1
|
Kors S, Schlaitz AL. Dynamic remodelling of the endoplasmic reticulum for mitosis. J Cell Sci 2024; 137:jcs261444. [PMID: 39584405 DOI: 10.1242/jcs.261444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
The endoplasmic reticulum (ER) is a dynamic and continuous membrane network with roles in many cellular processes. The importance and maintenance of ER structure and function have been extensively studied in interphase cells, yet recent findings also indicate crucial roles of the ER in mitosis. During mitosis, the ER is remodelled significantly with respect to composition and morphology but persists as a continuous network. The ER interacts with microtubules, actin and intermediate filaments, and concomitant with the mitotic restructuring of all cytoskeletal systems, ER dynamics and distribution change. The ER is a metabolic hub and several examples of altered ER functions during mitosis have been described. However, we lack an overall understanding of the ER metabolic pathways and functions that are active during mitosis. In this Review, we will discuss mitotic changes to the ER at different organizational levels to explore how the mitotic ER, with its distinct properties, might support cell division.
Collapse
Affiliation(s)
- Suzan Kors
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Anne-Lore Schlaitz
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Lestrell E, Chen Y, Aslanoglou S, O'Brien CM, Elnathan R, Voelcker NH. Silicon Nanoneedle-Induced Nuclear Deformation: Implications for Human Somatic and Stem Cell Nuclear Mechanics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45124-45136. [PMID: 36173149 DOI: 10.1021/acsami.2c10583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell nuclear size and shape are strictly regulated, with aberrations often leading to or being indicative of disease. Nuclear mechanics are critically responsible for intracellular responses to extracellular cues, such as the nanotopography of the external environment. Silicon nanoneedle (SiNN) arrays are tunable, engineered cell culture substrates that permit precise, nanoscale modifications to a cell's external environment to probe mechanotransduction and intracellular signaling. We use a library of four different SiNN arrays to investigate the immediate and downstream effects of controlled geometries of nanotopographical cues on the nuclear integrity/dynamics of human immortalized somatic and renewing stem cell types. We quantify the significant, albeit different, nuclear shape changes that both cell types undergo, which suggest that cellular responses to SiNN arrays are more comparable to three-dimensional (3D) environments than traditional flat cultureware. We show that nanotopography-induced effects on nuclear envelope integrity, protein localization, and focal adhesion complex formation are cell-dependent. Migration is shown to be dramatically impeded for human neural progenitor cells (hNPCs) on nanotopographies compared to flat substrates but not for somatic cells. Our results indicate an additional layer of complexity in cellular mechanotransduction, which warrants closer attention in the context of engineered substrates and scaffolds for clinical applications.
Collapse
Affiliation(s)
- Esther Lestrell
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | - Yaping Chen
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Stella Aslanoglou
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Carmel M O'Brien
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Roey Elnathan
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| |
Collapse
|
3
|
Analysis of the spleen proteome of chickens infected with reticuloendotheliosis virus. Arch Virol 2017; 162:1187-1199. [PMID: 28097424 PMCID: PMC5387025 DOI: 10.1007/s00705-016-3180-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/19/2016] [Indexed: 10/30/2022]
Abstract
Infection with reticuloendotheliosis virus (REV), a gammaretrovirus in the family Retroviridae, can result in immunosuppression and subsequent increased susceptibility to secondary infections. In the present study, we identified differentially expressed proteins in the spleens of chickens infected with the REV-A HLJ07I strain, using two-dimensional gel electrophoresis on samples from time points coinciding with different phases of the REV life cycle. Differentially expressed proteins were identified using one-dimensional liquid chromatography electrospray ionization tandem mass spectrometry (1D LC ESI MS/MS). Comparative analysis of multiple gels revealed that the majority of changes occurred at early stages of infection. In total, 60 protein spots representing 28 host proteins were detected as either quantitatively (false discovery rate [FDR] ≤0.05 and fold change ≥2) or qualitatively differentially expressed at least once during different sampling points. The differentially expressed proteins identified in this study included antioxidants, molecular chaperones, cellular metabolism, formation of the cytoskeleton, signal transduction, cell proliferation and cellar aging. The present findings provide a basis for further studies to elucidate the role of these proteins in REV-host interactions. This could lead to a better understanding of REV infection mechanisms that cause immune suppression.
Collapse
|
4
|
Fernández-Álvarez A, Cooper JP. Chromosomes Orchestrate Their Own Liberation: Nuclear Envelope Disassembly. Trends Cell Biol 2016; 27:255-265. [PMID: 28024902 DOI: 10.1016/j.tcb.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022]
Abstract
The mammalian nuclear division cycle is coordinated with nuclear envelope breakdown (NEBD), in which the entire nuclear envelope (NE) is dissolved to allow chromosomes to access their segregation vehicle, the spindle. In other eukaryotes, complete NEBD is replaced by localized disassembly or remodeling of the NE. Although the molecular mechanisms controlling NE disassembly are incompletely understood, coordinated cycles of modification of specific NE components drive breakdown. Here, we review the current state of knowledge regarding NE disassembly and argue for a role of chromosome-NE contacts in triggering initiation of NE disassembly and thereby, cell division.
Collapse
Affiliation(s)
- Alfonso Fernández-Álvarez
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Julia Promisel Cooper
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Abstract
Lamins are the major components of the nuclear lamina, a filamentous layer found at the interphase between chromatin and the inner nuclear membrane. The lamina supports the nuclear envelope and provides anchorage sites for chromatin. Lamins and their associated proteins are required for most nuclear activities, mitosis, and for linking the nucleoskeleton to the network of cytoskeletal filaments. Mutations in lamins and their associated proteins give rise to a wide range of diseases, collectively called laminopathies. This review focuses on the evolution of the lamin protein family. Evolution from basal metazoans to man will be described on the basis of protein sequence comparisons and analyses of their gene structure. Lamins are the founding members of the family of intermediate filament proteins. How genes encoding cytoplasmic IF proteins could have arisen from the archetypal lamin gene progenitor, can be inferred from a comparison of the respective gene structures. The lamin/IF protein family seems to be restricted to the metazoans. In general, invertebrate genomes harbor only a single lamin gene encoding a B-type lamin. The archetypal lamin gene structure found in basal metazoans is conserved up to the vertebrate lineage. The completely different structure of lamin genes in Caenorhabditis and Drosophila are exceptions rather than the rule within their systematic groups. However, variation in the length of the coiled-coil forming central domain might be more common than previously anticipated. The increase in the number of lamin genes in vertebrates can be explained by two rounds of genome duplication. The origin of lamin A by exon shuffling might explain the processing of prelamin A to the mature non-isoprenylated form of lamin A. By alternative splicing the number of vertebrate lamin proteins has increased even further. Lamin C, an alternative splice form of the LMNA gene, is restricted to mammals. Amphibians and mammals express germline-specific lamins that differ in their protein structure from that of somatic lamins. Evidence is provided that there exist lamin-like proteins outside the metazoan lineage.
Collapse
Affiliation(s)
- Annette Peter
- Department for Cell Biology, University of Bremen, Bremen, Germany
| | | |
Collapse
|
6
|
Oda Y, Fukuda H. Dynamics of Arabidopsis SUN proteins during mitosis and their involvement in nuclear shaping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:629-41. [PMID: 21294795 DOI: 10.1111/j.1365-313x.2011.04523.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The nuclear envelope (NE) is a highly active structure with a specific set of nuclear envelope proteins acting in diverse cellular events. SUN proteins are conserved NE proteins among eukaryotes. Although they form nucleocytoplasmic linkage complexes in metazoan cells, their functions in the plant kingdom are unknown. To understand the function of plant SUN proteins, in this study we first investigated the dynamics of Arabidopsis SUN proteins during mitosis in Arabidopsis roots and cultured cells. For this purpose, we performed dual and triple visualization of these proteins, microtubules, chromosomes, and endoplasmic reticulum (ER) in cultured cells, and observed their dynamics during mitosis using a high-speed spinning disk confocal microscope. The localizations of SUN proteins changed dynamically during mitosis, tightly coupled with NE dynamics. Moreover, NE re-formation marked with SUN proteins is temporally and spatially coordinated with plant-specific microtubule structures such as phragmoplasts. Finally, the analysis with gene knockdowns of AtSUN1 and AtSUN2 indicated that they are necessary for the maintenance and/or formation of polarized nuclear shape in root hairs. These results suggest that Arabidopsis SUN proteins function in the maintenance or formation of nuclear shape as components of the nucleocytoskeletal complex.
Collapse
Affiliation(s)
- Yoshihisa Oda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
7
|
Abstract
The nuclear lamins are type V intermediate filament proteins that are critically important for the structural properties of the nucleus. In addition, they are involved in the regulation of numerous nuclear processes, including DNA replication, transcription and chromatin organization. The developmentally regulated expression of lamins suggests that they are involved in cellular differentiation. Their assembly dynamic properties throughout the cell cycle, particularly in mitosis, are influenced by posttranslational modifications. Lamins may regulate nuclear functions by direct interactions with chromatin and determining the spatial organization of chromosomes within the nuclear space. They may also regulate chromatin functions by interacting with factors that epigenetically modify the chromatin or directly regulate replication or transcription.
Collapse
Affiliation(s)
- Thomas Dechat
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
8
|
Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol 2009; 10:178-91. [PMID: 19234477 DOI: 10.1038/nrm2641] [Citation(s) in RCA: 366] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell division in eukaryotes requires extensive architectural changes of the nuclear envelope (NE) to ensure that segregated DNA is finally enclosed in a single cell nucleus in each daughter cell. Higher eukaryotic cells have evolved 'open' mitosis, the most extreme mechanism to solve the problem of nuclear division, in which the NE is initially completely disassembled and then reassembled in coordination with DNA segregation. Recent progress in the field has now started to uncover mechanistic and molecular details that underlie the changes in NE reorganization during open mitosis. These studies reveal a tight interplay between NE components and the mitotic machinery.
Collapse
|
9
|
Senda T, Iizuka-Kogo A, Shimomura A. Visualization of the nuclear lamina in mouse anterior pituitary cells and immunocytochemical detection of lamin A/C by quick-freeze freeze-substitution electron microscopy. J Histochem Cytochem 2005; 53:497-507. [PMID: 15805424 DOI: 10.1369/jhc.4a6478.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the nuclear lamina in the quickly frozen anterior pituitary cells by electron microscopic techniques combined with freeze substitution, deep etching, and immunocytochemistry and compared it with that in the chemically fixed cells. By quick-freeze freeze-substitution electron microscopy, an electron-lucent layer, as thick as 20 nm, was revealed just inside the inner nuclear membrane, whereas in the conventionally glutaraldehyde-fixed cells the layer was not seen. By quick-freeze deep-etch electron microscopy, we could not distinguish definitively the layer corresponding to the nuclear lamina in either fresh unfixed or glutaraldehyde-fixed cells. Immunofluorescence microscopy showed that lamin A/C in the nucleus was detected in the acetone-fixed cells and briefly in paraformaldehyde-fixed cells but not in the cells with prolonged paraformaldehyde fixation. Nuclear localization of lamin A/C was revealed by immunogold electron microscopy also in the quickly frozen and freeze-substituted cells, but not in the paraformaldehyde-fixed cells. Lamin A/C was localized mainly in the peripheral nucleoplasm within 60 nm from the inner nuclear membrane, which corresponded to the nuclear lamina. These results suggest that the nuclear lamina can be preserved both ultrastructurally and immunocytochemically by quick-freezing fixation, rather than by conventional chemical fixation.
Collapse
Affiliation(s)
- Takao Senda
- Department of Anatomy I, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| | | | | |
Collapse
|
10
|
Affiliation(s)
- Brian Burke
- Department of Anatomy and Cell Biology, The University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|
11
|
Hofemeister H, Kuhn C, Franke WW, Weber K, Stick R. Conservation of the gene structure and membrane-targeting signals of germ cell-specific lamin LIII in amphibians and fish. Eur J Cell Biol 2002; 81:51-60. [PMID: 11893082 DOI: 10.1078/0171-9335-00229] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Targeting of nuclear lamins to the inner nuclear membrane requires CaaX motif-dependent posttranslational isoprenylation and carboxyl methylation. We previously have shown that two variants of lamin LIII (i.e., LIII and LIIIb) in amphibian oocytes are generated by alternative splicing and differ greatly in their membrane association. An extra cysteine residue (as a potential palmitoylation site) and a basic cluster in conjunction with the CaaX motif function as secondary targeting signals responsible for stable membrane association of lamin LIIIb. cDNA sequencing and genomic analysis of the zebrafish Danio rerio lamin LIII uncovers a remarkable conservation of the genomic organization and of the two secondary membrane-targeting signals in amphibians and fish. The expression pattern of lamin LIII genes is also conserved between amphibians and fish. Danio lamin LIII is expressed in diplotene oocytes. It is absent from male germ cells but is expressed in Sertoli cells of the testis. In addition, we provide sequence information of the entire coding sequence of zebrafish lamin A, which allows comparison of all major lamins from representatives of the four classes of vertebrates.
Collapse
|
12
|
Beaudouin J, Gerlich D, Daigle N, Eils R, Ellenberg J. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 2002; 108:83-96. [PMID: 11792323 DOI: 10.1016/s0092-8674(01)00627-4] [Citation(s) in RCA: 348] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of nuclear envelope breakdown (NEBD) was investigated in live cells. Early spindle microtubules caused folds and invaginations in the NE up to one hour prior to NEBD, creating mechanical tension in the nuclear lamina. The first gap in the NE appeared before lamin B depolymerization, at the site of maximal tension, by a tearing mechanism. Gap formation relaxed this tension and dramatically accelerated the rate of chromosome condensation. The hole produced in the NE then rapidly expanded over the nuclear surface. NE fragments remaining on chromosomes were removed toward the centrosomes in a microtubule-dependent manner, suggesting a mechanism mediated by a minus-end-directed motor.
Collapse
Affiliation(s)
- Joël Beaudouin
- Gene Expression and Cell Biology/Biophysics Programmes, European Molecular Biology Laboratory, D-69117. Heidelberg, Germany
| | | | | | | | | |
Collapse
|
13
|
Salina D, Bodoor K, Eckley DM, Schroer TA, Rattner JB, Burke B. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 2002; 108:97-107. [PMID: 11792324 DOI: 10.1016/s0092-8674(01)00628-6] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
During prophase in higher cells, centrosomes localize to deep invaginations in the nuclear envelope in a microtubule-dependent process. Loss of nuclear membranes in prometaphase commences in regions of the nuclear envelope that lie outside of these invaginations. Dynein and dynactin complex components concentrate on the nuclear envelope prior to any changes in nuclear envelope organization. These observations suggest a model in which dynein facilitates nuclear envelope breakdown by pulling nuclear membranes and associated proteins poleward along astral microtubules leading to nuclear membrane detachment. Support for this model is provided by the finding that interference with dynein function drastically alters nuclear membrane dynamics in prophase and prometaphase.
Collapse
Affiliation(s)
- Davide Salina
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Salina D, Bodoor K, Enarson P, Raharjo WH, Burke B. Nuclear envelope dynamics. Biochem Cell Biol 2001. [DOI: 10.1139/o01-130] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nuclear envelope (NE) provides a semi permeable barrier between the nucleus and cytoplasm and plays a central role in the regulation of macromolecular trafficking between these two compartments. In addition to this transport function, the NE is a key determinant of interphase nuclear architecture. Defects in NE proteins such as A-type lamins and the inner nuclear membrane protein, emerin, result in several human diseases that include cardiac and skeletal myopathies as well as lipodystrophy. Certain disease-linked A-type lamin defects cause profound changes in nuclear organization such as loss of peripheral heterochromatin and redistribution of other nuclear envelope components. While clearly essential in maintenance of nuclear integrity, the NE is a highly dynamic organelle. In interphase it is constantly remodeled to accommodate nuclear growth. During mitosis it must be completely dispersed so that the condensed chromosomes may gain access to the mitotic spindle. Upon completion of mitosis, dispersed NE components are reutilized in the assembly of nuclei within each daughter cell. These complex NE rearrangements are under precise temporal and spatial control and involve interactions with microtubules, chromatin, and a variety of cell-cycle regulatory molecules.Key words: nuclear envelope, lamin, nuclear pore complex, nuclear membranes, mitosis.
Collapse
|
15
|
Daigle N, Beaudouin J, Hartnell L, Imreh G, Hallberg E, Lippincott-Schwartz J, Ellenberg J. Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J Cell Biol 2001; 154:71-84. [PMID: 11448991 PMCID: PMC2196857 DOI: 10.1083/jcb.200101089] [Citation(s) in RCA: 313] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2001] [Revised: 05/25/2001] [Accepted: 05/31/2001] [Indexed: 11/22/2022] Open
Abstract
The nuclear pore complex (NPC) and its relationship to the nuclear envelope (NE) was characterized in living cells using POM121-green fluorescent protein (GFP) and GFP-Nup153, and GFP-lamin B1. No independent movement of single pore complexes was found within the plane of the NE in interphase. Only large arrays of NPCs moved slowly and synchronously during global changes in nuclear shape, strongly suggesting mechanical connections which form an NPC network. The nuclear lamina exhibited identical movements. NPC turnover measured by fluorescence recovery after photobleaching of POM121 was less than once per cell cycle. Nup153 association with NPCs was dynamic and turnover of this nucleoporin was three orders of magnitude faster. Overexpression of both nucleoporins induced the formation of annulate lamellae (AL) in the endoplasmic reticulum (ER). Turnover of AL pore complexes was much higher than in the NE (once every 2.5 min). During mitosis, POM121 and Nup153 were completely dispersed and mobile in the ER (POM121) or cytosol (Nup153) in metaphase, and rapidly redistributed to an immobilized pool around chromatin in late anaphase. Assembly and immobilization of both nucleoporins occurred before detectable recruitment of lamin B1, which is thus unlikely to mediate initiation of NPC assembly at the end of mitosis.
Collapse
Affiliation(s)
- N Daigle
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Mesner PW, Budihardjo II, Kaufmann SH. Chemotherapy-induced apoptosis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 41:461-99. [PMID: 9204156 DOI: 10.1016/s1054-3589(08)61069-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- P W Mesner
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
17
|
Hofemeister H, Weber K, Stick R. Association of prenylated proteins with the plasma membrane and the inner nuclear membrane is mediated by the same membrane-targeting motifs. Mol Biol Cell 2000; 11:3233-46. [PMID: 10982413 PMCID: PMC14988 DOI: 10.1091/mbc.11.9.3233] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Targeting of nuclear lamins to the inner nuclear envelope membrane requires a nuclear localization signal and CaaX motif-dependent posttranslational modifications, including isoprenylation and carboxyl methylation. These modifications, although necessary for membrane targeting, are not sufficient to mediate stable association with membranes. We show that two variants of lamin B3 (i.e., B3a and B3b) exist in Xenopus oocytes. They are encoded by two alternatively spliced, developmentally regulated mRNAs. The two lamin variants differ greatly in their membrane association in meiotically matured eggs. The presence of an extra cysteine residue (as a potential palmitoylation site) and a basic cluster in conjunction with the CaaX motif function as secondary targeting signals responsible for the stable membrane association of lamin B3b in Xenopus eggs. Moreover, transfection experiments with Green Fluorescent Protein lamin tail chimeras and with a Green Fluorescent Protein N-Ras chimera show that these secondary motifs are sufficient to target proteins to the inner nuclear membrane and/or the plasma membrane. Implications for the intracellular trafficking of doubly lipidated proteins are discussed.
Collapse
Affiliation(s)
- H Hofemeister
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, D-37018 Göttingen, Germany
| | | | | |
Collapse
|
18
|
Drummond S, Ferrigno P, Lyon C, Murphy J, Goldberg M, Allen T, Smythe C, Hutchison CJ. Temporal differences in the appearance of NEP-B78 and an LBR-like protein during Xenopus nuclear envelope reassembly reflect the ordered recruitment of functionally discrete vesicle types. J Cell Biol 1999; 144:225-40. [PMID: 9922450 PMCID: PMC2132889 DOI: 10.1083/jcb.144.2.225] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/1997] [Revised: 12/09/1998] [Indexed: 11/30/2022] Open
Abstract
In this work, we have used novel mAbs against two proteins of the endoplasmic reticulum and outer nuclear membrane, termed NEP-B78 and p65, in addition to a polyclonal antibody against the inner nuclear membrane protein LBR (lamin B receptor), to study the order and dynamics of NE reassembly in the Xenopus cell-free system. Using these reagents, we demonstrate differences in the timing of recruitment of their cognate membrane proteins to the surface of decondensing chromatin in both the cell-free system and XLK-2 cells. We show unequivocally that, in the cell-free system, two functionally and biochemically distinct vesicle types are necessary for NE assembly. We find that the process of distinct vesicle recruitment to chromatin is an ordered one and that NEP-B78 defines a vesicle population involved in the earliest events of reassembly in this system. Finally, we present evidence that NEP-B78 may be required for the targeting of these vesicles to the surface of decondensing chromatin in this system. The results have important implications for the understanding of the mechanisms of nuclear envelope disassembly and reassembly during mitosis and for the development of systems to identify novel molecules that control these processes.
Collapse
Affiliation(s)
- S Drummond
- MRC Protein Phosphorylation Unit, University of Dundee, Dundee DD1 4HN, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lourim D, Krohne G. Chromatin binding and polymerization of the endogenous Xenopus egg lamins: the opposing effects of glycogen and ATP. J Cell Sci 1998; 111 ( Pt 24):3675-86. [PMID: 9819358 DOI: 10.1242/jcs.111.24.3675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously identified and quantitated three B-type lamin isoforms present in the nuclei of mature Xenopus laevis oocytes, and in cell-free egg extracts. As Xenopus egg extracts are frequently used to analyze nuclear envelope assembly and lamina functions, we felt it was imperative that the polymerization and chromatin-binding properties of the endogenous B-type egg lamins be investigated. While we have demonstrated that soluble B-type lamins bind to chromatin, we have also observed that the polymerization of egg lamins does not require membranes or chromatin. Lamin assembly is enhanced by the addition of glycogen/glucose, or by the depletion of ATP from the extract. Moreover, the polymerization of egg cytosol lamins and their binding to demembranated sperm or chromatin assembled from naked lambda-DNA is inhibited by an ATP regeneration system. These ATP-dependent inhibitory activities can be overcome by the coaddition of glycogen to egg cytosol. We have observed that glycogen does not alter ATP levels during cytosol incubation, but rather, as glycogen-enhanced lamin polymerization is inhibited by okadaic acid, we conclude that glycogen activates protein phosphatases. Because protein phosphatase 1 (PP1) is the only phosphatase known to be specifically regulated by glycogen our data indicate that PP1 is involved in lamin polymerization. Our results show that ATP and glycogen effect lamin polymerization and chromatin binding by separate and opposing mechanisms.
Collapse
Affiliation(s)
- D Lourim
- Division of Electron Microscopy, Biocenter of the University of W urzburg, Am Hubland, D-97074 Würzburg, Germany
| | | |
Collapse
|
20
|
Krohne G, Stuurman N, Kempf A. Assembly of Drosophila lamin Dm0 and C mutant proteins studied with the baculovirus system. Eur J Cell Biol 1998; 77:276-83. [PMID: 9930652 DOI: 10.1016/s0171-9335(98)80086-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Despite extensive knowledge of the in vitro polymerization properties of nuclear lamins, it is still not well understood how the nuclear lamina assembles in vivo. To learn more about the relationship between in vitro and in vivo polymerization of nuclear lamins, we expressed Drosophila lamin Dm0, mutant proteins, having well defined alterations of their in vitro polymerization properties, in Sf9 cells using the baculovirus system. All lamin Dm0 mutants assembled into fibrillar aggregates indistinguishable in morphology from those assembled by the wild-type protein. However, in contrast to wild-type lamin Dm0, mutant proteins were extracted with buffers of physiological ionic strength and pH containing Triton X-100. These results indicate that various types of lamin dimer-dimer interactions can be disrupted without affecting the morphology of the lamin Dm0 polymer. However, all types of dimer-dimer interactions tested appear to be important for full polymer stability. In addition, we analyzed the polymer formation of two Drosophila lamin C mutants and found that a segment in the carboxy-terminal tail domain is required for assembly of lamin C paracrystals at the nuclear lamina.
Collapse
Affiliation(s)
- G Krohne
- Division of Electron Microscopy, Biocenter of the University of Würzburg, Germany.
| | | | | |
Collapse
|
21
|
Duband-Goulet I, Courvalin JC, Buendia B. LBR, a chromatin and lamin binding protein from the inner nuclear membrane, is proteolyzed at late stages of apoptosis. J Cell Sci 1998; 111 ( Pt 10):1441-51. [PMID: 9570761 DOI: 10.1242/jcs.111.10.1441] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chromatin condensation and apposition to the nuclear envelope is an important feature of the execution phase of apoptosis. During this process, lamin proteins that are located between the inner nuclear membrane and heterochromatin are proteolyzed by the apoptosis-specific protease caspase 6. We have investigated the fate of nuclear membranes during apoptosis by studying the lamin B receptor (LBR), a transmembrane protein of the inner nuclear membrane. LBR interacts through its nucleoplasmic amino-terminal domain with both heterochromatin and B-type lamins, and is phosphorylated throughout the cell cycle, but on different sites in interphase and mitosis. We report here that: (i) the amino-terminal domain of LBR is specifically cleaved during apoptosis to generate an approximately 20 kDa soluble fragment; (ii) the cleavage of LBR is a late event of apoptosis and occurs subsequent to lamin B cleavage; (iii) the phosphorylation of LBR during apoptosis is similar to that occurring in interphase. As the association of condensed chromatin with the inner nuclear membrane persists until the late stages of apoptosis, we suggest that the chromatin binding protein LBR plays a major role in maintaining this association.
Collapse
Affiliation(s)
- I Duband-Goulet
- Département de Biologie supramoléculaire et cellulaire, Institut Jacques Monod, CNRS, Paris, France.
| | | | | |
Collapse
|
22
|
Abstract
We review old and new insights into the structure of the nuclear envelope and the components responsible for its dynamic reassembly during mitosis. New information is coming to light about several of the proteins that mediate nuclear reassembly. These proteins include the lamins and their emerging relationship with proteins such as otefin and the MAN antigens: peripheral proteins that might participate in lamina structure. There are four identified proteins localized to the inner nuclear membrane: the lamina-associated proteins LAP1 and LAP2, emerin, and the lamin B receptor (LBR). LBR can interact independently with lamin B and a chromodomain protein, Hp1, and appears to be a central player in targeting nuclear membranes to chromatin. Intermediates in the assembly of nuclear pore complexes (NPCs) can now be studied biochemically and visualized by high resolution scanning electron microscopy. We discuss the possibility that the filament-forming proteins Tpr/p270, NuMA, and perhaps actin may have roles in nuclear assembly.
Collapse
Affiliation(s)
- T M Gant
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
23
|
Ellis DJ, Jenkins H, Whitfield WG, Hutchison CJ. GST-lamin fusion proteins act as dominant negative mutants in Xenopus egg extract and reveal the function of the lamina in DNA replication. J Cell Sci 1997; 110 ( Pt 20):2507-18. [PMID: 9372440 DOI: 10.1242/jcs.110.20.2507] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cDNA encoding Xlamin B1 was cloned from a whole ovary mRNA by RT-PCR. GST-lamin fusion constructs were generated from this cDNA by first creating convenient restriction sites within the Xlamin B1 coding sequence, using PCR directed mutagenesis, and then sub-cloning relevant sequences into pGEX-4T-3. Two expression constructs were made, the first, termed delta 2+ lacked sequences encoding the amino-terminal 'head domain' of lamin B1 but included sequences encoding the nuclear localization signal sequence (NLS). The second expression construct, termed delta 2-, lacked sequences encoding the amino-terminal 'head domain' as well as sequences encoding the NLS. Purified fusion proteins expressed from these constructs, when added to egg extracts prior to sperm pronuclear assembly, formed hetero-oligomers with the endogenous lamin B3. The delta 2+ fusion protein prevented nuclear lamina assembly but not nuclear membrane assembly. The resulting nuclei were small (approximately 10 microns in diameter), did not assemble replication centers and failed to initiate DNA replication. When the delta 2- fusion protein was added to egg extracts prior to sperm pronuclear assembly, lamina assembly was delayed but not prevented. The resulting nuclei although small (approximately 12 microns), did form replication centers and initiated DNA replication. When added to egg extracts after sperm pronuclear assembly was completed delta 2+, but not delta 2-, entered the pre-formed nuclei causing lamina disassembly. However, the disassembly of the lamina by delta 2+ did not result in the disruption of replication centers and indeed these centres remained functional. These results are consistent with the hypothesis that lamina assembly precedes and is required for the formation of replication centers but does not support those centers directly.
Collapse
Affiliation(s)
- D J Ellis
- Department of Biological Sciences, University of Dundee, Scotland, UK
| | | | | | | |
Collapse
|
24
|
Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF, Worman HJ, Lippincott-Schwartz J. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 1997; 138:1193-206. [PMID: 9298976 PMCID: PMC2132565 DOI: 10.1083/jcb.138.6.1193] [Citation(s) in RCA: 605] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1997] [Revised: 06/27/1997] [Indexed: 02/05/2023] Open
Abstract
The mechanisms of localization and retention of membrane proteins in the inner nuclear membrane and the fate of this membrane system during mitosis were studied in living cells using the inner nuclear membrane protein, lamin B receptor, fused to green fluorescent protein (LBR-GFP). Photobleaching techniques revealed the majority of LBR-GFP to be completely immobilized in the nuclear envelope (NE) of interphase cells, suggesting a tight binding to heterochromatin and/or lamins. A subpopulation of LBR-GFP within ER membranes, by contrast, was entirely mobile and diffused rapidly and freely (D = 0. 41 +/- 0.1 microm2/s). High resolution confocal time-lapse imaging in mitotic cells revealed LBR-GFP redistributing into the interconnected ER membrane system in prometaphase, exhibiting the same high mobility and diffusion constant as observed in interphase ER membranes. LBR-GFP rapidly diffused across the cell within the membrane network defined by the ER, suggesting the integrity of the ER was maintained in mitosis, with little or no fragmentation and vesiculation. At the end of mitosis, nuclear membrane reformation coincided with immobilization of LBR-GFP in ER elements at contact sites with chromatin. LBR-GFP-containing ER membranes then wrapped around chromatin over the course of 2-3 min, quickly and efficiently compartmentalizing nuclear material. Expansion of the NE followed over the course of 30-80 min. Thus, selective changes in lateral mobility of LBR-GFP within the ER/NE membrane system form the basis for its localization to the inner nuclear membrane during interphase. Such changes, rather than vesiculation mechanisms, also underlie the redistribution of this molecule during NE disassembly and reformation in mitosis.
Collapse
Affiliation(s)
- J Ellenberg
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Zirwes RF, Kouzmenko AP, Peters JM, Franke WW, Schmidt-Zachmann MS. Topogenesis of a nucleolar protein: determination of molecular segments directing nucleolar association. Mol Biol Cell 1997; 8:231-48. [PMID: 9190204 PMCID: PMC276076 DOI: 10.1091/mbc.8.2.231] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To identify the element(s) in nucleolar proteins which determine nucleolus-specific topogenesis, we have used different kinds of cDNA constructs encoding various chimeric combinations of mutants of the constitutive nucleolar protein NO38 (B23): 1) with an amino terminally placed short "myc tag"; 2) with two different carboxyl terminally attached large alpha-helical coiled coil structures, the lamin A rod domain or the rod domain of vimentin; 3) with the sequence-related nucleoplasmic histone-binding protein nucleo-plasmin; and 4) with the soluble cytoplasmic protein pyruvate kinase. To avoid the problem of formation of complexes with endogenous wild-type (wt) molecules and "piggyback" localization, special care was taken to secure that the mutants and chimeras used did not oligomerize as is typical of protein NO38 (B23). Using microinjection and transfection of cultured cells, we found that the segment comprising the amino-terminal 123 amino acids (aa) alone was sufficient to effect nucleolar accumulation of the construct molecules, including the chimeras with the entire rod domains of lamin A and vimentin. However, when the amino-terminal 109 aa were deleted, the molecules still associated with the nucleolus. The results of further deletion experiments and of domain swaps with nucleoplasmin all point to the topogenic importance of two independent molecular regions located at both the amino- and carboxyl-terminal end. Our definition of dominant elements determining the nucleolar localization of protein NO38 (B23) as well as of diverse nonnucleolar proteins will help to identify its local binding partner(s) and functions, the construction of probes examining other proteins or sequence elements within the nucleolar microenvironment, and the generation of cells with an altered nuclear architecture.
Collapse
Affiliation(s)
- R F Zirwes
- Division of Cell Biology, German Cancer Research Center, Heidelberg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
26
|
Zhang C, Jenkins H, Goldberg MW, Allen TD, Hutchison CJ. Nuclear lamina and nuclear matrix organization in sperm pronuclei assembled in Xenopus egg extract. J Cell Sci 1996; 109 ( Pt 9):2275-86. [PMID: 8886978 DOI: 10.1242/jcs.109.9.2275] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear lamina and matrices were prepared from sperm pronuclei assembled in Xenopus egg extracts using a fractionation and extraction procedure. Indirect immunofluorescence revealed that while chromatin was efficiently removed from nuclei during the extraction procedure, the distribution of lamins was unaffected. Consistent with this data, the amount of lamin B3, determined by immunoblotting, was not affected through the extraction procedure. Nuclear matrices were visualised in DGD sections by TEM. Within these sections filaments were observed both at the boundary of the nucleus (the lamina) and within the body of the nucleus (internal nuclear matrix filaments). To improve resolution, nuclear matrices were also prepared as whole mounts and viewed using field emission in lens scanning electron microscopy (FEISEM). This technique revealed two distinct networks of filaments. Filaments lying at the surface of nuclear matrices interconnected nuclear pores. These filaments were readily labelled with monoclonal anti-lamin B3 antibodies. Filaments lying within the body of the nuclear matrix were highly branched but were not readily labelled with antilamin B3 antibodies. Nuclear matrices were also prepared from sperm pronuclei assembled in lamin B3 depleted extracts. Using FEISEM, filaments were also detected in these preparations. However, these filaments were poorly organised and often appeared to aggregate. To confirm these results nuclear matrices were also observed as whole mounts using TEM. Nuclear matrices prepared from control nuclei contained a dense array of interconnected filaments. Many (but not all) of these filaments were labelled with anti-lamin B3 antibodies. In contrast, nuclear matrices prepared from "lamin depleted nuclei' contained poorly organised or aggregated filaments which were not specifically labelled with anti-lamin B3 antibodies.
Collapse
Affiliation(s)
- C Zhang
- Department of Biological Sciences, University of Dundee, Scotland, UK
| | | | | | | | | |
Collapse
|
27
|
Paddy MR, Saumweber H, Agard DA, Sedat JW. Time-resolved, in vivo studies of mitotic spindle formation and nuclear lamina breakdown in Drosophila early embryos. J Cell Sci 1996; 109 ( Pt 3):591-607. [PMID: 8907705 DOI: 10.1242/jcs.109.3.591] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Time-resolved, two-component, three-dimensional fluorescence light microscopy imaging in living Drosophila early embryos is used to demonstrate that a large fraction of the nuclear envelope lamins remain localized to a rim in the nuclear periphery until well into metaphase. The process of lamin delocalization and dispersal, typical of ‘open’ forms of mitosis, does not begin until about the time the final, metaphase geometry of the mitotic spindle is attained. Lamin dispersal is completed about the time that the chromosomal movements of anaphase begin. This pattern of nuclear lamina breakdown appears to be intermediate between traditional designations of ‘open’ and ‘closed’ mitoses. These results thus clarify earlier observations of lamins in mitosis in fixed Drosophila early embryos, clearly showing that the observed lamin localization does not result from a structurally defined ‘spindle envelope’ that persists throughout mitosis. During this extended time interval of lamin localization in the nuclear periphery, the lamina undergoes an extensive series of structural rearrangements that are closely coupled to, and likely driven by, the movements of the centrosomes and microtubules that produce the mitotic spindle. Furthermore, throughout this time the nuclear envelope structure is permeable to large macromolecules, which are excluded in interphase. While the functional significance of these structural dynamics is not yet clear, it is consistent with a functional role for the lamina in mitotic spindle formation.
Collapse
Affiliation(s)
- M R Paddy
- Center for Structural Biology and Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610-0235, USA
| | | | | | | |
Collapse
|
28
|
Georgatos SD, Maison C. Integration of intermediate filaments into cellular organelles. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 164:91-138. [PMID: 8575894 DOI: 10.1016/s0074-7696(08)62385-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intermediate filaments represent core components of the cytoskeleton and are known to interact with several membranous organelles. Classic examples of this are the attachment of keratin filaments to the desmosomes and the association of the lamin filament meshwork with the inner nuclear membrane. At this point, the molecular mechanisms by which the filaments link to membranes are not clearly understood. However, since a substantial body of information has been amassed, the time is now ripe for comparing notes and formulating working hypotheses. With this objective in mind, we review here pioneering studies on this subject, together with work that has appeared more recently in the literature.
Collapse
Affiliation(s)
- S D Georgatos
- Program of Cell Biology, European Molecular Biology Laboratory, Germany
| | | |
Collapse
|
29
|
Paulin-Levasseur M, Blake DL, Julien M, Rouleau L. The MAN antigens are non-lamin constituents of the nuclear lamina in vertebrate cells. Chromosoma 1996; 104:367-79. [PMID: 8575249 DOI: 10.1007/bf00337226] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The characterization of the human antiserum designated MAN has led to the identification of a subset of non-lamin proteins that are exclusively located at the nuclear periphery in all vertebrate cell types examined, from human to fish. Immunoreactive protein species were shown to comprise three major polypeptides of Mr 78000, 58000 and 40000. These antigens co-partitioned with the nuclear lamina during in situ isolation of nuclear matrices from lamin A/C-positive and -negative mammalian cells. Using double immunofluorescence, the spatial relationship of MAN antigens to type-A and type-B lamins was further examined throughout the cell cycle of lamin A/C-positive mammalian cells. In interphase HeLa and 3T3 cells, MAN antigens colocalized with both types of lamins at the periphery of the nucleus, but were absent from intranuclear foci of lamin B. As HeLa cells proceeded into mitosis, MAN antigens were seen to segregate from lamins A/C and coredistribute with lamin B. Lamins A/C disassembled during late prophase/early prometaphase and reassociated with chromatin in telophase/cytokinesis. In contrast, MAN antigens and lamin B dispersed late during prometaphase and reassembled on chromosomes in anaphase. Altogether, our data suggest that MAN antigens may play key functions in the maintenance of the structural integrity of the nuclear compartment in vertebrate cells.
Collapse
Affiliation(s)
- M Paulin-Levasseur
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | | | | | | |
Collapse
|
30
|
Goldberg M, Jenkins H, Allen T, Whitfield WG, Hutchison CJ. Xenopus lamin B3 has a direct role in the assembly of a replication competent nucleus: evidence from cell-free egg extracts. J Cell Sci 1995; 108 ( Pt 11):3451-61. [PMID: 8586657 DOI: 10.1242/jcs.108.11.3451] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenopus egg extracts which assemble replication competent nuclei in vitro were depleted of lamin B3 using monoclonal antibody L6 5D5 linked to paramagnetic beads. After depletion, the extracts were still capable of assembling nuclei around demembranated sperm heads. Using field emission in lens scanning electron microscopy (FEISEM) we show that most nuclei assembled in lamin B3-depleted extracts have continuous nuclear envelopes and well formed nuclear pores. However, several consistent differences were observed. Most nuclei were small and only attained diameters which were half the size of controls. In a small number of nuclei, nuclear pore baskets, normally present on the inner aspect of the nuclear envelope, appeared on its outer surface. Finally, the assembly of nuclear pores was slower in lamin B3-depleted extracts, indicating a slower overall rate of nuclear envelope assembly. The results of FEISEM were confirmed using conventional TEM thin sections, where again the majority of nuclei assembled in lamin B3-depleted extracts had well formed double unit membranes containing a high density of nuclear pores. Since nuclear envelope assembly was mostly normal but slow in these nuclei, the lamin content of 'depleted' extracts was investigated. While lamin B3 was recovered efficiently from cytosolic and membrane fractions by our procedure, a second minor lamin isoform, which has characteristics similar to those of the somatic lamin B2, remained in the extract. Thus it is likely that this lamin is necessary for nuclear envelope assembly. However, while lamin B2 did not co-precipitate with lamin B3 during immunodepletion experiments, several protein species did specifically associate with lamin B3 on paramagnetic immunobeads. The major protein species associated with lamin B3 migrated with molecular masses of 102 kDa and 57 kDa, respectively, on one-dimensional polyacrylamide gels. On two-dimensional O'Farrell gels the mobility of the 102 kDa protein was identical to the mobility of a major nuclear matrix protein, indicating a specific association between lamin B3 and other nuclear matrix proteins. Nuclei assembled in lamin B3-depleted extracts did not assemble a lamina, judged by indirect immunofluorescence, and failed to initiate semi-conservative DNA replication. However, by reinoculating depleted extracts with purified lamin B3, nuclear lamina assembly and DNA replication could both be rescued. Thus it seems likely that the inability of lamin-depleted extracts to assemble a replication competent nucleus is a direct consequence of a failure to assemble a lamina.
Collapse
Affiliation(s)
- M Goldberg
- CRC Department of Structural Cell Biology, Paterson Institute for Cancer Research, Christie Hospital, Manchester, UK
| | | | | | | | | |
Collapse
|
31
|
Riemer D, Stuurman N, Berrios M, Hunter C, Fisher PA, Weber K. Expression of Drosophila lamin C is developmentally regulated: analogies with vertebrate A-type lamins. J Cell Sci 1995; 108 ( Pt 10):3189-98. [PMID: 7593280 DOI: 10.1242/jcs.108.10.3189] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vertebrate nuclear lamins form a multigene family with developmentally controlled expression. In contrast, invertebrates have long been thought to contain only a single lamin, which in Drosophila is the well-characterized lamin Dm0. Recently, however, a Drosophila cDNA clone (pG-IF) has been identified that codes for an intermediate filament protein which harbors a nuclear localization signal but lacks a carboxy-terminal CAAX motif. Based on these data the putative protein encoded by pG-IF was tentatively called Drosophila lamin C. To address whether the pG-IF encoded protein is expressed and whether it encodes a cytoplasmic intermediate filament protein or a nuclear lamin we raised antibodies against the recombinant pG-IF protein. The antibodies decorate the nuclear envelope in Drosophila Kc tissue culture cells as well as in salivary and accessory glands demonstrating that pG-IF encodes a nuclear lamin (lamin C). Antibody decoration, in situ hybridization, western and northern blotting studies show that lamin C is acquired late in embryogenesis. In contrast, lamin Dm0 is constitutively expressed. Lamin C is first detected in late stage 12 embryos in oenocytes, hindgut and posterior spiracles and subsequently also in other differentiated tissues. In third instar larvae lamins C and Dm0 are coexpressed in all tissues tested. Thus, Drosophila has two lamins: lamin Dm0, containing a CaaX motif, is expressed throughout, while lamin C, lacking a CaaX motif, is expressed only later in development. Expression of Drosophila lamin C is similar to that of vertebrate lamin A (plus C), which loses its CaaX motif during incorporation into the lamina.
Collapse
Affiliation(s)
- D Riemer
- Max-Planck-Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, FRG
| | | | | | | | | | | |
Collapse
|
32
|
Hutchison CJ, Bridger JM, Cox LS, Kill IR. Weaving a pattern from disparate threads: lamin function in nuclear assembly and DNA replication. J Cell Sci 1994; 107 ( Pt 12):3259-69. [PMID: 7706384 DOI: 10.1242/jcs.107.12.3259] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major residual structure that remains associated with the nuclear envelope following extraction of isolated nuclei or oocyte germinal vesicles with non-ionic detergents, nucleases and high salt is the lamina (Fawcett, 1966; Aaronson and Blobel, 1975; Dwyer and Blobel, 1976). The nuclear lamina is composed of intermediate filament proteins, termed lamins (Gerace and Blobel, 1980; Shelton et al., 1980), which polymerise to form a basket-weave lattice of fibrils, which covers the entire inner surface of the nuclear envelope and interlinks nuclear pores (Aebi et al., 1986; Stewart and Whytock, 1988; Goldberg and Allen, 1992). At mitosis, the nuclear envelope and the lamina both break down to allow chromosome segregation. As a consequence, each structure has to be rebuilt during anaphase and telophase, allowing cells an opportunity to reposition chromosomes (Heslop-Harrison and Bennett, 1990) and to reorganise looped chromatin domains (Franke, 1974; Franke et al., 1981; Hochstrasser et al., 1986), which may in turn control the use of subsets of genes. Because of the position that it occupies, its dynamics during mitosis and the fact that it is an essential component of proliferating cells, the lamina has been assigned a number of putative roles both in nuclear metabolism and in nuclear envelope assembly (Burke and Gerace, 1986; Nigg, 1989). However, to date there is little clear cut evidence that satisfactorily explains the function of the lamina in relation to its structure. In this Commentary we will describe some of the recent work that addresses this problem and attempt to provide a unified model for the role of lamins in nuclear envelope assembly and for the lamina in the initiation of DNA replication.
Collapse
Affiliation(s)
- C J Hutchison
- Department of Biological Sciences, The University, Dundee, UK
| | | | | | | |
Collapse
|
33
|
Oberhammer FA, Hochegger K, Fröschl G, Tiefenbacher R, Pavelka M. Chromatin condensation during apoptosis is accompanied by degradation of lamin A+B, without enhanced activation of cdc2 kinase. J Cell Biol 1994; 126:827-37. [PMID: 8051209 PMCID: PMC2120132 DOI: 10.1083/jcb.126.4.827] [Citation(s) in RCA: 262] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Chromatin condensation paralleled by DNA fragmentation is one of the most important criteria which are used to identify apoptotic cells. However, comparable changes are also observed in interphase nuclei which have been treated with cell extracts from mitotic cells. In this respect it is known that in mitosis, the lamina structure is broken down as a result of lamin solubilization and it is possible that a similar process is happening in apoptotic cells. The experiments described in this study have used confluent cultures of an embryonic fibroblast cell line which can be induced to undergo either apoptosis at low serum conditions or mitosis. Solubilization of lamin A+B was analyzed by immunoblotting and indirect immunofluorescence. These studies showed that in mitotic cells lamina breakdown is accompanied by lamin solubilization. In apoptotic cells, a small amount of lamin is solubilized before the onset of apoptosis, thereafter, chromatin condensation is accompanied by degradation of lamin A+B to a 46-kD fragment. Analysis of cellular lysates by probing blots with anti-PSTAIR followed by anti-phosphotyrosine showed that in contrast to mitosis, dephosphorylation on tyrosine residues did not occur in apoptotic cells. At all timepoints after the onset of apoptosis there was no significant increase in the activation of p34cdc2 as determined in the histone H1 kinase assay. Coinduction of apoptosis and mitosis after release of cells from aphidicolin block showed that apoptosis could be induced in parallel with S-phase. The sudden breakdown of chromatin structure may be the result of detachment of the chromatin loops from their anchorage at the nuclear matrix, as bands of 50 kbp and corresponding multimers were detectable by field inversion gel electrophoresis (FIGE). In apoptotic cells all of the DNA was fragmented, but only 14% of the DNA was smaller than 50 kbp. DNA strand breaks were detected at the periphery of the condensed chromatin by in situ tailing (ISTAIL). Chromatin condensation during apoptosis appears to be due to a rapid proteolysis of nuclear matrix proteins which does not involve the p34cdc2 kinase.
Collapse
|
34
|
Abstract
A variety of morphological and biochemical studies have established that the nuclear lamins play an important role in nuclear structure and dynamics. Recent work reveals the existence of specialized lamin isotypes and novel pathways of modulation of lamin import into the nucleus via phosphorylation by protein kinase C. Other studies also unveil a wide spectrum of molecular interactions between the lamin proteins and integral membrane components of the nuclear envelope.
Collapse
Affiliation(s)
- S D Georgatos
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
35
|
Meier J, Georgatos SD. Type B lamins remain associated with the integral nuclear envelope protein p58 during mitosis: implications for nuclear reassembly. EMBO J 1994; 13:1888-98. [PMID: 8168487 PMCID: PMC395030 DOI: 10.1002/j.1460-2075.1994.tb06458.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
p58 (also referred to as the lamin B receptor) is an integral membrane protein of the nuclear envelope known to form a multimeric complex with the lamins and other nuclear proteins during interphase. To examine the fate of this complex during mitosis, we have investigated the partitioning and the molecular interactions of p58 in dividing chicken hepatoma (DU249) cells. Using confocal microscopy and double immunolabelling, we show here that lamins B1 and B2 co-localize with p58 during all phases of mitosis and co-assemble around reforming nuclei. A close juxtaposition of p58/lamin B-containing vesicles and chromosomes is already detectable in metaphase; however, p58 and lamin reassembly proceeds slowly and is completed in late telophase--G1. Flotation of mitotic membranes in sucrose density gradients and analysis of mitotic vesicles by immunoelectron microscopy confirms that p58 and most of the type B lamins reside in the same compartment. Co-immunoprecipitation of both proteins by affinity-purified anti-p58 antibodies shows that they are physically associated in the context of a mitotic p58 'sub-complex'. This sub-assembly does not include the type A lamins which are fully solubilized during mitosis. Our data provide direct, in vivo and in vitro evidence that the majority of type B lamins remain connected to nuclear membrane 'receptors' during mitosis. The implications of these findings in nuclear envelope reassembly are discussed below.
Collapse
Affiliation(s)
- J Meier
- Cell Biology Program, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
36
|
Hennekes H, Nigg EA. The role of isoprenylation in membrane attachment of nuclear lamins. A single point mutation prevents proteolytic cleavage of the lamin A precursor and confers membrane binding properties. J Cell Sci 1994; 107 ( Pt 4):1019-29. [PMID: 8056827 DOI: 10.1242/jcs.107.4.1019] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mature A- and B-type lamins differ in the extent to which they interact with the nuclear membrane and thus represent an interesting model for studying the role of isoprenylation and carboxyl-methylation in membrane attachment. Both A- and B-type lamins are isoprenylated and carboxyl-methylated shortly after synthesis, but A-type lamins undergo a further proteolytic cleavage which results in the loss of the hydrophobically modified C terminus. Here, we have constructed mutants of chicken lamin A that differ in their abilities to serve as substrates for different post-translational processing events occurring at the C terminus of the wild-type precursor. In addition to studying full-length proteins, we have analyzed C-terminal end domains of lamin A, either alone or after fusion to reporter proteins. Mutant proteins were expressed in mammalian cells, and their membrane association was analyzed by immunofluorescence microscopy and subcellular fractionation. Our results provide information on the substrate specificity and subcellular localization of the lamin-A-specific protease. Moreover, they indicate that hydrophobic modifications of the C-terminal end domains account for the differential membrane-binding properties of A- and B-type lamins. Thus, some of the integral membrane proteins implicated in anchoring B-type lamins to the membrane may function as receptors for the isoprenylated and carboxyl-methylated C terminus.
Collapse
Affiliation(s)
- H Hennekes
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges
| | | |
Collapse
|
37
|
Affiliation(s)
- L S Cox
- Department of Biochemistry, University of Dundee, Scotland
| | | |
Collapse
|
38
|
Maison C, Horstmann H, Georgatos SD. Regulated docking of nuclear membrane vesicles to vimentin filaments during mitosis. J Cell Biol 1993; 123:1491-505. [PMID: 8253846 PMCID: PMC2290903 DOI: 10.1083/jcb.123.6.1491] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
During mitosis, several types of intermediate-sized filaments (IFs) undergo an extensive remodelling in response to phosphorylation by cdc 2 and other protein kinases. However, unlike the nuclear lamins, the cytoplasmic IFs do not seem to follow a fixed disassembly stereotype and often retain their physical continuity without depolymerizing into soluble subunits. To investigate potential interactions between mitotically modified IFs and other cellular structures, we have examined prometaphase-arrested cells expressing the IF protein vimentin. We demonstrate here that vimentin filaments associate in situ and co-fractionate with a distinct population of mitotic vesicles. These vesicles carry on their surfaces nuclear lamin B, the inner nuclear membrane protein p58, and wheat germ agglutinin (WGA)-binding proteins. Consistent with a tight interaction between the IFs and the mitotic membranes, vimentin, nuclear lamin B, and a 180-kD WGA-binding protein are co-isolated when whole mitotic homogenates are incubated with anti-vimentin or anti-lamin B antibodies immobilized on magnetic beads. The vimentin-associated vesicles are essentially depleted of ER, Golgi and endosomal membrane proteins. The interaction of vimentin with lamin B-carrying membranes depends on phosphorylation and is weakened by dephosphorylation during nuclear reassembly in vitro. These observations reveal a novel interaction between IFs and cellular membranes and further suggest that the vimentin filaments may serve as a transient docking site for inner nuclear membrane vesicles during mitosis.
Collapse
Affiliation(s)
- C Maison
- Program of Cell Biology, European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
39
|
Firmbach-Kraft I, Stick R. The role of CaaX-dependent modifications in membrane association of Xenopus nuclear lamin B3 during meiosis and the fate of B3 in transfected mitotic cells. J Cell Biol 1993; 123:1661-70. [PMID: 8276888 PMCID: PMC2290876 DOI: 10.1083/jcb.123.6.1661] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Recent evidence shows that the COOH-terminal CaaX motif of lamins is necessary to target newly synthesized proteins to the nuclear envelope membranes. Isoprenylation at the CaaX-cysteine has been taken to explain the different fates of A- and B-type lamins during cell division. A-type lamins, which loose their isoprenylation shortly after incorporation into the lamina structure, become freely soluble upon mitotic nuclear envelope breakdown. Somatic B-type lamins, in contrast, are permanently isoprenylated and, although depolymerized during mitosis, remain associated with remnants of nuclear envelope membranes. However, Xenopus lamin B3, the major B-type lamin of amphibian oocytes and eggs, becomes soluble after nuclear envelope breakdown in meiotic metaphase. Here we show that Xenopus lamin B3 is permanently isoprenylated and carboxyl methylated in oocytes (interphase) and eggs (meiotic metaphase). When transfected into mouse L cells Xenopus lamin B3 is integrated into the host lamina and responds to cell cycle signals in a normal fashion. Notably, the ectopically expressed Xenopus lamin does not form heterooligomers with the endogenous lamins as revealed by a coprecipitation experiment with mitotic lamins. In contrast to the situation in amphibian eggs, a significant portion of lamin B3 remains associated with membranes during mitosis. We conclude from these data that the CaaX motif-mediated modifications, although necessary, are not sufficient for a stable association of lamins with membranes and that additional factors are involved in lamin-membrane binding.
Collapse
Affiliation(s)
- I Firmbach-Kraft
- Abt. Enzymchemie, Universität Göttingen, Federal Republic of Germany
| | | |
Collapse
|
40
|
Lourim D, Krohne G. Membrane-associated lamins in Xenopus egg extracts: identification of two vesicle populations. J Biophys Biochem Cytol 1993; 123:501-12. [PMID: 8227121 PMCID: PMC2200128 DOI: 10.1083/jcb.123.3.501] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Nuclear lamin isoforms of vertebrates can be divided into two major classes. The B-type lamins are membrane associated throughout the cell cycle, whereas A-type lamins are recovered from mitotic cell homogenates in membrane-free fractions. A feature of oogenesis in birds and mammals is the nearly exclusive presence of B-type lamins in oocyte nuclear envelopes. In contrast, oocytes and early cleavage embryos of the amphibian Xenopus laevis are believed to contain a single lamin isoform, lamin LIII, which after nuclear envelope breakdown during meiotic maturation is reported to be completely soluble. Consequently, we have reexamined the lamin complement of Xenopus oocyte nuclear envelopes, egg extracts, and early embryos. An mAb (X223) specific for the homologous B-type lamins B2 of mouse and LII of Xenopus somatic cells (Höger, T., K. Zatloukal, I. Waizenegger, and G. Krohne. 1990. Chromosoma. 99:379-390) recognized a Xenopus oocyte nuclear envelope protein biochemically distinct from lamin LIII and very similar or identical to somatic cell lamin LII. Oocyte lamin LII was detectable in nuclear envelopes of early cleavage embryos. Immunoblotting of fractionated egg extracts revealed that approximately 20-23% of lamin LII and 5-7% of lamin LIII were membrane associated. EM immunolocalization demonstrated that membrane-bound lamins LII and LIII are associated with separate vesicle populations. These findings are relevant to the interpretation of nuclear reconstitution experiments using Xenopus egg extracts.
Collapse
Affiliation(s)
- D Lourim
- Division of Electron Microscopy, Theodor Boveri Institute, University of Würzburg, Germany
| | | |
Collapse
|
41
|
Goldberg MW, Allen TD. The nuclear pore complex: three-dimensional surface structure revealed by field emission, in-lens scanning electron microscopy, with underlying structure uncovered by proteolysis. J Cell Sci 1993; 106 ( Pt 1):261-74. [PMID: 8270630 DOI: 10.1242/jcs.106.1.261] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of the nuclear pore complex (NPC) has been previously studied by many different electron microscopic techniques. Recently, scanning electron microscopes have been developed that can visualise biologically relevant structural detail at the same level of resolution as transmission electron microscopes and have been used to study NPC structure. We have used such an instrument to visualise directly the structure of both cytoplasmic and nucleoplasmic surfaces of the NPC of manually isolated amphibian oocyte nuclear envelopes that have been spread, fixed, critical point dried and coated with a thin fine-grained film of chromium or tantalum. We present images that directly show features of the NPC that are visible at each surface, including coaxial rings, cytoplasmic particles, plug/spoke complexes and the nucleoplasmic basket or fishtrap. Some cytoplasmic particles are rod-shaped or possibly “T”-shaped, can be quite long structures extending into the cytoplasm and may be joined to the coaxial ring at a position between each subunit. Both coaxial rings, which are proud of the membranes, can be exposed by light proteolytic digestion, revealing eight equal subunits each of which may be bipartite. We have determined that the nucleoplasmic filaments that make up the baskets are attached to the outer periphery of the coaxial ring at a position between each of its subunits. These filaments extend into the nucleoplasm and insert at the distal end to the smaller basket ring. The space left between adjacent basket filaments would exclude particles bigger than about 25 nm, which is consistent with the exclusion limit previously found for NPC-transported molecules.
Collapse
Affiliation(s)
- M W Goldberg
- CRC Department of Structural Cell Biology, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, UK
| | | |
Collapse
|
42
|
Mínguez A, Moreno Díaz de la Espina S. Immunological characterization of lamins in the nuclear matrix of onion cells. J Cell Sci 1993; 106 ( Pt 1):431-9. [PMID: 8270641 DOI: 10.1242/jcs.106.1.431] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used polyclonal and monoclonal antibodies against different lamins from vertebrates, and the IFA antibody recognizing all kinds of intermediate filament proteins, to investigate the lamins of the nuclear matrix of Allium cepa meristematic root cells. All the antibodies react in the onion nuclear matrix with bands in the range of 60–65 kDa, which are enriched in the nuclear matrix after urea extraction, and do not crossreact with other antibodies recognizing intermediate filaments in plants (AFB, anti-vimentin and MAC 322), ruling out crossreaction with contaminating intermediate filaments of cytoplasmic bundles. In 2-D blots the chicken anti-lamin serum reacts with one spot at 65 kDa and pI 6.8 and the anti B-type lamin antibodies with another one at 64 kDa and pI 5.75. Both crossreact with IFA. The lamin is localized at the nuclear periphery and the lamina by indirect immunofluorescence. Immunogold labelling of nuclear matrix sections reveals that the protein is not only associated with the lamina, but also with the internal matrix. Taken together these results reveal that higher plants, which do not possess an organized network of cytoplasmic intermediate filaments, nevertheless present a well-organized lamina containing lamins in which at least one of them is immunologically related to vertebrate lamin B. Our data confirm that lamins are very old members of the intermediate filament proteins that have been better conserved in plants during evolution than their cytoplasmic counterparts.
Collapse
Affiliation(s)
- A Mínguez
- Laboratorio de Biología Celular y Molecular Vegetal, Centro de Investigaciones Biológicas, Madrid, Spain
| | | |
Collapse
|
43
|
Jenkins H, Hölman T, Lyon C, Lane B, Stick R, Hutchison C. Nuclei that lack a lamina accumulate karyophilic proteins and assemble a nuclear matrix. J Cell Sci 1993; 106 ( Pt 1):275-85. [PMID: 7903671 DOI: 10.1242/jcs.106.1.275] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenopus egg extracts, which support nuclear assembly and DNA replication in vitro, were physically depleted of lamin B3 using monoclonal antibodies linked to magnetic beads. Depleted extracts were still able to support nuclear envelope assembly around demembranated sperm heads but the resulting pronuclei lacked a lamina and were unable to initiate semiconservative DNA replication or to assemble replicases, confirming previous data. Immunoblotting analysis of isolated nuclei and nuclear matrix fractions indicated that lamin-depleted nuclei still accumulated nucleoporins and PCNA. Furthermore, the rate of PCNA uptake was identical in lamin-depleted and control nuclei. However, neither the nucleoporins nor the PCNA was associated with nuclear matrix fractions. The major protein components of sperm pronuclear matrix fractions were characterized by two-dimensional gel electrophoresis. Of these proteins only three out of 22 species, other than the lamins, were significantly reduced in lamin-depleted nuclei, indicating that these nuclei do assemble a nuclear matrix.
Collapse
Affiliation(s)
- H Jenkins
- Department of Biological Sciences, The University, Dundee, UK
| | | | | | | | | | | |
Collapse
|
44
|
Schmidt-Zachmann MS, Dargemont C, Kühn LC, Nigg EA. Nuclear export of proteins: the role of nuclear retention. Cell 1993; 74:493-504. [PMID: 8348616 DOI: 10.1016/0092-8674(93)80051-f] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Proteins that shuttle between nucleus and cytoplasm are implicated in transport and signal transduction processes. Using assays based on interspecies heterokaryons and microinjection of Xenopus oocytes, we examined what structural features determine nuclear export of shuttling proteins. Three classes of proteins were studied: first, wild-type and mutant forms of nucleolin, one of the first shuttling proteins identified; second, artificial nuclear reporter proteins derived from cytoplasmic pyruvate kinase; and third, wild-type and mutant lamins differing in their abilities to be incorporated into the lamina. Our results show that a protein does not require positively acting export signals to be transported from nucleus to cytoplasm; instead, its shuttling ability is limited primarily by intranuclear interactions. We conclude that nucleocytoplasmic shuttling is a general phenomenon not restricted to proteins involved in nucleocytoplasmic transport.
Collapse
Affiliation(s)
- M S Schmidt-Zachmann
- Cell Proliferation Unit, Swiss Institute for Experimental Cancer Research (ISREC), Epalinges
| | | | | | | |
Collapse
|
45
|
Foisner R, Gerace L. Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 1993; 73:1267-79. [PMID: 8324822 DOI: 10.1016/0092-8674(93)90355-t] [Citation(s) in RCA: 407] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lamina-associated polypeptides (LAPs) 1A, 1B, 1C, and 2 are integral membrane proteins of the nuclear envelope associated with the nuclear lamina. Using in vitro assays, we show that LAPs 1A and 1B specifically bind to both lamins A and C and lamin B1, while LAP 2 associates only with lamin B1. LAP 2 also binds to mitotic chromosomes. The LAPs are phosphorylated during mitosis, and phosphorylation of LAP 2 by mitotic cytosol inhibits its binding to both lamin B1 and chromosomes. During late anaphase, LAP 2 associates with chromosomes prior to assembly of most lamins. Together, these data suggest that LAP 2 may have a key role in initial events of nuclear envelope reassembly, and that both LAP 2 and LAP 1 may be involved in attaching lamins to the nuclear envelope.
Collapse
Affiliation(s)
- R Foisner
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
46
|
Abstract
The nuclear envelope consists of three distinct membrane domains: the outer membrane with the bound ribosomes, the inner membrane with the bound lamina, and the pore membrane with the bound pore complexes. Using biochemical and morphological methods, we observed that the nuclear membranes of HeLa cells undergoing mitosis are disassembled in a domain-specific manner, i.e., integral membrane proteins representing the inner nuclear membrane (the lamin B receptor) and the nuclear pore membrane (gp210) are segregated into different populations of mitotic vesicles. At the completion of mitosis, the inner nuclear membrane-derived vesicles associate with chromatin first, beginning in anaphase, whereas the pore membranes and the lamina assemble later, during telophase and cytokinesis. Our data suggest that the ordered reassembly of the nuclear envelope is triggered by the early attachment of inner nuclear membrane-derived vesicles to the chromatin.
Collapse
Affiliation(s)
- N Chaudhary
- Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, New York, New York 10021
| | | |
Collapse
|
47
|
Hennekes H, Peter M, Weber K, Nigg EA. Phosphorylation on protein kinase C sites inhibits nuclear import of lamin B2. J Cell Biol 1993; 120:1293-304. [PMID: 8449977 PMCID: PMC2119761 DOI: 10.1083/jcb.120.6.1293] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The nuclear lamina is a karyoskeletal structure at the nucleoplasmic surface of the inner nuclear membrane. Its assembly state is regulated by phosphorylation of the intermediate filament type lamin proteins. Strong evidence has been obtained for a causal link between phosphorylation of lamins by the p34cdc2 protein kinase and disassembly of the nuclear lamina during mitosis. In contrast, no information is currently available on the role of lamin phosphorylation during interphase of the cell cycle. Here, we have identified four protein kinase C phosphorylation sites in purified chicken lamin B2 as serines 400, 404, 410, and 411. In vivo, the tryptic peptide containing serines 400 and 404 is phosphorylated throughout interphase, whereas serines 410 and 411 become phosphorylated specifically in response to activation of protein kinase C by phorbol ester. Prompted by the close proximity of serines 410/411 to the nuclear localization signal of lamin B2, we have studied the influence of phosphorylation of these residues on nuclear transport. Using an in vitro assay, we show that phosphorylation of lamin B2 by protein kinase C strongly inhibits transport to the nucleus. Moreover, phorbol ester treatment of intact cells leads to a substantial reduction of the rate of nuclear import of newly synthesized lamin B2 in vivo. These findings have implications for the dynamic structure of the nuclear lamina, and they suggest that the modulation of nuclear transport rates by cytoplasmic phosphorylation may represent a general mechanism for regulating nuclear activities.
Collapse
Affiliation(s)
- H Hennekes
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges
| | | | | | | |
Collapse
|
48
|
Bridger JM, Kill IR, O'Farrell M, Hutchison CJ. Internal lamin structures within G1 nuclei of human dermal fibroblasts. J Cell Sci 1993; 104 ( Pt 2):297-306. [PMID: 8505362 DOI: 10.1242/jcs.104.2.297] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclear lamina is a mesh-like network of fibres subjacent to the inner nuclear membrane that is believed to be involved in the specific spatial reorganisation of chromatin after mitosis. To determine how the lamina might be involved in chromatin reorganisation, we have performed indirect immunofluorescence studies on quiescent and proliferating human dermal fibroblasts (HDF). Two monoclonal antibodies recognising human lamins A and C and three different fixation methods were employed. In indirect immunofluorescence studies, cultures of quiescent cells displayed a uniform perinuclear distribution of the antibodies. In proliferating cultures two distinct populations of cells were observed: one population displayed a typical perinuclear antibody distribution, while the second population displayed an unusual pattern consisting of a series of spots and fibres within the nucleus. By inducing cell-cycle synchrony in cultures we were able to determine that the unusual internal distribution of the lamin antibodies was restricted to cells in G1. Optical sectioning and 3-D reconstruction of the lamina structures in G1 nuclei was performed with a confocal laser scanning microscope (CLSM). This revealed that the internal lamin structures consisted of small foci and fibres proliferating throughout the nucleus. These structures were shown to be closely associated with areas of condensed chromatin but not nuclear membrane. As cells progress towards S phase the internal lamin foci disappear.
Collapse
Affiliation(s)
- J M Bridger
- Department of Biological Sciences, University, Dundee, Scotland
| | | | | | | |
Collapse
|
49
|
Furukawa K, Hotta Y. cDNA cloning of a germ cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells. EMBO J 1993; 12:97-106. [PMID: 8094052 PMCID: PMC413179 DOI: 10.1002/j.1460-2075.1993.tb05635.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The nuclear lamina is a fundamental component involved in the assembly of the nuclear envelope and higher order chromosomal structures in eukaryotes. In mammals, it is composed of four major lamin proteins, termed lamins A, B1, B2 and C. Here we first report cDNA cloning of a new 53 kDa lamin protein from mouse spermatocytes, termed lamin B3, the expression of which appears restricted to spermatogenic cells. Its gene structure indicates that lamin B3 is generated by differential splicing and alternative polyadenylation from lamin B2. When lamin B3 is introduced into somatic cells in culture, their nuclear morphology is transformed from spherical to hook-shaped. On the basis of the results obtained, we suggest that the germ cell specific lamin B3 is involved in the reorganization of nuclear and chromosomal structures during meiotic division.
Collapse
Affiliation(s)
- K Furukawa
- Department of Biology, School of Science, Nagoya University, Japan
| | | |
Collapse
|
50
|
Goldberg MW, Allen TD. High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores. J Cell Biol 1992; 119:1429-40. [PMID: 1469043 PMCID: PMC2289746 DOI: 10.1083/jcb.119.6.1429] [Citation(s) in RCA: 163] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The nuclear envelope (NE) of amphibian oocytes can be readily isolated in relatively structurally intact and pure form and has been used extensively for structural studies. Using high resolution scanning electron microscopy (HRSEM), both surfaces of the NE can be visualized in detail. Here, we demonstrate the use of HRSEM to obtain high resolution information of NE structure, confirming previous data and providing some new information. NEs, manually isolated from Triturus cristatus oocytes, have been mounted on conductive silicon chips, fixed, critical point dried and coated with a thin, continuous film of chromium or tantalum and viewed at relatively high accelerating voltage in a field emission scanning electron microscope with the sample within the objective lens. Both nucleoplasmic and cytoplasmic surfaces of the nuclear pore complexes (NPC) have been visualized, revealing the cytoplasmic coaxial ring, associated particles, central plug/transporter and spokes. The nucleoplasmic face is dominated by the previously described basketlike structure attached to the nucleoplasmic coaxial ring. In Triturus, a novel, highly regular flat sheet of fibers, termed the NE lattice (NEL) has been observed attached to the distal ring of the NPC basket. The NEL appears to be distinct from the nuclear lamina. Evidence for the NEL is also presented in thin TEM sections from Triturus oocytes and GVs and in spread NEs from Xenopus. A model is presented for NEL structure and its interaction with the NPCs is discussed.
Collapse
Affiliation(s)
- M W Goldberg
- Cancer Research Campaign (CRC) Department of Structural Cell Biology, Paterson Institute for Cancer Research, Christie Hospital National Health Service (NHS) Trust, Manchester, United Kingdom
| | | |
Collapse
|