1
|
Bertolo MRV, Pereira TS, dos Santos FV, Facure MHM, dos Santos F, Teodoro KBR, Mercante LA, Correa DS. Citrus wastes as sustainable materials for active and intelligent food packaging: Current advances. Compr Rev Food Sci Food Saf 2025; 24:e70144. [PMID: 40034076 PMCID: PMC11929373 DOI: 10.1111/1541-4337.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/07/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Citrus fruits are one of the most popular crops in the world, and around one quarter of them are subjected to industrial processes, aiming at the production of different food products. Citrus processing generates large amounts of waste, including peels, pulp, and seeds. These materials are rich sources of polymers (e.g., pectin, cellulose, hemicellulose, lignin), phenolic compounds, and essential oils. At the same time, the development of food packaging materials using citrus waste is a highly sought strategy for food preservation, and meets the principles of circular economy. This review surveys current advances in the development of active and intelligent food packaging produced using one or more citrus waste components (polymers, phenolics extracts, and essential oils). It highlights the contribution and effects of each of these components on the properties of the developed packaging, as well as emphasizes the current state and challenges for developing citrus-based packaging. Most of the reported investigations employed citrus pectin as a base polymer to produce packaging films through the casting technique. Likewise, most of them focused on developing active materials, and fewer studies have explored the preparation of citrus waste-based intelligent materials. All studies characterized the materials developed, but only a few actually applied them to food matrices. This review is expected to encourage novel investigations that contribute to food preservation and to reduce the environmental impacts caused by discarded citrus byproducts.
Collapse
Affiliation(s)
- Mirella R. V. Bertolo
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Tamires S. Pereira
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
- PPGQ, Department of Chemistry, Center for Exact Sciences and TechnologyFederal University of Sao Carlos (UFSCar)Sao CarlosSPBrazil
| | - Francisco V. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
- PGrCEM, Department of Materials Engineering, Sao Carlos School of EngineeringUniversity of Sao PauloSao CarlosSPBrazil
| | - Murilo H. M. Facure
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Fabrício dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Luiza A. Mercante
- Institute of ChemistryFederal University of Bahia (UFBA)SalvadorBABrazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
- PPGQ, Department of Chemistry, Center for Exact Sciences and TechnologyFederal University of Sao Carlos (UFSCar)Sao CarlosSPBrazil
- PGrCEM, Department of Materials Engineering, Sao Carlos School of EngineeringUniversity of Sao PauloSao CarlosSPBrazil
| |
Collapse
|
2
|
Xuereb MA, Psakis G, Attard K, Lia F, Gatt R. A Comprehensive Analysis of Non-Thermal Ultrasonic-Assisted Extraction of Bioactive Compounds from Citrus Peel Waste Through a One-Factor-at-a-Time Approach. Molecules 2025; 30:648. [PMID: 39942752 PMCID: PMC11820553 DOI: 10.3390/molecules30030648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Food waste presents a critical environmental and economic challenge across Europe. In the Mediterranean region, the agricultural industry generates considerable quantities of citrus fruits, leading to significant byproduct waste, which remains underutilized. To help address this, this study explored the valorization of orange peel waste using non-thermal ultrasonic-assisted extraction (UAE) and a one-factor-at-a-time experimental design to investigate the effects of nine chemical and physical UAE parameters. The goal was to identify ideal operational ranges for each parameter using several responses (bioactive compound recovery, antioxidant activity, and radical scavenging activity), thus elucidating the most influential UAE factors and their role in co-extracting various classes of natural compounds. The key findings revealed that the polarity and ionic potential of the extraction medium, tuned through ethanol:water or pH, significantly influenced both the chemical profile and bioactivity of the extracts. Notably, citric acid and citrates appeared to stabilize co-extracted compounds. Lower solid-to-liquid ratios increased yields, while particle sizes between 1400 and 710 µm enhanced phenolic recovery by approximately 150 mg/L GAE. In contrast, increases in pulse, probe diameter, immersion depth, and extraction time led to degradation of bioactive compounds, whereas the maximal amplitude improved phenolic acid recovery by up to 2-fold. Collectively, these insights provide a foundation for optimizing non-thermal UAE to valorize orange peel waste.
Collapse
Affiliation(s)
- Matthew A. Xuereb
- Metamaterials Unit, Faculty of Science, University of Malta, MSD 2080 Msida, Malta; (M.A.X.); (G.P.)
| | - Georgios Psakis
- Metamaterials Unit, Faculty of Science, University of Malta, MSD 2080 Msida, Malta; (M.A.X.); (G.P.)
- Institute of Applied Sciences (IAS), The Malta College of Arts, Science and Technology (MCAST), PLA 9032 Paola, Malta;
| | - Karen Attard
- Institute of Applied Sciences (IAS), The Malta College of Arts, Science and Technology (MCAST), PLA 9032 Paola, Malta;
| | - Frederick Lia
- Metamaterials Unit, Faculty of Science, University of Malta, MSD 2080 Msida, Malta; (M.A.X.); (G.P.)
- Institute of Applied Sciences (IAS), The Malta College of Arts, Science and Technology (MCAST), PLA 9032 Paola, Malta;
| | - Ruben Gatt
- Metamaterials Unit, Faculty of Science, University of Malta, MSD 2080 Msida, Malta; (M.A.X.); (G.P.)
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta
| |
Collapse
|
3
|
Erdem Yayayürük A, Çankaya N, Yayayürük O. Greener Synthesis of Poly(LIM- co-DVB- co-AMPS): A Sustainable Approach to Methylene Blue Removal. ACS OMEGA 2024; 9:50147-50157. [PMID: 39741846 PMCID: PMC11683600 DOI: 10.1021/acsomega.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 01/03/2025]
Abstract
A novel environmentally friendly adsorbent, poly(limonene-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propanesulfonic acid, LIM-co-DVB-co-AMPS), was synthesized and applied for the adsorption of methylene blue from aqueous solutions in this study. The structure, morphology, and thermal stability of the green adsorbent were determined by the FTIR, SEM, TGA/DTA/DTG, and BET techniques, ζ potential, and elemental analysis. The efficiency of the adsorption process was improved with respect to several experimental conditions, viz., adsorbent dose, pH, and contact time. The adsorption process was found to fit very well with the Langmuir isotherm and the pseudo-second-order model. Benefiting from the higher number of surface sites, porous structure, and good surface area, poly(LIM-co-DVB-co-AMPS) particles exhibited a superior adsorption performance for MB with a Langmuir adsorption capacity of 98 mg g-1. The selectivity of the sorbent does not depend on the coexisting ions, and the sorbent is applicable in complex matrixes in the presence of these ions. The elution process was employed using ethanol within a 1.0 M hydrochloric acid (HCl) medium, leading to a remarkable usability exceeding 90% even after five consecutive adsorption/desorption cycles. Spike recovery experiments conducted using real water samples substantiate the practical applicability of the adsorbent. The high efficiency, utilization of cost-effective materials, and ease of fabrication, coupled with their selective nature and lower environmental impact through sorbent reuse, collectively confer superior advantages. These distinctive features render the environmentally benign adsorbent highly applicable for promising applications in the removal of methylene blue from aqueous solutions.
Collapse
Affiliation(s)
- Aslı Erdem Yayayürük
- Faculty
of Science, Department of Chemistry, Ege
University, İzmir 35100, Turkey
| | - Nevin Çankaya
- Vocational
School of Health Services-Oral and Dental Health Department, Uşak University, Uşak 64200, Turkey
| | - Onur Yayayürük
- Faculty
of Science, Department of Chemistry, Ege
University, İzmir 35100, Turkey
| |
Collapse
|
4
|
Liu Y, Yan N, Chen Q, Dong L, Li Y, Weng P, Wu Z, Pan D, Liu L, Farag MA, Wang L, Liu L. Research advances in citrus polyphenols: green extraction technologies, gut homeostasis regulation, and nano-targeted delivery system application. Crit Rev Food Sci Nutr 2024; 64:11493-11509. [PMID: 37552798 DOI: 10.1080/10408398.2023.2239350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.
Collapse
Affiliation(s)
- Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Laoshan District, Qingdao, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Peifang Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Abderrrezag N, Domínguez-Rodríguez G, Montero L, Mendiola JA. Nutraceutical potential of Mediterranean agri-food waste and wild plants: Green extraction and bioactive characterization. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 114:1-95. [PMID: 40155083 DOI: 10.1016/bs.afnr.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
The agricultural waste and wild plants of the Mediterranean region offer significant nutraceutical potential, rich in bioactive compounds such as phenolics, carotenoids, lipids and volatile organic compounds. These compounds exhibit health-promoting properties, including antioxidant, neuroprotective and anti-inflammatory effects. Advanced analytical techniques such as HPLC, GC-MS and NMR are essential for the accurate chemical characterization of these bioactives. Green extraction methods, including ultrasound-assisted, enzyme-assisted and cold plasma-assisted extractions, provide efficient and environmentally friendly alternatives to classical techniques for the isolation of bioactive compounds. The valorization of Mediterranean agricultural by-products, such as olive pomace, grape seeds, and citrus peels, exemplifies sustainable approaches to the utilization of these underutilized resources. This chapter explores the bioactive characterization and green extraction methods that contribute to unlocking the nutraceutical potential of Mediterranean plant waste and wild plants, highlighting their role in the development of functional foods and natural health products.
Collapse
Affiliation(s)
- Norelhouda Abderrrezag
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain; Laboratory of Environmental Processes Engineering, University of Salah Boubnider Constantine 3, Constantine, Algeria
| | - Gloria Domínguez-Rodríguez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain; Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Alcalá de Henares, Madrid, Spain
| | - Lidia Montero
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain.
| | - Jose A Mendiola
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain.
| |
Collapse
|
6
|
Dambuza A, Rungqu P, Oyedeji AO, Miya GM, Kuria SK, Hosu SY, Oyedeji OO. Extraction, Characterization, and Antioxidant Activity of Pectin from Lemon Peels. Molecules 2024; 29:3878. [PMID: 39202957 PMCID: PMC11357295 DOI: 10.3390/molecules29163878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Pectin is a natural polymer that is found in the cell walls of higher plants. This study presents a comprehensive analysis of pectin extracted from lemon in two different geographic regions (Peddie and Fort Beaufort) in two consecutive years (2023 and 2024) named PP 2023, PP 2024, FBP 2023, and FBP 2024. The dried lemon peels were ground into a powder, sifted to obtain particles of 500 μm, and then subjected to pectin extraction using a conventional method involving mixing lemon peel powder with distilled water, adjusting the pH level to 2.0 with HCl, heating the mixture at 70 °C for 45 min, filtering the acidic extract, and precipitating pectin with ethanol. The yield of these pectin samples was statistically significant, as FBP 2024 had a maximum yield of 12.2 ± 0.02%, PP 2024 had a maximum yield of 13.0 ± 0.02%, FBP 2023 had a maximum yield of 12.2 ± 0.03%, and PP 2023 had a maximum yield of 13.1 ± 0.03%, The variation in yield could be due to the differences in the growing conditions, such as the climate and soil, which could have affected the pectin content in the lemons. The physicochemical characterization of all samples proved that our pectin samples could be used in the pharmaceutical and food industries, with anhydrouronic acid content which was greater than 65%, as suggested by the FAO. The scanning electron microscope analysis of all extracted pectin was rough and jagged, while the commercial pectin displayed a smooth surface morphology with a consistent size. FTIR confirmed the functional groups which were present in our samples. Thermogravimetric analysis was employed to investigate the thermal behavior of the extracted pectin in comparison with commercial pectin. It was found that the extracted pectin had three-step degradation while the commercial pectin had four-step degradation. Additionally, pectin samples have been shown to have antioxidants, as the IC50 of PP 2024, PP 2023, FBP 2023, FBP 2024, and Commercial P was 1062.5 ± 20.0, 1201.3 ± 22.0, 1304.6 ± 19.0, 1382.6 ± 29.9, and 1019.4 ± 17.1 mg/L, respectively. These findings indicate that lemon pectin has promising characteristics as a biopolymer for use in biomedical applications.
Collapse
Affiliation(s)
- Anathi Dambuza
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa
| | - Pamela Rungqu
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa
| | - Adebola Omowunmi Oyedeji
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa
| | - Gugulethu M Miya
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa
| | - Simon K Kuria
- Department of Biological and Environmental Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa
| | - Sunday Yiseyon Hosu
- Department of Business Management and Economics, Faculty of Economics and Financial Sciences, Walter Sisulu University, P/Bag X1, Mthatha 5117, South Africa
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa
| |
Collapse
|
7
|
Umaña M, Simal S, Dalmau E, Turchiuli C, Chevigny C. Evaluation of Different Pectic Materials Coming from Citrus Residues in the Production of Films. Foods 2024; 13:2138. [PMID: 38998643 PMCID: PMC11241157 DOI: 10.3390/foods13132138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
This article explores the use of citrus residues as a source of different pectic materials for packaging film production: a water-soluble orange residue extract (WSE) (~5% pectin), semi-pure pectins extracted in citric acid (SP) (~50% pectin), and commercial pure citrus pectins (CP). First, these materials were characterized in terms of chemical composition. Then, films were produced using them pure or mixed with chitosan or glycerol through solvent-casting. Finally, antioxidant activity, functional properties (e.g., mechanical and gas barrier properties), and visual appearance of the films were assessed. WSE films showed the highest antioxidant activity but the lowest mechanical strength with the highest elongation at break (EB) (54%); incorporating chitosan increased the films' strength (Young's modulus 35.5 times higher). SP films showed intermediate mechanical properties, reinforced by chitosan addition (Young's modulus 4.7 times higher); they showed an outstanding dry O2 barrier. CP films showed a similar O2 barrier to SP films and had the highest Young's modulus (~29 MPa), but their brittleness required glycerol for improved pliability, and chitosan addition compromised their surface regularity. Overall, the type of pectic material determined the film's properties, with less-refined pectins offering just as many benefits as pure commercial ones.
Collapse
Affiliation(s)
- Mónica Umaña
- Department of Chemistry, Universitat de les Illes Balears, 07011 Palma, Spain; (M.U.); (E.D.)
| | - Susana Simal
- Department of Chemistry, Universitat de les Illes Balears, 07011 Palma, Spain; (M.U.); (E.D.)
| | - Esperanza Dalmau
- Department of Chemistry, Universitat de les Illes Balears, 07011 Palma, Spain; (M.U.); (E.D.)
| | - Christelle Turchiuli
- INRAE, AgroParisTech, UMR SayFood, Université Paris-Saclay, 91120 Palaiseau, France; (C.T.); (C.C.)
| | - Chloé Chevigny
- INRAE, AgroParisTech, UMR SayFood, Université Paris-Saclay, 91120 Palaiseau, France; (C.T.); (C.C.)
| |
Collapse
|
8
|
Cirrincione F, Ferranti P, Ferrara A, Romano A. A critical evaluation on the valorization strategies to reduce and reuse orange waste in bakery industry. Food Res Int 2024; 187:114422. [PMID: 38763672 DOI: 10.1016/j.foodres.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Tons of orange by-products (OBPs) are generated during industrial orange processing. Currently, OBPs management is challenging due to their high amounts, physico-chemical characteristics (high water content, low pH, presence of essential oils) and seasonal nature of the production. Whereas agro-industrial OBPs can be highly valuable due to their abundant sources of bioactive compounds, which can add value to novel bakery products (e.g. bread, biscuits, cakes). This review covers the most recent research issues linked to the use of OBPs in bakery products, with a focus on available stabilization methods and on the main challenges to designing improved products. The application of OBPs improved the nutritional quality of bakery products, offering interesting sustainability benefits but also critical challenges. The valorization of OBPs may open new routes for the development of new natural ingredients for the food industry and lower food processing waste.
Collapse
Affiliation(s)
- Federica Cirrincione
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy
| | - Alessandra Ferrara
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy
| | - Annalisa Romano
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy.
| |
Collapse
|
9
|
Lee SH, Park SH, Park H. Assessing the Feasibility of Biorefineries for a Sustainable Citrus Waste Management in Korea. Molecules 2024; 29:1589. [PMID: 38611868 PMCID: PMC11013942 DOI: 10.3390/molecules29071589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Citrus fruits are one of the most widely used fruits around the world and are used as raw fruits, but are also processed into products such as beverages, and large amounts of by-products and waste are generated in this process. Globally, disposal of citrus waste (CW) through simple landfilling or ocean dumping can result in soil and groundwater contamination, which can negatively impact ecosystem health. The case of Korea is not much different in that these wastes are simply buried or recycled wastes are used as livestock feed additives. However, there are many reports that CW, which is a waste, has high potential to produce a variety of products that can minimize environmental load and increase added value through appropriate waste management. In this study, we aim to explore the latest developments in the evaluation and valorization of the growing CW green technologies in an effort to efficiently and environmentally transform these CW for resource recovery, sustainability, and economic benefits. Recent research strategies on integrated biorefinery approaches have confirmed that CW can be converted into various bioproducts such as enzymes, biofuels and biopolymers, further contributing to energy security. It was found that more efforts are needed to scale up green recovery technologies and achieve diverse product profiling to achieve zero waste levels and industrial viability.
Collapse
Affiliation(s)
- Sang-Hwan Lee
- Technical Research Institute, Jeju BioRefine, Jeju 63148, Republic of Korea;
| | - Seong Hee Park
- Technical Research Institute, Fine Korea Corp., Seoul 07294, Republic of Korea;
| | - Hyun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Dikmetas D, Devecioglu D, Karbancioglu-Guler F, Kahveci D. Sequential Extraction and Characterization of Essential Oil, Flavonoids, and Pectin from Industrial Orange Waste. ACS OMEGA 2024; 9:14442-14454. [PMID: 38559951 PMCID: PMC10976415 DOI: 10.1021/acsomega.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Orange is one of the primary fruits processed into juice and other products worldwide, leading to a vast amount of waste accumulation. Such waste has been considered as an attractive candidate for upcycling to obtain bioactive components remaining. The present study investigated the extraction of essential oil (EO), flavonoids, and pectin from industrial orange waste with a holistic approach. To maximize EO yield and d-limonene concentration, hydrodistillation (HD) conditions were selected to be 5.5 mL water/g solid for 180 min. Remaining solids were further used for flavonoid extraction where conventional solvent, sequential ultrasound + solvent, and ultrasound-assisted extraction (UE) were applied. UE applied for 50 min with 120 mL solvent/g solid yielded the highest total phenolic (TPCs) and total flavonoid contents (TFCs), antioxidant capacity, and hesperidin and neohesperidin concentrations. In terms of TPC, TFC, antioxidant capacity, and antibacterial activity, both EO and flavonoid fractions demonstrated moderate to high bioactivity. At the final step, ethanol precipitation was applied to obtain the pectin that was solubilized in hot water during HD and it was characterized by Fourier transform infrared, degree of esterification, and galacturonic acid content. Practical application: to ensure utilization in the food, pharmaceutical, and cosmetic industries, this study presents a combined method to obtain several value-added compounds from industrial orange waste. Bioactive EO and flavonoids obtained could have applications in functional food, supplements, or cosmetic formulations, whereas extracted pectin can be used in many formulated foods and drugs.
Collapse
Affiliation(s)
- Dilara
Nur Dikmetas
- Faculty of Chemical and Metallurgical
Engineering, Department of Food Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Dilara Devecioglu
- Faculty of Chemical and Metallurgical
Engineering, Department of Food Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Funda Karbancioglu-Guler
- Faculty of Chemical and Metallurgical
Engineering, Department of Food Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Derya Kahveci
- Faculty of Chemical and Metallurgical
Engineering, Department of Food Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| |
Collapse
|
11
|
Flores N, Prado J, Espin R, Rodríguez H, Pais-Chanfrau JM. Laboratory evaluation of a bio-insecticide candidate from tangerine peel extracts against Trialeurodes vaporariorum (Homoptera: Aleyrodidae). PeerJ 2024; 12:e16885. [PMID: 38525279 PMCID: PMC10959105 DOI: 10.7717/peerj.16885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/13/2024] [Indexed: 03/26/2024] Open
Abstract
Background The excessive use of synthetic insecticides in modern agriculture has led to environmental contamination and the development of insect resistance. Also, the prolonged use of chemical insecticides in producing flowers and tomatoes in greenhouses has caused health problems for workers and their offspring. In this study, we analyzed the efficacy of mandarin peel (Citrus reticulata L.) essential oil (EO) as a natural insecticide against greenhouse whitefly (Trieurodes vaporariorum W., Homoptera: Aleyrodidae), a common pest in greenhouse production of different crops. Methods Petroleum ether (PET) and n-hexane (HEX) were used as solvents to extract essential oil (EO) from tangerine peels. Results The yield of EO was 1.59% and 2.00% (m/m) for PET and HEX, respectively. Additionally, the insect-killing power of EO was tested by checking how many greenhouse whiteflies died at different times. The results showed that PET and HEX extracts of tangerine EO effectively controlled greenhouse whiteflies. Furthermore, with both solvents, a 12.5% (v/v) application was as practical as the commercial insecticide imidacloprid. Further characterization tests with the polarimeter, FTIR, HPLC-RP, and GC-MS showed that the essential oil (EO) contained about 41% (v/v) of d-limonene and that this compound may be responsible for the observed insecticidal properties. Conclusion Therefore, tangerine peel essential oil is an excellent botanical insecticide candidate for controlling greenhouse whiteflies.
Collapse
Affiliation(s)
| | - Julia Prado
- FICAYA/Carrera de Agroindustria, Universidad Técnica del Norte (UTN), Ibarra, Imbabura, Ecuador
| | - Rosario Espin
- FICAYA/Carrera de Agroindustria, Universidad Técnica del Norte (UTN), Ibarra, Imbabura, Ecuador
| | - Hortensia Rodríguez
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí, Imbabura, Ecuador
| | | |
Collapse
|
12
|
Aiello F, Caputo P, Oliviero Rossi C, Restuccia D, Spizzirri UG. Formulation of Antioxidant Gummies Based on Gelatin Enriched with Citrus Fruit Peels Extract. Foods 2024; 13:320. [PMID: 38275689 PMCID: PMC10815181 DOI: 10.3390/foods13020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
In this work, the peels of red and blonde oranges as well as lemons were efficiently (5.75-9.65% yield) extracted by hydroalcoholic solution with ultrasound assistance and employed as active molecule sources in the preparation of functional gummies. Antioxidant performances of the hydroalcoholic extracts were characterized by colorimetric assays, whereas LC-HRMS analyses identified the main bioactive compounds (phenolic acids and flavonoids). The highest scavenging activity was recorded for lemon extract in an aqueous environment (IC50 = 0.081 mg mL-1). An ecofriendly grafting procedure was performed to anchor polyphenols to gelatin chains, providing macromolecular systems characterized by thermal analysis and antioxidant properties. Scavenger abilities (IC50 = 0.201-0.454 mg mL-1) allowed the employment of the conjugates as functional ingredients in the preparation of gummies with remarkable antioxidant and rheological properties over time (14 days). These findings confirmed the possible employment of highly polluting wastes as valuable sources of bioactive compounds for functional gummies preparation.
Collapse
Affiliation(s)
- Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.A.); (D.R.)
| | - Paolino Caputo
- Department of Chemistry and Chemical Technologies & UdR INSTM, University of Calabria, 87036 Rende, Italy; (P.C.); (C.O.R.)
| | - Cesare Oliviero Rossi
- Department of Chemistry and Chemical Technologies & UdR INSTM, University of Calabria, 87036 Rende, Italy; (P.C.); (C.O.R.)
| | - Donatella Restuccia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.A.); (D.R.)
| | | |
Collapse
|
13
|
Benamar-Aissa B, Gourine N, Ouinten M, Yousfi M. Synergistic effects of essential oils and phenolic extracts on antimicrobial activities using blends of Artemisia campestris, Artemisia herba alba, and Citrus aurantium. Biomol Concepts 2024; 15:bmc-2022-0040. [PMID: 38353049 DOI: 10.1515/bmc-2022-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
This study explores the synergistic antibacterial effects of essential oils (EOs) and phenolic extracts from three plants against foodborne pathogenic bacteria. The present work aimed to investigate the synergistic effects of the binary and the ternary combinations of extracts using different blend proportions of the following plant extracts: Artemisia campestris (AC), Artemisia herba alba (AHA), and Citrus aurantium (CA). The antimicrobial activities of EOs and phenolic extracts were determined and evaluated against five strains. For the EOs, the results of the DIZ showed the existence of synergism for different combinations of binary blends, such as AC/AHA or AHA/CA against Escherichia coli, and AC/CA against Enterobacter faecalis. In addition, ternary blends of AC:AHA:CA at a ratio of 1/6:2/3:1/6 exhibited a synergy effect, as measured by the CI, against E. coli. On the other hand, for the phenolic extracts, synergistic effects were noticed for binary blends of AC/CA at different ratios against E. coli, E. faecalis, and Pseudomonas aeruginosa strains. Similarly, ternary blends of phenolic extracts presented synergy against E. coli, E. faecalis, P. aeruginosa strains, and even C. albicans. In this case, the blending ratios were crucial determining factors for maximizing the synergy effect. The study established that the proportion of a single drug could play an essential role in determining the bioefficacy of a drug combination treatment. Therefore, the results showed the importance of studying the modulation of antibacterial activities based on the proportions of extracts in the mixture and finding the range of proportions (as determined by SLMD) that have a synergistic/additive/antagonistic effect with no or low side effects, which can be used in a food preservation system.
Collapse
Affiliation(s)
- Boualem Benamar-Aissa
- Laboratoire des Sciences Fondamentales (LSF), University Amar Telidji of Laghouat, BP. 37G (03000), Laghouat, Algeria
| | - Nadhir Gourine
- Laboratoire des Sciences Fondamentales (LSF), University Amar Telidji of Laghouat, BP. 37G (03000), Laghouat, Algeria
| | - Mohamed Ouinten
- Laboratoire des Sciences Fondamentales (LSF), University Amar Telidji of Laghouat, BP. 37G (03000), Laghouat, Algeria
| | - Mohamed Yousfi
- Laboratoire des Sciences Fondamentales (LSF), University Amar Telidji of Laghouat, BP. 37G (03000), Laghouat, Algeria
| |
Collapse
|
14
|
Pilar-Izquierdo MC, López-Fouz M, Ortega N, Busto MD. Immobilization of Rhodococcus by encapsulation and entrapment: a green solution to bitter citrus by-products. Appl Microbiol Biotechnol 2023; 107:6377-6388. [PMID: 37615722 PMCID: PMC10560158 DOI: 10.1007/s00253-023-12724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023]
Abstract
Debittering of citrus by-products is required to obtain value-added compounds for application in the food industry (e.g., dietary fiber, bioactive compounds). In this work, the immobilization of Rhodococcus fascians cells by encapsulation in Ca-alginate hollow beads and entrapment in poly(vinyl alcohol)/polyethylene glycol (PVA/PEG) cryogels was studied as an alternative to chemical treatments for degrading the bitter compound limonin. Previously, the Rhodococcus strain was adapted using orange peel extract to increase its tolerance to limonoids. The optimal conditions for the encapsulation of microbial cells were 2% Na-alginate, 4% CaCl2, 4% carboxymethylcellulose (CMC), and a microbial load of 0.6 OD600 (optical density at 600 nm). For immobilization by entrapment, the optimal conditions were 8% PVA, 8% PEG, and 0.6 OD600 microbial load. Immobilization by entrapment protected microbial cells better than encapsulation against the citrus medium stress conditions (acid pH and composition). Thus, under optimal immobilization conditions, limonin degradation was 32 and 28% for immobilization in PVA/PEG gels and in hollow beads, respectively, in synthetic juice (pH 3) after 72 h at 25 °C. Finally, the microbial cells entrapped in the cryogels showed a higher operational stability in orange juice than the encapsulated cells, with four consecutive cycles of reuse (runs of 24 h at 25 °C). KEY POINTS: • Increased tolerance to limonoids by adapting R. fascians with citrus by-products. • Entrapment provided cells with favorable microenvironment for debittering at acid pH. • Cryogel-immobilized cells showed the highest limonin degradation in citrus products.
Collapse
Affiliation(s)
- María C Pilar-Izquierdo
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos, S/N, 09001, Burgos, Spain.
| | - María López-Fouz
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos, S/N, 09001, Burgos, Spain
| | - Natividad Ortega
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos, S/N, 09001, Burgos, Spain
| | - María D Busto
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos, S/N, 09001, Burgos, Spain
| |
Collapse
|
15
|
Panwar D, Panesar PS, Chopra HK. Evaluation of nutritional profile, phytochemical potential, functional properties and anti-nutritional studies of Citrus limetta peels. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2160-2170. [PMID: 37273556 PMCID: PMC10232380 DOI: 10.1007/s13197-023-05743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 06/06/2023]
Abstract
The aim of this work was to determine the proximate, mineral, amino acid composition, antioxidant activity, anti-nutritional factors, total dietary fiber, total phenolic content and technological properties of C. limetta peels. Moreover, analytical techniques including FT-IR and SEM were also conducted to study the morphological and structural properties of C. limetta peels. Considering the proximate, mineral, and amino acid composition, C. limetta peels was found to be a good source of ash (3.06 ± 0.20%), crude fiber (10.13 ± 0.30%), carbohydrate (64.08 ± 0.55%), protein (7.56 ± 0.25%), potassium (125.9671 mg/100 g), calcium (112.5861 mg/100 g), magnesium (16.43 mg/100 g), asparagine (2111.06 nmol/mg), glutamic acid (1331.96 nmol/g), and aspartic acid (1162.19 nmol/mg). Furthermore, they contain an appreciable amount of total dietary fiber (48.73 ± 0.45%), total phenolic content (14.30 ± 0.03 mg GAE/g), and antioxidant activity (52.65 ± 0.10%). Moreover, the antinutritional factors present in C. limetta peels were observed to be within the threshold limit. The results of technological properties of peels suggested that they can be potentially utilized as good emulsifying, gelling, foaming, and bulking agents in food industries. Therefore, C. limetta peels can be successfully re-utilized as natural food additive with numerous nutritive and bioactive properties in food sector, thereby achieving zero waste generation.
Collapse
Affiliation(s)
- Divyani Panwar
- Food Biotechnology Research Laboratory, Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106 India
| | - Parmjit S. Panesar
- Food Biotechnology Research Laboratory, Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106 India
| | - Harish K. Chopra
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106 India
| |
Collapse
|
16
|
Šafranko S, Šubarić D, Jerković I, Jokić S. Citrus By-Products as a Valuable Source of Biologically Active Compounds with Promising Pharmaceutical, Biological and Biomedical Potential. Pharmaceuticals (Basel) 2023; 16:1081. [PMID: 37630996 PMCID: PMC10458533 DOI: 10.3390/ph16081081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Citrus fruits processing results in the generation of huge amounts of citrus by-products, mainly peels, pulp, membranes, and seeds. Although they represent a major concern from both economical and environmental aspects, it is very important to emphasize that these by-products contain a rich source of value-added bioactive compounds with a wide spectrum of applications in the food, cosmetic, and pharmaceutical industries. The primary aim of this review is to highlight the great potential of isolated phytochemicals and extracts of individual citrus by-products with bioactive properties (e.g., antitumor, antimicrobial, antiviral, antidiabetic, antioxidant, and other beneficial activities with health-promoting abilities) and their potential in pharmaceutical, biomedical, and biological applications. This review on citrus by-products contains the following parts: structural and chemical characteristics; the utilization of citrus by-products; bioactivities of the present waxes and carotenoids, essential oils, pectins, and phenolic compounds; and citrus by-product formulations with enhanced biocactivities. A summary of the recent developments in applying citrus by-products for the treatment of different diseases and the protection of human health is also provided, emphasizing innovative methods for bioaccessibility enhancements (e.g., extract/component encapsulation, synthesis of biomass-derived nanoparticles, nanocarriers, or biofilm preparation). Based on the representative phytochemical groups, an evaluation of the recent studies of the past six years (from 2018 to 2023) reporting specific biological and health-promoting activities of citrus-based by-products is also provided. Finally, this review discusses advanced and modern approaches in pharmaceutical/biological formulations and drug delivery (e.g., carbon precursors for the preparation of nanoparticles with promising antimicrobial activity, the production of fluorescent nanoparticles with potential application as antitumor agents, and in cellular imaging). The recent studies implementing nanotechnology in food science and biotechnology could bring about new insights into providing innovative solutions for new pharmaceutical and medical discoveries.
Collapse
Affiliation(s)
- Silvija Šafranko
- Faculty of Food Technology Osijek, University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (S.Š.); (D.Š.)
| | - Drago Šubarić
- Faculty of Food Technology Osijek, University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (S.Š.); (D.Š.)
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Stela Jokić
- Faculty of Food Technology Osijek, University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (S.Š.); (D.Š.)
| |
Collapse
|
17
|
Soares Mateus AR, Barros S, Pena A, Sanches-Silva A. The potential of citrus by-products in the development of functional food and active packaging. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 107:41-90. [PMID: 37898542 DOI: 10.1016/bs.afnr.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Food by-product valorization has become an important research area for promoting the sustainability of the food chain. Citrus fruits are among the most widely cultivated fruit crops worldwide. Citrus by-products, including pomace, seeds, and peels (flavedo and albedo), are produced in large amounts each year. Those by-products have an important economic value due to the high content on bioactive compounds, namely phenolic compounds and carotenoids, and are considered a valuable bio-resource for potential applications in the food industry. However, green extraction techniques are required to ensure their sustainability. This chapter addresses the main components of citrus by-products and their recent applications in food products and active food packaging, towards a circular economy. In addition, the concern regarding citrus by-products contamination (e.g. with pesticides residues and mycotoxins) is also discussed.
Collapse
Affiliation(s)
- Ana Rita Soares Mateus
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal; University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal; LAQV, REQUIMTE, Food Science and Pharmacology Laboratory, University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal; Animal Science Studies Centre (CECA), ICETA, University of Porto, Apartado, Porto, Portugal
| | - Silvia Barros
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Angelina Pena
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal; LAQV, REQUIMTE, Food Science and Pharmacology Laboratory, University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal
| | - Ana Sanches-Silva
- National Institute of Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal; University of Coimbra, Pharmacy Faculty, Polo III, Azinhaga de Stª Comba, Coimbra, Portugal; Animal Science Studies Centre (CECA), ICETA, University of Porto, Apartado, Porto, Portugal.
| |
Collapse
|
18
|
Maiuolo J, Bosco F, Guarnieri L, Nucera S, Ruga S, Oppedisano F, Tucci L, Muscoli C, Palma E, Giuffrè AM, Mollace V. Protective Role of an Extract Waste Product from Citrus bergamia in an In Vitro Model of Neurodegeneration. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112126. [PMID: 37299105 DOI: 10.3390/plants12112126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
A balanced diet, rich in fruits and vegetables and ensuring the intake of natural products, has been shown to reduce or prevent the occurrence of many chronic diseases. However, the choice to consume large quantities of fruits and vegetables leads to an increase in the amount of waste, which can cause an alteration in environmental sustainability. To date, the concept of a "byproduct" has evolved, now being understood as a waste product from which it is still possible obtain useful compounds. Byproducts in the agricultural sector are a rich source of bioactive compounds, capable of possessing a second life, decreasing the amount of waste products, the disposal costs, and environmental pollution. A promising and well-known citrus of the Mediterranean diet is the bergamot (Citrus bergamia, Risso et Poiteau). The composition of bergamot is known, and the rich presence of phenolic compounds and essential oils has justified the countless beneficial properties found, including anti-inflammatory, antioxidant, anti-cholesterolemic, and protective activity for the immune system, heart failure, and coronary heart diseases. The industrial processing of bergamot fruits leads to the formation of bergamot juice and bergamot oil. The solid residues, referred to as "pastazzo", are normally used as feed for livestock or pectin production. The fiber of bergamot (BF) can be obtained from pastazzo and could exert an interesting effect thanks to its content of polyphenols. The aims of this work were twofold: (a) to have more information (composition, polyphenol and flavonoid content, antioxidant activity, etc.) on BF powder and (b) to verify the effects of BF on an in vitro model of neurotoxicity induced by treatment with amyloid beta protein (Aβ). In particular, a study of cell lines was carried out on both neurons and oligodendrocytes, to measure the involvement of the glia and compare it with that of the neurons. The results obtained showed that BF powder contains polyphenols and flavonoids and that it is able to exercise an antioxidant property. Moreover, BF exerts a protective action on the damage induced by treatment with Aβ, and this defense is found in experiments on the cell viability, on the accumulation of reactive oxygen species, on the involvement of the expression of caspase-3, and on necrotic or apoptotic death. In all these results, oligodendrocytes were always more sensitive and fragile than neurons. Further experiments are needed, and if this trend is confirmed, BF could be used in AD; at the same time, it could help to avoid the accumulation of waste products.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, IRC-FSH Center, Department of Health Sciences, School of Pharmacy and Nutraceutical, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Lorenza Guarnieri
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Luigi Tucci
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Angelo Maria Giuffrè
- Department of Agraria, University of Studies "Mediterranea" of Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Vincenzo Mollace
- IRC-FSH Center, Department of Health Sciences, Faculty of Pharmacy, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
- Faculty of Pharmacy, San Raffaele University, 00042, Rome, Italy
| |
Collapse
|
19
|
da Silva MD, Schnorr C, Lütke SF, Silva LFO, Manera C, Perondi D, Godinho M, Collazzo GC, Dotto GL. Citrus fruit residues as alternative precursors to developing H 2O and CO 2 activated carbons and its application for Cu(II) adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63661-63677. [PMID: 37055691 DOI: 10.1007/s11356-023-26860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Due to its toxicity, the presence of Cu(II) ions released in aquatic environments presents a serious threat to the environment and human health. In search of sustainable and low-cost alternatives, there are citrus fruit residues, which are generated in large quantities by the juice industries and can be used to produce activated carbons. Therefore, the physical route was investigated for producing activated carbons to reuse citrus wastes. In this work, eight activated carbons were developed, varying the precursor (orange peel-OP, mandarine peel-MP, rangpur lime peel-RLP, and sweet lime peel-SLP) and the activating agent (CO2 and H2O) to remove Cu(II) ions of the aqueous medium. Results revealed promising activated carbons with a micro-mesoporous structure, a specific surface area of around 400 m2 g-1, and a pore volume of around 0.25 cm3 g-1. In addition, Cu (II) adsorption was favored at pH 5.5. The kinetic study showed that the equilibrium was reached within 60 min removing about 80% of Cu(II) ions. The Sips model was the most suitable for the equilibrium data, providing maximum adsorption capacities (qmS) values of 69.69, 70.27, 88.04, 67.83 mg g-1 for activated carbons (AC-CO2) from OP, MP, RLP, and SLP, respectively. The thermodynamic behavior showed that the adsorption process of Cu(II) ions was spontaneous, favorable, and endothermic. It was suggested that the mechanism was controlled by surface complexation and Cu2+-π interaction. Desorption was possible with an HCl solution (0.5 mol L-1). From the results obtained in this work, it is possible to infer that citrus residues could be successfully converted into efficient adsorbents to remove Cu(II) ions from aqueous solutions.
Collapse
Affiliation(s)
- Mariele D da Silva
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Carlos Schnorr
- Universidad de La Costa, CUC, Calle 58 # 55-66, 080002, Barranquilla, , Atlántico, Colombia
| | - Sabrina F Lütke
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Luis F O Silva
- Universidad de La Costa, CUC, Calle 58 # 55-66, 080002, Barranquilla, , Atlántico, Colombia
| | - Christian Manera
- Engineering of Processes and Technologies Post-Graduate Program, University of Caxias Do Sul-UCS, Caxias Do Sul, Rio Grande Do Sul, Brazil
| | - Daniele Perondi
- Engineering of Processes and Technologies Post-Graduate Program, University of Caxias Do Sul-UCS, Caxias Do Sul, Rio Grande Do Sul, Brazil
| | - Marcelo Godinho
- Engineering of Processes and Technologies Post-Graduate Program, University of Caxias Do Sul-UCS, Caxias Do Sul, Rio Grande Do Sul, Brazil
| | - Gabriela C Collazzo
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Guilherme L Dotto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
20
|
Nirmal NP, Khanashyam AC, Mundanat AS, Shah K, Babu KS, Thorakkattu P, Al-Asmari F, Pandiselvam R. Valorization of Fruit Waste for Bioactive Compounds and Their Applications in the Food Industry. Foods 2023; 12:foods12030556. [PMID: 36766085 PMCID: PMC9914274 DOI: 10.3390/foods12030556] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The fruit production and processing sectors produce tremendous amounts of by-products and waste that cause significant economic losses and an undesirable impact on the environment. The effective utilization of these fruit wastes can help to reduce the carbon footprint and greenhouse gas emissions, thereby achieving sustainable development goals. These by-products contain a variety of bioactive compounds, such as dietary fiber, flavonoids, phenolic compounds, antioxidants, polysaccharides, and several other health-promoting nutrients and phytochemicals. These bioactive compounds can be extracted and used as value-added products in different industrial applications. The bioactive components extracted can be used in developing nutraceutical products, functional foods, or food additives. This review provides a comprehensive review of the recent developments in fruit waste valorization techniques and their application in food industries. The various extraction techniques, including conventional and emerging methods, have been discussed. The antioxidant and antimicrobial activities of the active compounds extracted and isolated from fruit waste have been described. The most important food industrial application of bioactive compounds extracted from fruit waste (FW) has been provided. Finally, challenges, future direction, and concluding remarks on the topic are summarized.
Collapse
Affiliation(s)
- Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
- Correspondence: (N.P.N.); (R.P.); Tel.: +66-28002380-429 (N.P.N.)
| | | | - Anjaly Shanker Mundanat
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat 131028, India
| | - Kartik Shah
- Sargento Foods, 305 Pine Street, Elkhart Lake, WI 53020, USA
| | | | - Priyamvada Thorakkattu
- Department of Animal Sciences and Industry/Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod 671124, India
- Correspondence: (N.P.N.); (R.P.); Tel.: +66-28002380-429 (N.P.N.)
| |
Collapse
|
21
|
Renewable Polymers Derived from Limonene. CHEMENGINEERING 2023. [DOI: 10.3390/chemengineering7010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Renewable natural and synthetic basic substances can be used to produce biodegradable polymers. Several methods of the polymerization of terpene limonene have been evaluated. The polymerization methods evaluated are radical polymerization, cationic polymerization and thiol-ene polymerization. The free-radical polymerization of limonene with azobisisobutyronitrile (AIBN) as an initiator was carried out. The cationic polymerization of limonene was carried out using AlCl3 as a catalyst. The copolymerization of limonene with mercaptoethanol, 2-mercaptoethyl ether without an initiator and with an AIBN initiator was studied and it was also shown that polymerization can proceed spontaneously. The resulting compounds were investigated by NMR and FTIR spectroscopy. The values of the molecular weight characteristics of the samples obtained are presented, such as: number-average molecular weight, hydrodynamic radius and characteristic viscosity, depending on the method of production. The coefficients α (molecular shape) in the Mark–Kuhn–Houwink equation are determined according to the established values of the characteristic viscosity. According to the values obtained, the AC molecules in solution have parameters α 0.14 to 0.26, which corresponds to a good solvent and the molecular shape-dense coil.
Collapse
|
22
|
Andrade MA, Barbosa CH, Shah MA, Ahmad N, Vilarinho F, Khwaldia K, Silva AS, Ramos F. Citrus By-Products: Valuable Source of Bioactive Compounds for Food Applications. Antioxidants (Basel) 2022; 12:antiox12010038. [PMID: 36670900 PMCID: PMC9855225 DOI: 10.3390/antiox12010038] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Citrus production produces about 15 million tons of by-products/waste worldwide every year. Due to their high content of bioactive compounds, several extraction techniques can be applied to obtain extracts rich in valuable compounds and further application into food applications. Distillation and solvent extraction continues to be the most used and applied extraction techniques, followed by newer techniques such as microwave-assisted extraction and pulsed electric field extraction. Although the composition of these extracts and essential oils directly depends on the edaphoclimatic conditions to which the fruit/plant was exposed, the main active compounds are D-limonene, carotenoids, and carbohydrates. Pectin, one of the most abundant carbohydrates present in Citrus peels, can be used as a biodegradable polymer to develop new food packaging, and the extracted bioactive compounds can be easily added directly or indirectly to foods to increase their shelf-life. One of the applications is their incorporation in active food packaging for microbiological and/or oxidation inhibition, prolonging foods' shelf-life and, consequently, contributing to reducing food spoilage. This review highlights some of the most used and effective extraction techniques and the application of the obtained essential oils and extracts directly or indirectly (through active packaging) to foods.
Collapse
Affiliation(s)
- Mariana A. Andrade
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Rua D. Manuel II, Apartado 55142, 4051-401 Oporto, Portugal
| | - Cássia H. Barbosa
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal
- MEtRICs, Departamento de Ciências e Tecnologia da Biomassa, Departamento de Química, NOVA School of Science and Technology, Universidade NOVA de Lisboa, FCT NOVA, Campus de Caparica, 2829-516 Caparica, Portugal
| | | | - Nazir Ahmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Fernanda Vilarinho
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Khaoula Khwaldia
- Laboratoire des Substances Naturelles, Institut National de Recherche et d’Analyse Physico-Chimique, INRAP, Pôle Technologique de Sidi Thabet, Tunis 2020, Tunisia
| | - Ana Sanches Silva
- Faculty of Pharmacy, University of Coimbra, Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, 4485-655 Vairão, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, 4051-401 Oporto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Fernando Ramos
- Faculty of Pharmacy, University of Coimbra, Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Rua D. Manuel II, Apartado 55142, 4051-401 Oporto, Portugal
- Correspondence:
| |
Collapse
|
23
|
Vilas-Boas AA, Magalhães D, Campos DA, Porretta S, Dellapina G, Poli G, Istanbullu Y, Demir S, San Martín ÁM, García-Gómez P, Mohammed RS, Ibrahim FM, El Habbasha ES, Pintado M. Innovative Processing Technologies to Develop a New Segment of Functional Citrus-Based Beverages: Current and Future Trends. Foods 2022; 11:foods11233859. [PMID: 36496667 PMCID: PMC9735808 DOI: 10.3390/foods11233859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The food industries are interested in developing functional products due to their popularity within nutritional and healthy circles. Functional fruit-based beverages represent one of the fast-growing markets due to the high concentrations of bioactive compounds (BCs), which can be health promoters. Hence, functional beverages based on citrus fruits are a potential way to take advantage of their nutritional and bioactive properties that could attract the interest of consumers. In order to ensure microbial and quality stability, the beverages are subjected to preservation treatment; however, the application of high temperatures leads to the loss of thermolabile BCs. Nowadays, innovative processing technologies (IPT) such as pulsed electric field (PEF), high-pressure processing (HPP), ultrasound processing (US), ohmic heating (OH), and microwave (MW) are a promising alternative due to their efficiency and low impact on juice BCs. The available literature concerning the effects of these technologies in functional fruit-based beverages is scarce; thus, this review gathers the most relevant information about the main positive and negative aspects of the IPT in functional properties, safety, and consumer acceptance of functional citrus-based beverages, as well as the use of citrus by-products to promote the circular economy in citrus processing.
Collapse
Affiliation(s)
- Ana A. Vilas-Boas
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Daniela Magalhães
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Débora A. Campos
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Sebastiano Porretta
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121 Parma, Italy
| | - Giovanna Dellapina
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121 Parma, Italy
| | - Giovanna Poli
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121 Parma, Italy
| | - Yildiray Istanbullu
- Central Research Institute of Food and Feed Control, Adalet M, 1. Hürriyet Cd. No:128, 16160 Osmangazi, Bursa, Turkey
| | - Sema Demir
- Central Research Institute of Food and Feed Control, Adalet M, 1. Hürriyet Cd. No:128, 16160 Osmangazi, Bursa, Turkey
| | - Ángel Martínez San Martín
- National Technological Centre for the Food and Canning Industry (CTNC), C. Concordia, s/n, 30500 Molina de Segura, Murcia, Spain
| | - Presentación García-Gómez
- National Technological Centre for the Food and Canning Industry (CTNC), C. Concordia, s/n, 30500 Molina de Segura, Murcia, Spain
| | - Reda S. Mohammed
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - Faten M. Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - El Sayed El Habbasha
- Field Crops Research Department, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
- Correspondence:
| |
Collapse
|
24
|
Artificial Neural Networks to Optimize Oil-in-Water Emulsion Stability with Orange By-Products. Foods 2022; 11:foods11233750. [PMID: 36496559 PMCID: PMC9739075 DOI: 10.3390/foods11233750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The use of artificial neural networks (ANNs) is proposed to optimize the formulation of stable oil-in-water emulsions (oil 6% w/w) with a flour made from orange by-products (OBF), rich in pectins (21 g/100 g fresh matter), in different concentrations (0.95, 2.38, and 3.40% w/w), combined with or without soy proteins (0.3 and 0.6% w/w). Emulsions containing OBF were stable against coalescence and flocculation (with 2.4 and 3.4% OBF) and creaming (3.4% OBF) for 24 h; the droplets' diameter decreased up to 44% and the viscosity increased up to 37% with higher concentrations of OBF. With the protein addition, the droplets' diameter decreased by up to 70%, and flocculation increased. Compared with emulsions produced with purified citrus pectins (0.2 and 0.5% w/w), OBF emulsions exhibited up to 32% lower viscosities, 129% larger droplets, and 45% smaller Z potential values. Optimization solved with ANNs minimizing the droplet size and the emulsion instability resulted in OBF and protein concentrations of 3.16 and 0.14%, respectively. The experimental characteristics of the optimum emulsion closely matched those predicted by ANNs demonstrating the usefulness of the proposed method.
Collapse
|
25
|
Panwar D, Panesar PS, Chopra HK. Ultrasound -assisted valorization of Citrus limetta peels for extraction of pectin: Optimization, characterization, and its comparison with commercial pectin. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Liu S, Lou Y, Li Y, Zhang J, Li P, Yang B, Gu Q. Review of phytochemical and nutritional characteristics and food applications of Citrus L. fruits. Front Nutr 2022; 9:968604. [PMID: 35923210 PMCID: PMC9339955 DOI: 10.3389/fnut.2022.968604] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
Since the dietary regimen rich in fruits is being widely recognized and encouraged, Citrus L. fruits have been growing in popularity worldwide due to their high amounts of health-promoting phytonutrients and bioactive compounds, such as flavonoids, phenolic acids, vitamins, carotenoids, pectins, and fatty acids. The diverse physicochemical properties and multiple utilization of citrus fruits in food industry are associated with their unique chemical compositions. Throughout the world, citrus has been used for producing various value-added and nutritionally enhanced products, including juices, wines, jams, canned citrus, and dried citrus. However, the current studies regarding the phytochemical and nutritional characteristics and food applications of citrus are scattered. This review systematically summarizes the existing bibliography on the chemical characteristics, functional and nutraceutical benefits, processing, and potential applications of citrus. A thorough understanding of this information may provide scientific guidance for better utilizing citrus as a functional fruit and benefit the extension of citrus value chain.
Collapse
Affiliation(s)
- Shuxun Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ying Lou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yixian Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Baoru Yang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Food Sciences, Department of Biochemistry, University of Turku, Turku, Finland
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- *Correspondence: Qing Gu
| |
Collapse
|
27
|
|
28
|
Process Optimization and Stability of Waste Orange Peel Polyphenols in Extracts Obtained with Organosolv Thermal Treatment Using Glycerol-Based Solvents. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6030035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study was focused on the simultaneous organosolv treatment/extraction of waste orange peels (WOP) for the effective recovery of polyphenolic antioxidants. The treatments were performed with aqueous glycerol mixtures, which were acidified either with citric acid or hydrochloric acid (HCl). Process optimization was carried out using response surface methodology and comparative appraisal of the different processes tested, based on both the extraction efficiency factor (FEE), severity factor (SF) or combined severity factor (CSF). Metabolite stability was also of major concern, and it was examined by deploying liquid chromatography-mass spectrometry. The results drawn suggested 90% (w/w) glycerol to be the highest-performing system, providing a yield in total polyphenols of 44.09 ± 5.46 mg GAE g−1 DM at 140 °C for 50 min, with a FEE of 2.20 and an SF of 2.88. Acidification with 1% citric acid was proven less efficient and equally severe, whereas acidification with 1% HCl was less severe but also less efficient. The major disadvantage associated with the use of HCl was its detrimental impact on the polyphenolic composition of WOP since major metabolites, such as narirutin, hesperidin and didymin, did not survive the process. By contrast, the formation of lower molecular weight compounds was observed. With regard to antioxidant properties, the extract obtained with aqueous glycerol displayed significantly higher antiradical activity and reducing power, which was in line with its higher concentration in total polyphenols. It was concluded that organosolv treatment with aqueous glycerol under the conditions employed may boost polyphenol recovery from WOP, thus giving extracts with powerful antioxidant characteristics.
Collapse
|
29
|
Comprehensive Characterization and Quantification of Antioxidant Compounds in Finger Lime (Citrus australasica L.) by HPLC-QTof-MS and UPLC-MS/MS. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Australian finger limes (Citrus australasica L.), an unusual citrus due to its unique pulp with a caviar-like appearance, has reached the global market as a promising source of bioactive compounds that promote health. This research was, therefore, performed to shed light on the bioactivity and composition of different parts of Citrus australasica L. (peel and pulp). Initial ultrasound-assisted extraction using MeOH:H2O (80:20, v/v) was carried out. After that, four fractions (hexane, ethyl acetate, butanol and water) were generated through liquid–liquid partitioning, and the total phenolic content (TPC) and antioxidant activity were evaluated using the Folin–Ciocalteu and the ferric reducing antioxidant power (FRAP) assays, respectively. The ethyl acetate fraction in the peel, which presented the highest values of TPC and antioxidant activity, was characterized using high-performance liquid chromatography coupled to quadrupole time-of-flight (HPLC-QTof) mass spectrometry. Fifteen compounds were identified, of which seven were characterized for the first time in this matrix. Moreover, ten phenolic compounds were quantified using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The major compounds in the sample were citric acid, pyrogallol, caffeic acid, coumarin, rutin, naringin, 2-coumaric acid, didymin, naringenin and isorhamnetin, which were found in a range from 2.7 to 8106.7 µg/g sample dry weight. Finally, the results presented in this novel work confirmed that the peel by-product of C. australasica L. is a potential source of bioactive compounds and could result in a positive outcome for the food, cosmetics and pharmaceutical industries.
Collapse
|
30
|
Dorado C, Bowman KD, Cameron RG, Manthey JA, Bai J, Ferguson KL. Steam Explosion (STEX) of Citrus × Poncirus Hybrids with Exceptional Tolerance to Candidatus Liberibacter Asiaticus (CLas) as Useful Sources of Volatiles and Other Commercial Products. BIOLOGY 2021; 10:1285. [PMID: 34943201 PMCID: PMC8698310 DOI: 10.3390/biology10121285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 01/26/2023]
Abstract
Florida citrus production has declined 75% due to Huanglongbing (HLB), a disease caused by the pathogenic bacterium Candidatus Liberibacter asiaticus (CLas). Methods to combat CLas are costly and only partially effective. The cross-compatible species Poncirus trifoliata and some of its hybrids are known to be highly tolerant to CLas, and thus can potentially serve as an alternative feedstock for many citrus products. To further investigate the commercial potential of citrus hybrids, three citrus hybrids, US-802, US-897, and US-942, were studied for their potential as feedstocks for citrus co-products using steam explosion (STEX) followed by water extraction. Up to 93% of sugars were recovered. US-897 and US-942 have similar volatile profiles to that of the commercial citrus fruit types and as much as 85% of these volatiles could be recovered. Approximately 80% of the pectic hydrocolloids present in all three hybrids could be obtained in water washes of STEX material. Of the phenolics identified, the flavanone glycosides, i.e., naringin, neohesperidin, and poncirin were the most abundant quantitatively in these hybrids. The ability to extract a large percentage of these compounds, along with their inherent values, make US-802, US-897, and US-942 potentially viable feedstock sources for citrus co-products in the current HLB-blighted environment.
Collapse
Affiliation(s)
- Christina Dorado
- U.S. Horticultural Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Fort Pierce, FL 34945, USA; (K.D.B.); (R.G.C.); (J.A.M.); (J.B.); (K.L.F.)
| | | | | | | | | | | |
Collapse
|
31
|
Karanicola P, Patsalou M, Stergiou PY, Kavallieratou A, Evripidou N, Christou P, Panagiotou G, Damianou C, Papamichael EM, Koutinas M. Ultrasound-assisted dilute acid hydrolysis for production of essential oils, pectin and bacterial cellulose via a citrus processing waste biorefinery. BIORESOURCE TECHNOLOGY 2021; 342:126010. [PMID: 34852446 DOI: 10.1016/j.biortech.2021.126010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
An orange peel waste biorefinery was developed employing a design of experiments approach to optimize the ultrasound-assisted dilute acid hydrolysis process applied for production of useful commodities. Central composite design-based response surface methodology was used to approximate the combined effects of process parameters in simultaneous production of essential oils, pectin and a sugar-rich hydrolyzate. Application of a desirability function determined the optimal conditions required for maximal production efficiency of essential oils, pectin and sugars as 5.75% solid loading, 1.21% acid concentration and 34.2 min duration. Maximum production yields of 0.12% w/w essential oils, 45% w/w pectin and 40% w/w sugars were achieved under optimized conditions in lab- and pilot-scale facilities. The hydrolyzate formed was applied in bacterial cellulose fermentations producing 5.82 g biopolymer per 100 g waste. Design of experiments was efficient for process analysis and optimization providing a systems platform for the study of biomass-based biorefineries.
Collapse
Affiliation(s)
- Panayiota Karanicola
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus; KEAN Soft Drinks Ltd, 35 Promachon Eleftherias, 4103, Agios Athanasios, Limassol, Cyprus
| | - Maria Patsalou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
| | | | - Alexandra Kavallieratou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
| | - Panagiotis Christou
- KEAN Soft Drinks Ltd, 35 Promachon Eleftherias, 4103, Agios Athanasios, Limassol, Cyprus
| | - George Panagiotou
- KEAN Soft Drinks Ltd, 35 Promachon Eleftherias, 4103, Agios Athanasios, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
| | | | - Michalis Koutinas
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus.
| |
Collapse
|
32
|
Russo C, Maugeri A, Lombardo GE, Musumeci L, Barreca D, Rapisarda A, Cirmi S, Navarra M. The Second Life of Citrus Fruit Waste: A Valuable Source of Bioactive Compounds. Molecules 2021; 26:5991. [PMID: 34641535 PMCID: PMC8512617 DOI: 10.3390/molecules26195991] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Citrus fruits (CF) are among the most widely cultivated fruit crops throughout the world and their production is constantly increasing along with consumers' demand. Therefore, huge amounts of waste are annually generated through CF processing, causing high costs for their disposal, as well as environmental and human health damage, if inappropriately performed. According to the most recent indications of an economic, environmental and pharmaceutical nature, CF processing residues must be transformed from a waste to be disposed to a valuable resource to be reused. Based on a circular economy model, CF residues (i.e., seeds, exhausted peel, pressed pulp, secondary juice and leaves) have increasingly been re-evaluated to also obtain, but not limited to, valuable compounds to be employed in the food, packaging, cosmetic and pharmaceutical industries. However, the use of CF by-products is still limited because of their underestimated nutritional and economic value, hence more awareness and knowledge are needed to overcome traditional approaches for their disposal. This review summarizes recent evidence on the pharmacological potential of CF waste to support the switch towards a more environmentally sustainable society.
Collapse
Affiliation(s)
- Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
- Fondazione “Prof. Antonio Imbesi”, 98123 Messina, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Laura Musumeci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Antonio Rapisarda
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| |
Collapse
|
33
|
Kaur S, Panesar PS, Chopra HK. Citrus processing by-products: an overlooked repository of bioactive compounds. Crit Rev Food Sci Nutr 2021; 63:67-86. [PMID: 34184951 DOI: 10.1080/10408398.2021.1943647] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Citrus fruits contain plethora of bioactive compounds stored in edible as well as inedible part. Since, citrus fruits are processed mainly for juice, the residues are disposed in wastelands, hence, plenty of nutritional potential goes in vain. But if utilized wisely, the bioactive phytochemicals in citrus by-products have the ability to revolutionize the functional food industry. In the present review, the composition of citrus by-products in terms of bioactive components and their health benefits has been reviewed. Various extraction techniques used to extract these bioactives has been discussed and a brief overview of purification and utilization of the extracted compounds, in food and nutraceutical industry is also presented. Bioactives in citrus by-products are higher than the peeled fruit, which can be extracted, isolated and incorporated into food systems for development of health foods. From the studies reviewed, it was observed that research reported on utilization of citrus by-products is limited to mainly research labs; proper scale-up process and its adequate research commercialization is the need of hour to transform these bioactives into economical functional ingredients.
Collapse
Affiliation(s)
- Samandeep Kaur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab, India
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab, India
| | - Harish K Chopra
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab, India
| |
Collapse
|
34
|
Valorization of Citrus Co-Products: Recovery of Bioactive Compounds and Application in Meat and Meat Products. PLANTS 2021; 10:plants10061069. [PMID: 34073552 PMCID: PMC8228688 DOI: 10.3390/plants10061069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/01/2022]
Abstract
Citrus fruits (orange, lemon, mandarin, and grapefruit) are one of the most extensively cultivated crops. Actually, fresh consumption far exceeds the demand and, subsequently, a great volume of the production is destined for the citrus-processing industries, which produce a huge quantity of co-products. These co-products, without proper treatment and disposal, might cause severe environmental problems. The co-products obtained from the citrus industry may be considered a very important source of high-added-value bioactive compounds that could be used in the pharmaceutical, cosmetic, and dietetic industries, and mainly in the food industry. Due to consumer demands, the food industry is exploring a new and economical source of bioactive compounds to develop novel foods with healthy properties. Thus, the aim of this review is to describe the possible benefits of citrus co-products as a source of bioactive compounds and their applications in the development of healthier meat and meat products.
Collapse
|