examining the skull shape of well-preserved fossil material compared to extant angel sharks using geometric morphometric methods, within a phylogenetic framework, we were able to determine the conservative skull shape among angel sharks with a high degree of integration. The morphospace occupation of extant angel sharks is rather restricted, with extensive overlap. Most of the differences in skull shape are related to their geographic distribution patterns. We found higher levels of disparity in extinct forms, but lower ones in extant species. Since angel sharks display a highly specialized prey capture behaviour, we suggest that the morphological integration and biogeographic processes are the main drivers of their diversity, which might limit their capacity to display higher disparities since their origin.
Collapse
|
25
|
Zaragoza-Tapia F, Pulido-Flores G, Gardner SL, Monks S. Host relationships and geographic distribution of species of Acanthobothrium Blanchard, 1848 (Onchoproteocephalidea, Onchobothriidae) in elasmobranchs: a metadata analysis. Zookeys 2020; 940:1-49. [PMID: 32581630 PMCID: PMC7303228 DOI: 10.3897/zookeys.940.46352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/07/2020] [Indexed: 11/12/2022] Open
Abstract
Species of Acanthobothrium have been documented as parasites of the spiral intestine of elasmobranchs. Results of a metadata analysis indicate that 114 species of elasmobranchs have been reported as hosts of 200 species of Acanthobothrium. The metadata analysis revealed that 3.7% of species of sharks and 14.9% of species of rays that have been reported as hosts to date; some species are parasitized by more than one species of Acanthobothrium. This work provides a Category designation, as proposed by Ghoshroy and Caira (2001), for each species of Acanthobothrium. These Category designations are a tool to facilitate comparisons among members of Acanthobothrium for descriptions of new species in the future.
Collapse
Affiliation(s)
- Francisco Zaragoza-Tapia
- Universidad Autónoma del Estado de Hidalgo, Centro de Investigaciones Biológicas, Apartado Postal 1-10, C.P. 42001, Pachuca, Hidalgo, MéxicoUniversidad Autónoma del Estado de HidalgoHidalgoMexico
| | - Griselda Pulido-Flores
- Universidad Autónoma del Estado de Hidalgo, Centro de Investigaciones Biológicas, Apartado Postal 1-10, C.P. 42001, Pachuca, Hidalgo, MéxicoUniversidad Autónoma del Estado de HidalgoHidalgoMexico
- Harold W. Manter Laboratory of Parasitology, University of Nebraska-Lincoln, Lincoln, NE 68588-0514, USAUniversity of NebraskaLincolnUnited States of America
| | - Scott L. Gardner
- Harold W. Manter Laboratory of Parasitology, University of Nebraska-Lincoln, Lincoln, NE 68588-0514, USAUniversity of NebraskaLincolnUnited States of America
| | - Scott Monks
- Universidad Autónoma del Estado de Hidalgo, Centro de Investigaciones Biológicas, Apartado Postal 1-10, C.P. 42001, Pachuca, Hidalgo, MéxicoUniversidad Autónoma del Estado de HidalgoHidalgoMexico
- Harold W. Manter Laboratory of Parasitology, University of Nebraska-Lincoln, Lincoln, NE 68588-0514, USAUniversity of NebraskaLincolnUnited States of America
| |
Collapse
|
26
|
Warren MB, Bakenhaster MD, Scharer RM, Poulakis GR, Bullard SA. A new genus and species of fish blood fluke, Achorovermis testisinuosus gen. et sp. n. (Digenea: Aporocotylidae), infecting critically endangered smalltooth sawfish, Pristis pectinata (Rhinopristiformes: Pristidae) in the Gulf of Mexico. Folia Parasitol (Praha) 2020; 67. [PMID: 32350154 DOI: 10.14411/fp.2020.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/10/2020] [Indexed: 11/19/2022]
Abstract
Achorovermis testisinuosus gen. et sp. n. (Digenea: Aporocotylidae) infects the heart of the smalltooth sawfish, Pristis pectinata Latham (Rhinopristiformes: Pristidae), in the eastern Gulf of Mexico. Specimens of the new genus, along with the other blood flukes that infect batoids are similar by having an inverse U-shaped intestine and a curving testis as well as by lacking tegumental spines. The new genus differs from all of the other blood flukes infecting batoids by having an elongate body (>50 × longer than wide), a testis having >100 curves, and an ovary wholly anterior to the uterus. It differs from Ogawaia glaucostegi Cutmore, Cribb et Yong, 2018, the only other blood fluke infecting a rhinopristiform, by having a body that is >50 × (vs <30 ×) longer than wide, a testis that is >75 × (vs <40 ×) longer than wide and has >100 (vs <70) curves, an ovary wholly anterior to (vs lateral and dorsal to) the seminal vesicle, a uterus wholly posterior to (vs overlapping and lateral to both) the testis and ovary, and a sinuous (vs convoluted) uterus. The new species joins a small group of chondrichthyan blood flukes that lack tegumental spines: O. glaucostegi, Orchispirium heterovitellatum Madhavi et Rao, 1970, Myliobaticola richardheardi Bullard et Jensen, 2008, Electrovermis zappum Warren et Bullard, 2019. Blood flukes infecting batoids are further unique by having a curving testis. That is, the blood flukes infecting species within Selachii are morphologically distinct from those infecting species within the Batoidea (excluding Gymnurahemecus bulbosus Warren et Bullard, 2019). Based on the morphological similarity, we suspect that the new species shares a recent common ancestor with O. glaucostegi. The discovery of the new species brings the total number of chondrichthyan blood flukes to 11 species assigned to nine genera.
Collapse
Affiliation(s)
- Micah B Warren
- Auburn University, School of Fisheries, Aquaculture & Aquatic Sciences and Aquatic Parasitology Laboratory, Auburn, AL, USA
| | - Micah D Bakenhaster
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, USA
| | - Rachel M Scharer
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Charlotte Harbor Field Laboratory, Port Charlotte, FL, USA
| | - Gregg R Poulakis
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Charlotte Harbor Field Laboratory, Port Charlotte, FL, USA
| | - Stephen A Bullard
- Auburn University, School of Fisheries, Aquaculture & Aquatic Sciences and Aquatic Parasitology Laboratory, Auburn, AL, USA
| |
Collapse
|
27
|
Sternes PC, Shimada K. Body forms in sharks (Chondrichthyes: Elasmobranchii) and their functional, ecological, and evolutionary implications. ZOOLOGY 2020; 140:125799. [PMID: 32413674 DOI: 10.1016/j.zool.2020.125799] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 11/29/2022]
Abstract
Sharks are among the oldest vertebrate lineages in which their success has been attributed to their diversity in body shape and locomotor design. In this study, we investigated the diversity of body forms in extant sharks using landmark-based geometric morphometric analyses on nearly all the known (ca. 470) extant sharks. We ran three different analyses: the 'full body,' 'precaudal body,' and 'caudal fin' analyses. Our study suggests that there are two basic body forms in sharks, a 'shallow-bodied' form (Group A) and 'deep-bodied' form (Group B), where all sharks essentially have one basic caudal fin design of a heterocercal tail despite some specializations. We found that swimming modes in sharks are highly correlated with body forms where Group A sharks are predominantly anguilliform swimmers and Group B sharks are represented by carangiform and thunniform swimmers. The majority of Group A sharks are found to be benthic whereas pelagic forms are relatively common among Group B sharks. Each of the two superorders of sharks, Squalomorphii and Galeomorphii, must have gone through complex evolutionary history where each superorder contains both Group A sharks and Group B sharks, possibly involving parallel evolution from one group to the other or at least one episode of evolutionary reversal.
Collapse
Affiliation(s)
- Phillip C Sternes
- Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, IL, 60614, USA.
| | - Kenshu Shimada
- Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, IL, 60614, USA; Department of Environmental Science and Studies, DePaul University, 1110 West Belden Avenue, Chicago, IL, 60614, USA; Sternberg Museum of Natural History, Fort Hays State University, 3000 Sternberg Drive, Hays, KS, 67601, USA
| |
Collapse
|
28
|
Stone NR, Shimada K. Skeletal Anatomy of the Bigeye Sand Tiger Shark, Odontaspis noronhai (Lamniformes: Odontaspididae), and Its Implications for Lamniform Phylogeny, Taxonomy, and Conservation Biology. COPEIA 2019. [DOI: 10.1643/cg-18-160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Nicholas R. Stone
- Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, Illinois 60614; (NRS) nrstone3@gmail. com; and (KS) . Send reprint requests to KS
| | - Kenshu Shimada
- Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, Illinois 60614; (NRS) nrstone3@gmail. com; and (KS) . Send reprint requests to KS
| |
Collapse
|
29
|
Derouiche I, Neifar L, Gey D, Justine JL, Tazerouti F. Holocephalocotyle monstrosae n. gen. n. sp. (Monogenea, Monocotylidae) from the olfactory rosette of the rabbit fish, Chimaera monstrosa (Holocephali, Chimaeridae) in deep waters off Algeria. ACTA ACUST UNITED AC 2019; 26:59. [PMID: 31538935 PMCID: PMC6753859 DOI: 10.1051/parasite/2019060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/09/2019] [Indexed: 11/14/2022]
Abstract
Based on a molecular and morphological study, a new monocotylid genus, Holocephalocotyle n. gen. is proposed to accommodate Holocephalocotyle monstrosae n. sp., found on the olfactory rosette of the rabbit fish, Chimaera monstrosa Linnaeus (Chondrichthyes, Chimaeridae), from the Mediterranean Sea off Algeria. Identification of fish hosts was confirmed by molecular barcoding of the COI gene. A partial 28S rDNA sequence (D1-D2 domain) of Holocephalocotyle monstrosae was obtained; it was distinct from all known monocotylid sequences (p-distance: 15.5-23%). A phylogenetic tree constructed from available monocotylid sequences showed that Holocephalocotyle monstrosae was included, and basal, in a robust group including species of Merizocotyle, Mycteronastes and Empruthotrema, confirming that the species is a member of the Merizocotylinae. The new genus is unique among the Merizocotylinae in having a distinctive pattern of haptoral loculi with one central, five peripheral and seven "interperipheral loculi" partially inserted between peripheral loculi and a compartmentalised sclerotised male copulatory organ. The diagnosis of the Merizocotylinae is amended to include this new genus. The new genus represents the second monocotylid genus recorded from holocephalans.
Collapse
Affiliation(s)
- Imane Derouiche
- Université des Sciences et de la Technologie Houari Boumediene (U.S.T.H.B), Faculté des Sciences Biologiques, Département d'Écologie et Environnement, Laboratoire de Biodiversité et Environnement : Interactions et Génomes, Équipe 1 : Parasites : Biodiversité-Bioécologie-Interactions Hôtes-Parasites, BP 32, El Alia Bab Ezzouar, 16111 Alger, Algeria
| | - Lassad Neifar
- Laboratoire de Biodiversité Marine et environnement, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3038 Sfax, Tunisia
| | - Delphine Gey
- Institut Systématique Évolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 51, 75005 Paris, France
| | - Jean-Lou Justine
- Service de Systématique Moléculaire, UMS 2700 CNRS, Muséum National d'Histoire Naturelle, CP 26, 43 Rue Cuvier, 75231 Paris Cedex 05, France
| | - Fadila Tazerouti
- Université des Sciences et de la Technologie Houari Boumediene (U.S.T.H.B), Faculté des Sciences Biologiques, Département d'Écologie et Environnement, Laboratoire de Biodiversité et Environnement : Interactions et Génomes, Équipe 1 : Parasites : Biodiversité-Bioécologie-Interactions Hôtes-Parasites, BP 32, El Alia Bab Ezzouar, 16111 Alger, Algeria
| |
Collapse
|
30
|
Tan MH, Gan HM, Lee YP, Bracken-Grissom H, Chan TY, Miller AD, Austin CM. Comparative mitogenomics of the Decapoda reveals evolutionary heterogeneity in architecture and composition. Sci Rep 2019; 9:10756. [PMID: 31341205 PMCID: PMC6656734 DOI: 10.1038/s41598-019-47145-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/05/2019] [Indexed: 01/21/2023] Open
Abstract
The emergence of cost-effective and rapid sequencing approaches has resulted in an exponential rise in the number of mitogenomes on public databases in recent years, providing greater opportunity for undertaking large-scale comparative genomic and systematic research. Nonetheless, current datasets predominately come from small and disconnected studies on a limited number of related species, introducing sampling biases and impeding research of broad taxonomic relevance. This study contributes 21 crustacean mitogenomes from several under-represented decapod infraorders including Polychelida and Stenopodidea, which are used in combination with 225 mitogenomes available on NCBI to investigate decapod mitogenome diversity and phylogeny. An overview of mitochondrial gene orders (MGOs) reveals a high level of genomic variability within the Decapoda, with a large number of MGOs deviating from the ancestral arthropod ground pattern and unevenly distributed among infraorders. Despite the substantial morphological and ecological variation among decapods, there was limited evidence for correlations between gene rearrangement events and species ecology or lineage specific nucleotide substitution rates. Within a phylogenetic context, predicted scenarios of rearrangements show some MGOs to be informative synapomorphies for some taxonomic groups providing strong independent support for phylogenetic relationships. Additional comparisons for a range of mitogenomic features including nucleotide composition, strand asymmetry, unassigned regions and codon usage indicate several clade-specific trends that are of evolutionary and ecological interest.
Collapse
Affiliation(s)
- Mun Hua Tan
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia.
- Deakin Genomics Centre, Deakin University, Geelong, Australia.
| | - Han Ming Gan
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Australia
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| | - Yin Peng Lee
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Australia
| | - Heather Bracken-Grissom
- Department of Biological Sciences, Florida International University, North Miami, Florida, 33181, USA
| | - Tin-Yam Chan
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, 20224, Taiwan
| | - Adam D Miller
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Australia
| | - Christopher M Austin
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Australia
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
31
|
Micro-computed tomography imaging reveals the development of a unique tooth mineralization pattern in mackerel sharks (Chondrichthyes; Lamniformes) in deep time. Sci Rep 2019; 9:9652. [PMID: 31273249 PMCID: PMC6609643 DOI: 10.1038/s41598-019-46081-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/18/2019] [Indexed: 11/24/2022] Open
Abstract
The cartilaginous fishes (Chondrichthyes) have a rich fossil record which consists mostly of isolated teeth and, therefore, phylogenetic relationships of extinct taxa are mainly resolved based on dental characters. One character, the tooth histology, has been examined since the 19th century, but its implications on the phylogeny of Chondrichthyes is still in debate. We used high resolution micro-CT images and tooth sections of 11 recent and seven extinct lamniform sharks to examine the tooth mineralization processes in this group. Our data showed similarities between lamniform sharks and other taxa (a dentinal core of osteodentine instead of a hollow pulp cavity), but also one feature that has not been known from any other elasmobranch fish: the absence of orthodentine. Our results suggest that this character resembles a synapomorphic condition for lamniform sharks, with the basking shark, Cetorhinus maximus, representing the only exception and reverted to the plesiomorphic tooth histotype. Additionally, †Palaeocarcharias stromeri, whose affiliation still is debated, shares the same tooth histology only known from lamniform sharks. This suggests that †Palaeocarcharias stromeri is member of the order Lamniformes, contradicting recent interpretations and thus, dating the origin of this group back at least into the Middle Jurassic.
Collapse
|