1
|
Gaston C, De Beco S, Doss B, Pan M, Gauquelin E, D'Alessandro J, Lim CT, Ladoux B, Delacour D. EpCAM promotes endosomal modulation of the cortical RhoA zone for epithelial organization. Nat Commun 2021; 12:2226. [PMID: 33850145 PMCID: PMC8044225 DOI: 10.1038/s41467-021-22482-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 03/11/2021] [Indexed: 01/13/2023] Open
Abstract
At the basis of cell shape and behavior, the organization of actomyosin and its ability to generate forces are widely studied. However, the precise regulation of this contractile network in space and time is unclear. Here, we study the role of the epithelial-specific protein EpCAM, a contractility modulator, in cell shape and motility. We show that EpCAM is required for stress fiber generation and front-rear polarity acquisition at the single cell level. In fact, EpCAM participates in the remodeling of a transient zone of active RhoA at the cortex of spreading epithelial cells. EpCAM and RhoA route together through the Rab35/EHD1 fast recycling pathway. This endosomal pathway spatially organizes GTP-RhoA to fine tune the activity of actomyosin resulting in polarized cell shape and development of intracellular stiffness and traction forces. Impairment of GTP-RhoA endosomal trafficking either by silencing EpCAM or by expressing Rab35/EHD1 mutants prevents proper myosin-II activity, stress fiber formation and ultimately cell polarization. Collectively, this work shows that the coupling between co-trafficking of EpCAM and RhoA, and actomyosin rearrangement is pivotal for cell spreading, and advances our understanding of how biochemical and mechanical properties promote cell plasticity.
Collapse
Affiliation(s)
- Cécile Gaston
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Simon De Beco
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Bryant Doss
- Mechanobiology Institute, T-lab, Singapore, Singapore
| | - Meng Pan
- Mechanobiology Institute, T-lab, Singapore, Singapore
| | - Estelle Gauquelin
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Joseph D'Alessandro
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | | | - Benoit Ladoux
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Delphine Delacour
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France.
| |
Collapse
|
2
|
Furniss RCD, Low WW, Mavridou DAI, Dagley LF, Webb AI, Tate EW, Clements A. Plasma membrane profiling during enterohemorrhagic E. coli infection reveals that the metalloprotease StcE cleaves CD55 from host epithelial surfaces. J Biol Chem 2018; 293:17188-17199. [PMID: 30190327 PMCID: PMC6222108 DOI: 10.1074/jbc.ra118.005114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/29/2018] [Indexed: 01/01/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is one of several E. coli pathotypes that infect the intestinal tract and cause disease. Formation of the characteristic attaching and effacing lesion on the surface of infected cells causes significant remodeling of the host cell surface; however, limited information is available about changes at the protein level. Here we employed plasma membrane profiling, a quantitative cell-surface proteomics technique, to identify host proteins whose cell-surface levels are altered during infection. Using this method, we quantified more than 1100 proteins, 280 of which showed altered cell-surface levels after exposure to EHEC. 22 host proteins were significantly reduced on the surface of infected epithelial cells. These included both known and unknown targets of EHEC infection. The complement decay–accelerating factor cluster of differentiation 55 (CD55) exhibited the greatest reduction in cell-surface levels during infection. We showed by flow cytometry and Western blot analysis that CD55 is cleaved from the cell surface by the EHEC-specific protease StcE and found that StcE-mediated CD55 cleavage results in increased neutrophil adhesion to the apical surface of intestinal epithelial cells. This suggests that StcE alters host epithelial surfaces to depress neutrophil transepithelial migration during infection. This work is the first report of the global manipulation of the epithelial cell surface by a bacterial pathogen and illustrates the power of quantitative cell-surface proteomics in uncovering critical aspects of bacterial infection biology.
Collapse
Affiliation(s)
- R Christopher D Furniss
- From the MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ United Kingdom
| | - Wen Wen Low
- From the MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ United Kingdom
| | - Despoina A I Mavridou
- From the MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ United Kingdom
| | - Laura F Dagley
- Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne 3050, Australia, and
| | - Andrew I Webb
- Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne 3050, Australia, and
| | - Edward W Tate
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Abigail Clements
- From the MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ United Kingdom,
| |
Collapse
|
3
|
Sivakumar A, Kurpios NA. Transcriptional regulation of cell shape during organ morphogenesis. J Cell Biol 2018; 217:2987-3005. [PMID: 30061107 PMCID: PMC6122985 DOI: 10.1083/jcb.201612115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
The emerging field of transcriptional regulation of cell shape changes aims to address the critical question of how gene expression programs produce a change in cell shape. Together with cell growth, division, and death, changes in cell shape are essential for organ morphogenesis. Whereas most studies of cell shape focus on posttranslational events involved in protein organization and distribution, cell shape changes can be genetically programmed. This review highlights the essential role of transcriptional regulation of cell shape during morphogenesis of the heart, lungs, gastrointestinal tract, and kidneys. We emphasize the evolutionary conservation of these processes across different model organisms and discuss perspectives on open questions and research avenues that may provide mechanistic insights toward understanding birth defects.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
4
|
Schneeberger K, Roth S, Nieuwenhuis EES, Middendorp S. Intestinal epithelial cell polarity defects in disease: lessons from microvillus inclusion disease. Dis Model Mech 2018; 11:11/2/dmm031088. [PMID: 29590640 PMCID: PMC5894939 DOI: 10.1242/dmm.031088] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium is a highly organized tissue. The establishment of epithelial cell polarity, with distinct apical and basolateral plasma membrane domains, is pivotal for both barrier formation and for the uptake and vectorial transport of nutrients. The establishment of cell polarity requires a specialized subcellular machinery to transport and recycle proteins to their appropriate location. In order to understand and treat polarity-associated diseases, it is necessary to understand epithelial cell-specific trafficking mechanisms. In this Review, we focus on cell polarity in the adult mammalian intestine. We discuss how intestinal epithelial polarity is established and maintained, and how disturbances in the trafficking machinery can lead to a polarity-associated disorder, microvillus inclusion disease (MVID). Furthermore, we discuss the recent developments in studying MVID, including the creation of genetically manipulated cell lines, mouse models and intestinal organoids, and their uses in basic and applied research. Summary: Microvillus inclusion disease serves as a useful model to enhance our understanding of the intestinal trafficking and polarity machinery in health and disease.
Collapse
Affiliation(s)
- Kerstin Schneeberger
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Sabrina Roth
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Edward E S Nieuwenhuis
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Sabine Middendorp
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands .,Regenerative Medicine Center Utrecht, University Medical Centre (UMC) Utrecht, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
5
|
Klunder LJ, Faber KN, Dijkstra G, van IJzendoorn SCD. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027888. [PMID: 28213466 DOI: 10.1101/cshperspect.a027888] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine.
Collapse
Affiliation(s)
- Leon J Klunder
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Sven C D van IJzendoorn
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
6
|
Kuntz S, Asseburg H, Dold S, Römpp A, Fröhling B, Kunz C, Rudloff S. Inhibition of low-grade inflammation by anthocyanins from grape extract in an in vitro epithelial-endothelial co-culture model. Food Funct 2016; 6:1136-49. [PMID: 25690135 DOI: 10.1039/c4fo00755g] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Anthocyanins (ACNs) are the most prevalent flavonoids in berries and their health promoting effects on vascular functions are still discussed. The aim of the present study was to identify the anti-inflammatory effect of ACNs on activated human umbilical vein endothelial cells (HUVECs) after their transport across an epithelial monolayer. STUDY DESIGN We established a transwell epithelial-endothelial co-culture system with Caco-2/HT29-B6 cells mimicking the intestinal layer and HUVECs as endothelial cells mimicking the vascular layer. Caco-2 were seeded alone (100%) or together with HT29-B6 cells (10 and 20%) on transwell inserts in order to simulate different metabolization sides of the gut. ACNs as well as malvidin-3-glucoside (M3G) were applied to the luminal compartment of the transwell-system. Transport and degradation rates were determined by high performance liquid chromatography with ultraviolet detection (HPLC-UV) or by ultra-PLC coupled to mass spectrometry (UPLC-MS). After 4 hours incubation time, co-cultured HUVECs were used immediately (short-term incubation) or after 20 hours (long-term incubation). Thereafter, HUVECs were stimulated for 3 hours with 1 ng mL(-1) TNF-α to mimic a low-grade or 10 ng mL(-1) to mimic a high-grade inflammation. Afterwards, (1.) leukocyte adhesion, (2.) expression of cell adhesion molecules (ICAM-1, VCAM-1 and E-selectin) and (3.) cytokine expression and secretion (IL-6 and IL-8) were determined using flow cytometry and real-time PCR. RESULTS Degradation and incubation studies revealed that ACNs were differently degraded depending on the ACN structure and the seeding densities. Incubation of ACNs and M3G to Caco-2 cells (100%) led to a fast decrease, which was not observed when HT29-B6 cells were co-cultured (10 and 20%). Concomitantly, anti-inflammatory effects were only observed using 100% Caco-2 cells, whereas mixtures of Caco-2 and HT29-B6 cells failed to induce an effect. ACN extract and M3G significantly attenuated TNF-α-stimulated low-grade leukocyte adhesion, expression of adhesion molecules E-selectin, VCAM-1 and ICAM-1 and cytokine expression and secretion (IL-8 and IL-6) as well as NF-κB mRNA expression. No effects were observed with high TNF-α (10 ng mL(-1)) or after short-term incubation (4 hours). CONCLUSIONS ACNs in physiological concentrations reached the serosal compartment and reduced inflammation-related parameters, which were related to the initial steps during the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Sabine Kuntz
- Department of Pediatrics, Feulgenstrasse 12, University of Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
7
|
Gupta A, Schell MJ, Bhattacharjee A, Lutsenko S, Hubbard AL. Myosin Vb mediates Cu+ export in polarized hepatocytes. J Cell Sci 2016; 129:1179-89. [PMID: 26823605 DOI: 10.1242/jcs.175307] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
The cellular machinery responsible for Cu(+)-stimulated delivery of the Wilson-disease-associated protein ATP7B to the apical domain of hepatocytes is poorly understood. We demonstrate that myosin Vb regulates the Cu(+)-stimulated delivery of ATP7B to the apical domain of polarized hepatic cells, and that disruption of the ATP7B-myosin Vb interaction reduces the apical surface expression of ATP7B. Overexpression of the myosin Vb tail, which competes for binding of subapical cargos to myosin Vb bound to subapical actin, disrupted the surface expression of ATP7B, leading to reduced cellular Cu(+) export. The myosin-Vb-dependent targeting step occurred in parallel with hepatocyte-like polarity. If the myosin Vb tail was expressed acutely in cells just prior to the establishment of polarity, it appeared as part of an intracellular apical compartment, centered on γ-tubulin. ATP7B became selectively arrested in this compartment at high [Cu(+)] in the presence of myosin Vb tail, suggesting that these compartments are precursors of donor-acceptor transfer stations for apically targeted cargos of myosin Vb. Our data suggest that reduced hepatic Cu(+) clearance in idiopathic non-Wilsonian types of disease might be associated with the loss of function of myosin Vb.
Collapse
Affiliation(s)
- Arnab Gupta
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Michael J Schell
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ann L Hubbard
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Farr GA, Hull M, Stoops EH, Bateson R, Caplan MJ. Dual pulse-chase microscopy reveals early divergence in the biosynthetic trafficking of the Na,K-ATPase and E-cadherin. Mol Biol Cell 2015; 26:4401-11. [PMID: 26424804 PMCID: PMC4666135 DOI: 10.1091/mbc.e14-09-1385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 09/24/2015] [Indexed: 11/14/2022] Open
Abstract
The trafficking of newly synthesized Na,K-ATPase and E-cadherin is observed in polarized epithelial cells. E-cadherin’s exit from the Golgi complex is not susceptible to 19°C temperature block. Furthermore, these proteins exit the Golgi and are delivered to the basolateral cell surface in separate vascular carriers. Recent evidence indicates that newly synthesized membrane proteins that share the same distributions in the plasma membranes of polarized epithelial cells can pursue a variety of distinct trafficking routes as they travel from the Golgi complex to their common destination at the cell surface. In most polarized epithelial cells, both the Na,K-ATPase and E-cadherin are localized to the basolateral domains of the plasma membrane. To examine the itineraries pursued by newly synthesized Na,K-ATPase and E-cadherin in polarized MDCK epithelial cells, we used the SNAP and CLIP labeling systems to fluorescently tag temporally defined cohorts of these proteins and observe their behaviors simultaneously as they traverse the secretory pathway. These experiments reveal that E-cadherin is delivered to the cell surface substantially faster than is the Na,K-ATPase. Furthermore, the surface delivery of newly synthesized E-cadherin to the plasma membrane was not prevented by the 19°C temperature block that inhibits the trafficking of most proteins, including the Na,K-ATPase, out of the trans-Golgi network. Consistent with these distinct behaviors, populations of newly synthesized E-cadherin and Na,K-ATPase become separated from one another within the trans-Golgi network, suggesting that they are sorted into different carrier vesicles that mediate their post-Golgi trafficking.
Collapse
Affiliation(s)
- Glen A Farr
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Michael Hull
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Emily H Stoops
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Rosalie Bateson
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026 )
| |
Collapse
|
9
|
Pathogenesis of human diffusely adhering Escherichia coli expressing Afa/Dr adhesins (Afa/Dr DAEC): current insights and future challenges. Clin Microbiol Rev 2015; 27:823-69. [PMID: 25278576 DOI: 10.1128/cmr.00036-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pathogenicity and clinical pertinence of diffusely adhering Escherichia coli expressing the Afa/Dr adhesins (Afa/Dr DAEC) in urinary tract infections (UTIs) and pregnancy complications are well established. In contrast, the implication of intestinal Afa/Dr DAEC in diarrhea is still under debate. These strains are age dependently involved in diarrhea in children, are apparently not involved in diarrhea in adults, and can also be asymptomatic intestinal microbiota strains in children and adult. This comprehensive review analyzes the epidemiology and diagnosis and highlights recent progress which has improved the understanding of Afa/Dr DAEC pathogenesis. Here, I summarize the roles of Afa/Dr DAEC virulence factors, including Afa/Dr adhesins, flagella, Sat toxin, and pks island products, in the development of specific mechanisms of pathogenicity. In intestinal epithelial polarized cells, the Afa/Dr adhesins trigger cell membrane receptor clustering and activation of the linked cell signaling pathways, promote structural and functional cell lesions and injuries in intestinal barrier, induce proinflammatory responses, create angiogenesis, instigate epithelial-mesenchymal transition-like events, and lead to pks-dependent DNA damage. UTI-associated Afa/Dr DAEC strains, following adhesin-membrane receptor cell interactions and activation of associated lipid raft-dependent cell signaling pathways, internalize in a microtubule-dependent manner within urinary tract epithelial cells, develop a particular intracellular lifestyle, and trigger a toxin-dependent cell detachment. In response to Afa/Dr DAEC infection, the host epithelial cells generate antibacterial defense responses. Finally, I discuss a hypothetical role of intestinal Afa/Dr DAEC strains that can act as "silent pathogens" with the capacity to emerge as "pathobionts" for the development of inflammatory bowel disease and intestinal carcinogenesis.
Collapse
|
10
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
11
|
Zhou L, Yang H, Okoro EU, Guo Z. Up-regulation of cholesterol absorption is a mechanism for cholecystokinin-induced hypercholesterolemia. J Biol Chem 2014; 289:12989-99. [PMID: 24692543 DOI: 10.1074/jbc.m113.534388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Excessive absorption of intestinal cholesterol is a risk factor for atherosclerosis. This report examines the effect of cholecystokinin (CCK) on plasma cholesterol level and intestinal cholesterol absorption using the in vivo models of C57BL/6 wild-type and low density lipoprotein receptor knock-out (LDLR(-/-)) mice. These data were supported by in vitro studies involving mouse primary intestinal epithelial cells and human Caco-2 cells; both express CCK receptor 1 and 2 (CCK1R and CCK2R). We found that intravenous injection of [Thr(28),Nle(31)]CCK increased plasma cholesterol levels and intestinal cholesterol absorption in both wild-type and LDLR(-/-) mice. Treatment of mouse primary intestinal epithelial cells with [Thr(28),Nle(31)]CCK increased cholesterol absorption, whereas selective inhibition of CCK1R and CCK2R with antagonists attenuated CCK-induced cholesterol absorption. In Caco-2 cells, CCK enhanced CCK1R/CCK2R heterodimerization. Knockdown of both CCK1R and CCK2 or either one of them diminished CCK-induced cholesterol absorption to the same extent. CCK also increased cell surface-associated NPC1L1 (Niemann-Pick C1-like 1) transporters but did not alter their total protein expression. Inhibition or knockdown of NPC1L1 attenuated CCK-induced cholesterol absorption. CCK enhanced phosphatidylinositide 3-kinase (PI3K) and Akt phosphorylation and augmented the interaction between NPC1L1 and Rab11a (Rab-GTPase-11a), whereas knockdown of CCK receptors or inhibition of G protein βγ dimer (Gβγ) diminished CCK-induced PI3K and Akt phosphorylation. Inhibition of PI3K and Akt or knockdown of PI3K diminished CCK-induced NPC1L1-Rab11a interaction and cholesterol absorption. Knockdown of Rab11a suppressed CCK-induced NPC1L1 translocation and cholesterol absorption. These data imply that CCK enhances cholesterol absorption by activation of a pathway involving CCK1R/CCK2R, Gβγ, PI3K, Akt, Rab11a, and NPC1L.
Collapse
Affiliation(s)
- LiChun Zhou
- From the Department of Physiology, Meharry Medical College, Nashville, Tennessee 37208
| | | | | | | |
Collapse
|
12
|
Szalinski CM, Labilloy A, Bruns JR, Weisz OA. VAMP7 modulates ciliary biogenesis in kidney cells. PLoS One 2014; 9:e86425. [PMID: 24466086 PMCID: PMC3899255 DOI: 10.1371/journal.pone.0086425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 12/12/2013] [Indexed: 12/02/2022] Open
Abstract
Epithelial cells elaborate specialized domains that have distinct protein and lipid compositions, including the apical and basolateral surfaces and primary cilia. Maintaining the identity of these domains is required for proper cell function, and requires the efficient and selective SNARE-mediated fusion of vesicles containing newly synthesized and recycling proteins with the proper target membrane. Multiple pathways exist to deliver newly synthesized proteins to the apical surface of kidney cells, and the post-Golgi SNAREs, or VAMPs, involved in these distinct pathways have not been identified. VAMP7 has been implicated in apical protein delivery in other cell types, and we hypothesized that this SNARE would have differential effects on the trafficking of apical proteins known to take distinct routes to the apical surface in kidney cells. VAMP7 expressed in polarized Madin Darby canine kidney cells colocalized primarily with LAMP2-positive compartments, and siRNA-mediated knockdown modulated lysosome size, consistent with the known function of VAMP7 in lysosomal delivery. Surprisingly, VAMP7 knockdown had no effect on apical delivery of numerous cargoes tested, but did decrease the length and frequency of primary cilia. Additionally, VAMP7 knockdown disrupted cystogenesis in cells grown in a three-dimensional basement membrane matrix. The effects of VAMP7 depletion on ciliogenesis and cystogenesis are not directly linked to the disruption of lysosomal function, as cilia lengths and cyst morphology were unaffected in an MDCK lysosomal storage disorder model. Together, our data suggest that VAMP7 plays an essential role in ciliogenesis and lumen formation. To our knowledge, this is the first study implicating an R-SNARE in ciliogenesis and cystogenesis.
Collapse
Affiliation(s)
- Christina M. Szalinski
- Renal Electrolyte Division, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| | - Anatália Labilloy
- Renal Electrolyte Division, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
- Ciência sem Fronteiras, CNPq, Brasilia, Brazil
| | - Jennifer R. Bruns
- Renal Electrolyte Division, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| | - Ora A. Weisz
- Renal Electrolyte Division, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Vacca B, Bazellières E, Nouar R, Harada A, Massey-Harroche D, Le Bivic A. Drebrin E depletion in human intestinal epithelial cells mimics Rab8a loss of function. Hum Mol Genet 2014; 23:2834-46. [PMID: 24399445 DOI: 10.1093/hmg/ddt670] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intestinal epithelial cells are highly polarized and exhibit a complex architecture with a columnar shape and a specialized apical surface supporting microvilli organized in a brush border. These microvilli are rooted in a dense meshwork of acto-myosin called the terminal web. We have shown recently that Drebrin E, an F-actin-binding protein, is a key protein for the organization of the terminal web and the brush border. Drebrin E is also required for the columnar cell shape of Caco2 cells (human colonic cells). Here, we found that the subcellular localization of several apical markers including dipeptidyl peptidase IV (DPPIV) was strikingly modified in Drebrin E-depleted Caco2 cells. Instead of being mostly present at the apical surface, these proteins are accumulated in an enlarged subapical compartment. Using known intracellular markers, we show by both confocal and electron microscopy that this compartment is related to lysosomes. We also demonstrate that the enrichment of DPPIV in this compartment originates from apical endocytosis and that depletion of Rab8a induces an accumulation of apical proteins in a similar compartment. Consistent with this, the phenotype observed in Drebrin E knock-down Caco2 cells shares some features with a pathology called microvillar inclusion disease (MVID) involving both Myosin Vb and Rab8a. Taken together, these results suggest that Drebrin E redirects the apical recycling pathway in intestinal epithelial cells to the lysosomes, demonstrating that Drebrin E is a key regulator in apical trafficking in Caco2 cells.
Collapse
Affiliation(s)
- Barbara Vacca
- Aix-Marseille University, CNRS, UMR7288, Developmental Biology Institute of Marseille (IBDM), Case 907, 13288 Marseille, Cedex 09, France
| | | | | | | | | | | |
Collapse
|
14
|
Zheng Y, Sarr MG. Translocation of transfected GLUT2 to the apical membrane in rat intestinal IEC-6 cells. Dig Dis Sci 2012; 57:1203-12. [PMID: 22116644 PMCID: PMC3331913 DOI: 10.1007/s10620-011-1984-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/10/2011] [Indexed: 02/01/2023]
Abstract
AIM In this study, we transfected the full length cDNA of glucose transporter 2 (GLUT2) into IEC-6 cells (which lack GLUT2 expression) to investigate GLUT2 translocation in enterocytes. The purpose of this study was to investigate cellular mechanisms of GLUT2 translocation and its signaling pathway. METHODS Rat GLUT2 cDNA was transfected into IEC-6 cells. Glucose uptake was measured by incubating cell monolayers with glucose (0.5-50 mM), containing (14)C-D-glucose and (3)H-L-glucose, to measure stereospecific, carrier-mediated and passive uptake. We imaged GLUT2 immunoreactivity by confocal fluorescence microscopy. We evaluated the GLUT2 inhibitor (1 mM phloretin), SGLT1 inhibitor (0.5 mM phlorizin), disrupting microtubular integrity (2 μM nocodazole and 0.5 μM cytochalasin B), protein kinase C (PKC) inhibitors (50 nM calphostin C and 10 μM chelerythrine), and PKC activator (50 nM phorbol 12-myristate 13-acetate: PMA). RESULTS In GLUT2-IEC cells, the K(m) (54.5 mM) increased compared with non-transfected IEC-6 cells (7.8 mM); phloretin (GLUT2 inhibitor) inhibited glucose uptake to that of non-transfected IEC-6 cells (P < 0.05). Nocodazole and cytochalasin B (microtubule disrupters) inhibited uptake by 43-58% only at glucose concentrations ≥25 and 50 mM and the 10-min incubations. Calphostin C (PKC inhibitor) reproduced the inhibition of nocodazole; PMA (a PKC activator) enhanced glucose uptake by 69%. Exposure to glucose increased the GFP signal at the apical membrane of GLUT-1EC cells. CONCLUSION IEC-6 cells lacking GLUT2 translocate GLUT2 apically when transfected to express GLUT2. Translocation of GLUT2 occurs through glucose stimulation via a PKC-dependent signaling pathway and requires integrity of the microtubular skeletal structure.
Collapse
Affiliation(s)
- Ye Zheng
- Department of Surgery and The Gastroenterology Research Unit, Mayo Clinic (GU 10-01), 200 1st Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
15
|
Zheng Y, Scow JS, Duenes JA, Sarr MG. Mechanisms of glucose uptake in intestinal cell lines: role of GLUT2. Surgery 2011; 151:13-25. [PMID: 21943636 DOI: 10.1016/j.surg.2011.07.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 07/06/2011] [Indexed: 12/25/2022]
Abstract
BACKGROUND GLUT2 is translocated to the apical membrane of enterocytes exposed to glucose concentrations >∼50 mM. Mechanisms of GLUT2-mediated glucose uptake in cell culture models of enterocytes have not been studied. AIM To explore mechanism(s) of glucose uptake in 3 enterocyte-like cell lines. METHODS Glucose uptake was measured in Caco-2, RIE-1, and IEC-6 cell lines using varying concentrations of glucose (0.5-50 mM). Effects of phlorizin (SGLT1 inhibitor), phloretin (GLUT2 inhibitor), nocodazole and cytochalasin B (disrupters of cytoskeleton), calphostin C and chelerythrine (PKC inhibitors), and phorbol 12-myristate 13-acetate (PKC activator) were evaluated. RESULTS Phlorizin inhibited glucose uptake in all 3 cell lines. Phloretin inhibited glucose uptake in Caco-2 and RIE-1 cells. Starving cells decreased glucose uptake in Caco-2 and RIE-1 cells. Glucose uptake was saturated at >10 mM glucose in all 3 cell lines when exposed briefly (<1 min) to glucose. After exposure for >5 min in Caco-2 and RIE-1 cells, glucose uptake did not saturate and K(m) and V(max) increased. This increase in glucose uptake was inhibited by phloretin, nocodazole, cytochalasin B, calphostin C, and chelerythrine. PMA enhanced glucose uptake by 20%. Inhibitors and PMA had little or no effect in the IEC-6 cells. CONCLUSION Constitutive expression of GLUT2 in the apical membrane along with additional translocation of cytoplasmic GLUT2 to the apical membrane via an intact cytoskeleton and activated PKC appears responsible for enhanced carrier-mediated glucose uptake at greater glucose concentrations (>20 mM) in Caco-2 and RIE-1 cells. IEC-6 cells do not appear to express functional GLUT2.
Collapse
Affiliation(s)
- Ye Zheng
- Department of Surgery and the Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
16
|
Charoenphandhu N, Laohapitakworn S, Kraidith K, Nakkrasae LI, Jongwattanapisan P, Tharabenjasin P, Krishnamra N. Electrogenic Na+/HCO3- co-transporter-1 is essential for the parathyroid hormone-stimulated intestinal HCO3- secretion. Biochem Biophys Res Commun 2011; 409:775-779. [DOI: 10.1016/j.bbrc.2011.05.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/14/2011] [Indexed: 01/26/2023]
|
17
|
Laohapitakworn S, Thongbunchoo J, Nakkrasae LI, Krishnamra N, Charoenphandhu N. Parathyroid hormone (PTH) rapidly enhances CFTR-mediated HCO₃⁻ secretion in intestinal epithelium-like Caco-2 monolayer: a novel ion regulatory action of PTH. Am J Physiol Cell Physiol 2011; 301:C137-49. [PMID: 21389278 DOI: 10.1152/ajpcell.00001.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Besides being a Ca²-regulating hormone, parathyroid hormone (PTH) has also been shown to regulate epithelial transport of certain ions, such as Cl, HCO₃, and Na, particularly in the kidney. Although the intestinal epithelium also expressed PTH receptors, little was known regarding its mechanism in the regulation of intestinal ion transport. We investigated the ion regulatory role of PTH in intestinal epithelium-like Caco-2 monolayer by Ussing chamber technique and alternating current impedance spectroscopy. It was found that Caco-2 cells rapidly responded to PTH within 1 min by increasing apical HCO₃- secretion. CFTR served as the principal route for PTH-stimulated apical HCOV efflux, which was abolished by various CFTR inhibitors, namely, NPPB, glycine hydrazide-101 (GlyH-101), and CFTRinh-172, as well as by small interfering RNA against CFTR. Concurrently, the plasma membrane resistance was decreased with no changes in the plasma membrane capacitance or paracellular permeability. HCOV was probably supplied by basolateral uptake via the electrogenic Na⁺-HCO₃⁻ cotransporter and by methazolamide-sensitive carbonic anhydrase, while the resulting intracellular H⁺ might be extruded by both apical and basolateral Na/H exchangers. Furthermore, the PTH-stimulated HCO₃-secretion was markedly reduced by protein kinase A (PKA) inhibitor (PKI 14-22 amide) and phosphoinositide 3-kinase (PI3K) inhibitors (wortmannin and LY-294002), but not by intracellular Ca²⁺ chelator (BAPTA-AM) or protein kinase C inhibitor (GF-109203X). In conclusion, the present study provided evidence that PTH directly and rapidly stimulated apical HCO₃- secretion through CFTR in PKA- and PI3K-dependent manner, which was a novel noncalciotropic, ion regulatory action of PTH in the intestinal epithelium.
Collapse
Affiliation(s)
- Suparerk Laohapitakworn
- Consortium for Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
18
|
The dual role of annexin II in targeting of brush border proteins and in intestinal cell polarity. Differentiation 2011; 81:243-52. [PMID: 21330046 DOI: 10.1016/j.diff.2011.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 01/20/2011] [Accepted: 01/22/2011] [Indexed: 01/23/2023]
Abstract
Functional intestinal epithelium relies on complete polarization of enterocytes marked by the formation of microvilli and the accurate trafficking of glycoproteins to relevant membrane domains. Numerous transport pathways warrant the unique structural identity and protein/lipid composition of the brush border membrane. Annexin II (Ca(2+)-dependent lipid-binding protein) is an important component of one of the apical protein transport machineries, which involves detergent-resistant membranes and the actin cytoskeleton. Here, we investigate in intestinal Caco-2 cells the contribution of annexin II to the sorting and transport of brush border hydrolases and role in intestinal cell polarity. Downregulation of annexin II in Caco-2-A4 cell line results in a severe reduction of the levels of the brush border membrane resident enzyme sucrase isomaltase (SI) as well as structural components such as ezrin. This reduction is accompanied by a redistribution of these proteins to intracellular compartments and a striking morphological transition of Caco-2 cells to rudimentary epithelial cells that are characterized by an almost flat apical membrane with sparse and short microvilli. Concomitant with this alteration is the redistribution of the intermediate filament protein keratin 19 to the intracellular membranes in Caco-2-A4 cells. Interestingly, keratin 19 interacts with annexin II in wild type Caco-2 cells and this interaction occurs exclusively in lipid rafts. Our findings suggest a role for annexin II and K19 in differentiation and polarization of intestinal cells.
Collapse
|
19
|
Pfister AB, Wood RC, Salas PJI, Zea DL, Ramsauer VP. Early response to ErbB2 over-expression in polarized Caco-2 cells involves partial segregation from ErbB3 by relocalization to the apical surface and initiation of survival signaling. J Cell Biochem 2011; 111:643-52. [PMID: 20589763 DOI: 10.1002/jcb.22754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In several human cancers, ErbB2 over-expression facilitates the formation of constitutively active homodimers resistant to internalization which results in progressive signal amplification from the receptor, conducive to cell survival, proliferation, or metastasis. Here we report on studies of the influence of ErbB2 over-expression on localization and signaling in polarized Caco-2 and MDCK cells, two established models to study molecular trafficking. In these cells, ErbB2 is not over-expressed and shares basolateral localization with ErbB3. Over-expression of ErbB2 by transient transfection resulted in partial separation of the receptors by relocalization of ErbB2, but not ErbB3, to the apical surface, as shown by biotinylation of the apical or basolateral surfaces. These results were confirmed by immunofluorescence and confocal microscopy. Polarity controls indicated that the relocalization of ErbB2 is not the result of depolarization of the cells. Biotinylation and confocal microscopy also showed that apical, but not basolateral ErbB2 is activated at tyrosine 1139. This phosphotyrosine binds adaptor protein Grb2, as confirmed by immunoprecipitation. However, we found that it does not initiate the canonical Grb2-Ras-Raf-Erk pathway. Instead, our data supports the activation of a survival pathway via Bcl-2. The effects of ErbB2 over-expression were abrogated by the humanized anti-ErbB2 monoclonal antibody Herceptin added only from the apical side. The ability of apical ErbB2 to initiate an altered downstream cascade suggests that subcellular localization of the receptor plays an important role in regulating ErbB2 signaling in polarized epithelia.
Collapse
Affiliation(s)
- Amber B Pfister
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, USA
| | | | | | | | | |
Collapse
|
20
|
Friis S, Godiksen S, Bornholdt J, Selzer-Plon J, Rasmussen HB, Bugge TH, Lin CY, Vogel LK. Transport via the transcytotic pathway makes prostasin available as a substrate for matriptase. J Biol Chem 2010; 286:5793-802. [PMID: 21148558 DOI: 10.1074/jbc.m110.186874] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The matriptase-prostasin proteolytic cascade is essential for epidermal tight junction formation and terminal epidermal differentiation. This proteolytic pathway may also be operative in a variety of other epithelia, as both matriptase and prostasin are involved in tight junction formation in epithelial monolayers. However, in polarized epithelial cells matriptase is mainly located on the basolateral plasma membrane whereas prostasin is mainly located on the apical plasma membrane. To determine how matriptase and prostasin interact, we mapped the subcellular itinerary of matriptase and prostasin in polarized colonic epithelial cells. We show that zymogen matriptase is activated on the basolateral plasma membrane where it is able to cleave relevant substrates. After activation, matriptase forms a complex with the cognate matriptase inhibitor, hepatocyte growth factor activator inhibitor (HAI)-1 and is efficiently endocytosed. The majority of prostasin is located on the apical plasma membrane albeit a minor fraction of prostasin is present on the basolateral plasma membrane. Basolateral prostasin is endocytosed and transcytosed to the apical plasma membrane where a long retention time causes an accumulation of prostasin. Furthermore, we show that prostasin on the basolateral membrane is activated before it is transcytosed. This study shows that matriptase and prostasin co-localize for a brief period of time at the basolateral plasma membrane after which prostasin is transported to the apical membrane as an active protease. This study suggests a possible explanation for how matriptase or other basolateral serine proteases activate prostasin on its way to its apical destination.
Collapse
Affiliation(s)
- Stine Friis
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lackeyram D, Yang C, Archbold T, Swanson KC, Fan MZ. Early weaning reduces small intestinal alkaline phosphatase expression in pigs. J Nutr 2010; 140:461-8. [PMID: 20089775 DOI: 10.3945/jn.109.117267] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Expression of the small intestinal alkaline phosphatase (IAP) is enterocyte differentiation dependent and plays essential roles in the detoxification of pathogenic bacterial lipopolysaccharide endotoxin, maintenance of luminal pH, organic phosphate digestion, and fat absorption. This study was conducted to examine the effect of early weaning on adaptive changes in IAP digestive capacity (V(cap)) and IAP gene expression compared with suckling counterparts in pigs at ages 10-22 d. Weaning decreased (P < 0.05) IAP enzyme affinity by 26% and IAP maximal enzyme activity by 22%, primarily in the jejunal region, with the jejunum expressing 84-86% of the whole gut mucosal IAP V(cap) [mol/(kg body weight.d)]. The majority (98%) of the jejunal mucosal IAP maximal activity was associated with the apical membrane and the remaining (2%) existed as the intracellular soluble IAP. Weaning reduced the abundance of the 60-kDa IAP protein associated with the proximal jejunal apical membrane by 64% (P < 0.05). Furthermore, weaning reduced (P < 0.05) the relative abundance of the proximal jejunal IAP mRNA by 58% and this was in association with decreases (P < 0.05) in the abundances of cytoplasmic (27%) and nuclear (29%) origins of IAP caudal-associated homeobox transcription factor 1. In conclusion, early weaning decreased small intestinal IAP V(cap), IAP catalytic affinity, and IAP gene expression, and this may in part contribute to the susceptibility of early-weaned piglets to increased occurrence of enteric diseases and growth-check.
Collapse
Affiliation(s)
- Dale Lackeyram
- Center for Nutrition Modeling, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
22
|
Weisz OA, Rodriguez-Boulan E. Apical trafficking in epithelial cells: signals, clusters and motors. J Cell Sci 2010; 122:4253-66. [PMID: 19923269 DOI: 10.1242/jcs.032615] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the early days of epithelial cell biology, researchers working with kidney and/or intestinal epithelial cell lines and with hepatocytes described the biosynthetic and recycling routes followed by apical and basolateral plasma membrane (PM) proteins. They identified the trans-Golgi network and recycling endosomes as the compartments that carried out apical-basolateral sorting. They described complex apical sorting signals that promoted association with lipid rafts, and simpler basolateral sorting signals resembling clathrin-coated-pit endocytic motifs. They also noticed that different epithelial cell types routed their apical PM proteins very differently, using either a vectorial (direct) route or a transcytotic (indirect) route. Although these original observations have generally held up, recent studies have revealed interesting complexities in the routes taken by apically destined proteins and have extended our understanding of the machinery required to sustain these elaborate sorting pathways. Here, we critically review the current status of apical trafficking mechanisms and discuss a model in which clustering is required to recruit apical trafficking machineries. Uncovering the mechanisms responsible for polarized trafficking and their epithelial-specific variations will help understand how epithelial functional diversity is generated and the pathogenesis of many human diseases.
Collapse
Affiliation(s)
- Ora A Weisz
- Department of Medicine and Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
23
|
Reinke Y, Zimmer KP, Naim HY. Toxic peptides in Frazer's fraction interact with the actin cytoskeleton and affect the targeting and function of intestinal proteins. Exp Cell Res 2009; 315:3442-52. [DOI: 10.1016/j.yexcr.2009.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 01/07/2023]
|
24
|
Farr GA, Hull M, Mellman I, Caplan MJ. Membrane proteins follow multiple pathways to the basolateral cell surface in polarized epithelial cells. ACTA ACUST UNITED AC 2009; 186:269-82. [PMID: 19620635 PMCID: PMC2717640 DOI: 10.1083/jcb.200901021] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Newly synthesized apical and basolateral membrane proteins are sorted from one another in polarized epithelial cells. The trans-Golgi network participates in this sorting process, but some basolateral proteins travel from the Golgi to recycling endosomes (REs) before their surface delivery. Using a novel system for pulse–chase microscopy, we have visualized the postsynthetic route pursued by a newly synthesized cohort of Na,K-ATPase. We find that the basolateral delivery of newly synthesized Na,K-ATPase occurs via a pathway distinct from that pursued by the vesicular stomatitis virus G protein (VSV-G). Na,K-ATPase surface delivery occurs at a faster rate than that observed for VSV-G. The Na,K-ATPase does not pass through the RE compartment en route to the plasma membrane, and Na,K-ATPase trafficking is not regulated by the same small GTPases as other basolateral proteins. Finally, Na,K-ATPase and VSV-G travel in separate post-Golgi transport intermediates, demonstrating directly that multiple routes exist for transport from the Golgi to the basolateral membrane in polarized epithelial cells.
Collapse
Affiliation(s)
- Glen A Farr
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
25
|
Piana C, Toegel S, Guell I, Gerbes S, Viernstein H, Wirth M, Gabor F. Growth surface-induced gene and protein expression patterns in Caco-2 cells. Acta Biomater 2008; 4:1819-26. [PMID: 18565808 DOI: 10.1016/j.actbio.2008.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/23/2008] [Accepted: 05/09/2008] [Indexed: 11/19/2022]
Abstract
The underlying matrix plays an important role in the adhesion, proliferation and differentiation processes of Caco-2 cells. When culturing these cells for pharmaceutical purposes it is essential to know the influence of different supports on morphological and functional cell parameters. The impact of polystyrene, Matrigel-coated polystyrene, glass and nanostructured Easy-To-Clean (ETC01) slides was investigated over time by real-time quantitative reverse transcription polymerase chain reaction, enzymatic assays and immunofluorescent staining techniques. Compared to polystyrene, ETC01 slides induced cellular activities towards functional differentiation after short cultivation times. Glass significantly accelerated the differentiation process up to day 10 in culture, while Matrigel-coating had no significant benefit. By day 21 postseeding, the phenotype had equalized as indicated by constant brush border enzyme activity and villin mRNA expression masking the initial differences between the supports. The accelerated differentiation on specific matrices could be advantageous as it may enable cultured monolayers to be used earlier, and has to be considered when interpreting and comparing results.
Collapse
Affiliation(s)
- Claudia Piana
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
26
|
Pocard T, Le Bivic A, Galli T, Zurzolo C. Distinct v-SNAREs regulate direct and indirect apical delivery in polarized epithelial cells. J Cell Sci 2007; 120:3309-20. [PMID: 17878240 DOI: 10.1242/jcs.007948] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SNARE [soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor] proteins control the membrane-fusion events of eukaryotic membrane-trafficking pathways. Specific vesicular and target SNAREs operate in specific trafficking routes, but the degree of specificity of SNARE functions is still elusive. Apical fusion requires the polarized distribution at the apical surface of the t-SNARE syntaxin 3, and several v-SNAREs including TI-VAMP and VAMP8 operate at the apical plasma membrane in polarized epithelial cells. It is not known, however, whether specific v-SNAREs are involved in direct and indirect routes to the apical surface. Here, we used RNAi to assess the role of two tetanus-neurotoxin-insensitive v-SNAREs, TI-VAMP/VAMP7 and VAMP8, in the sorting of raft- and non-raft-associated apical markers that follow either a direct or a transcytotic delivery, respectively, in FRT or Caco2 cells. We show that TI-VAMP mediates the direct apical delivery of both raft- and non-raft-associated proteins. By contrast, sorting by means of the transcytotic pathway is not affected by TI-VAMP knockdown but does appear to be regulated by VAMP8. Together with the specific role of VAMP3 in basolateral transport, our results demonstrate a high degree of specificity in v-SNARE function in polarized cells.
Collapse
Affiliation(s)
- Thomas Pocard
- Unité de Trafic Membranaire et Pathogenèse, Institut Pasteur, 75724, Paris CEDEX 15, France
| | | | | | | |
Collapse
|
27
|
Sääf AM, Halbleib JM, Chen X, Yuen ST, Leung SY, Nelson WJ, Brown PO. Parallels between global transcriptional programs of polarizing Caco-2 intestinal epithelial cells in vitro and gene expression programs in normal colon and colon cancer. Mol Biol Cell 2007; 18:4245-60. [PMID: 17699589 PMCID: PMC2043540 DOI: 10.1091/mbc.e07-04-0309] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Posttranslational mechanisms are implicated in the development of epithelial cell polarity, but little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized temporal patterns of gene expression during cell-cell adhesion-initiated polarization of cultured human Caco-2 cells, which develop structural and functional polarity resembling enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell-cell contacts. Comparison to gene expression patterns in normal human colon and colon tumors revealed that the pattern in proliferating, nonpolarized Caco-2 cells paralleled patterns seen in human colon cancer in vivo, including expression of genes involved in cell proliferation. The pattern switched in polarized Caco-2 cells to one more closely resembling that in normal colon tissue, indicating that regulation of transcription underlying Caco-2 cell polarization is similar to that during enterocyte differentiation in vivo. Surprisingly, the temporal program of gene expression in polarizing Caco-2 cells involved changes in signaling pathways (e.g., Wnt, Hh, BMP, FGF) in patterns similar to those during migration and differentiation of intestinal epithelial cells in vivo, despite the absence of morphogen gradients and interactions with stromal cells characteristic of enterocyte differentiation in situ. The full data set is available at http://microarray-pubs.stanford.edu/CACO2.
Collapse
Affiliation(s)
| | | | - Xin Chen
- University of California San Francisco, San Francisco, CA 94143; and
| | - Siu Tsan Yuen
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Suet Yi Leung
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - W. James Nelson
- Molecular and Cellular Physiology, and
- Biological Sciences and
| | - Patrick O. Brown
- Departments of *Biochemistry
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| |
Collapse
|
28
|
Halbleib JM, Sääf AM, Brown PO, Nelson WJ. Transcriptional modulation of genes encoding structural characteristics of differentiating enterocytes during development of a polarized epithelium in vitro. Mol Biol Cell 2007; 18:4261-78. [PMID: 17699590 PMCID: PMC2043570 DOI: 10.1091/mbc.e07-04-0308] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although there is considerable evidence implicating posttranslational mechanisms in the development of epithelial cell polarity, little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized the temporal program of gene expression during cell-cell adhesion-initiated polarization of human Caco-2 cells in tissue culture, which develop structural and functional polarity similar to that of enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell-cell contacts between neighboring cells. Expression of genes involved in cell proliferation was down-regulated concomitant with induction of genes necessary for functional specialization of polarized epithelial cells. Transcriptional up-regulation of these latter genes correlated with formation of important structural and functional features in enterocyte differentiation and establishment of structural and functional cell polarity; components of the apical microvilli were induced as the brush border formed during polarization; as barrier function was established, expression of tight junction transmembrane proteins peaked; transcripts encoding components of the apical, but not the basal-lateral trafficking machinery were increased during polarization. Coordinated expression of genes encoding components of functional cell structures were often observed indicating temporal control of expression and assembly of multiprotein complexes.
Collapse
Affiliation(s)
| | | | - Patrick O. Brown
- Biochemistry, and
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | - W. James Nelson
- Departments of *Molecular and Cellular Physiology
- Biological Sciences and
| |
Collapse
|
29
|
Deora AA, Diaz F, Schreiner R, Rodriguez-Boulan E. Efficient electroporation of DNA and protein into confluent and differentiated epithelial cells in culture. Traffic 2007; 8:1304-12. [PMID: 17662027 PMCID: PMC4078794 DOI: 10.1111/j.1600-0854.2007.00617.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electroporation-mediated delivery of molecules is a procedure widely used for transfecting complementary DNA in bacteria, mammalian and plant cells. This technique has proven very efficient for the introduction of macromolecules into cells in suspension culture and even into cells in their native tissue environment, e.g. retina and embryonic tissues. However, in spite of several attempts to date, there are no well-established procedures to electroporate polarized epithelial cells adhering to a tissue culture substrate (glass, plastic or filter). We report here the development of a simple procedure that uses available commercial equipment and works efficiently and reproducibly for a variety of epithelial cell lines in culture.
Collapse
|
30
|
Bose S, Kalra S, Yammani RR, Ahuja R, Seetharam B. Plasma membrane delivery, endocytosis and turnover of transcobalamin receptor in polarized human intestinal epithelial cells. J Physiol 2007; 581:457-66. [PMID: 17347267 PMCID: PMC2075189 DOI: 10.1113/jphysiol.2007.129171] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cells that are metabolically active and in a high degree of differentiation and proliferation require cobalamin (Cbl: vitamin B(12)) and they obtain it from the circulation bound to transcobalamin (TC) via the transcobalamin receptor (TC-R). This study has investigated the plasma membrane dynamics of TC-R expression in polarized human intestinal epithelial Caco-2 cells using techniques of pulse-chase labelling, domain-specific biotinylation and cell fractionation. Endogenously synthesized TC-R turned over with a half-life (T(1/2)) of 8 h following its delivery to the basolateral plasma membrane (BLM). The T(1/2) of BLM delivery was 15 min and TC-R delivered to the BLM was endocytosed and subsequently degraded by leupeptin-sensitive proteases. However, about 15% of TC-R endocytosed from the BLM was transcytosed (T(1/2), 45 min) to the apical membranes (BBM) where it underwent endocytosis and was degraded. TC-R delivery to both BLM and BBM was inhibited by Brefeldin A and tunicamycin, but not by wortmannin or leupeptin. Colchicine inhibited TC-R delivery to BBM, but not BLM. At steady state, apical TC-R was associated with megalin and both these proteins were enriched in an intracellular compartment which also contained Rab5 and transferrin receptor. These results indicate that following rapid delivery to both plasma membrane domains of Caco-2 cells, TC-R undergoes constitutive endocytosis and degradation by leupeptin-sensitive proteases. TC-R expressed in apical BBM complexes with megalin during its transcytosis from the BLM.
Collapse
Affiliation(s)
- Santanu Bose
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin and Veterans Administration Medical Center, Milwaukee, Wisconsin 53295, USA
| | | | | | | | | |
Collapse
|
31
|
Beau I, Berger A, Servin AL. Rotavirus impairs the biosynthesis of brush-border-associated dipeptidyl peptidase IV in human enterocyte-like Caco-2/TC7 cells. Cell Microbiol 2007; 9:779-89. [PMID: 17081193 DOI: 10.1111/j.1462-5822.2006.00827.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rotavirus is the leading cause of severe dehydrating diarrhoea in infants and young children worldwide. This virus infects mature enterocytes in the small intestine, and induces structural and functional damage. In the present study, we have identified a new mechanism by which rotavirus impairs a brush border-associated intestinal protein. We show that infection of enterocyte-like Caco-2/TC7 cells by rhesus monkey rotavirus (RRV) impairs the biosynthesis of dipeptidyl peptidase IV (DPP IV), an important hydrolase in the digestion of dietary proline-rich proteins. We show that the enzyme activity of DPP IV was reduced, and that rearrangements of the protein occurred at the apical domain of the RRV-infected cells. Using pulse-chase experiments and cell surface immunoprecipitation, we have demonstrated that RRV infection did not affect the stability or apical targeting of DPP IV, but did induce a dramatic decrease in its biosynthesis. Using quantitative RT-PCR, we showed that RRV had no effect on the level of expression of DPP IV mRNA, suggesting that the observed decrease in the biosynthesis of the protein is related to an effect of the virus at the translational level.
Collapse
Affiliation(s)
- Isabelle Beau
- Institut National de la Santé et de la Recherche Médicale, Université Paris XI, UMR-S 756, Signalisation et Physiopathologie des Cellules Epithéliales, Faculté de Pharmacie, Châtenay-Malabry, F-92296 France
| | | | | |
Collapse
|
32
|
Seth S, Skountzou I, Gernert KM, Compans RW. Fusogenic variants of a noncytopathic paramyxovirus. J Virol 2007; 81:4286-97. [PMID: 17287262 PMCID: PMC1866114 DOI: 10.1128/jvi.01623-06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SER virus is a type 5 parainfluenza virus that does not exhibit syncytium formation, in contrast to most other paramyxoviruses. This property has been attributed, at least in part, to the presence of an extension of the cytoplasmic tail (CT) of the SER F protein, as truncations or mutations of this region resulted in enhanced fusion. In this study we used repeated passage to select for mutant SER viruses, which were found to be fusogenic. The mutant viruses replicated at levels comparable to or higher than the wild-type SER virus and caused plaque formation, in contrast to the wild-type virus which does not form plaques. The mutants differed strikingly in their plaque sizes. The F genes of mutant viruses were cloned and sequenced and shared some mutations, including a proline-to-leucine change at position 22 and an isoleucine-to-leucine substitution at position 191; other changes that were specific to each mutant were also found. The HN proteins of mutant viruses also showed mutations spanning the length of the protein whereas the M protein showed a consistent mutation, threonine to isoleucine, at position 129. The structure of the F protein was used to identify residues involved in the mutant phenotypes in terms of their location and proximity to heptad repeat domains.
Collapse
Affiliation(s)
- Shaguna Seth
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
33
|
Gu N, Adachi T, Takeda J, Aoki N, Tsujimoto G, Ishihara A, Tsuda K, Yasuda K. Sucrase-isomaltase gene expression is inhibited by mutant hepatocyte nuclear factor (HNF)-1alpha and mutant HNF-1beta in Caco-2 cells. J Nutr Sci Vitaminol (Tokyo) 2007; 52:105-12. [PMID: 16802690 DOI: 10.3177/jnsv.52.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hepatocyte nuclear factor (HNF)-1alpha and HNF-1beta are concerned in sucrase-isomaltase (SI) gene expression, and directly bind two sites (SIF2, SIF3) of the promoter of the SI gene. However, it is not completely clear that HNF-1alpha and HNF-1beta play a role in regulation of SI gene expression. To clarify mechanisms of SI gene expression regulated by HNF-1alpha and HNF-1beta, we established four stable cell lines based on enterocyte-like cell line Caco-2, in which wild HNF-1alpha or wild HNF-1beta, or else mutant HNF-1alphaT539fsdelC or mutant HNF-1betaR177X was overexpressed. In the HNF-1alphaT539fsdelC cells and HNF-1betaR177X cells, but not in the wild HNF-1alpha cells and wild HNF-1beta cells, SI gene expression and enzyme activity were significantly diminished compared with that in Caco-2 cells. Moreover, to clarify whether or not stable cell differentiation was influenced by overexpression of these transgenes, alkaline phosphatase (ALP) gene expression and enzyme activity were measured. There were no changes in ALP gene expression or enzyme activity in these cells. These observations suggest that mutant HNF-1alphaT539fsdelC and mutant HNF-1betaR177X inhibits SI gene at the transcriptional level, resulting in decreased SI enzyme activity in Caco-2 cells. We propose that both HNF-1alpha and HNF-1beta would contribute to constitutive expression of the SI gene in the differentiated state in Caco-2 cells.
Collapse
Affiliation(s)
- Ning Gu
- Laboratory of Metabolism, Graduate School of Human and Environmental Studies, Kyoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Arredondo M, Tapia V, Rojas A, Aguirre P, Reyes F, Marzolo MP, Núñez MT. Apical distribution of HFE-beta2-microglobulin is associated with inhibition of apical iron uptake in intestinal epithelia cells. Biometals 2006; 19:379-88. [PMID: 16841247 DOI: 10.1007/s10534-005-6687-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 10/03/2005] [Indexed: 12/29/2022]
Abstract
Mutations in the HFE gene result in hereditary hemochromatosis, a disorder of iron metabolism characterized by increased intestinal iron absorption. Based on the observation that ectopic expression of HFE strongly inhibits apical iron uptake (Arredondo et al., 2001, FASEB J 15, 1276-1278), a negative regulation of HFE on the apical membrane transporter DMT1 was proposed as a mechanism by which HFE regulates iron absorption. To test this hypothesis, we investigated: (i) the effect of HFE antisense oligonucleotides on apical iron uptake by polarized Caco-2 cells; (ii) the apical/basolateral membrane distribution of HFE, beta-2 microglobulin and DMT1; (iii) the putative molecular association between HFE and DMT1. We found that HFE antisense treatment reduced HFE expression and increased apical iron uptake, whereas transfection with wild-type HFE inhibited iron uptake. Thus, an inverse relationship was established between HFE levels and apical iron uptake activity. Selective apical or basolateral biotinylation indicated preferential localization of DMT1 to the apical membrane and of HFE and beta-2 microglobulin (beta2m) to the basolateral membrane. Ectopic expression of HFE resulted in increased distribution of HFE-beta2m to the apical membrane. The amount of HFE-beta2m in the apical membrane inversely correlated with apical iron uptake rates. Immunoprecipitations of HFE or beta2m with specific antibodies resulted in the co-precipitation of DMT1. These results sustain a model by which direct interaction between DMT1 and HFE-beta2m in the apical membrane of Caco-2 cells result in down-regulation of apical iron uptake activity.
Collapse
Affiliation(s)
- Miguel Arredondo
- Micronutrients Laboratory, Institute of Nutrition and Food Technology, INTA, Universidad de Chile, Macul 5540, Macul, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
35
|
Driss A, Charrier L, Yan Y, Nduati V, Sitaraman S, Merlin D. Dystroglycan receptor is involved in integrin activation in intestinal epithelia. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1228-42. [PMID: 16357060 PMCID: PMC2738938 DOI: 10.1152/ajpgi.00378.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The dystroglycans (alpha-DG and beta-DG), which play important roles in the formation of basement membranes, have been well studied in skeletal muscle and nerve, but their expression and localization in intestinal epithelial cells has not been previously investigated. Here, we demonstrated that the DG complex, composed of alpha-DG, beta-DG, and utrophin, is specifically expressed in the basolateral membrane of the Caco-2-BBE monolayer. The DG complex coprecipitated with beta(1)-integrin, suggesting a possible interaction among these proteins. In addition, we observed that activation of DG receptors by laminin-1 enhanced the interaction between beta(1)-integrin and laminin-1, whereas activation of DG receptors by laminin-2 reduced the interaction between beta(1)-integrin and laminin-2. Finally, we demonstrated that the intracellular COOH-terminal tail of beta-DG and its binding to the DG binding domain of utrophin are crucial for the interactions between laminin-1/-2 and beta(1)-integrin. Collectively, these novel results indicate that dystroglycans play important roles in the regulation of interactions between intestinal epithelial cells and the extracellular matrix.
Collapse
Affiliation(s)
- Adel Driss
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, Atlanta, 30322, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Deora AA, Philp N, Hu J, Bok D, Rodriguez-Boulan E. Mechanisms regulating tissue-specific polarity of monocarboxylate transporters and their chaperone CD147 in kidney and retinal epithelia. Proc Natl Acad Sci U S A 2005; 102:16245-50. [PMID: 16260747 PMCID: PMC1283422 DOI: 10.1073/pnas.0504419102] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Proton-coupled monocarboxylate transporters (MCT) MCT1, MCT3, and MCT4 form heterodimeric complexes with the cell surface glycoprotein CD147 and exhibit tissue-specific polarized distributions that are essential for maintaining lactate and pH homeostasis. In the parenchymal epithelia of kidney, thyroid, and liver, MCT/CD147 heterocomplexes are localized in the basolateral membrane where they transport lactate out of or into the cell depending on metabolic conditions. A unique distribution of lactate transporters is found in the retinal pigment epithelium (RPE), which regulates lactate levels of the outer retina. In RPE, MCT1/CD147 is polarized to the apical membrane and MCT3/CD147 to the basolateral membrane. The mechanisms responsible for tissue-specific polarized distribution of MCTs are unknown. Here, we demonstrate that CD147 carries sorting information for polarized targeting of the MCT1/CD147 hetero-complexes in kidney and RPE cells. In contrast, MCT3 and MCT4 harbor dominant sorting information that cotargets CD147 to the basolateral membrane in both epithelia. RNA interference experiments show that MCT1 promotes CD147 maturation. Our results open a unique paradigm to study the molecular basis of tissue-specific polarity.
Collapse
Affiliation(s)
- Ami A Deora
- Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
37
|
Seth S, Goodman AL, Compans RW. Mutations in multiple domains activate paramyxovirus F protein-induced fusion. J Virol 2004; 78:8513-23. [PMID: 15280460 PMCID: PMC479096 DOI: 10.1128/jvi.78.16.8513-8523.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SER virus, a paramyxovirus that is closely related to simian virus 5 (SV5), is unusual in that it fails to induce syncytium formation. The SER virus F protein has an unusually long cytoplasmic tail (CT), and it was previously observed that truncations or specific mutations of this domain result in enhanced syncytium formation. In addition to the long CT, the SER F protein has nine amino acid differences from the F protein of SV5. We previously observed only a partial suppression of fusion in a chimeric SV5 F protein with a CT derived from SER virus, indicating that these other amino acid differences between the SER and SV5 F proteins also play a role in regulating the fusion phenotype. To examine the effects of individual amino acid differences, we mutated the nine SER residues individually to the respective residues of the SV5 F protein. We found that most of the mutants were expressed well and were transported to the cell surface at levels comparable to that of the wild-type SER F protein. Many of the mutants showed enhanced lipid mixing, calcein transfer, and syncytium formation even in the presence of the long SER F protein CT. Some mutants, such as the I310 M, T438S, M489I, T516V, and N529K mutants, also showed fusion at lower temperatures of 32, 25, and 18 degrees C. The residue Asn529 plays a critical role in the suppression of fusion activity, as the mutation of this residue to lysine caused a marked enhancement of fusion. The effect of the N529K mutation on the enhancement of fusion by a previously described mutant, L539,548A, as well as by chimeric SV5/SER F proteins was also dramatic. These results indicate that activation to a fusogenic conformation is dependent on the interplay of residues in the ectodomain, the transmembrane domain, and the CT domain of paramyxovirus F proteins.
Collapse
Affiliation(s)
- Shaguna Seth
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
38
|
Martin-Latil S, Cotte-Laffitte J, Beau I, Quéro AM, Géniteau-Legendre M, Servin AL. A cyclic AMP protein kinase A-dependent mechanism by which rotavirus impairs the expression and enzyme activity of brush border-associated sucrase-isomaltase in differentiated intestinal Caco-2 cells. Cell Microbiol 2004; 6:719-31. [PMID: 15236639 DOI: 10.1111/j.1462-5822.2004.00396.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We undertook a study of the mechanism by which rhesus monkey rotavirus (RRV) impairs the expression and enzyme activity of brush border-associated sucrase isomaltase (SI) in cultured, human, fully differentiated, intestinal Caco-2 cells. We provide evidence that the RRV-induced defects in the expression and enzyme activity of SI are not related to the previously observed, RRV-induced, Ca2+ -dependent, disassembly of the F-actin cytoskeleton. This conclusion is based on the facts that: (i) the intracellular Ca2+ blocker, BAPTA/AM, which antagonizes the RRV-induced increase in [Ca2+](i), fails to inhibit the RRV-induced decrease in SI expression and enzyme activity; and (ii) Jasplakinolide (JAS) treatment, known to stabilize actin filaments, had no effect on the RRV-induced decrease in SI expression. Results reported here demonstrate that the RRV-induced impairment in the expression and enzyme activity of brush border-associated SI results from a hitherto unknown mechanism involving PKA signalling. This conclusion is based on the observations that (i) intracellular cAMP was increased in RRV-infected cells and (ii) treatment of RRV-infected cells with PKA blockers resulted in the reappearance of apical SI expression, accompanied by the restoration of the enzyme activity at the brush border. In addition, in RRV-infected cells a twofold increase of phosphorylated form of cytokeratin 18 was observed after immunopurification and Western Blot analysis, which was antagonized by exposing the RRV-infected cells to the PKA blockers.
Collapse
Affiliation(s)
- Sandra Martin-Latil
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Pathogènes et Fonctions des Cellules Epithéliales Polarisées, Faculté de Pharmacie, Université Paris XI, 92296 Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
39
|
Murray RZ, Jolly LA, Wood SA. The FAM deubiquitylating enzyme localizes to multiple points of protein trafficking in epithelia, where it associates with E-cadherin and beta-catenin. Mol Biol Cell 2004; 15:1591-9. [PMID: 14742711 PMCID: PMC379258 DOI: 10.1091/mbc.e03-08-0630] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 12/11/2003] [Accepted: 12/31/2003] [Indexed: 12/13/2022] Open
Abstract
Ubiquitylation is a necessary step in the endocytosis and lysosomal trafficking of many plasma membrane proteins and can also influence protein trafficking in the biosynthetic pathway. Although a molecular understanding of ubiquitylation in these processes is beginning to emerge, very little is known about the role deubiquitylation may play. Fat Facets in mouse (FAM) is substrate-specific deubiquitylating enzyme highly expressed in epithelia where it interacts with its substrate, beta-catenin. Here we show, in the polarized intestinal epithelial cell line T84, FAM localized to multiple points of protein trafficking. FAM interacted with beta-catenin and E-cadherin in T84 cells but only in subconfluent cultures. FAM extensively colocalized with beta-catenin in cytoplasmic puncta but not at sites of cell-cell contact as well as immunoprecipitating with beta-catenin and E-cadherin from a higher molecular weight complex ( approximately 500 kDa). At confluence FAM neither colocalized with, nor immunoprecipitated, beta-catenin or E-cadherin, which were predominantly in a larger molecular weight complex ( approximately 2 MDa) at the cell surface. Overexpression of FAM in MCF-7 epithelial cells resulted in increased beta-catenin levels, which localized to the plasma membrane. Expression of E-cadherin in L-cell fibroblasts resulted in the relocalization of FAM from the Golgi to cytoplasmic puncta. These data strongly suggest that FAM associates with E-cadherin and beta-catenin during trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Rachael Z Murray
- Child Health Research Institute, North Adelaide, SA 5006, Australia
| | | | | |
Collapse
|
40
|
Abstract
Pathologists have long recognized that tumour formation in epithelia leads to disruption of normal epithelial cell polarity. Despite this, few studies have taken advantage of new information on the biogenesis of cell polarity to analyse the process of epithelial oncogenesis. Recent studies of epithelial cell lines now indicate that the pattern of breakdown of polarity during oncogenesis may reflect the way in which normal epithelial cells achieve polarity. These results suggest not only a novel way to study the development of polarity in vitro, but also new ideas for the early detection of cancer.
Collapse
Affiliation(s)
- C A Schoenenberger
- Maurice Müller Institut, Am Biozentrum, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | |
Collapse
|
41
|
Yeaman C, Grindstaff KK, Nelson WJ. Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J Cell Sci 2004; 117:559-70. [PMID: 14709721 PMCID: PMC3368615 DOI: 10.1242/jcs.00893] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sec6/8 (exocyst) complex regulates vesicle delivery and polarized membrane growth in a variety of cells, but mechanisms regulating Sec6/8 localization are unknown. In epithelial cells, Sec6/8 complex is recruited to cell-cell contacts with a mixture of junctional proteins, but then sorts out to the apex of the lateral membrane with components of tight junction and nectin complexes. Sec6/8 complex fractionates in a high molecular mass complex with tight junction proteins and a portion of E-cadherin, and co-immunoprecipitates with cell surface-labeled E-cadherin and nectin-2alpha. Recruitment of Sec6/8 complex to cell-cell contacts can be achieved in fibroblasts when E-cadherin and nectin-2alpha are co-expressed. These results support a model in which localized recruitment of Sec6/8 complex to the plasma membrane by specific cell-cell adhesion complexes defines a site for vesicle delivery and polarized membrane growth during development of epithelial cell polarity.
Collapse
Affiliation(s)
- Charles Yeaman
- Department of Molecular and Cellular Physiology, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, Stanford, CA 94305-5345, USA.
| | | | | |
Collapse
|
42
|
Abstract
Transcytosis, the vesicular transport of macromolecules from one side of a cell to the other, is a strategy used by multicellular organisms to selectively move material between two environments without altering the unique compositions of those environments. In this review, we summarize our knowledge of the different cell types using transcytosis in vivo, the variety of cargo moved, and the diverse pathways for delivering that cargo. We evaluate in vitro models that are currently being used to study transcytosis. Caveolae-mediated transcytosis by endothelial cells that line the microvasculature and carry circulating plasma proteins to the interstitium is explained in more detail, as is clathrin-mediated transcytosis of IgA by epithelial cells of the digestive tract. The molecular basis of vesicle traffic is discussed, with emphasis on the gaps and uncertainties in our understanding of the molecules and mechanisms that regulate transcytosis. In our view there is still much to be learned about this fundamental process.
Collapse
Affiliation(s)
- Pamela L Tuma
- Hunterian 119, Department of Cell Biology, 725 N Wolfe St, Baltimore, MD 21205, USA
| | | |
Collapse
|
43
|
Slimane TA, Trugnan G, Van IJzendoorn SCD, Hoekstra D. Raft-mediated trafficking of apical resident proteins occurs in both direct and transcytotic pathways in polarized hepatic cells: role of distinct lipid microdomains. Mol Biol Cell 2003; 14:611-24. [PMID: 12589058 PMCID: PMC149996 DOI: 10.1091/mbc.e02-08-0528] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2002] [Revised: 10/04/2002] [Accepted: 10/25/2002] [Indexed: 11/11/2022] Open
Abstract
In polarized hepatic cells, pathways and molecular principles mediating the flow of resident apical bile canalicular proteins have not yet been resolved. Herein, we have investigated apical trafficking of a glycosylphosphatidylinositol-linked and two single transmembrane domain proteins on the one hand, and two polytopic proteins on the other in polarized HepG2 cells. We demonstrate that the former arrive at the bile canalicular membrane via the indirect transcytotic pathway, whereas the polytopic proteins reach the apical membrane directly, after Golgi exit. Most importantly, cholesterol-based lipid microdomains ("rafts") are operating in either pathway, and protein sorting into such domains occurs in the biosynthetic pathway, largely in the Golgi. Interestingly, rafts involved in the direct pathway are Lubrol WX insoluble but Triton X-100 soluble, whereas rafts in the indirect pathway are both Lubrol WX and Triton X-100 insoluble. Moreover, whereas cholesterol depletion alters raft-detergent insolubility in the indirect pathway without affecting apical sorting, protein missorting occurs in the direct pathway without affecting raft insolubility. The data implicate cholesterol as a traffic direction-determining parameter in the direct apical pathway. Furthermore, raft-cargo likely distinguishing single vs. multispanning membrane anchors, rather than rafts per se (co)determine the sorting pathway.
Collapse
Affiliation(s)
- Tounsia Aït Slimane
- Department of Membrane Cell Biology, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
44
|
Seth S, Vincent A, Compans RW. Mutations in the cytoplasmic domain of a paramyxovirus fusion glycoprotein rescue syncytium formation and eliminate the hemagglutinin-neuraminidase protein requirement for membrane fusion. J Virol 2003; 77:167-78. [PMID: 12477822 PMCID: PMC140627 DOI: 10.1128/jvi.77.1.167-178.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SER virus is closely related to the paramyxovirus simian virus 5 (SV5) but is defective in syncytium formation. The SER virus F protein has a long cytoplasmic tail (CT) domain that has been shown to inhibit membrane fusion, and this inhibitory effect could be eliminated by truncation of the C-terminal sequence (S. Tong, M. Li, A. Vincent, R. W. Compans, E. Fritsch, R. Beier, C. Klenk, M. Ohuchi, and H.-D. Klenk, Virology 301:322-333, 2002). To study the sequence requirements for regulation of fusion, codons for SER virus F protein residues spanning amino acids 535 to 542 and 548 were mutated singly to alanines, and the two leucine residues at positions 539 and 548 were mutated doubly to alanines. We found that leu-539 and leu-548 in the CT domain played a critical role in the inhibition of fusion, as mutation of the two leucines singly to alanines partially rescued fusion, and the double mutation L539, 548A completely rescued syncytium formation. Mutation of charged residues to alanines had little effect on the suppression of fusion activity, whereas the mutation of serine residues to alanines enhanced fusion activity significantly. The L539, 548A mutant also showed extensive syncytium formation when expressed without the SER virus HN protein. By constructing a chimeric SV5-SER virus F CT protein, we also found that the inhibitory effect of the long CT of the SER virus F protein could be partially transferred to the SV5 F protein. These results demonstrate that an elongated CT of a paramyxovirus F protein interferes with membrane fusion in a sequence-dependent manner.
Collapse
Affiliation(s)
- Shaguna Seth
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
45
|
Breuza L, Corby S, Arsanto JP, Delgrossi MH, Scheiffele P, Le Bivic A. The scaffolding domain of caveolin 2 is responsible for its Golgi localization in Caco-2 cells. J Cell Sci 2002; 115:4457-67. [PMID: 12414992 DOI: 10.1242/jcs.00130] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, we showed that in Caco-2 cells, a polarized cell line derived from human colon cancer that does not express caveolin 1 (Cav-1), there was no detectable expression of caveolin 2 (Cav-2). When Cav-2 was reintroduced in these cells, it accumulated in the Golgi complex. A chimera, in which the scaffolding domain of Cav-1 was replaced by the one from Cav-2, induced a prominent Golgi staining of Cav-1, strongly indicating that this domain was responsible for the accumulation of Cav-2 in the Golgi complex. Cav-2 was able to interact with Cav-1 in the Golgi complex but this interaction was not sufficient to export it from this compartment. Several chimeras between Cav-1 and 2 were used to show that surface expression of caveolin was necessary but not sufficient to promote caveolae formation. Interestingly, levels of incorporation of the chimeras into Triton insoluble rafts correlated with their ability to trigger caveolae formation raising the possibility that a critical concentration of caveolins to discrete domains of the plasma membrane might be necessary for caveolae formation.
Collapse
Affiliation(s)
- Lionel Breuza
- Laboratoire de Neurogenèse et Morphogenèse au cours du Développement et chez l'Adulte (NMDA), UMR 6156, Institut de Biologie du Développement de Marseille, Faculté des Sciences de Luminy, case 907, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | |
Collapse
|
46
|
Rösmann S, Hahn D, Lottaz D, Kruse MN, Stöcker W, Sterchi EE. Activation of human meprin-alpha in a cell culture model of colorectal cancer is triggered by the plasminogen-activating system. J Biol Chem 2002; 277:40650-8. [PMID: 12189145 DOI: 10.1074/jbc.m206203200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation of latent proenzymes is an important mechanism for the regulation of localized proteolytic activity. Human meprin-alpha, an astacin-like zinc metalloprotease expressed in normal colon epithelial cells, is secreted as a zymogen into the intestinal lumen. Here, meprin is activated after propeptide cleavage by trypsin. In contrast, colorectal cancer cells secrete meprin-alpha in a non-polarized way, leading to accumulation and increased activity of meprin-alpha in the tumor stroma. We have analyzed the activation mechanism of promeprin-alpha in colorectal cancer using a co-culture model of the intestinal mucosa composed of colorectal adenocarcinoma cells (Caco-2) cultivated on filter supports and intestinal fibroblasts grown in the companion dish. We provide evidence that meprin-alpha is activated by plasmin and show that the presence of plasminogen in the basolateral compartment of the co-cultures is sufficient for promeprin-alpha activation. Analysis of the plasminogen-activating system in the co-cultures revealed that plasminogen activators produced and secreted by fibroblasts converted plasminogen to active plasmin, which in turn generated active meprin-alpha. This activation mechanism offers an explanation for the observed meprin-alpha activity in the tumor stroma, a prerequisite for a potential role of this protease in colorectal cancer.
Collapse
Affiliation(s)
- Sandra Rösmann
- Institute of Biochemistry and Molecular Biology, Department of Pediatrics, University of Berne, Bühlstrasse 28, CH-3012 Berne, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
Tong S, Li M, Vincent A, Compans RW, Fritsch E, Beier R, Klenk C, Ohuchi M, Klenk HD. Regulation of fusion activity by the cytoplasmic domain of a paramyxovirus F protein. Virology 2002; 301:322-333. [PMID: 12359434 DOI: 10.1006/viro.2002.1594] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SER virus is a member of the family Paramyxoviridae, genus Rubulavirus, which has been isolated from pigs. It is very closely related to SV5 virus serologically, in protein profile, and in nucleotide sequence. However, unlike SV5, SER induces minimal syncytium formation in infected CV-1 or BHK cells. Fluorescence transfer experiments between labeled erythrocytes and infected MDBK cells revealed that SER also induces hemifusion and pore formation with reduced efficiency. The virion polypeptide profiles of SER and SV5 are very similar, except that the SER F1 subunit shows an apparent molecular weight that is about 2 kDa higher than that of SV5. Comparison of the deduced amino acid sequences revealed the SER F (551 aa) to be longer than SV5 F (529 aa) by 22 residues in the cytoplasmic tail (CT) domain. The HN and M gene sequences of the viruses were found to be very similar. The SER F showed minimal fusion activity when coexpressed with either SV5 or SER HN. In contrast, SV5 F was highly fusogenic when coexpressed with either HN protein, indicating that the restricted fusion capacity of SER virus is a property of its F protein. Truncation in the CT of SER F by 22 residues completely rescued its ability to cause syncytium formation, whereas other truncations rescued syncytium formation partially. These results demonstrate that an elongated CT of a paramyxovirus F protein suppresses its membrane fusion activity.
Collapse
Affiliation(s)
- S Tong
- Department of Microbiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Blau DM, Holmes KV. Human coronavirus HCoV-229E enters susceptible cells via the endocytic pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:193-8. [PMID: 11774468 DOI: 10.1007/978-1-4615-1325-4_31] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- D M Blau
- University of Colorado Health Sciences Center, Department of Microbiology, 4200 E 9th Avenue, Denver, CO 80262, USA
| | | |
Collapse
|
49
|
Veldman RJ, Klappe K, Hinrichs J, Hummel I, van der Schaaf G, Sietsma H, Kok JW. Altered sphingolipid metabolism in multidrug-resistant ovarian cancer cells is due to uncoupling of glycolipid biosynthesis in the Golgi apparatus. FASEB J 2002; 16:1111-3. [PMID: 12039850 DOI: 10.1096/fj.01-0863fje] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Multidrug-resistant tumor cells display enhanced levels of glucosylceramide. In this study, we investigated how this relates to the overall sphingolipid composition of multidrug-resistant ovarian carcinoma cells and which mechanisms are responsible for adapted sphingolipid metabolism. We found in multidrug-resistant cells substantially lower levels of lactosylceramide and gangliosides in sharp contrast to glucosylceramide, galactosylceramide, and sphingomyelin levels. This indicates a block in the glycolipid biosynthetic pathway at the level of lactosylceramide formation, with concomitant accumulation of glucosylceramide. A series of observations exclude regulation at the enzyme level as the underlying mechanism. First, reduced lactosylceramide formation occurred only in intact resistant cells whereas cell-free activity of lactosylceramide synthase was higher compared with the parental cells. Second, the level of lactosylceramide synthase gene expression was equal in both phenotypes. Third, glucosylceramide synthase (mRNA and protein) expression and activity were equal or lower in resistant cells. Based on the kinetics of sphingolipid metabolism, the observation that brefeldin A does not restore lactosylceramide synthesis, and altered localization of lactosylceramide synthase fused to green fluorescent protein, we conclude that lactosylceramide biosynthesis is highly uncoupled from glucosylceramide biosynthesis in the Golgi apparatus of resistant cells.
Collapse
Affiliation(s)
- Robert Jan Veldman
- Groningen University Institute for Drug Exploration, Department of Membrane Cell Biology, University of Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
50
|
Lipardi C, Ruggiano G, Perrone L, Paladino S, Monlauzeur L, Nitsch L, Le Bivic A, Zurzolo C. Differential recognition of a tyrosine-dependent signal in the basolateral and endocytic pathways of thyroid epithelial cells. Endocrinology 2002; 143:1291-301. [PMID: 11897685 DOI: 10.1210/endo.143.4.8734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Trafficking of receptors is of crucial importance for the physiology of most exocrine and endocrine organs. It is not known yet if the same mechanisms are used for sorting in the exocytic and endocytic pathways in the different epithelial tissues. In this work, we have used a deletion mutant of the human neurotrophin receptor p75(hNTR) that is normally localized on the apical membrane when expressed in Madin-Darby canine kidney cells. This internal 57-amino acid deletion of the cytoplasmic tail leads to a relocation of the protein from the apical to the basolateral membrane and to rapid and efficient endocytosis. These events are mediated by a signal localized within 9 amino acids of the mutated cytoplasmic tail that is strictly dependent on a tyrosine residue (Tyr-308). We have analyzed the basolateral sorting efficiency and endocytic capacity of this signal in Fischer rat thyroid (FRT) cells, in which basolateral and endocytic determinants have not yet been identified. We found that this targeting signal can mediate efficient transport to the basolateral membrane also in FRT cells with similar tyrosine dependence as in MDCK cells. In contrast to MDCK cells, this Tyr-based signal was not able to mediate coated pits localization and endocytosis in FRT cells. These data represent the first characterization of basolateral/endocytic signals in thyroid epithelial cells. Furthermore, our results indicate that requirements for tyrosine-dependent basolateral sorting signals are conserved among cell lines from different tissues but that the recognition of the colinear endocytic signal is tissue specific.
Collapse
Affiliation(s)
- Concetta Lipardi
- Centro di Endocrinologia ed Oncologia Sperimentale del Centro Nazionale delle Ricerche-Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|