1
|
Mortimer T, Smith JG, Muñoz-Cánoves P, Benitah SA. Circadian clock communication during homeostasis and ageing. Nat Rev Mol Cell Biol 2025; 26:314-331. [PMID: 39753699 DOI: 10.1038/s41580-024-00802-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 03/28/2025]
Abstract
Maintaining homeostasis is essential for continued health, and the progressive decay of homeostatic processes is a hallmark of ageing. Daily environmental rhythms threaten homeostasis, and circadian clocks have evolved to execute physiological processes in a manner that anticipates, and thus mitigates, their effects on the organism. Clocks are active in almost all cell types; their rhythmicity and functional output are determined by a combination of tissue-intrinsic and systemic inputs. Numerous inputs for a specific tissue are produced by the activity of circadian clocks of other tissues or cell types, generating a form of crosstalk known as clock communication. In mammals, the central clock in the hypothalamus integrates signals from external light-dark cycles to align peripheral clocks elsewhere in the body. This regulation is complemented by a tissue-specific milieu of external, systemic and niche inputs that modulate and cooperate with the cellular circadian clock machinery of a tissue to tailor its functional output. These mechanisms of clock communication decay during ageing, and growing evidence suggests that this decline might drive ageing-related morbidities. Dietary, behavioural and pharmacological interventions may offer the possibility to overcome these changes and in turn improve healthspan.
Collapse
Affiliation(s)
- Thomas Mortimer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Jacob G Smith
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA, USA.
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
2
|
Baran B, Lee EE. Age-Related Changes in Sleep and Its Implications for Cognitive Decline in Aging Persons With Schizophrenia: A Critical Review. Schizophr Bull 2025; 51:513-521. [PMID: 38713085 PMCID: PMC11908868 DOI: 10.1093/schbul/sbae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive impairment is a core feature of schizophrenia that worsens with aging and interferes with quality of life. Recent work identifies sleep as an actionable target to alleviate cognitive deficits. Cardinal non-rapid eye movement (NREM) sleep oscillations such as sleep spindles and slow oscillations are critical for cognition. People living with schizophrenia (PLWS) and their first-degree relatives have a specific reduction in sleep spindles and an abnormality in their temporal coordination with slow oscillations that predict impaired memory consolidation. While NREM oscillatory activity is reduced in typical aging, it is not known how further disruption in these oscillations contributes to cognitive decline in older PLWS. Another understudied risk factor for cognitive deficits among older PLWS is obstructive sleep apnea (OSA) which may contribute to cognitive decline. STUDY DESIGN We conducted a narrative review to examine the published literature on aging, OSA, and NREM sleep oscillations in PLWS. STUDY RESULTS Spindles are propagated via thalamocortical feedback loops, and this circuitry shows abnormal hyperconnectivity in schizophrenia as revealed by structural and functional MRI studies. While the risk and severity of OSA increase with age, older PLWS are particularly vulnerable to OSA-related cognitive deficits because OSA is often underdiagnosed and undertreated, and OSA adds further damage to the circuitry that generates NREM sleep oscillations. CONCLUSIONS We highlight the critical need to study NREM sleep in older PWLS and propose that identifying and treating OSA in older PLWS will provide an avenue to potentially mitigate and prevent cognitive decline.
Collapse
Affiliation(s)
- Bengi Baran
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ellen E Lee
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Desert-Pacific Mental Illness Research Education and Clinical Center, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
3
|
Dovek L, Tinsley CE, Gutowsky K, McDaniel K, Potter Z, Ruffins M, Milman NEP, Wong C, Soumyanath A, Gray NE, Lim MM. Centella asiatica improves sleep quality and quantity in aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636070. [PMID: 39974941 PMCID: PMC11838466 DOI: 10.1101/2025.02.01.636070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Age-related sleep disruption is common in older adults. Not only does the total amount of time spent in sleep decline, but the number of arousals during sleep increases with age. As sleep is important for both memory consolidation and to prevent neurodegenerative pathology, this decline in sleep and/or sleep consolidation may underlie age-related cognitive decline and dementias. Furthermore, treatment of sleep disruption can improve quality of life. However, few interventions have successfully reversed age-related sleep decline. Extracts from the plant Centella asiatica have demonstrated neuroprotective effects in human, rodent, and fly models of aging and neurodegenerative diseases, and is a promising intervention for dementias, yet little is known about how these extracts affect sleep patterns. Here, we administered Centella asiatica water extract ( CAW) dosed or control chow to male and female C57BL6/J mice aged 18 months. Effects on sleep composition were determined using electrodes that recorded EEG and EMG signals. We found that CAW dosed chow (1000 mg/kg/day) increased REM sleep time in aged male mice and decreased the number of arousals during sleep observed in aged females, compared to age- and sex-matched controls. We conclude that CAW administered in food has a moderate, sex-dependent effect on sleep quantity and quality. Statement of Significance Sleep declines with age and may underline age-related cognitive changes. However, few interventions have successfully reversed age-related sleep and cognitive decline. This study found that botanical extract from the plant Centella asiatica increased total REM sleep time in aged male mice, and decreased sleep fragmentation in aged female mice, compared to age- and sex-matched controls. Whether these moderate, sex-dependent effect sizes on sleep in aged mice are impactful enough to affect cognition, quality of life, and/or neurodegenerative pathology could be explored in future studies.
Collapse
|
4
|
Simon KC, Cadle C, Shuster AE, Malerba P. Sleep Across the Lifespan: A Neurobehavioral Perspective. CURRENT SLEEP MEDICINE REPORTS 2025; 11:7. [PMID: 40538866 PMCID: PMC12174261 DOI: 10.1007/s40675-025-00322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 06/22/2025]
Abstract
Purpose of Review Sleep is dynamic across the lifespan, influenced by brain maturation, neurophysiology, hormones, and cognitive processes. Sleep behaviors influenced by physiological and external factors can also impact sleep health. As sleep plays a mechanistic role in health across the lifespan, understanding when and how to intervene to benefit health is essential. Recent Findings Recent research has advanced our understanding of sleep across three domains: patterns, neurophysiology, and behaviors. Highlights include (1) Early childhood nap cessation is thought to relate to medial temporal lobe network maturation and underlie long-term hippocampal-dependent memory development. (2) Chronotype misalignment is a key factor in sleep deficits and social jetlag. (3) Older adult daytime sleep has complex effects on health, at times beneficial while others, potentially maladaptive. (4) Longitudinal sleep oscillation trajectories are starting to be investigated and indicate neurophysiology could be interpreted as indicative of brain maturation in development. (5) In adults, sleep quality and macrostructure trajectories show high variability, emphasizing distinctive traits in shaping sleep and its lifespan trajectories. (6) Neighborhood and socioeconomic factors influence sleep health across all ages. (7) In older adults, associations between loneliness and poor sleep are being unpacked. Summary This recent research, while comprehensively describing our current understanding of sleep trajectories across the lifespan, emphasizes the need to expand current approaches to longitudinal measurement studies that cross age-spans. Expanding will enhance our ability to mechanistically determine the temporal and causal relations between the multiple dimensions of sleep (i.e., patterns, behaviors, and physiology) and outcomes in sleep health.
Collapse
Affiliation(s)
- Katharine C. Simon
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, USA
- Pulmonology Department, Children’s Hospital of Orange County, Orange, USA
| | - Chelsea Cadle
- Center for Biobehavioral Health, Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | | | - Paola Malerba
- Center for Biobehavioral Health, Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
- Department of Pediatrics, School of Medicine, The Ohio State University, Columbus, OH USA
| |
Collapse
|
5
|
Xia L, Liu H, Ren J. A review of symptom, pathogenesis and treatment characteristics of the elderly with chronic insomnia. Medicine (Baltimore) 2025; 104:e41346. [PMID: 39889161 PMCID: PMC11789921 DOI: 10.1097/md.0000000000041346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/14/2024] [Accepted: 01/07/2025] [Indexed: 02/02/2025] Open
Abstract
One third of a person's life is in a state of sleep, and good sleep quality is one of the indicators of health. Long-term insomnia has a great impact on patients' quality of life, physical and mental state. Especially in the elderly, long-term insomnia will induce a variety of chronic diseases, seriously affecting the quality of life. Because of the characteristics of the physiological structure of the elderly, insomnia in the elderly has its unique characteristics different from that of the young. This article reviews the characteristics of chronic insomnia in the elderly in terms of symptom, pathogenesis and treatment. By elaborating the characteristics of senile chronic insomnia, we hope to provide ideas for clinical treatment of senile chronic insomnia.
Collapse
Affiliation(s)
- LiBo Xia
- Department of General Medicine, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - HaiYan Liu
- Department of Medical Section, Changchun Second Hospital, Changchun, China
| | - JiXiang Ren
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Mayer C, Kim DW, Zhang M, Lee MP, Forger DB, Burgess HJ, Moon C. Predicting circadian phase in community-dwelling later-life adults using actigraphy data. J Sleep Res 2024:e14425. [PMID: 39647850 DOI: 10.1111/jsr.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024]
Abstract
The accurate estimation of circadian phase in the real-world has a variety of applications, including chronotherapeutic drug delivery, reduction of fatigue, and optimal jet lag or shift work scheduling. Recent work has developed and adapted algorithms to predict time-consuming and costly laboratory circadian phase measurements using mathematical models with actigraphy or other wearable data. Here, we validate and extend these results in a home-based cohort of later-life adults, ranging in age from 58 to 86 years. Analysis of this population serves as a valuable extension to our understanding of phase prediction, since key features of circadian timekeeping (including circadian amplitude, response to light stimuli, and susceptibility to circadian misalignment) may become altered in older populations and when observed in real-life settings. We assessed the ability of four models to predict ground truth dim light melatonin onset, and found that all the models could generate predictions with mean absolute errors of approximately 1.4 h or below using actigraph activity data. Simulations of the model with activity performed as well or better than the light-based modelling predictions, validating previous findings in this novel cohort. Interestingly, the models performed comparably to actigraph-derived sleep metrics, with the higher-order and nonphotic activity-based models in particular demonstrating superior performance. This work provides evidence that circadian rhythms can be reasonably estimated in later-life adults living in home settings through mathematical modelling of data from wearable devices.
Collapse
Affiliation(s)
- Caleb Mayer
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Dae Wook Kim
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, Republic of Korea
- Department of Mathematics, Sogang University, Seoul, Republic of Korea
| | - Meina Zhang
- College of Nursing, University of Iowa, Iowa City, Iowa, USA
| | - Minki P Lee
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel B Forger
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Center for Interdisciplinary and Applied Mathematics, University of Michigan, Ann Arbor, Michigan, USA
| | - Helen J Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Chooza Moon
- College of Nursing, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Putilov AA, Verevkin EG. Weekday and weekend sleep times across the human lifespan: a model-based simulation. Sleep Breath 2024; 28:2223-2236. [PMID: 39085561 DOI: 10.1007/s11325-024-03124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/07/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE The shifts in the opposite directions, toward later and earlier sleep timing, occur during the transition through adolescence and adulthood, respectively. Such a n-shape of age-associated change in sleep timing does not resemble the inverse relationship of sleep duration with ages. Age-associated variation in the parameters of the mechanisms of circadian and homeostatic regulation of sleep would underlie these different shapes of relationship of sleep times with ages. Here, we searched for a parsimonious explanation of these different shapes by simulating sleep times on weekdays and weekends with one of the variants of the two-process model of sleep regulation. METHODS Using mean age of a sample with reported sleep times on weekdays and weekends, the whole set of 1404 such samples was subdivided into 15 age subsets. Simulations of sleep times in these subsets were performed with and without the suggestion of age-associated variation in the circadian phase. RESULTS Simulations showed that the age-associated decay of slow-wave activity can parsimoniously explain not only the parallel decreases in weekend sleep duration and rate of the buildup of sleep pressure during the wake phase of the sleep-wake cycle, but also both the delay and advance of sleep timing during the transition through adolescence and adulthood, respectively. CONCLUSION The almost functional relationships were revealed between the age-related changes in sleep duration, rate of the buildup of sleep pressure, and slow-wave activity that is a good electrophysiological marker of cortical metabolic rate and synaptic density, strength and efficacy.
Collapse
Affiliation(s)
- Arcady A Putilov
- Laboratory of Sleep/Wake Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, 117865, Russia.
- , 11, Nipkowstr, 12489, Berlin, Germany.
| | - Evgeniy G Verevkin
- Laboratory of Sleep/Wake Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, 117865, Russia
| |
Collapse
|
8
|
Alhejaili F, Kanbr O, Jastaniah N, Ismail R, Qalai T, Alotaibi R, Makhtoum T, Aljuhani R, Aljondi H, Binjahlan A, Hawsawi S, Qutub W, Alshumrani R, Wali S. Sleep disorders among elderly in Saudi Arabia: A cross-sectional study. Ann Thorac Med 2024; 19:251-257. [PMID: 39544345 PMCID: PMC11559702 DOI: 10.4103/atm.atm_57_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Aging has been shown to have an impact on sleep patterns, necessitating a deep dive into understanding the complex relationship between aging and sleep disorders. This study aimed to assess the prevalence of sleep disorders among elderly people and identify the associations between different factors and sleep disorders in this age group. METHODS This study was conducted at nursing homes in Jeddah. The target populations were those aged 65 years and older (geriatric group) and those aged younger than 65 years (nongeriatric group). Validated questionnaires, including the Athens Insomnia Scale, Berlin Questionnaire, Epworth Sleepiness Scale, International restless legs syndrome (RLS) Study Group, and Pittsburgh Sleep Quality Index, were used to assess different sleep disorders. RESULTS A total of 313 participants were recruited in the geriatric (n = 153) and nongeriatric (n = 160) groups. Compared with the nongeriatric group, the geriatric group had greater risks of obstructive sleep apnea (OSA) (70.6%) and RLS (40.5%) (P < 0.001). Both groups had a notable prevalence of poor sleep quality (86.6%). Although insomnia was found to be common, there was no significant difference in the prevalence of insomnia between the two groups. In addition, insomnia (odds ratio [OR] = 3.04, confidence interval [CI]: 1.06-8.86, P = 0.037), OSA (OR = 3.17, CI: 1.06-9.41, P = 0.038), and high body mass index (OR = 1.76, CI: 1.63-2.9, P = 0.003) were significantly associated with poor sleep quality. CONCLUSION This study revealed that sleep disorders, particularly OSA and RLS, are common in the elderly population in Saudi Arabia.
Collapse
Affiliation(s)
- Faris Alhejaili
- Department of Internal Medicine, Sleep Medicine and Research Center, Sleep Medicine Research Group, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omar Kanbr
- Faculty of Medicine, Elrazi University, Khartoum, Sudan
| | - Nisreen Jastaniah
- King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Raghad Ismail
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tala Qalai
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raseil Alotaibi
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Toleen Makhtoum
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rawan Aljuhani
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hadeel Aljondi
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Shaimaa Hawsawi
- Family Medicine Senior Registrar, Almahjer Primary Health Center - King Abdulaziz Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Weam Qutub
- Family Medicine Senior Registrar, Geriatric Center- King Abdulaziz Hospital, Makkah, Saudi Arabia
| | - Ranya Alshumrani
- Department of Internal Medicine, Sleep Medicine and Research Center, Sleep Medicine Research Group, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Siraj Wali
- Department of Internal Medicine, Sleep Medicine and Research Center, Sleep Medicine Research Group, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Van Drunen R, Dai Y, Wei H, Fekry B, Noori S, Shivshankar S, Bravo R, Zhao Z, Yoo SH, Justice N, Wu JQ, Tong Q, Eckel-Mahan K. Cell-specific regulation of the circadian clock by BMAL1 in the paraventricular nucleus: Implications for regulation of systemic biological rhythms. Cell Rep 2024; 43:114380. [PMID: 38935503 PMCID: PMC11446153 DOI: 10.1016/j.celrep.2024.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Circadian rhythms are internal biological rhythms driving temporal tissue-specific, metabolic programs. Loss of the circadian transcription factor BMAL1 in the paraventricular nucleus (PVN) of the hypothalamus reveals its importance in metabolic rhythms, but its functions in individual PVN cells are poorly understood. Here, loss of BMAL1 in the PVN results in arrhythmicity of processes controlling energy balance and alters peripheral diurnal gene expression. BMAL1 chromatin immunoprecipitation sequencing (ChIP-seq) and single-nucleus RNA sequencing (snRNA-seq) reveal its temporal regulation of target genes, including oxytocin (OXT), and restoring circulating OXT peaks in BMAL1-PVN knockout (KO) mice rescues absent activity rhythms. While glutamatergic neurons undergo day/night changes in expression of genes involved in cell morphogenesis, astrocytes and oligodendrocytes show gene expression changes in cytoskeletal organization and oxidative phosphorylation. Collectively, our findings show diurnal gene regulation in neuronal and non-neuronal PVN cells and that BMAL1 contributes to diurnal OXT secretion, which is important for systemic diurnal rhythms.
Collapse
Affiliation(s)
- Rachel Van Drunen
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haichao Wei
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Baharan Fekry
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sina Noori
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Samay Shivshankar
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Rafael Bravo
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Seung-Hee Yoo
- MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Biochemistry and Cell Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nicholas Justice
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jia Qian Wu
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qingchun Tong
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kristin Eckel-Mahan
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Verbakel I, Bou Kheir G, de Rijk M, Dhondt K, Bliwise D, Pauwaert K, Monaghan T, Hervé F, Vogelaers D, Mariman A, Everaert K. Is the insomnia phenotype the common denominator in LUTS during transition periods? An expert NOPIA research group review. Neurourol Urodyn 2024; 43:1134-1146. [PMID: 38289321 DOI: 10.1002/nau.25372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024]
Abstract
AIMS As people age, sleep stages and characteristics transition over time, but sleep deficits can profoundly impact health and cognitive functioning. Chronic sleep deprivation is linked to impaired attention and productivity, weakened immunity, increased risk of cardiovascular disease, obesity, and mental health disorders. Insomnia, obstructive sleep apnea syndrome, hormonal changes, nocturia, neurological disorders, and life events interfere with sleep patterns and some are linked to lower urinary tract symptoms (LUTS). This NOPIA symposium on Lifelong LUTS aimed to analyze the literature on associations between sleep and LUTS, generate ideas for future research, and explore whether there is support for the concept of lifelong LUTS in relation to changes in sleep throughout the lifespan. METHODS An international panel of experts took part in an online meeting addressing the role of lifelong LUTS in relationship to sleep and the brain organized by the NOPIA research group. The manuscript summarizes existing literature, hypotheses, future research ideas, and clinical recommendations. RESULTS Insomnia, sleep fragmentation, hyperarousal, and sensory processing disorders emerged as potential factors in the relationship between sleep and LUTS. Insomnia is often a persistent factor and may have been the initial symptom; however, it is often unrecognized and/or unaddressed in healthcare settings. By recognizing insomnia as a primary driver of various health issues, including nocturia, transitional care aims to address root causes and underlying problems earlier to initiate appropriate treatment. CONCLUSIONS A multidisciplinary approach with collaboration between healthcare professionals from various disciplines, such as urology, sleep medicine, gynecology, pediatrics, and geriatrics, is needed and should include validated measurements such as the insomnia severity index and sleep and voiding diaries. Ensuring ongoing follow-up and monitoring through transitional care is crucial for individuals with persistent sleep problems and LUTS, allowing issues that arise or fluctuate over the lifespan to be addressed.
Collapse
Affiliation(s)
- Irina Verbakel
- Department of Urology, ERN Accredited Centrum, Ghent University Hospital, Ghent, Belgium
| | - George Bou Kheir
- Department of Urology, ERN Accredited Centrum, Ghent University Hospital, Ghent, Belgium
| | - Mathijs de Rijk
- Department of Urology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Karlien Dhondt
- Department of Child and Adolescent Psychiatry, Pediatric Sleep Center, Ghent University Hospital, Ghent, Belgium
| | - Don Bliwise
- Sleep Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kim Pauwaert
- Department of Urology, ERN Accredited Centrum, Ghent University Hospital, Ghent, Belgium
| | - Thomas Monaghan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - François Hervé
- Department of Urology, ERN Accredited Centrum, Ghent University Hospital, Ghent, Belgium
| | - Dirk Vogelaers
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Department of General Internal Medicine, AZ Delta, Roeselare, Belgium
| | - An Mariman
- Center for Integrative Medicine, Ghent University Hospital, Ghent, Belgium
| | - Karel Everaert
- Department of Urology, ERN Accredited Centrum, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
11
|
Deantoni M, Reyt M, Baillet M, Dourte M, De Haan S, Lesoinne A, Vandewalle G, Maquet P, Berthomier C, Muto V, Hammad G, Schmidt C. Napping and circadian sleep-wake regulation during healthy aging. Sleep 2024; 47:zsad287. [PMID: 37943833 DOI: 10.1093/sleep/zsad287] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
STUDY OBJECTIVES Daytime napping is frequently reported among the older population and has attracted increasing attention due to its association with multiple health conditions. Here, we tested whether napping in the aged is associated with altered circadian regulation of sleep, sleepiness, and vigilance performance. METHODS Sixty healthy older individuals (mean age: 69 years, 39 women) were recruited with respect to their napping habits (30 nappers, 30 non-nappers). All participants underwent an in-lab 40-hour multiple nap protocol (10 cycles of 80 minutes of sleep opportunity alternating with 160 minutes of wakefulness), preceded and followed by a baseline and recovery sleep period. Saliva samples for melatonin assessment, sleepiness, and vigilance performance were collected during wakefulness and electrophysiological data were recorded to derive sleep parameters during scheduled sleep opportunities. RESULTS The circadian amplitude of melatonin secretion was reduced in nappers, compared to non-nappers. Furthermore, nappers were characterized by higher sleep efficiencies and REM sleep proportion during day- compared to nighttime naps. The nap group also presented altered modulation in sleepiness and vigilance performance at specific circadian phases. DISCUSSION Our data indicate that napping is associated with an altered circadian sleep-wake propensity rhythm. They thereby contribute to the understanding of the biological correlates underlying napping and/or sleep-wake cycle fragmentation during healthy aging. Altered circadian sleep-wake promotion can lead to a less distinct allocation of sleep into nighttime and/or a reduced wakefulness drive during the day, thereby potentially triggering the need to sleep at adverse circadian phase.
Collapse
Affiliation(s)
- Michele Deantoni
- Sleep and Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Mathilde Reyt
- Sleep and Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| | - Marion Baillet
- Sleep and Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Marine Dourte
- Sleep and Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| | - Stella De Haan
- Sleep and Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Alexia Lesoinne
- Sleep and Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Gilles Vandewalle
- Sleep and Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Pierre Maquet
- Sleep and Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
- Department of Neurology, University Hospital of Liège, University of Liège, Liège, Belgium
| | | | - Vincenzo Muto
- Sleep and Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Gregory Hammad
- Sleep and Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Christina Schmidt
- Sleep and Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Bonmatí-Carrión MÁ, Santhi N, Atzori G, Mendis J, Kaduk S, Dijk DJ, Archer SN. Effect of 60 days of head down tilt bed rest on amplitude and phase of rhythms in physiology and sleep in men. NPJ Microgravity 2024; 10:42. [PMID: 38553471 PMCID: PMC10980770 DOI: 10.1038/s41526-024-00387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Twenty-four-hour rhythms in physiology and behaviour are shaped by circadian clocks, environmental rhythms, and feedback of behavioural rhythms onto physiology. In space, 24 h signals such as those associated with the light-dark cycle and changes in posture, are weaker, potentially reducing the robustness of rhythms. Head down tilt (HDT) bed rest is commonly used to simulate effects of microgravity but how HDT affects rhythms in physiology has not been extensively investigated. Here we report effects of -6° HDT during a 90-day protocol on 24 h rhythmicity in 20 men. During HDT, amplitude of light, motor activity, and wrist-temperature rhythms were reduced, evening melatonin was elevated, while cortisol was not affected during HDT, but was higher in the morning during recovery when compared to last session of HDT. During recovery from HDT, time in Slow-Wave Sleep increased. EEG activity in alpha and beta frequencies increased during NREM and REM sleep. These results highlight the profound effects of head-down-tilt-bed-rest on 24 h rhythmicity.
Collapse
Affiliation(s)
- María-Ángeles Bonmatí-Carrión
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
- Chronobiology Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, Murcia, Spain.
- CIBER de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain.
| | - Nayantara Santhi
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Department of Psychology, Northumbria University, Newcastle Upon Tyne, UK
| | - Giuseppe Atzori
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Jeewaka Mendis
- Surrey Clinical Trials Unit, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Sylwia Kaduk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK
| | - Simon N Archer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
13
|
Dimulescu C, Donle L, Cakan C, Goerttler T, Khakimova L, Ladenbauer J, Flöel A, Obermayer K. Improving the detection of sleep slow oscillations in electroencephalographic data. Front Neuroinform 2024; 18:1338886. [PMID: 38375447 PMCID: PMC10875054 DOI: 10.3389/fninf.2024.1338886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Study objectives We aimed to build a tool which facilitates manual labeling of sleep slow oscillations (SOs) and evaluate the performance of traditional sleep SO detection algorithms on such a manually labeled data set. We sought to develop improved methods for SO detection. Method SOs in polysomnographic recordings acquired during nap time from ten older adults were manually labeled using a custom built graphical user interface tool. Three automatic SO detection algorithms previously used in the literature were evaluated on this data set. Additional machine learning and deep learning algorithms were trained on the manually labeled data set. Results Our custom built tool significantly decreased the time needed for manual labeling, allowing us to manually inspect 96,277 potential SO events. The three automatic SO detection algorithms showed relatively low accuracy (max. 61.08%), but results were qualitatively similar, with SO density and amplitude increasing with sleep depth. The machine learning and deep learning algorithms showed higher accuracy (best: 99.20%) while maintaining a low prediction time. Conclusions Accurate detection of SO events is important for investigating their role in memory consolidation. In this context, our tool and proposed methods can provide significant help in identifying these events.
Collapse
Affiliation(s)
- Cristiana Dimulescu
- Department of Software Engineering and Theoretical Computer Science, Technical University Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Leonhard Donle
- Department of Software Engineering and Theoretical Computer Science, Technical University Berlin, Berlin, Germany
| | - Caglar Cakan
- Department of Software Engineering and Theoretical Computer Science, Technical University Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Thomas Goerttler
- Department of Software Engineering and Theoretical Computer Science, Technical University Berlin, Berlin, Germany
| | - Lilia Khakimova
- Department of Neurology, University Medicine, Greifswald, Germany
| | - Julia Ladenbauer
- Department of Neurology, University Medicine, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine, Greifswald, Germany
- German Center for Neurodegenerative Diseases, Greifswald, Germany
| | - Klaus Obermayer
- Department of Software Engineering and Theoretical Computer Science, Technical University Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
14
|
Zimberg IZ, Ftouni S, Magee M, Ferguson SA, Lockley SW, Rajaratnam SMW, Sletten TL. Circadian adaptation to night shift work is associated with higher REM sleep duration. Sleep Health 2024; 10:S112-S120. [PMID: 37914630 DOI: 10.1016/j.sleh.2023.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE To investigate the influence of the degree of circadian adaptation to night work on sleep architecture following night shift. METHODS Thirty four night workers (11 females; 33.8 ± 10.1years) completed a simulated night shift following 2-7 typical night shifts. Participants completed a laboratory-based simulated night shift (21:00-07:00 hours), followed by a recovery sleep opportunity (∼09:00-17:00 hours), recorded using polysomnography. Urinary 6-sulphatoxymelatonin (aMT6s) rhythm acrophase was used as a marker of circadian phase. Sleep duration and architecture were compared between individuals with aMT6s acrophase before (unadapted group, n = 22) or after (partially adapted group, n = 12) bedtime. RESULTS Bedtime occurred on average 2.16 hours before aMT6s acrophase in the partially adapted group and 3.91 hours after acrophase in the unadapted group. The partially adapted group had more sleep during the week before the simulated night than the unadapted group (6.47 ± 1.02 vs. 5.26 ± 1.48 hours, p = .02). After the simulated night shift, both groups had similar total sleep time (partially adapted: 6.68 ± 0.80 hours, unadapted: 6.63 ± 0.88 hours, p > .05). The partially adapted group had longer total rapid eye movement sleep duration than the unadapted group (106.79 ± 32.05 minutes vs. 77.90 ± 28.86 minutes, p = .01). After 5-hours, rapid eye movement sleep accumulation was higher in the partially adapted compared to the unadapted group (p = .02). Sleep latency and other stages were not affected by circadian adaptation. DISCUSSION Partial circadian adaptation to night shift was associated with longer rapid eye movement sleep duration during daytime sleep, highlighting the influence of entrainment between the sleep-wake cycle and the circadian pacemaker in night workers. The findings have important implications for sleep and subsequent alertness associated with shift work.
Collapse
Affiliation(s)
- Iona Z Zimberg
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Suzanne Ftouni
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michelle Magee
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Sally A Ferguson
- Central Queensland University, Appleton Institute, Goodwood, South Australia, Australia
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Shantha M W Rajaratnam
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Tracey L Sletten
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
15
|
Scheuermaier K, Chang AM, Duffy JF. Sleep-independent circadian rhythm of aldosterone secretion in healthy young adults. Sleep Health 2024; 10:S103-S107. [PMID: 38065818 PMCID: PMC11031291 DOI: 10.1016/j.sleh.2023.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 04/20/2024]
Abstract
OBJECTIVE A diurnal variation in urine output has been described in humans, whereby it is lowest at night. Fluid balance hormones such as vasopressin and aldosterone as well as urine output have a diurnal variation. Although the diurnal variation of vasopressin results in part from a circadian rhythm, the variation in aldosterone has until recently been reported to be due to the sleep/wake cycle. The present study used a specialized protocol to explore whether aldosterone has an underlying circadian rhythm. METHODS Ten healthy participants (average age 23.1) were enrolled in the 57.3-hour protocol that included an 8-hour baseline sleep episode, 40 hours in constant routine conditions (wakefulness, food and fluid intake, posture, and dim light), and a 9.3-hour recovery sleep. Blood samples for aldosterone were taken every 4 hours. Cosinor analysis was performed on the constant routine data to test the effect of the sleep/wake cycle on overall aldosterone secretion. RESULTS There was a significant circadian rhythm during the 40-hour constant routine, independent of sleep, with aldosterone higher at the end of the biological night and lower at the end of the biological day. When analyzing data from the entire 57.3-hour protocol and controlling for this circadian rhythm, aldosterone concentration was significantly higher during the recovery night following the 40-hour sleep deprivation compared to the night spent awake. CONCLUSION We found a significant endogenous circadian rhythm in the secretion of aldosterone, independent of sleep. In addition, as shown previously, there was a significant effect of the sleep/wake cycle on aldosterone secretion.
Collapse
Affiliation(s)
- Karine Scheuermaier
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Division of Sleep Medicine - Harvard Medical School, Boston, Massachusetts, USA; Wits Sleep Laboratory, Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Anne-Marie Chang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Division of Sleep Medicine - Harvard Medical School, Boston, Massachusetts, USA; Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Division of Sleep Medicine - Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Monterastelli AJ, Adams J, Eastman CI, Crowley SJ. The forbidden zone for sleep is more robust in adolescents compared to adults. FRONTIERS IN SLEEP 2024; 2:1304647. [PMID: 39917052 PMCID: PMC11801367 DOI: 10.3389/frsle.2023.1304647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Introduction The propensity for sleep shifts later as puberty progresses. The present analysis examines whether the circadian-dependent wake maintenance zone, or forbidden zone for sleep observed in the evening just before habitual bedtime is more pronounced in late to post-pubertal adolescents compared to adults and may partly explain late sleep onset in maturing adolescents. Methods Forty four healthy late/post-pubertal adolescents (aged 14.3-17.8 years, 23 female) and 44 healthy adults (aged 30.8-45.8 years, 21 female) participated in an ultradian light/dark protocol for 3 days cycling between 2-h wake periods (~20 lux) and 2-h nap periods (~0 lux) without external time cues. The dim light melatonin onset (DLMO), a measure of circadian phase, was measured immediately before the ultradian protocol by sampling saliva every 30 min in dim light. Wrist actigraphs were used to assess sleep onset latency and total sleep time during the naps that occurred during the ultradian sleep/wake schedule. Sleep episodes were grouped into 2-h bins relative to individual DLMOs (28-56 naps/bin). Sleep onset and total sleep time were compared between adolescents and adults as well as between males and females within each age group. Results Adolescents took significantly longer to fall asleep compared to adults during naps that occurred in the 4 h window surrounding the DLMO [2h before DLMO t (50) = 2.13, p = 0.04; 2 h after DLMO t (33) = 3.25, p = 0.003]. Adolescents also slept significantly less than adults during naps that occurred in the 4-h window surrounding DLMO [2 h before DLMO t(51) = -2.91, p = 0.01; 2 h after DLMO t (33) = -1.99, p = 0.05]. Adolescent males slept less than adolescent females in naps that occurred in the 2 h window after the DLMO [t (14) = -2.24, p = 0.04]. Discussion Compared to adults, late/post-pubertal adolescents showed greater difficulty falling asleep and maintaining sleep around the time of their DLMO, which usually occurs a few hours before habitual sleep onset. A greater amplitude in the circadian-driven forbidden zone for sleep could be an additional physiological mechanism explaining why maturing adolescents find it difficult to fall asleep early, increasing the risk for restricted sleep in the context of early school start times.
Collapse
Affiliation(s)
- Allison J. Monterastelli
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, United States
| | - John Adams
- Department of Behavioral Sciences, Olivet Nazarene University, Bourbonnais, IL, United States
| | - Charmane I. Eastman
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Stephanie J. Crowley
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
17
|
Najjar RP, Prayag AS, Gronfier C. Melatonin suppression by light involves different retinal photoreceptors in young and older adults. J Pineal Res 2024; 76:e12930. [PMID: 38241677 DOI: 10.1111/jpi.12930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/31/2023] [Accepted: 11/29/2023] [Indexed: 01/21/2024]
Abstract
Age-related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of light-induced melatonin suppression in young and older individuals. In a within-subject design study, young and older participants were exposed for 60 min (0030-0130 at night) to nine narrow-band lights (range: 420-620 nm). Plasma melatonin suppression was calculated at 15, 30, 45, and 60 min time intervals. Individual spectral sensitivity of melatonin suppression and photoreceptor contribution were predicted for each interval and age group. In young participants, melanopsin solely drove melatonin suppression at all time intervals, with a peak sensitivity at 485.3 nm established only after 15 min of light exposure. Conversely, in older participants, spectral light-driven melatonin suppression was best explained by a more complex model combining melanopsin, S-cone, and M-cone functions, with a stable peak (~500 nm) at 30, 45, and 60 min of light exposure. Aging is associated with a distinct photoreceptor contribution to melatonin suppression by light. While in young adults melanopsin-only photoreception is a reliable predictor of melatonin suppression, in older individuals this process is jointly driven by melanopsin, S-cone, and M-cone functions. These findings offer new prospects for customizing light therapy for older individuals.
Collapse
Affiliation(s)
- Raymond P Najjar
- Department of Ophthalmology, Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Visual Neurosciences Group, ASPIRE Research Program, Singapore Eye Research Institute, Singapore, Singapore
- Visual Sciences and Ophthalmology Program, Duke-NUS Medical School, Singapore, Singapore
- Center for Innovation & Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abhishek S Prayag
- Lyon Neuroscience Research Center, Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Claude Gronfier
- Lyon Neuroscience Research Center, Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
18
|
Gunnett M, Rocque BG, Nourani A, Beltran-Ale G. Impact of Spina Bifida on Sleep Quality: Current Insights. Nat Sci Sleep 2023; 15:967-978. [PMID: 38034043 PMCID: PMC10685378 DOI: 10.2147/nss.s401269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
Spina bifida (SB) is one of the most common birth defects in children. The care for patients with SB continues to evolve, and there has been notable improvement in survival outcomes, degree of disability and quality of life for these children. However, patients with SB continue to remain at higher risk for sleep-related breathing disorders (SRBD), unexplained sudden death, and potential alterations in their sleep chronotype. Previous studies report on abnormalities in the spinal cord, brainstem function, and dysfunction of upper airway maintenance as the likely mechanisms behind SRBD that is commonly seen in SB. Most studies looking at prevalence of SRBD in SB have been retrospective studies. A recent prospective study identified a prevalence as high as 42% when a polysomnography (PSG) was completed on all patients regardless of symptomatology. Treatment options vary depending on the type and severity of SRBD and can range widely. Despite advances in care for patients with SB and SRBD, a subset of these patients with myelomeningocele (MMC) continue to experience sudden unexplained death. Studies continue to evaluate ways to stratify which of these patients may be at higher risk of this devastating outcome. Given that SRBD is potentially treatable, early assessment and intervention could become an integral part of a multidisciplinary treatment strategy to optimize long-term medical and neurodevelopmental outcomes for this patient population. By understanding the impact that SB may have on a patient's sleep quality, their biological chronotype and their potential of developing SRBD, a provider may help to optimize the care a patient with SB receives from birth into adulthood.
Collapse
Affiliation(s)
- Mohini Gunnett
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Brandon G Rocque
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Anis Nourani
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Guillermo Beltran-Ale
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| |
Collapse
|
19
|
Keihani A, Mayeli A, Ferrarelli F. Circadian Rhythm Changes in Healthy Aging and Mild Cognitive Impairment. Adv Biol (Weinh) 2023; 7:e2200237. [PMID: 36403250 PMCID: PMC10199146 DOI: 10.1002/adbi.202200237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/01/2022] [Indexed: 11/21/2022]
Abstract
Disruptions in circadian rhythms can occur in healthy aging; however, these changes are more severe and pervasive in individuals with age-related and neurodegenerative diseases, such as dementia. Circadian rhythm alterations are also present in preclinical stages of dementia, for example, in patients with mild cognitive impairments (MCI); thus, providing a unique window of opportunity for early intervention in neurodegenerative disorders. Nonetheless, there is a lack of studies examining the association between relevant changes in circadian rhythms and their relationship with cognitive dysfunctions in MCI individuals. In this review, circadian system alterations occurring in MCI patients are examined compared to healthy aging individuals while also considering their association with MCI neurocognitive alterations. The main findings are that abnormal circadian changes in rest-activity, core body temperature, melatonin, and cortisol rhythms appear in the MCI stage and that these circadian rhythm disruptions are associated with some of the neurocognitive deficits observed in MCI patients. In addition, preliminary evidence indicates that interventions aimed at restoring regular circadian rhythms may prevent or halt the progress of neurodegenerative diseases and mitigate their related cognitive impairments. Future longitudinal studies with repeated follow-up assessments are needed to establish the translational potential of these findings in clinical practice.
Collapse
Affiliation(s)
- Ahmadreza Keihani
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Pittsburgh, PA, 15213, USA
| |
Collapse
|
20
|
Xu W, Li X. Special Issue: Circadian Rhythms and Age Related Disorder: How Does Aging Impact Mammalian Circadian Organization? Adv Biol (Weinh) 2023; 7:e2200219. [PMID: 36449746 DOI: 10.1002/adbi.202200219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Aging significantly impacts circadian timing in mammals. The amplitude and precision of behavioral, endocrine, and metabolic rhythms decline with age. This is accompanied with an age-related decline in the amplitude of central pacemaker output, although the molecular clock in the suprachiasmatic nucleus exhibit robust oscillation. Peripheral clocks also exhibit robust oscillation during aging, when extensive reprogramming of other genes' expression rhythms occurs in peripheral tissues. The age-related dissociation between the molecular clock and downstream rhythms in both central and peripheral tissues indicates that mechanisms other than the molecular clock are involved in mediating the impact the aging on circadian organization. In this article, findings are reviewed on the impact of aging on circadian timing functions, and the potential role of increased inflammatory response in age-related changes in circadian organization is highlighted.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Sciences, Wuhan University, Hubei Province, 430072, P. R. China
| | - Xiaodong Li
- College of Life Sciences, Wuhan University, Hubei Province, 430072, P. R. China
| |
Collapse
|
21
|
Deantoni M, Reyt M, Berthomier C, Muto V, Hammad G, De Haan S, Dourte M, Taillard J, Lambot E, Cajochen C, Reichert CF, Maire M, Baillet M, Schmidt C. Association between circadian sleep regulation and cortical gyrification in young and older adults. Sleep 2023; 46:zsad094. [PMID: 37010079 DOI: 10.1093/sleep/zsad094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/17/2023] [Indexed: 04/04/2023] Open
Abstract
The circadian system orchestrates sleep timing and structure and is altered with increasing age. Sleep propensity, and particularly REM sleep is under strong circadian control and has been suggested to play an important role in brain plasticity. In this exploratory study, we assessed whether surface-based brain morphometry indices are associated with circadian sleep regulation and whether this link changes with age. Twenty-nine healthy older (55-82 years; 16 men) and 28 young participants (20-32 years; 13 men) underwent both structural magnetic resonance imaging and a 40-h multiple nap protocol to extract sleep parameters over day and night time. Cortical thickness and gyrification indices were estimated from T1-weighted images acquired during a classical waking day. We observed that REM sleep was significantly modulated over the 24-h cycle in both age groups, with older adults exhibiting an overall reduction in REM sleep modulation compared to young individuals. Interestingly, when taking into account the observed overall age-related reduction in REM sleep throughout the circadian cycle, higher day-night differences in REM sleep were associated with increased cortical gyrification in the right inferior frontal and paracentral regions in older adults. Our results suggest that a more distinctive allocation of REM sleep over the 24-h cycle is associated with regional cortical gyrification in aging, and thereby point towards a protective role of circadian REM sleep regulation for age-related changes in brain organization.
Collapse
Affiliation(s)
- Michele Deantoni
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Mathilde Reyt
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| | | | - Vincenzo Muto
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Gregory Hammad
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Stella De Haan
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Marine Dourte
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit, Center for Research in Cognition and Neurosciences, Neurosciences Institute, Universite Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Eric Lambot
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Carolin F Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Micheline Maire
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Marion Baillet
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Christina Schmidt
- Sleep and Chronobiology Laboratory, GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
22
|
Shi R, Wang F, Xu W, Fu L. Association of age and night flight duration with sleep disorders among Chinese airline pilots. Front Public Health 2023; 11:1217005. [PMID: 37744512 PMCID: PMC10513407 DOI: 10.3389/fpubh.2023.1217005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Objective Night flights might aggravate sleep disorders among aging airline pilots, posing a threat to flight safety. In this study, we assess the prevalence of sleep disorders as well as the combined effects of night flight duration and aging on sleep disorders. Method A cross-sectional study was conducted between July and December, 2021. Participants were recruited from a commercial airline. Sleep disorders were evaluated using the Pittsburgh Sleep Quality Index (PSQI). The interaction effect of night flight duration and age on sleep disorders and their correlates were examined using logistic regression models. Results In total, 1,208 male airline pilots were included in the study, with a median age of 34 (interquartile range [IQR]: 29-39) years. The overall prevalence of sleep disorders was 42.6%. The multivariate logistic regression identified an interaction between night flight duration and age on sleep disorders (adjusted odds ratio [aOR] of the interaction term was 5.85 95% CI: 2.23-15.34 for age ≥ 45 years; 1.96 95% CI:1.01-3.81 for the age group 30-44 years). Longer night flight duration (aOR: 4.55; 95%CI: 1.82-11.38) and body mass index (BMI) ≥28.0 kg/m2 (aOR: 0.16; 95% CI: 0.03-0.91) were significantly associated with sleep disorders in participants aged ≥45 years. Hyperuricemia (aOR: 1.54; 95% CI: 1.09-2.16) and regular exercise (aOR: 0.23; 95% CI: 0.08-0.70) were significantly associated with sleep disorders in the 30-44 years age group. Conclusion The mean monthly night flight duration and aging had a synergistic effect on airline pilots' sleep disorders, implying an aging and work-related mechanistic pathogenesis of sleep disorders in airline pilots that requires additional exploration and intervention.
Collapse
Affiliation(s)
- Ruizi Shi
- Shanghai Institute of Aviation Medicine, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Wang
- Shanghai Hospital of Civil Aviation Administration of China, Gubei Branch of Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wanying Xu
- Shanghai Institute of Aviation Medicine, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Fu
- Shanghai Hospital of Civil Aviation Administration of China, Gubei Branch of Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
23
|
Circle(s) of Life: The Circadian Clock from Birth to Death. BIOLOGY 2023; 12:biology12030383. [PMID: 36979075 PMCID: PMC10045474 DOI: 10.3390/biology12030383] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
Most lifeforms on earth use endogenous, so-called circadian clocks to adapt to 24-h cycles in environmental demands driven by the planet’s rotation around its axis. Interactions with the environment change over the course of a lifetime, and so does regulation of the circadian clock system. In this review, we summarize how circadian clocks develop in humans and experimental rodents during embryonic development, how they mature after birth and what changes occur during puberty, adolescence and with increasing age. Special emphasis is laid on the circadian regulation of reproductive systems as major organizers of life segments and life span. We discuss differences in sexes and outline potential areas for future research. Finally, potential options for medical applications of lifespan chronobiology are discussed.
Collapse
|
24
|
Wang W, Yuan RK, Mitchell JF, Zitting KM, St Hilaire MA, Wyatt JK, Scheer FAJL, Wright KP, Brown EN, Ronda JM, Klerman EB, Duffy JF, Dijk DJ, Czeisler CA. Desynchronizing the sleep---wake cycle from circadian timing to assess their separate contributions to physiology and behaviour and to estimate intrinsic circadian period. Nat Protoc 2023; 18:579-603. [PMID: 36376588 DOI: 10.1038/s41596-022-00746-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Circadian clocks drive cyclic variations in many aspects of physiology, but some daily variations are evoked by periodic changes in the environment or sleep-wake state and associated behaviors, such as changes in posture, light levels, fasting or eating, rest or activity and social interactions; thus, it is often important to quantify the relative contributions of these factors. Yet, circadian rhythms and these evoked effects cannot be separated under typical 24-h day conditions, because circadian phase and the length of time awake or asleep co-vary. Nathaniel Kleitman's forced desynchrony (FD) protocol was designed to assess endogenous circadian rhythmicity and to separate circadian from evoked components of daily rhythms in multiple parameters. Under FD protocol conditions, light intensity is kept low to minimize its impact on the circadian pacemaker, and participants have sleep-wake state and associated behaviors scheduled to an imposed non-24-h cycle. The period of this imposed cycle, Τ, is chosen so that the circadian pacemaker cannot entrain to it and therefore continues to oscillate at its intrinsic period (τ, ~24.15 h), ensuring circadian components are separated from evoked components of daily rhythms. Here we provide detailed instructions and troubleshooting techniques on how to design, implement and analyze the data from an FD protocol. We provide two procedures: one with general guidance for designing an FD study and another with more precise instructions for replicating one of our previous FD studies. We discuss estimating circadian parameters and quantifying the separate contributions of circadian rhythmicity and the sleep-wake cycle, including statistical analysis procedures and an R package for conducting the non-orthogonal spectral analysis method that enables an accurate estimation of period, amplitude and phase.
Collapse
Affiliation(s)
- Wei Wang
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Robin K Yuan
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jude F Mitchell
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Kirsi-Marja Zitting
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Melissa A St Hilaire
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - James K Wyatt
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Data Systems and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph M Ronda
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Elizabeth B Klerman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Acharya T, Dhungana GK, Traille K, Dhakal H. Senior Citizens in Nepal: Policy Gaps and Recommendations. Gerontol Geriatr Med 2023; 9:23337214231179902. [PMID: 37333481 PMCID: PMC10272673 DOI: 10.1177/23337214231179902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Limited research has been conducted on the views of senior citizens in Nepal with regards to contemporary challenges and aging issues. To better understand their existing problems, it is important to talk to and survey senior citizens and reflect on their experiences and insights. The Senior Citizens Acts, 2063 in Nepal defines senior citizens as individuals who have reached the age of 60 years or above. With an increase in life expectancy rates, the senior citizen population in Nepal is on the rise. However, despite the guarantees of rights outlined in the policy, little attention has been paid to the needs of the elderly population. This knowledge can help inform policies and programs that improve their quality of life and well-being. Therefore, this study aims to collect the lived experiences of older generations across Nepal, including information about the society, culture, and hardships they faced. The research aims to contribute to existing literature on the experiences of the elderly and inform policies related to senior citizens. A mixed-methods approach was used for this study, incorporating both primary and secondary sources. The primary data was collected through an informal survey posted on Facebook targeting senior citizens in Nepal which generated 100 responses from senior citizens aged 65 years or older within a 2-week period.
Collapse
Affiliation(s)
- Tulasi Acharya
- Nexus Institute of Research and Innovation(NIRI), Nepal
- South Georgia State College, Douglas, GA, USA
| | | | - Kay Traille
- Kennesaw State University, Kennesaw, GA, USA
| | - Hemraj Dhakal
- Nexus Institute of Research and Innovation(NIRI), Nepal
| |
Collapse
|
26
|
Bartosiak K, Schwabe M, Lucey B, Lawrie C, Barrack R. Sleep Disturbances and Disorders in Patients with Knee Osteoarthritis and Total Knee Arthroplasty. J Bone Joint Surg Am 2022; 104:1946-1955. [PMID: 35926180 DOI: 10.2106/jbjs.21.01448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
➤ There is increasing evidence that patient-reported outcomes following total knee arthroplasty (TKA) are associated with psychosocial factors and pain catastrophizing. Sleep disturbance, pain, and mental health have a complex interaction, which, if unrecognized, can be associated with impaired patient-reported outcomes and dissatisfaction following TKA. ➤ The gold standard of objective sleep assessment is polysomnography, which is not feasible to use routinely for TKA patients. Wearable devices are a validated and less costly alternative. ➤ Subjective sleep measures, such as the Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale, or Patient-Reported Outcomes Measurement Information System (PROMIS) computerized adaptive test sleep domains, are simple to administer and provide additional insight into sleep disturbance. Although objective and subjective measures do not correlate precisely, they can be informative together. ➤ Sleep disturbances in the elderly population are common and multifactorial in etiology, stemming from the interplay of sleep disorders, medication side effects, and pain. Commonly prescribed medications following TKA as well as postoperative pain can exacerbate underlying sleep disturbances. ➤ Obstructive sleep apnea (OSA) is prevalent in patients seeking TKA. In the setting of OSA, postoperative opioids can cause respiratory depression, resulting in consequences as severe as death. A standardized multimodal pain protocol including anti-inflammatories and gamma-aminobutyric acid (GABA) analogues may allow for decreased reliance on opioids for pain control. ➤ Surgeons should reassure patients that postoperative sleep disturbance is common and transient, collaborate with the patient's primary care doctor to address sleep disturbance, and avoid prescription of pharmaceutical sleep aids.
Collapse
Affiliation(s)
- Kimberly Bartosiak
- Department of Orthopaedics, Washington University in St. Louis, St. Louis, Missouri
| | - Maria Schwabe
- Department of Orthopaedics, Washington University in St. Louis, St. Louis, Missouri
| | - Brendan Lucey
- Department of Orthopaedics, Washington University in St. Louis, St. Louis, Missouri
| | - Charles Lawrie
- Miami Orthopedics & Sports Medicine Institute, Baptist Health South Florida, Miami, Florida
| | - Robert Barrack
- Department of Orthopaedics, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
27
|
Reyt M, Deantoni M, Baillet M, Lesoinne A, Laloux S, Lambot E, Demeuse J, Calaprice C, LeGoff C, Collette F, Vandewalle G, Maquet P, Muto V, Hammad G, Schmidt C. Daytime rest: Association with 24-h rest-activity cycles, circadian timing and cognition in older adults. J Pineal Res 2022; 73:e12820. [PMID: 35906192 DOI: 10.1111/jpi.12820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Growing epidemiological evidence points toward an association between fragmented 24-h rest-activity cycles and cognition in the aged. Alterations in the circadian timing system might at least partially account for these observations. Here, we tested whether daytime rest (DTR) is associated with changes in concomitant 24-h rest probability profiles, circadian timing and neurobehavioural outcomes in healthy older adults. Sixty-three individuals (59-82 years) underwent field actigraphy monitoring, in-lab dim light melatonin onset assessment and an extensive cognitive test battery. Actimetry recordings were used to measure DTR frequency, duration and timing and to extract 24-h rest probability profiles. As expected, increasing DTR frequency was associated not only with higher rest probabilities during the day, but also with lower rest probabilities during the night, suggesting more fragmented night-time rest. Higher DTR frequency was also associated with lower episodic memory performance. Moreover, later DTR timing went along with an advanced circadian phase as well as with an altered phase angle of entrainment between the rest-activity cycle and circadian phase. Our results suggest that different DTR characteristics, as reflective indices of wake fragmentation, are not only underlined by functional consequences on cognition, but also by circadian alteration in the aged.
Collapse
Affiliation(s)
- Mathilde Reyt
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology, Speech and Language, University of Liège, Liège, Belgium
| | - Michele Deantoni
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Marion Baillet
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Alexia Lesoinne
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Sophie Laloux
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Eric Lambot
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Justine Demeuse
- Department of Clinical Chemistry, University Hospital of Liège, University of Liège, Liège, Belgium
| | - Chiara Calaprice
- Department of Clinical Chemistry, University Hospital of Liège, University of Liège, Liège, Belgium
| | - Caroline LeGoff
- Department of Clinical Chemistry, University Hospital of Liège, University of Liège, Liège, Belgium
| | - Fabienne Collette
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology, Speech and Language, University of Liège, Liège, Belgium
| | - Gilles Vandewalle
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Pierre Maquet
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
- Department of Neurology, University Hospital of Liège, University of Liège, Liège, Belgium
| | - Vincenzo Muto
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Grégory Hammad
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Christina Schmidt
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology, Speech and Language, University of Liège, Liège, Belgium
| |
Collapse
|
28
|
Characteristic Sleep Patterns and Associated Obesity in Adolescents. Life (Basel) 2022; 12:life12091316. [PMID: 36143353 PMCID: PMC9500978 DOI: 10.3390/life12091316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
Poor sleep adversely affects health and may cause obesity. Poor sleep includes short sleep duration, low quality of sleep, and sleep discrepancy. Although most studies have focused on the association between sleep duration and obesity, poor sleep is a significant risk factor for obesity. Adolescents have characteristic sleep patterns which correspond to poor sleep. Adolescents sleep late due to various biological and psychosocial factors; also, they wake up early to be on time for school. This causes them to sleep less. To make up for this sleep debt, adolescents sleep more on non-school days, which causes sleep discrepancies. Therefore, since adolescents have characteristic sleep patterns, an in-depth investigation is needed to identify whether poor sleep is a risk for obesity. This article presents an overview of the characteristic sleep patterns of adolescents, and reviews studies on the association of each sleep pattern with obesity.
Collapse
|
29
|
Ge L, Luo J, Zhang L, Kang X, Zhang D. Association of Pyridoxal 5′-Phosphate with Sleep-Related Problems in a General Population. Nutrients 2022; 14:nu14173516. [PMID: 36079774 PMCID: PMC9460331 DOI: 10.3390/nu14173516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The evidence on the relationship of pyridoxal 5′-phosphate (PLP) with sleep-related problems is limited and controversial. Notably, there is a lack of studies on the general population and studies of the dose–response relationship. Therefore, we conducted a cross-sectional study to examine the associations between serum PLP concentration and sleep-related problems (sleep quality and sleep duration) in adults, using the data of the National Health and Nutrition Examination Survey 2005–2010. High-performance liquid chromatography (HPLC) was used to test PLP in blood samples. Sleep quality and sleep duration were based on self-reported data, with sleep quality categorized as sleep disorder, trouble falling asleep, waking up during the night, and daytime sleepiness. The primary analyses utilized logistic regression models and restricted cubic spline. Compared with the first quartile (Q1), the odds ratios (ORs) and 95% confidence intervals (CIs) of daytime sleepiness for the Q2 and Q3 of serum PLP concentrations were 0.76 (0.59–0.99) and 0.78 (0.62–0.98), respectively. The relationship was only significant for males. Furthermore, a non-linear dose–response relationship was observed between serum PLP concentration and the risk of daytime sleepiness. Compared with the normal sleep duration group, serum PLP concentrations were negatively associated with the risks of very short, short, and long sleep duration, with relative risk ratios (RRRs) of 0.58 (0.43–0.81) (Q4), 0.71 (0.61–0.83) (Q4) and 0.62 (0.34–0.94) (Q3), respectively. The average serum PLP concentrations were higher in people with normal sleep duration, suggesting a non-linear dose–response relationship. Our study indicated that serum PLP concentrations were negatively associated with daytime sleepiness, and this association may only exist in males. Moreover, it was also inversely related to abnormal sleep duration (very short, short, long) compared to normal sleep duration.
Collapse
|
30
|
Gall AJ, Shuboni-Mulligan DD. Keep Your Mask On: The Benefits of Masking for Behavior and the Contributions of Aging and Disease on Dysfunctional Masking Pathways. Front Neurosci 2022; 16:911153. [PMID: 36017187 PMCID: PMC9395722 DOI: 10.3389/fnins.2022.911153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental cues (e.g., light-dark cycle) have an immediate and direct effect on behavior, but these cues are also capable of “masking” the expression of the circadian pacemaker, depending on the type of cue presented, the time-of-day when they are presented, and the temporal niche of the organism. Masking is capable of complementing entrainment, the process by which an organism is synchronized to environmental cues, if the cues are presented at an expected or predictable time-of-day, but masking can also disrupt entrainment if the cues are presented at an inappropriate time-of-day. Therefore, masking is independent of but complementary to the biological circadian pacemaker that resides within the brain (i.e., suprachiasmatic nucleus) when exogenous stimuli are presented at predictable times of day. Importantly, environmental cues are capable of either inducing sleep or wakefulness depending on the organism’s temporal niche; therefore, the same presentation of a stimulus can affect behavior quite differently in diurnal vs. nocturnal organisms. There is a growing literature examining the neural mechanisms underlying masking behavior based on the temporal niche of the organism. However, the importance of these mechanisms in governing the daily behaviors of mammals and the possible implications on human health have been gravely overlooked even as modern society enables the manipulation of these environmental cues. Recent publications have demonstrated that the effects of masking weakens significantly with old age resulting in deleterious effects on many behaviors, including sleep and wakefulness. This review will clearly outline the history, definition, and importance of masking, the environmental cues that induce the behavior, the neural mechanisms that drive them, and the possible implications for human health and medicine. New insights about how masking is affected by intrinsically photosensitive retinal ganglion cells, temporal niche, and age will be discussed as each relates to human health. The overarching goals of this review include highlighting the importance of masking in the expression of daily rhythms, elucidating the impact of aging, discussing the relationship between dysfunctional masking behavior and the development of sleep-related disorders, and considering the use of masking as a non-invasive treatment to help treat humans suffering from sleep-related disorders.
Collapse
Affiliation(s)
- Andrew J. Gall
- Department of Psychology and Neuroscience Program, Hope College, Holland, MI, United States
- *Correspondence: Andrew J. Gall,
| | - Dorela D. Shuboni-Mulligan
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
31
|
Casagrande M, Forte G, Favieri F, Corbo I. Sleep Quality and Aging: A Systematic Review on Healthy Older People, Mild Cognitive Impairment and Alzheimer’s Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148457. [PMID: 35886309 PMCID: PMC9325170 DOI: 10.3390/ijerph19148457] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023]
Abstract
Aging is characterized by changes in the structure and quality of sleep. When the alterations in sleep become substantial, they can generate or accelerate cognitive decline, even in the absence of overt pathology. In fact, impaired sleep represents one of the earliest symptoms of Alzheimer’s disease (AD). This systematic review aimed to analyze the studies on sleep quality in aging, also considering mild cognitive impairment (MCI) and AD. The review process was conducted according to the PRISMA statement. A total of 71 studies were included, and the whole sample had a mean age that ranged from 58.3 to 93.7 years (62.8–93.7 healthy participants and 61.8–86.7 pathological populations). Of these selected studies, 33 adopt subjective measurements, 31 adopt objective measures, and 10 studies used both. Pathological aging showed a worse impoverishment of sleep than older adults, in both subjective and objective measurements. The most common aspect compromised in AD and MCI were REM sleep, sleep efficiency, sleep latency, and sleep duration. These results underline that sleep alterations are associated with cognitive impairment. In conclusion, the frequency and severity of sleep disturbance appear to follow the evolution of cognitive impairment. The overall results of objective measures seem more consistent than those highlighted by subjective measurements.
Collapse
Affiliation(s)
- Maria Casagrande
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00185 Roma, Italy;
- Correspondence: (M.C.); (I.C.)
| | - Giuseppe Forte
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00185 Roma, Italy;
- Body and Action Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy;
| | - Francesca Favieri
- Body and Action Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy;
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Roma, Italy
| | - Ilaria Corbo
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Roma, Italy
- Correspondence: (M.C.); (I.C.)
| |
Collapse
|
32
|
Abstract
Sleep is a key determinant of healthy and cognitive aging. Sleep patterns change with aging, independent of other factors, and include advanced sleep timing, shortened nocturnal sleep duration, increased frequency of daytime naps, increased number of nocturnal awakenings and time spent awake during the night, and decreased slow-wave sleep. The sleep-related hormone secretion changes with aging. Most changes seem to occur between young and middle adulthood; sleep parameters remain largely unchanged among healthy older adults. The circadian system and sleep homeostatic mechanisms become less robust with normal aging. The causes of sleep disturbances in older adults are multifactorial.
Collapse
Affiliation(s)
- Junxin Li
- School of Nursing, Johns Hopkins University, 525 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Michael V Vitiello
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, 3624 Market Street, Philadelphia, PA 19104, USA
| | - Nalaka S Gooneratne
- Department of Psychiatry and Behavioral Sciences, University of Washington, Box 356560, Seattle, WA 98195-6560, USA
| |
Collapse
|
33
|
Guo D, Thomas RJ, Liu Y, Shea SA, Lu J, Peng CK. Slow wave synchronization and sleep state transitions. Sci Rep 2022; 12:7467. [PMID: 35523989 PMCID: PMC9076647 DOI: 10.1038/s41598-022-11513-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 04/15/2022] [Indexed: 11/08/2022] Open
Abstract
Spontaneous synchronization over large networks is ubiquitous in nature, ranging from inanimate to biological systems. In the human brain, neuronal synchronization and de-synchronization occur during sleep, with the greatest degree of neuronal synchronization during slow wave sleep (SWS). The current sleep classification schema is based on electroencephalography and provides common criteria for clinicians and researchers to describe stages of non-rapid eye movement (NREM) sleep as well as rapid eye movement (REM) sleep. These sleep stage classifications have been based on convenient heuristic criteria, with little consideration of the accompanying normal physiological changes across those same sleep stages. To begin to resolve those inconsistencies, first focusing only on NREM sleep, we propose a simple cluster synchronization model to explain the emergence of SWS in healthy people without sleep disorders. We apply the empirical mode decomposition (EMD) analysis to quantify slow wave activity in electroencephalograms, and provide quantitative evidence to support our model. Based on this synchronization model, NREM sleep can be classified as SWS and non-SWS, such that NREM sleep can be considered as an intrinsically bistable process. Finally, we develop an automated algorithm for SWS classification. We show that this new approach can unify brain wave dynamics and their corresponding physiologic changes.
Collapse
Affiliation(s)
- Dan Guo
- Center for Dynamical Biomarkers, MA, 02067, Sharon, USA
| | - Robert J Thomas
- Division of Pulmonary, Critical Care & Sleep, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yanhui Liu
- Olera Technologies, Inc., CA, 94022, Los Altos, USA
| | - Steven A Shea
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jun Lu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | | |
Collapse
|
34
|
Upregulation of IP 3 receptor mediates APP-induced defects in synaptic downscaling and sleep homeostasis. Cell Rep 2022; 38:110594. [PMID: 35354048 DOI: 10.1016/j.celrep.2022.110594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/14/2021] [Accepted: 03/09/2022] [Indexed: 11/22/2022] Open
Abstract
Evidence suggests that impaired synaptic and firing homeostasis represents a driving force of early Alzheimer's disease (AD) progression. Here, we examine synaptic and sleep homeostasis in a Drosophila model by overexpressing human amyloid precursor protein (APP), whose duplication and mutations cause familial early-onset AD. We find that APP overexpression induces synaptic hyperexcitability. RNA-seq data indicate exaggerated expression of Ca2+-related signaling genes in APP mutants, including genes encoding Dmca1D, calcineurin (CaN) complex, and IP3R. We further demonstrate that increased CaN activity triggers transcriptional activation of Itpr (IP3R) through activating nuclear factor of activated T cells (NFAT). Strikingly, APP overexpression causes defects in synaptic downscaling and sleep deprivation-induced sleep rebound, and both defects could be restored by inhibiting IP3R. Our findings uncover IP3R as a shared signaling molecule in synaptic downscaling and sleep homeostasis, and its dysregulation may lead to synaptic hyperexcitability and AD progression at early stage.
Collapse
|
35
|
Hunt J, Coulson EJ, Rajnarayanan R, Oster H, Videnovic A, Rawashdeh O. Sleep and circadian rhythms in Parkinson's disease and preclinical models. Mol Neurodegener 2022; 17:2. [PMID: 35000606 PMCID: PMC8744293 DOI: 10.1186/s13024-021-00504-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
The use of animals as models of human physiology is, and has been for many years, an indispensable tool for understanding the mechanisms of human disease. In Parkinson's disease, various mouse models form the cornerstone of these investigations. Early models were developed to reflect the traditional histological features and motor symptoms of Parkinson's disease. However, it is important that models accurately encompass important facets of the disease to allow for comprehensive mechanistic understanding and translational significance. Circadian rhythm and sleep issues are tightly correlated to Parkinson's disease, and often arise prior to the presentation of typical motor deficits. It is essential that models used to understand Parkinson's disease reflect these dysfunctions in circadian rhythms and sleep, both to facilitate investigations into mechanistic interplay between sleep and disease, and to assist in the development of circadian rhythm-facing therapeutic treatments. This review describes the extent to which various genetically- and neurotoxically-induced murine models of Parkinson's reflect the sleep and circadian abnormalities of Parkinson's disease observed in the clinic.
Collapse
Affiliation(s)
- Jeremy Hunt
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Elizabeth J. Coulson
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | | | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Aleksandar Videnovic
- Movement Disorders Unit and Division of Sleep Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Oliver Rawashdeh
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
36
|
Sargent C, Kosmadopoulos A, Zhou X, Roach GD. Timing of Sleep in the Break Between Two Consecutive Night-Shifts: The Effect of Different Strategies on Daytime Sleep and Night-Time Neurobehavioural Function. Nat Sci Sleep 2022; 14:231-242. [PMID: 35210890 PMCID: PMC8860456 DOI: 10.2147/nss.s336795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE The aim of this study was to examine whether the timing of sleep in the break between consecutive night-shifts affects the quantity and quality of sleep obtained during the daytime and/or neurobehavioural function and self-perceived capacity during the night-time. METHODS Participants (n = 12, all male, aged 22.9±5.2 y) completed three randomised, counterbalanced conditions in a sleep laboratory, consisting of two consecutive 12-hour night-shifts (18:00-06:00) with 7 hours in bed in the break between shifts. The three conditions differed only in the timing of the sleep opportunities - immediate (07:00-14:00), delayed (10:00-17:00), split (07:00-10:30 and 13:30-17:00). Neurobehavioural function (attention, memory, throughput) and self-perceived capacity (sleepiness, alertness, fatigue, mood) were assessed at 2-hour intervals during the night-shifts. RESULTS Condition did not affect total sleep time (p = 0.465), but it did affect sleep onset latency (p < 0.001; W = 0.780; large effect), wake after sleep onset (p = 0.018; W = 0.333; moderate effect) and the amount of Stage N3 sleep (p < 0.001; η2=0.510; small effect). Compared to the immediate and delayed sleep conditions, the split sleep condition had less wake after sleep onset and more Stage N3 sleep; and compared to the delayed condition, the split sleep condition had longer latency to sleep onset. There was no effect of condition on measures of neurobehavioural function or self-perceived capacity during the second night-shift. CONCLUSION None of the three sleep strategies examined here - immediate, delayed or split - are clearly superior or inferior to the others in terms of the capacity to sleep during the daytime or to work at night. Therefore, those who work consecutive night-shifts should employ the strategy that best suits their personal preferences and/or circumstances.
Collapse
Affiliation(s)
- Charli Sargent
- Appleton Institute for Behavioural Science, Central Queensland University, Wayville, SA, Australia
| | - Anastasi Kosmadopoulos
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Xuan Zhou
- Centre for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Gregory D Roach
- Appleton Institute for Behavioural Science, Central Queensland University, Wayville, SA, Australia
| |
Collapse
|
37
|
Druiven SJM, Riese H, Kamphuis J, Haarman BCM, Antypa N, Penninx BWJH, Schoevers RA, Meesters Y. Chronotype changes with age; seven-year follow-up from the Netherlands study of depression and anxiety cohort. J Affect Disord 2021; 295:1118-1121. [PMID: 34706423 DOI: 10.1016/j.jad.2021.08.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chronotype reflects an individual's optimal daily timing of sleep, activity, and cognitive performance. Previous, cross-sectional, studies have suggested an age effect on chronotype with later chronotypes in adolescents and earlier chronotypes in children and elderly. Additionally, later chronotypes have been associated with more depressive symptoms. Few studies have been able to study longitudinal associations between chronotype and age, while adjusting for depressive symptoms. METHODS Chronotype was assessed twice with the Munich Chronotype Questionnaire 7 years apart in the Netherlands Study of Depression and Anxiety (T1: N = 1842, mean age (SD): 42.63 years (12.66)) and T2: N = 1829, mean age (SD) 50.67 (13.11)). The longitudinal association between change in age and change in chronotype was tested using a generalized estimated equation analysis adjusted for covariates (including level of depressive symptoms). Using age-bins of 5 years (age at T2), change in chronotype between T1 and T2 was analyzed with Linear Mixed Models. RESULTS We found a change towards an earlier chronotype with higher age (B (95% CI): -0.011 (-0.014-0.008), p < 0.001). For the age-bins, the difference in chronotype was significant for the 25-29 years age-bin. LIMITATIONS The sample did not include individuals younger than 19 years or older than 68 years. CONCLUSIONS In the whole sample chronotype changed towards becoming more morning-type over a period of 7 years, but this change was only significant for those aged 25-29 years. The study was performed in a large naturalistic cohort study with a wide age-range, including patients with a diagnosis of depressive and anxiety disorder and healthy controls.
Collapse
Affiliation(s)
- S J M Druiven
- Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Psychiatry, Research School of Behavioral and Cognitive Neurosciences (BCN), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - H Riese
- Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - J Kamphuis
- Department of Psychiatry, Research School of Behavioral and Cognitive Neurosciences (BCN), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - B C M Haarman
- Department of Psychiatry, Research School of Behavioral and Cognitive Neurosciences (BCN), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - N Antypa
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, the Netherlands
| | - B W J H Penninx
- Department of Psychiatry and Amsterdam Public Health Research Insitute, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - R A Schoevers
- Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Psychiatry, Research School of Behavioral and Cognitive Neurosciences (BCN), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Y Meesters
- Department of Psychiatry, Research School of Behavioral and Cognitive Neurosciences (BCN), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
38
|
Cossu G, Agus M, Atzori L, Aviles Gonzales CI, Minerba L, Ferreli C, Puxeddu R, Orrù G, Scano A, Romano F, Pintus E, Penna MP, Carta MG. Principal Component Analysis of the Social and Behavioral Rhythms Scale in elderly. J Public Health Res 2021; 11. [PMID: 34619859 PMCID: PMC8859713 DOI: 10.4081/jphr.2021.2546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/04/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Changes in social and behavioral rhythms (SBR) in elderly are related to health status. Nevertheless, there is no data on factor analysis of the Brief Social Rhythm Scale (BSRS) an internationally well-known tool in this field. The aim was to analyze, in elderly, the factorial structure of the Italian version of BSRS. DESIGN AND METHODS Principal Component Analysis of the BSRS carried out in elderly living at home. RESULTS Sample of 141 participants (83 Females, 58,9%), aged 72.3±4.8. All the items of the questionnaire were related and could compose a single factor, explaining 56% of variance. A solution adopting two factors, the first (including items 1,2,3,4,9,10), the second (including items 5,6,7,8), covered cumulatively 78.8% of the variance. CONCLUSION The study confirms that the BSRS is consistent with the idea for which it was built and can be useful for the study of regularity of SBR in old adults.
Collapse
Affiliation(s)
- Giulia Cossu
- Department of Medical Sciences and Public Health, University of Cagliari.
| | - Mirian Agus
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari.
| | - Laura Atzori
- Department of Medical Sciences and Public Health, University of Cagliari.
| | | | - Luigi Minerba
- Department of Medical Sciences and Public Health, University of Cagliari.
| | - Caterina Ferreli
- Department of Medical Sciences and Public Health, University of Cagliari.
| | | | - Germano Orrù
- Department of Surgical Sciences, University of Cagliari.
| | | | | | - Elisa Pintus
- Department of Medical Sciences and Public Health, University of Cagliari.
| | | | | |
Collapse
|
39
|
Abstract
Neurodegenerative diseases encompass a large group of conditions that are clinically and pathologically diverse yet are linked by a shared pathology of misfolded proteins. The accumulation of insoluble aggregates is accompanied by a progressive loss of vulnerable neurons. For some patients, the symptoms are motor focused (ataxias), while others experience cognitive and psychiatric symptoms (dementias). Among the shared symptoms of neurodegenerative diseases is a disruption of the sleep/wake cycle that occurs early in the trajectory of the disease and may be a risk factor for disease development. In many cases, the disruption in the timing of sleep and other rhythmic physiological markers immediately raises the possibility of neurodegeneration-driven disruption of the circadian timing system. The aim of this Review is to summarize the evidence supporting the hypothesis that circadian disruption is a core symptom within neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, and Parkinson's disease, and to discuss the latest progress in this field. The Review discusses evidence that neurodegenerative processes may disrupt the structure and function of the circadian system and describes circadian-based interventions as well as timed drug treatments that may improve a wide range of symptoms associated with neurodegenerative disorders. It also identifies key gaps in our knowledge.
Collapse
|
40
|
Taillard J, Gronfier C, Bioulac S, Philip P, Sagaspe P. Sleep in Normal Aging, Homeostatic and Circadian Regulation and Vulnerability to Sleep Deprivation. Brain Sci 2021; 11:1003. [PMID: 34439622 PMCID: PMC8392749 DOI: 10.3390/brainsci11081003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/30/2022] Open
Abstract
In the context of geriatric research, a growing body of evidence links normal age-related changes in sleep with many adverse health outcomes, especially a decline in cognition in older adults. The most important sleep alterations that continue to worsen after 60 years involve sleep timing, (especially early wake time, phase advance), sleep maintenance (continuity of sleep interrupted by numerous awakenings) and reduced amount of sigma activity (during non-rapid eye movement (NREM) sleep) associated with modifications of sleep spindle characteristics (density, amplitude, frequency) and spindle-Slow Wave coupling. After 60 years, there is a very clear gender-dependent deterioration in sleep. Even if there are degradations of sleep after 60 years, daytime wake level and especially daytime sleepiness is not modified with age. On the other hand, under sleep deprivation condition, older adults show smaller cognitive impairments than younger adults, suggesting an age-related lower vulnerability to extended wakefulness. These sleep and cognitive age-related modifications would be due to a reduced homeostatic drive and consequently a reduced sleep need, an attenuation of circadian drive (reduction of sleep forbidden zone in late afternoon and wake forbidden zone in early morning), a modification of the interaction of the circadian and homeostatic processes and/or an alteration of subcortical structures involved in generation of circadian and homeostatic drive, or connections to the cerebral cortex with age. The modifications and interactions of these two processes with age are still uncertain, and still require further investigation. The understanding of the respective contribution of circadian and homeostatic processes in the regulation of neurobehavioral function with aging present a challenge for improving health, management of cognitive decline and potential early chronobiological or sleep-wake interventions.
Collapse
Affiliation(s)
- Jacques Taillard
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
| | - Claude Gronfier
- Lyon Neuroscience Research Center (CRNL), Integrative Physiology of the Brain Arousal Systems (Waking) Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000 Lyon, France;
| | - Stéphanie Bioulac
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
- Pôle Neurosciences Cliniques, CHU de Bordeaux, F-33076 Bordeaux, France
| | - Pierre Philip
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
- Pôle Neurosciences Cliniques, CHU de Bordeaux, F-33076 Bordeaux, France
| | - Patricia Sagaspe
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
- Pôle Neurosciences Cliniques, CHU de Bordeaux, F-33076 Bordeaux, France
| |
Collapse
|
41
|
Morita Y, Jounai K, Tomita Y, Maruyama M. Long-term intake of Lactobacillus paracasei KW3110 prevents age-related circadian locomotor activity and changes in gut metabolism in physiologically aged mice. Exp Gerontol 2021; 153:111477. [PMID: 34271136 DOI: 10.1016/j.exger.2021.111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022]
Abstract
Aging involves age-progressive loss of physiological functions in organs and tissues. We previously showed that Lactobacillus paracasei KW3110 suppressed age-related inflammation and prevented age-related retinal ganglion cell (RGC) loss. As RGCs mediate biological behaviors associated with responses to ambient light, we assessed whether L. paracasei KW3110 affects circadian locomotor activities in physiologically aged mice. The ratio of locomotor activity during the nighttime (active phase) to daytime (inactive phase) significantly decreased in physiologically aged mice compared with young mice: intake of L. paracasei KW3110 prevented this decrease. We also performed metabolomics analysis of cecal contents using both capillary electrophoresis and liquid chromatography time-of-flight mass spectrometry to better understand the benefical effects for aging of L. paracasei KW3110 through a gut retina axis, since our previous study showed that L. paracasei KW3110 mitigated not only age-related expansions of intestinal inflammatory immune cells but age-related alternation of gut microbiome composition. Principal component analysis showed clear changes in metabolites between physiologically aged mice fed a diet containing L. paracasei KW3110 and age-matched control mice. Furthermore, we found that intake of L. paracasei KW3110 mitigated age-related changes in some fatty acids compared with age-matched control mice. Taken together, L. paracasei KW3110 might regulate age-related alternation of metabolites in cecal contents, potentially leading to suppression of age-related decline in physiological functions, including impairment of circadian locomotor activities.
Collapse
Affiliation(s)
- Yuji Morita
- KIRIN Central Research Institute, Kirin Holdings Co., Ltd., Kanagawa, Japan.
| | - Kenta Jounai
- Technical Development Center, Koiwai Dairy Products Co., Ltd., Sayama, Saitama 350-1321, Japan
| | - Yasuyuki Tomita
- KIRIN Central Research Institute, Kirin Holdings Co., Ltd., Kanagawa, Japan
| | - Mitsuo Maruyama
- Department of Inflammation and Immunosenescence, Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan.; Department of Aging Research, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
42
|
Li Y, Xiao X, Wang L, Wang Q, Liang R, Zheng C, Yang J, Ming D. Comparison effects of chronic sleep deprivation on juvenile and young adult mice. J Sleep Res 2021; 31:e13399. [PMID: 34137107 DOI: 10.1111/jsr.13399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022]
Abstract
Sleeplessness leads to a spectrum of neuropsychiatric disorders, affecting both juveniles and young adults. Studies have shown different sleep patterns at different stages of development. However, the molecular mechanisms underlying the effects of the same chronic sleep deprivation (CSD) on behaviours of juveniles and young adults remain elusive. Here, we aimed to evaluate the effects of CSD (6 days, 19 h per day) on anxiety-like behaviour, cognitive performance and molecular alterations in juvenile and young adult mice. Change in body weight suggested impaired physical development in CSD animals, specifically juveniles gaining weight at a lower rate and young adults losing weight. Behavioural performance indicated that CSD had little effect on spatial memory, but induced analogous anxiety-like phenotypes in both juveniles and young adults, as evidenced by no significant difference in the Y-maze experiment (Y-M) or the Morris water maze experiment (MWM), as well as the decreased open-arm distance percentage in the elevated plus maze experiment (EPM). In addition, CSD reduced the N-methyl-D-aspartic receptor subunit 2B (NR2B) and postsynaptic density protein 95 (PSD95) levels in juveniles, but these were increased in young adults. In conclusion, our results suggested that although CSD resulted in analogous anxiety-like behaviours in both juvenile and young adult mice, the underlying mechanisms might be different, which was indicated by the opposite change of synaptic proteins under CSD. These findings may help to better understand the important role of sleep and have constructive significance for human health.
Collapse
Affiliation(s)
- Yaqing Li
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xi Xiao
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Ling Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| | - Qian Wang
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Rong Liang
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Chenguang Zheng
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| | - Jiajia Yang
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| | - Dong Ming
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
43
|
Valomon A, Riedner BA, Jones SG, Nakamura KP, Tononi G, Plante DT, Benca RM, Boly M. A high-density electroencephalography study reveals abnormal sleep homeostasis in patients with rapid eye movement sleep behavior disorder. Sci Rep 2021; 11:4758. [PMID: 33637812 PMCID: PMC7910582 DOI: 10.1038/s41598-021-83980-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by disrupting motor enactments during REM sleep, but also cognitive impairments across several domains. In addition to REM sleep abnormalities, we hypothesized that RBD patients may also display EEG abnormalities during NREM sleep. We collected all-night recordings with 256-channel high-density EEG in nine RBD patients, predominantly early-onset medicated individuals, nine sex- and age- matched healthy controls, and nine additional controls with matched medications and comorbidities. Power spectra in delta to gamma frequency bands were compared during both REM and NREM sleep, between phasic and tonic REM sleep, and between the first versus last cycle of NREM sleep. Controls, but not RBD patients, displayed a decrease in beta power during phasic compared to tonic REM sleep. Compared to controls, RBD patients displayed a reduced decline in SWA from early to late NREM sleep. Overnight changes in the distribution of the amplitude of slow waves were also reduced in RBD patients. Without suppression of beta rhythms during phasic REM sleep, RBD patients might demonstrate heightened cortical arousal, favoring the emergence of behavioral episodes. A blunted difference between REM sleep sub-stages may constitute a sensitive biomarker for RBD. Moreover, reduced overnight decline in SWA suggests a reduced capacity for synaptic plasticity in RBD patients, which may favor progression towards neurodegenerative diseases.
Collapse
Affiliation(s)
- Amandine Valomon
- Psychiatry - Wisconsin Institute for Sleep and Consciousness, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI, 53719, USA.
| | - Brady A Riedner
- Psychiatry - Wisconsin Institute for Sleep and Consciousness, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI, 53719, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephanie G Jones
- Psychiatry - Wisconsin Institute for Sleep and Consciousness, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI, 53719, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Giulio Tononi
- Psychiatry - Wisconsin Institute for Sleep and Consciousness, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI, 53719, USA
| | - David T Plante
- Psychiatry - Wisconsin Institute for Sleep and Consciousness, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI, 53719, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruth M Benca
- University of California Irvine, Psychiatry and Human Behavior, Irvine, CA, USA
| | - Melanie Boly
- Psychiatry - Wisconsin Institute for Sleep and Consciousness, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI, 53719, USA
- Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
44
|
Gencarelli A, Sorrell A, Everhart CM, Zurlinden T, Everhart DE. Behavioral and exercise interventions for sleep dysfunction in the elderly: a brief review and future directions. Sleep Breath 2021; 25:2111-2118. [PMID: 33630239 PMCID: PMC7905198 DOI: 10.1007/s11325-021-02329-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/26/2021] [Accepted: 02/19/2021] [Indexed: 11/28/2022]
Abstract
Purpose The impact of sleep-related changes and disorders in the geriatric populations are of utmost concern due to health consequences and increased risk of injury as well as injuring others as a result of poor sleep. The purpose of this paper is to provide a brief review of the current state of the literature with regard to sleep, aging, common non-pharmacological interventions, and the potential use of exercise in combination with behavioral interventions. Methods Initially, this manuscript focuses on a brief (nonsystematic) review of sleep parameters and physiology that are associated with the aging process. Subsequently, information regarding sleep disorders in the elderly in general, and insomnia in particular are discussed. Last, a brief review of current recommended interventions is provided. Results The current major nonpharmacological interventions are described including Cognitive Behavioral Therapy for Insomnia (CBT-I). The potential use of exercise as a safe intervention for poor sleep is discussed. Finally, a call is made for increased research that examines the combination of traditional behavioral interventions with exercise.
Collapse
Affiliation(s)
- Amy Gencarelli
- Department of Psychology, East Carolina University, Greenville, NC, 27858, USA
| | - Anne Sorrell
- Department of Psychology, East Carolina University, Greenville, NC, 27858, USA
| | | | - Taylor Zurlinden
- Department of Psychology, East Carolina University, Greenville, NC, 27858, USA
| | - D Erik Everhart
- Department of Psychology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
45
|
Eggenberger P, Bürgisser M, Rossi RM, Annaheim S. Body Temperature Is Associated With Cognitive Performance in Older Adults With and Without Mild Cognitive Impairment: A Cross-sectional Analysis. Front Aging Neurosci 2021; 13:585904. [PMID: 33643019 PMCID: PMC7907648 DOI: 10.3389/fnagi.2021.585904] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
Wearable devices for remote and continuous health monitoring in older populations frequently include sensors for body temperature measurements (i.e., skin and core body temperatures). Healthy aging is associated with core body temperatures that are in the lower range of age-related normal values (36.3 ± 0.6°C, oral temperature), while patients with Alzheimer's disease (AD) exhibit core body temperatures above normal values (up to 0.2°C). However, the relation of body temperature measures with neurocognitive health in older adults remains unknown. This study aimed to explore the association of body temperature with cognitive performance in older adults with and without mild cognitive impairment (MCI). Eighty community-dwelling older adults (≥65 years) participated, of which 54 participants were cognitively healthy and 26 participants met the criteria for MCI. Skin temperatures at the rib cage and the scapula were measured in the laboratory (single-point measurement) and neuropsychological tests were conducted to assess general cognitive performance, episodic memory, verbal fluency, executive function, and processing speed. In a subgroup (n = 15, nine healthy, six MCI), skin and core body temperatures were measured continuously during 12 h of habitual daily activities (long-term measurement). Spearman's partial correlation analyses, controlled for age, revealed that lower median body temperature and higher peak-to-peak body temperature amplitude was associated with better general cognitive performance and with better performance in specific domains of cognition; [e.g., rib median skin temperature (single-point) vs. processing speed: rs = 0.33, p = 0.002; rib median skin temperature (long-term) vs. executive function: rs = 0.56, p = 0.023; and peak-to-peak core body temperature amplitude (long-term) vs. episodic memory: rs = 0.51, p = 0.032]. Additionally, cognitively healthy older adults showed lower median body temperature and higher peak-to-peak body temperature amplitude compared to older adults with MCI (e.g., rib median skin temperature, single-point: p = 0.035, r = 0.20). We conclude that both skin and core body temperature measures are potential early biomarkers of cognitive decline and preclinical symptoms of MCI/AD. It may therefore be promising to integrate body temperature measures into multi-parameter systems for the remote and continuous monitoring of neurocognitive health in older adults.
Collapse
Affiliation(s)
- Patrick Eggenberger
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Michael Bürgisser
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| | - Simon Annaheim
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| |
Collapse
|
46
|
Djonlagic I, Mariani S, Fitzpatrick AL, Van Der Klei VMGTH, Johnson DA, Wood AC, Seeman T, Nguyen HT, Prerau MJ, Luchsinger JA, Dzierzewski JM, Rapp SR, Tranah GJ, Yaffe K, Burdick KE, Stone KL, Redline S, Purcell SM. Macro and micro sleep architecture and cognitive performance in older adults. Nat Hum Behav 2021; 5:123-145. [PMID: 33199858 PMCID: PMC9881675 DOI: 10.1038/s41562-020-00964-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 09/15/2020] [Indexed: 01/31/2023]
Abstract
We sought to determine which facets of sleep neurophysiology were most strongly linked to cognitive performance in 3,819 older adults from two independent cohorts, using whole-night electroencephalography. From over 150 objective sleep metrics, we identified 23 that predicted cognitive performance, and processing speed in particular, with effects that were broadly independent of gross changes in sleep quality and quantity. These metrics included rapid eye movement duration, features of the electroencephalography power spectra derived from multivariate analysis, and spindle and slow oscillation morphology and coupling. These metrics were further embedded within broader associative networks linking sleep with aging and cardiometabolic disease: individuals who, compared with similarly aged peers, had better cognitive performance tended to have profiles of sleep metrics more often seen in younger, healthier individuals. Taken together, our results point to multiple facets of sleep neurophysiology that track coherently with underlying, age-dependent determinants of cognitive and physical health trajectories in older adults.
Collapse
Affiliation(s)
- Ina Djonlagic
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sara Mariani
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - Alexis C Wood
- USDA/ARS Children's Nutrition Center, Baylor College of Medicine, Houston, TX, USA
| | - Teresa Seeman
- University of California, Los Angeles, Los Angeles, CA, USA
| | - Ha T Nguyen
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Michael J Prerau
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - Stephen R Rapp
- Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Kristine Yaffe
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Katherine E Burdick
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Katie L Stone
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Susan Redline
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Shaun M Purcell
- Harvard Medical School, Boston, MA, USA.
- Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
47
|
de Souza Teixeira AA, Lira FS, Rosa-Neto JC. Aging with rhythmicity. Is it possible? Physical exercise as a pacemaker. Life Sci 2020; 261:118453. [PMID: 32956663 PMCID: PMC7500276 DOI: 10.1016/j.lfs.2020.118453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Aging is associated with gradual decline in numerous physiological processes, including a reduction in metabolic functions and immunological system. The circadian rhythm plays a vital role in health, and prolonged clock disruptions are associated with chronic diseases. The relationships between clock genes, aging, and immunosenescence are not well understood. Inflammation is an immune response triggered in living organisms in response to the danger associated with pathogens and injury. The term 'inflammaging' has been used to describe the chronic low-grade-inflammation that develops with advancing age and predicts susceptibility to age-related pathologies. Equilibrium between pro-and anti-inflammatory cytokines is needed for healthy aging and longevity. Sedentary and poor nutrition style life indices a disruption in circadian rhythm promoting an increase in pro-inflammatory factors or leads for chronic low-grade inflammation. Moreover, signals mediated by pro-inflammatory cytokines, such as tumor necrosis factor-alpha and interleukin-6, might accentuate of the muscle loss during aging. Circadian clock is important to maintain the physiological functions, as maintenance of immune system. A strategy for imposes rhythmicity in the physiological systems may be adopted of exercise training routine. The lifelong regular practice of physical exercise decelerates the processes of aging, providing better quality and prolongation of life. Thus, in this review, we will focus on how aging affects circadian rhythms and its relationship to inflammatory processes (inflammaging), as well as the role of physical exercise as a regulator of the circadian rhythm, promoting aging with rhythmicity.
Collapse
Affiliation(s)
| | - Fábio Santos Lira
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), School of Technology and Sciences, Presidente Prudente, São Paulo, Brazil
| | | |
Collapse
|
48
|
Finger AM, Dibner C, Kramer A. Coupled network of the circadian clocks: a driving force of rhythmic physiology. FEBS Lett 2020; 594:2734-2769. [PMID: 32750151 DOI: 10.1002/1873-3468.13898] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
The circadian system is composed of coupled endogenous oscillators that allow living beings, including humans, to anticipate and adapt to daily changes in their environment. In mammals, circadian clocks form a hierarchically organized network with a 'master clock' located in the suprachiasmatic nucleus of the hypothalamus, which ensures entrainment of subsidiary oscillators to environmental cycles. Robust rhythmicity of body clocks is indispensable for temporally coordinating organ functions, and the disruption or misalignment of circadian rhythms caused for instance by modern lifestyle is strongly associated with various widespread diseases. This review aims to provide a comprehensive overview of our current knowledge about the molecular architecture and system-level organization of mammalian circadian oscillators. Furthermore, we discuss the regulatory roles of peripheral clocks for cell and organ physiology and their implication in the temporal coordination of metabolism in human health and disease. Finally, we summarize methods for assessing circadian rhythmicity in humans.
Collapse
Affiliation(s)
- Anna-Marie Finger
- Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Nutrition, and Patient Education, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Achim Kramer
- Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
49
|
Kirlioglu SS, Balcioglu YH. Chronobiology Revisited in Psychiatric Disorders: From a Translational Perspective. Psychiatry Investig 2020; 17:725-743. [PMID: 32750762 PMCID: PMC7449842 DOI: 10.30773/pi.2020.0129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Several lines of evidence support a relationship between circadian rhythms disruption in the onset, course, and maintenance of mental disorders. Despite the study of circadian phenotypes promising a decent understanding of the pathophysiologic or etiologic mechanisms of psychiatric entities, several questions still need to be addressed. In this review, we aimed to synthesize the literature investigating chronobiologic theories and their associations with psychiatric entities. METHODS The Medline, Embase, PsycInfo, and Scopus databases were comprehensively and systematically searched and articles published between January 1990 and October 2019 were reviewed. Different combinations of the relevant keywords were polled. We first introduced molecular elements and mechanisms of the circadian system to promote a better understanding of the chronobiologic implications of mental disorders. Then, we comprehensively and systematically reviewed circadian system studies in mood disorders, schizophrenia, and anxiety disorders. RESULTS Although subject characteristics and study designs vary across studies, current research has demonstrated that circadian pathologies, including genetic and neurohumoral alterations, represent the neural substrates of the pathophysiology of many psychiatric disorders. Impaired HPA-axis function-related glucocorticoid rhythm and disrupted melatonin homeostasis have been prominently demonstrated in schizophrenia and other psychotic disorders, while alterations of molecular expressions of circadian rhythm genes including CLOCK, PER, and CRY have been reported to be involved in the pathogenesis of mood disorders. CONCLUSION Further translational work is needed to identify the causal relationship between circadian physiology abnormalities and mental disorders and related psychopathology, and to develop sound pharmacologic interventions.
Collapse
Affiliation(s)
- Simge Seren Kirlioglu
- Department of Psychiatry, Bakirkoy Prof Mazhar Osman Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Yasin Hasan Balcioglu
- Department of Psychiatry, Bakirkoy Prof Mazhar Osman Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| |
Collapse
|
50
|
Lananna BV, Musiek ES. The wrinkling of time: Aging, inflammation, oxidative stress, and the circadian clock in neurodegeneration. Neurobiol Dis 2020; 139:104832. [PMID: 32179175 PMCID: PMC7727873 DOI: 10.1016/j.nbd.2020.104832] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
A substantial body of research now implicates the circadian clock in the regulation of an array of diverse biological processes including glial function, metabolism, peripheral immune responses, and redox homeostasis. Sleep abnormalities and other forms of circadian disruption are common symptoms of aging and neurodegeneration. Circadian clock disruption may also influence the aging processes and the pathogenesis of neurodegenerative diseases. The specific mechanisms governing the interaction between circadian systems, aging, and the immune system are still being uncovered. Here, we review the evidence supporting a bidirectional relationship between aging and the circadian system. Further, we explore the hypothesis that age-related circadian deterioration may exacerbate multiple pathogenic processes, priming the brain for neurodegeneration.
Collapse
Affiliation(s)
- Brian V Lananna
- Dept. of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erik S Musiek
- Dept. of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|