1
|
Lin F, Yao X, Zhang S, Yang H. CircRNA-NOLC1 mediates Insulin-like growth factor 1 receptor via performing as a ceRNA of miRNA-140-5p to facilitate testicular germ cell tumor advancement. Clinics (Sao Paulo) 2025; 80:100629. [PMID: 40367575 DOI: 10.1016/j.clinsp.2025.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/18/2025] [Indexed: 05/16/2025] Open
Abstract
OBJECTIVE The study explored the molecular mechanism of circNOLC1 influencing Testicular Germ Cell Tumor (TGCT) progression. METHODS The study used TGCT tissue samples and cell lines for investigations. The circNOLC1 and miR-140-5p expression in TGCT tissues were done through RT-qPCR. Analysis of the association of circNOLC1 with TGCT clinic-pathological features was also done. Transfections of circNOLC1, miR-140-5p or Insulin-like GrowthFfactor 1 Receptor (IGF1R)-related sequences or plasmids into TCAM-2 and NCCIT TGCT cells were done. The circNOLC1, miR-140-5p, and IGF1R mRNA expression in cells were done through RT-qPCR. Interaction between miR-140-5p, circNOLC1, and IGF1R was examined using a dual-luciferase reporter assay. MTT assay and colony-forming assay were used to investigate cell proliferation. Apoptosis was determined by flow cytometry. Transwell assay was used to investigate cell invasion. IGF1R protein expression was determined through a western blot. RESULTS Increased circNOLC1 in TGCT tissues was correlated with lymph node metastasis, clinical stage, and pathological grade of TGCT patients. CircNOLC1 knock-down inhibited TGCT cell proliferation, colony formation, and invasion, and promotedapoptosis. MiR-140-5p was reduced while IGF1R was upregulated in TGCT tissues and cell lines. Moreover, miR-140-5p mimic could reverse the effect of circNOLC1 knock-down on malignant behaviors of TGCT cells. The authors demonstrated that elevated IGF1R reversed the negative effect of miR-140-5p mimic on TGCT cell proliferation, colony formation, and invasion. CircNOLC1 can act as a sponge of miR-140-5p to up-regulate the IGF1R expression level. CONCLUSION The study highlights that circNOLC1 promotes the progression of TGCT by regulating the miR-140-5p/IGF1R axis.
Collapse
MESH Headings
- Humans
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Testicular Neoplasms/pathology
- Testicular Neoplasms/genetics
- Testicular Neoplasms/metabolism
- Neoplasms, Germ Cell and Embryonal/pathology
- Neoplasms, Germ Cell and Embryonal/genetics
- Neoplasms, Germ Cell and Embryonal/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Cell Proliferation/genetics
- Cell Line, Tumor
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Gene Expression Regulation, Neoplastic/genetics
- Adult
- Apoptosis/genetics
- Disease Progression
- Real-Time Polymerase Chain Reaction
- Insulin-Like Peptides
- RNA, Competitive Endogenous
Collapse
Affiliation(s)
- Feng Lin
- Department of Urology, Hangzhou Children's Hospital, Hangzhou City, Zhejiang Province, PR China
| | - Xianming Yao
- Department of Urology, Hangzhou Children's Hospital, Hangzhou City, Zhejiang Province, PR China
| | - ShuoShuo Zhang
- Department of Urology, Heji Hospital of Changzhi Medical College, Changzhi City, Shanxi Province, PR China
| | - Huajun Yang
- Department of Urology, Hangzhou Children's Hospital, Hangzhou City, Zhejiang Province, PR China.
| |
Collapse
|
2
|
Tucker SK, McLaurin DM, Hebert MD. Cajal body formation is regulated by coilin SUMOylation. J Cell Sci 2024; 137:jcs263447. [PMID: 39660502 PMCID: PMC11827600 DOI: 10.1242/jcs.263447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Cajal bodies (CBs) are membraneless organelles whose mechanism of formation is still not fully understood. Many proteins contribute to the formation of CBs, including Nopp140 (NOLC1), WRAP53 and coilin. Coilin is modified on multiple different lysine residues by SUMO, the small ubiquitin-like modifier. In addition to its accumulation in CBs, coilin is also found in the nucleoplasm, where its role is still being evaluated. Here, we demonstrate a novel mechanism of CB regulation by examining the interaction changes of coilin when its SUMOylation is disrupted. The impact of global SUMOylation inhibition and targeted disruption of coilin SUMOylation on CB formation was examined. We found that two types of global SUMOylation inhibition and expression of SUMO-deficient coilin mutants increased CB number but decreased CB size. Additionally, we saw via coimmunoprecipitation that a SUMO-deficient coilin mutant has altered interaction with Nopp140. This demonstrates increased mechanistic ties between CB formation and SUMOylation.
Collapse
Affiliation(s)
- Sara K. Tucker
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Douglas M. McLaurin
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D. Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
3
|
Zhang M, Zeng Y, Wang F, Feng H, Liu Q, Li F, Zhao S, Zhao J, Liu Z, Zheng F, Liu H. Effects of the Nonstructural Protein-Nucleolar and Coiled-Body Phosphoprotein 1 Protein Interaction on rRNA Synthesis Through Telomeric Repeat-Binding Factor 2 Regulation Under Nucleolar Stress. AIDS Res Hum Retroviruses 2024; 40:408-416. [PMID: 38062753 DOI: 10.1089/aid.2023.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
To investigate the effects and underlying molecular mechanisms of the interaction between the non-structural protein 1 (NS1) and nucleolar and coiled-body phosphoprotein 1 (NOLC1) on rRNA synthesis through nucleolar telomeric repeat-binding factor 2 (TRF2) under nucleolar stress in avian influenza A virus infection. The analysis of TRF2 ties into the exploration of ribosomal protein L11 (RPL11) and mouse double minute 2 (MDM2) because TRF2 has been found to interact with NOLC1, and the RPL11-MDM2 pathway plays an important role in nucleolar regulation and cellular processes. Both human embryonic kidney 293T cells and human lung adenocarcinoma A549 cells were transfected with the plasmids pCAGGS-HA and pCAGGS-HA-NS1, respectively. In addition, A549 cells were transfected with the plasmids pEGFP-N1, pEGFP-N1-NS1, and pDsRed2-N1-TRF2. The cell cycle was detected by flow cytometry, and coimmunoprecipitation was applied to examine the interactions between different proteins. The effect of NS1 on TRF2 was detected by immunoprecipitation, and the colocalization of NOLC1 and TRF2 or NS1 and TRF2 was visualized by immunofluorescence. Quantitative real-time PCR was conducted to detect the expression of the TRF2 and p21. There is a strong interaction between NOLC1 and TRF2, and the colocalization of NOLC1 and TRF2 in the nucleus. The protein expression of NOLC1 in A549-HA-NS1 cells was lower than that in A549-HA cells, which was accompanied by the upregulated protein expression of p53 in A549-HA-NS1 cells (all p < .05). TRF2 was scattered throughout the nucleus without clear nucleolar aggregation. RPL11 specifically interacted with MDM2 in the NS1 group, and expression of the p21 gene was significantly increased in the HA-NS1 group compared with the HA group (p < .01). NS1 protein can lead to the reduced aggregation of TRF2 in the nucleolus, inhibition of rRNA expression, and cell cycle blockade by interfering with the NOLC1 protein and generating nucleolar stress.
Collapse
Affiliation(s)
- Man Zhang
- School of Life Science, Liaoning University, Shenyang, China
| | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, China
| | - Fengchao Wang
- School of Life Science, Liaoning University, Shenyang, China
| | - Huawei Feng
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, China
- School of Pharmacy, Liaoning University, Shenyang, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, China
| | - Qingqing Liu
- School of Life Science, Liaoning University, Shenyang, China
| | - Feng Li
- School of Life Science, Liaoning University, Shenyang, China
| | - Shan Zhao
- School of Life Science, Liaoning University, Shenyang, China
| | - Jian Zhao
- School of Life Science, Liaoning University, Shenyang, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, China
- School of Pharmacy, Liaoning University, Shenyang, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, China
| | - Zhikui Liu
- Liaoning Huikang Testing and Evaluation Technology Co., Shenyang, China
| | - Fangliang Zheng
- School of Life Science, Liaoning University, Shenyang, China
| | - Hongsheng Liu
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, China
- School of Pharmacy, Liaoning University, Shenyang, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, China
| |
Collapse
|
4
|
Zhai F, Wang J, Luo X, Ye M, Jin X. Roles of NOLC1 in cancers and viral infection. J Cancer Res Clin Oncol 2023; 149:10593-10608. [PMID: 37296317 DOI: 10.1007/s00432-023-04934-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The nucleolus is considered the center of metabolic control and an important organelle for the biogenesis of ribosomal RNA (rRNA). Nucleolar and coiled-body phosphoprotein 1(NOLC1), which was originally identified as a nuclear localization signal-binding protein is a nucleolar protein responsible for nucleolus construction and rRNA synthesis, as well as chaperone shuttling between the nucleolus and cytoplasm. NOLC1 plays an important role in a variety of cellular life activities, including ribosome biosynthesis, DNA replication, transcription regulation, RNA processing, cell cycle regulation, apoptosis, and cell regeneration. PURPOSE In this review, we introduce the structure and function of NOLC1. Then we elaborate its upstream post-translational modification and downstream regulation. Meanwhile, we describe its role in cancer development and viral infection which provide a direction for future clinical applications. METHODS The relevant literatures from PubMed have been reviewed for this article. CONCLUSION NOLC1 plays an important role in the progression of multiple cancers and viral infection. In-depth study of NOLC1 provides a new perspective for accurate diagnosis of patients and selection of therapeutic targets.
Collapse
Affiliation(s)
- Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China
| | - Xia Luo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
5
|
Radhakrishnan S, Martin CA, Rammohan A, Vij M, Chandrasekar M, Rela M. Significance of nucleologenesis, ribogenesis, and nucleolar proteome in the pathogenesis and recurrence of hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2023; 17:363-378. [PMID: 36919496 DOI: 10.1080/17474124.2023.2191189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/11/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Emerging evidence suggests that enhanced ribosome biogenesis, increased size, and quantitative distribution of nucleoli are associated with dysregulated transcription, which in turn drives a cell into aberrant cellular proliferation and malignancy. Nucleolar alterations have been considered a prognostic histological marker for aggressive tumors. More recently, advancements in the understanding of chromatin network (nucleoplasm viscosity) regulated liquid-liquid phase separation mechanism of nucleolus formation and their multifunctional role shed light on other regulatory processes, apart from ribosomal biogenesis of the nucleolus. AREAS COVERED Using hepatocellular carcinoma as a model to study the role of nucleoli in tumor progression, we review the potential of nucleolus coalescence in the onset and development of tumors through non-ribosomal biogenesis pathways, thereby providing new avenues for early diagnosis and cancer therapy. EXPERT OPINION Molecular-based classifications have failed to identify the nucleolar-based molecular targets that facilitate cell-cycle progression. However, the algorithm-based tumor risk identification with high-resolution medical images suggests prominent nucleoli, karyotheca, and increased nucleus/cytoplasm ratio as largely associated with tumor recurrence. Nonetheless, the role of the non-ribosomal functions of nucleoli in tumorigenesis remains elusive. This clearly indicates the lacunae in the study of the nucleolar proteins pertaining to cancer. [Figure: see text].
Collapse
Affiliation(s)
| | | | - Ashwin Rammohan
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mukul Vij
- Department of Pathology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mani Chandrasekar
- Department of Oncology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mohamed Rela
- Cell Laboratory, National Foundation for Liver Research, Chennai, India
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| |
Collapse
|
6
|
Kim W, Yeo DY, Choi SK, Kim HY, Lee SW, Ashim J, Han JE, Yu W, Jeong H, Park JK, Park S. NOLC1 knockdown suppresses prostate cancer progressions by reducing AKT phosphorylation and β-catenin accumulation. Biochem Biophys Res Commun 2022; 635:99-107. [DOI: 10.1016/j.bbrc.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
|
7
|
Garus A, Autexier C. Dyskerin: an essential pseudouridine synthase with multifaceted roles in ribosome biogenesis, splicing, and telomere maintenance. RNA (NEW YORK, N.Y.) 2021; 27:1441-1458. [PMID: 34556550 PMCID: PMC8594475 DOI: 10.1261/rna.078953.121] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dyskerin and its homologs are ancient and conserved enzymes that catalyze the most common post-transcriptional modification found in cells, pseudouridylation. The resulting pseudouridines provide stability to RNA molecules and regulate ribosome biogenesis and splicing events. Dyskerin does not act independently-it is the core component of a protein heterotetramer, which associates with RNAs that contain the H/ACA motif. The variety of H/ACA RNAs that guide the function of this ribonucleoprotein (RNP) complex highlights the diversity of cellular processes in which dyskerin participates. When associated with small nucleolar (sno) RNAs, it regulates ribosomal (r) RNAs and ribosome biogenesis. By interacting with small Cajal body (sca) RNAs, it targets small nuclear (sn) RNAs to regulate pre-mRNA splicing. As a component of the telomerase holoenzyme, dyskerin binds to the telomerase RNA to modulate telomere maintenance. In a disease context, dyskerin malfunction can result in multiple detrimental phenotypes. Mutations in DKC1, the gene that encodes dyskerin, cause the premature aging syndrome X-linked dyskeratosis congenita (X-DC), a still incurable disorder that typically leads to bone marrow failure. In this review, we present the classical and most recent findings on this essential protein, discussing the evolutionary, structural, and functional aspects of dyskerin and the H/ACA RNP. The latest research underscores the role that dyskerin plays in the regulation of gene expression, translation efficiency, and telomere maintenance, along with the impacts that defective dyskerin has on aging, cell proliferation, haematopoietic potential, and cancer.
Collapse
Affiliation(s)
- Alexandre Garus
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| |
Collapse
|
8
|
Ruhs S, Griesler B, Huebschmann R, Stroedecke K, Straetz N, Ihling C, Sinz A, Masch A, Schutkowski M, Gekle M, Grossmann C. Modulation of transcriptional mineralocorticoid receptor activity by casein kinase 1. FASEB J 2021; 36:e22059. [PMID: 34847273 DOI: 10.1096/fj.202100977rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/16/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
The mineralocorticoid receptor (MR) with its ligand aldosterone (aldo) physiologically regulates electrolyte homeostasis and blood pressure but it can also lead to pathophysiological effects in the cardiovascular system. Previous results show that posttranslational modifications (PTM) can influence MR signaling and function. Based on in silico and in vitro data, casein kinase 1 (CK1) was predicted as a candidate for MR phosphorylation. To gain a deeper mechanistic insight into MR activation, we investigated the influence of CK1 on MR function in HEK cells. Co-immunoprecipitation experiments indicated that the MR is located in a protein-protein complex with CK1α and CK1ε. Reporter gene assays with pharmacological inhibitors and MR constructs demonstrated that especially CK1ε acts as a positive modulator of GRE activity via the C-terminal MR domains CDEF. CK1 enhanced the binding affinity of aldosterone to the MR, facilitated nuclear translocation and DNA interaction of the MR, and led to expression changes of pathophysiologically relevant genes like Per-1 and Phlda1. By peptide microarray and site-directed mutagenesis experiments, we identified the highly conserved T800 as a direct CK1 phosphorylation site of the MR, which modulates the nuclear import and genomic activity of the receptor. Direct phosphorylation of the MR was unable to fully account for all of the CK1 effects on MR signaling, suggesting additional phosphorylation of MR co-regulators. By LC/MS/MS, we identified the MR-associated proteins NOLC1 and TCOF1 as candidates for such CK1-regulated co-factors. Overall, we found that CK1 acts as a co-activator of MR GRE activity through direct and indirect phosphorylation, which accelerates cytosolic-nuclear trafficking, facilitates nuclear accumulation and DNA binding of the MR, and increases the expression of pathologically relevant MR-target genes.
Collapse
Affiliation(s)
- Stefanie Ruhs
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Department of Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Bruno Griesler
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralf Huebschmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Katharina Stroedecke
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nicole Straetz
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics, Center for Structural Mass Spectrometry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Center for Structural Mass Spectrometry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Antonia Masch
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Gekle
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
9
|
Bizarro J, Deryusheva S, Wacheul L, Gupta V, Ernst FGM, Lafontaine DLJ, Gall JG, Meier UT. Nopp140-chaperoned 2'-O-methylation of small nuclear RNAs in Cajal bodies ensures splicing fidelity. Genes Dev 2021; 35:1123-1141. [PMID: 34301768 PMCID: PMC8336889 DOI: 10.1101/gad.348660.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022]
Abstract
In this study, Bizarro et al. sought to understand the function and subcellular site of snRNA modification, and found that Cajal body (CB) localization of the protein Nopp140 is essential for concentration of small Cajal body-specific ribonucleoproteins (scaRNPs) in nuclear condensate and that phosphorylation by casein kinase 2 (CK2) at ∼80 serines targets Nopp140 to CBs. Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2′-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Spliceosomal small nuclear RNAs (snRNAs) are modified by small Cajal body (CB)-specific ribonucleoproteins (scaRNPs) to ensure snRNP biogenesis and pre-mRNA splicing. However, the function and subcellular site of snRNA modification are largely unknown. We show that CB localization of the protein Nopp140 is essential for concentration of scaRNPs in that nuclear condensate; and that phosphorylation by casein kinase 2 (CK2) at ∼80 serines targets Nopp140 to CBs. Transiting through CBs, snRNAs are apparently modified by scaRNPs. Indeed, Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2′-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Additionally, alternative splicing patterns change indicating that these modifications in U1, U2, U5, and U12 snRNAs safeguard splicing fidelity. Given the importance of CK2 in this pathway, compromised splicing could underlie the mode of action of small molecule CK2 inhibitors currently considered for therapy in cholangiocarcinoma, hematological malignancies, and COVID-19.
Collapse
Affiliation(s)
| | | | - Ludivine Wacheul
- RNA Molecular Biology, Fonds National de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Varun Gupta
- Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Felix G M Ernst
- RNA Molecular Biology, Fonds National de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds National de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Joseph G Gall
- Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - U Thomas Meier
- Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
10
|
Bizarro J, Deryusheva S, Wacheul L, Gupta V, Ernst FGM, Lafontaine DLJ, Gall JG, Meier UT. Nopp140-chaperoned 2'-O-methylation of small nuclear RNAs in Cajal bodies ensures splicing fidelity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.29.441821. [PMID: 33948588 PMCID: PMC8095195 DOI: 10.1101/2021.04.29.441821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spliceosomal small nuclear RNAs (snRNAs) are modified by small Cajal body (CB) specific ribonucleoproteins (scaRNPs) to ensure snRNP biogenesis and pre-mRNA splicing. However, the function and subcellular site of snRNA modification are largely unknown. We show that CB localization of the protein Nopp140 is essential for concentration of scaRNPs in that nuclear condensate; and that phosphorylation by casein kinase 2 (CK2) at some 80 serines targets Nopp140 to CBs. Transiting through CBs, snRNAs are apparently modified by scaRNPs. Indeed, Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2'-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Additionally, alternative splicing patterns change indicating that these modifications in U1, U2, U5, and U12 snRNAs safeguard splicing fidelity. Given the importance of CK2 in this pathway, compromised splicing could underlie the mode of action of small molecule CK2 inhibitors currently considered for therapy in cholangiocarcinoma, hematological malignancies, and COVID-19.
Collapse
|
11
|
Chen W, Cen S, Zhou X, Yang T, Wu K, Zou L, Luo J, Li C, Lv D, Mao X. Circular RNA CircNOLC1, Upregulated by NF-KappaB, Promotes the Progression of Prostate Cancer via miR-647/PAQR4 Axis. Front Cell Dev Biol 2021; 8:624764. [PMID: 33490086 PMCID: PMC7820754 DOI: 10.3389/fcell.2020.624764] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background CircRNAs recently have shown critical roles in tumor biology. However, their roles in prostate cancer (PCa) remains largely unclear. Methods CircRNA microarrays were performed in immortal prostate cell line RWPE1 and PCa cell lines as DU145, PC3, LNCaP, C4-2, and 22RV1. Combined with upregulated circRNAs in PCa tissues, circNOLC1 expression was validated in PCa cells and tissues via qRT-PCR and FISH. Sanger sequencing, actinomycin D, gDNA, and cDNA, RNase R assays were used to assess the circular characteristics of circNOLC1. CCK-8, colony formation, transwell migration assays, and mice xenograft models were conducted to evaluate the functions of PCa cells after circNOLC1 knockdown and overexpression. RNA pulldown, luciferase reporter assay, FISH (fluorescence in situ hybridization), and CHIP were utilized to illustrate the further mechanisms of circNOLC1. Results Our research indicated that circNOLC1 was overexpressed in PCa cells and tissues, and circNOLC1 was more stable than linear NOLC1 mRNA. CircNOLC1 promoted PCa cells proliferation and migration in vitro and vivo. Additionally, we found that circNOLC1 could upregulate PAQR4 expression by sponging miR-647, leading to the activation of PI3K/Akt pathway. Moreover, NF-kappaB was identified to bind to the NOLC1 promoter sites and upregulated both NOLC1 and circNOLC1 expression. Conclusion CircNOLC1, elevated by transcription factor NF-kappaB, promotes PCa progression via a miR-647/PAQR4 axis, and circNOLC1 is a potential biomarker and target for PCa treatment.
Collapse
Affiliation(s)
- Wenbin Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shengren Cen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xumin Zhou
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Taowei Yang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kaihui Wu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Libin Zou
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junqi Luo
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanyin Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Daojun Lv
- Guangdong Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, Valdeolivas A, Patil T, Li Q, Hüttenhain R, Cakir M, Muralidharan M, Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP, Gaulton A, Manners EJ, Félix E, Shi Y, Goff M, Lim JK, McBride T, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, De Wit E, Leach AR, Kortemme T, Shoichet B, Ott M, Saez-Rodriguez J, tenOever BR, Mullins RD, Fischer ER, Kochs G, Grosse R, García-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, Krogan NJ. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020; 182:685-712.e19. [PMID: 32645325 PMCID: PMC7321036 DOI: 10.1016/j.cell.2020.06.034] [Citation(s) in RCA: 775] [Impact Index Per Article: 155.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Miguel Correa Marrero
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erica Stevenson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ajda Rojc
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Alexandra Hardy
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Rémy Robinot
- Virus & Immunity Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France; Vaccine Research Institute, 94000 Creteil, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alistair Dunham
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sebastian Weigang
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany
| | - Julian Knerr
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diego Quintero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Trupti Patil
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophia Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Gaulton
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma J Manners
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Eloy Félix
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Marisa Goff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | - Emmie De Wit
- NIH/NIAID/Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Andrew R Leach
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - R Dyche Mullins
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | | | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg 79104, Germany.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | - Jeffery R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute.
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
13
|
Kwon OK, Ha YS, Na AY, Chun SY, Kwon TG, Lee JN, Lee S. Identification of Novel Prognosis and Prediction Markers in Advanced Prostate Cancer Tissues Based on Quantitative Proteomics. Cancer Genomics Proteomics 2020; 17:195-208. [PMID: 32108042 PMCID: PMC7078833 DOI: 10.21873/cgp.20180] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/07/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIM Prostate cancer (PCa) is the most frequent cancer found in males worldwide, and its mortality rate is increasing every year. However, there are no known molecular markers for advanced or aggressive PCa, and there is an urgent clinical need for biomarkers that can be used for prognosis and prediction of PCa. MATERIALS AND METHODS Mass spectrometry-based proteomics was used to identify new biomarkers in tissues obtained from patients with PCa who were diagnosed with T2, T3, or metastatic PCa in regional lymph nodes. RESULTS Among 1,904 proteins identified in the prostate tissues, 344 differentially expressed proteins were defined, of which 124 were up-regulated and 216 were down-regulated. Subsequently, based on the results of partial least squares discriminant analysis and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, we proposed that spermidine synthase (SRM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and prostacyclin synthase (PTGIS) represent new protein biomarkers for diagnosis of advanced PCa. These proteomics results were verified by immunoblot assays in metastatic PCa cell lines and by indirect enzyme-linked immunosorbent assay in prostate specimens. CONCLUSION SRM was significantly increased depending on the cancer stage, confirming the possibility of using SRM as a biomarker for prognosis and prediction of advanced PCa.
Collapse
Affiliation(s)
- Oh Kwang Kwon
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ann-Yae Na
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - So Young Chun
- Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
14
|
The Nopp140 gene in Drosophila melanogaster displays length polymorphisms in its large repetitive second exon. Mol Genet Genomics 2019; 294:1073-1083. [PMID: 31006039 DOI: 10.1007/s00438-019-01568-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
Abstract
Nopp140, often called the nucleolar and Cajal body phosphoprotein (NOLC1), is an evolutionarily conserved chaperone for the transcription and processing of rRNA during ribosome subunit assembly. Metazoan Nopp140 contains an amino terminal LisH dimerization domain and a highly conserved carboxyl domain. A large central domain consists of alternating basic and acidic motifs of low sequence complexity. Orthologous versions of Nopp140 contain variable numbers of repeating basic-acidic units. While vertebrate Nopp140 genes use multiple exons to encode the central domain, the Nopp140 gene in Drosophila uses exclusively exon 2 to encode the central domain. Here, we define three overlapping repeat sequence patterns (P, P', and P″) within the central domain of D. melanogaster Nopp140. These repeat patterns are poorly conserved in other Drosophila species. We also describe a length polymorphism in exon 2 that pertains specifically to the P' pattern in D. melanogaster. The pattern displays either two or three 96 base pair repeats, respectively, referred to as Nopp140-Short and Nopp140-Long. Fly lines homozygous for one or the other allele, or heterozygous for both alleles, show no discernible phenotypes. PCR characterization of the long and short alleles shows a poorly defined, artifactual bias toward amplifying the long allele over the short allele. The significance of this polymorphism will be in discerning the largely unknown properties of Nopp140's large central domain in rDNA transcription and ribosome biogenesis.
Collapse
|
15
|
Huang H, Li T, Chen M, Liu F, Wu H, Wang J, Chen J, Li X. Identification and validation of NOLC1 as a potential target for enhancing sensitivity in multidrug resistant non-small cell lung cancer cells. Cell Mol Biol Lett 2018; 23:54. [PMID: 30505321 PMCID: PMC6258490 DOI: 10.1186/s11658-018-0119-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023] Open
Abstract
Adjuvant chemotherapy has become the frequently adopted standard therapeutic approach for non-small cell lung cancer (NSCLC). However, the development of multidrug resistance (MDR) is a major obstacle contributing to the failure of chemotherapy. This study aimed to identify genes associated with MDR development that predict tumor response to chemotherapy in NSCLC. In the present study, a multidrug-resistant NSCLC cell sub-line, A549/MDR, was established from the A549/DDP cell line and characterized. The resistance index (RI) of this subline was calculated according to the IC50 of A549/MDR relative to the parental A549/DDP cells. The gene expression profiles of A549/DDP and A549/MDR were obtained using an oligonucleotide microarray (Agilent SureHyb microarray chip). The microarray results were validated by qRT-PCR and selected genes were analyzed by in vitro loss-of-function experiments. Gene expression profiling identified 921 differentially expressed genes (DEGs) according to the selection criteria, in which 541 genes were upregulated and 380 genes were downregulated in A549/MDR compared with A549/DDP cells. We found that these DEGs are involved in diverse biological processes, including ribonucleoprotein complex, drug metabolism, the Hippo signaling pathway and transcriptional misregulation. NOLC1, as one of the identified DEGs, was confirmed to be overexpressed in A549/MDR cells and its knockdown significantly enhanced the drug sensitivity of A549/MDR cells in response to multidrug treatment. Furthermore, knockdown of NOLC1 downregulated the expression levels of drug resistance-associated molecules (LRP and MDR1) in A549/MDR cells. These findings provide a new and comprehensive expression profile of MDR in NSCLC cells. Identification and validation of NOLC1 might be a promising therapeutic strategy for the management of MDR of NSCLC patients.
Collapse
Affiliation(s)
- Huaping Huang
- 1Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102 Hainan China
| | - Tangying Li
- 2Healthcare Department, Hainan General Hospital, Haikou, 570311 Hainan China
| | - Mingjing Chen
- 3Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102 Hainan China
| | - Feng Liu
- 1Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102 Hainan China
| | - Haifeng Wu
- 1Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102 Hainan China
| | - Jie Wang
- 1Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102 Hainan China
| | - Jialiang Chen
- 1Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102 Hainan China
| | - Xi Li
- 1Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102 Hainan China
| |
Collapse
|
16
|
Yuan F, Xu C, Li G, Tong T. Nucleolar TRF2 attenuated nucleolus stress-induced HCC cell-cycle arrest by altering rRNA synthesis. Cell Death Dis 2018; 9:518. [PMID: 29725012 PMCID: PMC5938709 DOI: 10.1038/s41419-018-0572-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 01/14/2023]
Abstract
The nucleolus is an important organelle that is responsible for the biogenesis of ribosome RNA (rRNA) and ribosomal subunits assembly. It is also deemed to be the center of metabolic control, considering the critical role of ribosomes in protein translation. Perturbations of rRNA synthesis are closely related to cell proliferation and tumor progression. Telomeric repeat-binding factor 2 (TRF2) is a member of shelterin complex that is responsible for telomere DNA protection. Interestingly, it was recently reported to localize in the nucleolus of human cells in a cell-cycle-dependent manner, while the underlying mechanism and its role on the nucleolus remained unclear. In this study, we found that nucleolar and coiled-body phosphoprotein 1 (NOLC1), a nucleolar protein that is responsible for the nucleolus construction and rRNA synthesis, interacted with TRF2 and mediated the shuttle of TRF2 between the nucleolus and nucleus. Abating the expression of NOLC1 decreased the nucleolar-resident TRF2. Besides, the nucleolar TRF2 could bind rDNA and promoted rRNA transcription. Furthermore, in hepatocellular carcinoma (HCC) cell lines HepG2 and SMMC7721, TRF2 overexpression participated in the nucleolus stress-induced rRNA inhibition and cell-cycle arrest.
Collapse
Affiliation(s)
- Fuwen Yuan
- Research Center on Aging, Department of Medical Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chenzhong Xu
- Research Center on Aging, Department of Medical Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guodong Li
- Research Center on Aging, Department of Medical Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tanjun Tong
- Research Center on Aging, Department of Medical Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
17
|
How Do We Study the Dynamic Structure of Unstructured Proteins: A Case Study on Nopp140 as an Example of a Large, Intrinsically Disordered Protein. Int J Mol Sci 2018; 19:ijms19020381. [PMID: 29382046 PMCID: PMC5855603 DOI: 10.3390/ijms19020381] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 02/04/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) represent approximately 30% of the human genome and play key roles in cell proliferation and cellular signaling by modulating the function of target proteins via protein-protein interactions. In addition, IDPs are involved in various human disorders, such as cancer, neurodegenerative diseases, and amyloidosis. To understand the underlying molecular mechanism of IDPs, it is important to study their structural features during their interactions with target proteins. However, conventional biochemical and biophysical methods for analyzing proteins, such as X-ray crystallography, have difficulty in characterizing the features of IDPs because they lack an ordered three-dimensional structure. Here, we present biochemical and biophysical studies on nucleolar phosphoprotein 140 (Nopp140), which mostly consists of disordered regions, during its interaction with casein kinase 2 (CK2), which plays a central role in cell growth. Surface plasmon resonance and electron paramagnetic resonance studies were performed to characterize the interaction between Nopp140 and CK2. A single-molecule fluorescence resonance energy transfer study revealed conformational change in Nopp140 during its interaction with CK2. These studies on Nopp140 can provide a good model system for understanding the molecular function of IDPs.
Collapse
|
18
|
Zhu C, Zheng F, Zhu J, Liu M, Liu N, Li X, Zhang L, Deng Z, Zhao Q, Liu H. The interaction between NOLC1 and IAV NS1 protein promotes host cell apoptosis and reduces virus replication. Oncotarget 2017; 8:94519-94527. [PMID: 29212246 PMCID: PMC5706892 DOI: 10.18632/oncotarget.21785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/23/2017] [Indexed: 01/09/2023] Open
Abstract
NS1 of the influenza virus plays an important role in the infection ability of the influenza virus. Our previous research found that NS1 protein interacts with the NOLC1 protein of host cells, however, the function of the interaction is unknown. In the present study, the role of the interaction between the two proteins in infection was further studied. Several analyses, including the use of a pull-down assay, Co-IP, western blot analysis, overexpression, RNAi, flow cytometry, etc., were used to demonstrate that the NS1 protein of H3N2 influenza virus interacts with host protein NOLC1 and reduces the quantity of NOLC1. The interaction also promotes apoptosis in A549 host cells, while the suppression of NOLC1 protein reduces the proliferation of the H3N2 virus. Based on these data, it was concluded that during the process of infection, NS1 protein interacts with NOLC1 protein, reducing the level of NOLC1, and that the interaction between the two proteins promotes apoptosis of host cells, thus reducing the proliferation of the virus. These findings provide new information on the biological function of the interaction between NS1 and NOLC1.
Collapse
Affiliation(s)
- Chunyu Zhu
- Key Laboratory of Animal Resource and Epidemic Disease Prevention, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Fangliang Zheng
- Key Laboratory of Animal Resource and Epidemic Disease Prevention, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Junfeng Zhu
- Key Laboratory of Animal Resource and Epidemic Disease Prevention, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Meichen Liu
- Key Laboratory of Animal Resource and Epidemic Disease Prevention, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Na Liu
- Key Laboratory of Animal Resource and Epidemic Disease Prevention, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Xue Li
- Key Laboratory of Animal Resource and Epidemic Disease Prevention, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Li Zhang
- Key Laboratory of Animal Resource and Epidemic Disease Prevention, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Zaidong Deng
- Key Laboratory of Animal Resource and Epidemic Disease Prevention, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Qi Zhao
- Research Center for Computer Simulating and Information Processing of Bio-Macromolecules of Liaoning, Shenyang 110036, China.,School of Mathematics, Liaoning University, Shenyang 110036, China
| | - Hongsheng Liu
- Key Laboratory of Animal Resource and Epidemic Disease Prevention, School of Life Science, Liaoning University, Shenyang 110036, China.,Research Center for Computer Simulating and Information Processing of Bio-Macromolecules of Liaoning, Shenyang 110036, China
| |
Collapse
|
19
|
Nucleolar and coiled-body phosphoprotein 1 (NOLC1) regulates the nucleolar retention of TRF2. Cell Death Discov 2017; 3:17043. [PMID: 28875039 PMCID: PMC5582526 DOI: 10.1038/cddiscovery.2017.43] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/24/2017] [Accepted: 06/03/2017] [Indexed: 01/24/2023] Open
Abstract
Telomeric repeat-binding factor 2 (TRF2) was reported to localize in the nucleolus of human cells in a cell cycle-dependent manner; however, the underlying mechanism remains unclear. Here, we found that nucleolar and coiled-body phosphoprotein 1 (NOLC1) interacted with TRF2 and mediated the shuttling of TRF2 between the nucleolus and nucleus in human 293T and HepG2 cells. Ablation of NOLC1 expression increased the number of nuclear TRF2 foci and decreased the nucleolar level of TRF2. Conversely, NOLC1 overexpression promoted the nucleolar accumulation of TRF2. NOLC1 overexpression also increased the number of 53BP1 foci and induced the DNA damage response. In addition, co-expression of TRF2 rescued NOLC1 overexpression-induced cell cycle arrest and apoptosis.
Collapse
|
20
|
Yuan F, Zhang Y, Ma L, Cheng Q, Li G, Tong T. Enhanced NOLC1 promotes cell senescence and represses hepatocellular carcinoma cell proliferation by disturbing the organization of nucleolus. Aging Cell 2017; 16:726-737. [PMID: 28493459 PMCID: PMC5506443 DOI: 10.1111/acel.12602] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 01/11/2023] Open
Abstract
The nucleolus is a key organelle that is responsible for the synthesis of rRNA and assembly of ribosomal subunits, which is also the center of metabolic control because of the critical role of ribosomes in protein synthesis. Perturbations of rRNA biogenesis are closely related to cell senescence and tumor progression; however, the underlying molecular mechanisms are not well understood. Here, we report that cellular senescence‐inhibited gene (CSIG) knockdown up‐regulated NOLC1 by stabilizing the 5′UTR of NOLC1 mRNA, and elevated NOLC1 induced the retention of NOG1 in the nucleolus, which is responsible for rRNA processing. Besides, the expression of NOLC1 was negatively correlated with CSIG in the aged mouse tissue and replicative senescent 2BS cells, and the down‐regulation of NOLC1 could rescue CSIG knockdown‐induced 2BS senescence. Additionally, NOLC1 expression was decreased in human hepatocellular carcinoma (HCC) tissue, and the ectopic expression of NOLC1 repressed the proliferation of HCC cells and tumor growth in a HCC xenograft model.
Collapse
Affiliation(s)
- Fuwen Yuan
- Peking University Research Center on Aging; Department of Biochemistry and Molecular Biology; Peking University Health Science Center, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function; Beijing 100191 China
| | - Yu Zhang
- Peking University Research Center on Aging; Department of Biochemistry and Molecular Biology; Peking University Health Science Center, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function; Beijing 100191 China
| | - Liwei Ma
- Peking University Research Center on Aging; Department of Biochemistry and Molecular Biology; Peking University Health Science Center, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function; Beijing 100191 China
| | - Qian Cheng
- Peking University Research Center on Aging; Department of Biochemistry and Molecular Biology; Peking University Health Science Center, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function; Beijing 100191 China
- Department of Hepatobilliary Surgery; Beijing, Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer; Peking University People's Hospital; Beijing 100044 China
| | - Guodong Li
- Peking University Research Center on Aging; Department of Biochemistry and Molecular Biology; Peking University Health Science Center, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function; Beijing 100191 China
| | - Tanjun Tong
- Peking University Research Center on Aging; Department of Biochemistry and Molecular Biology; Peking University Health Science Center, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function; Beijing 100191 China
| |
Collapse
|
21
|
Hebert MD, Poole AR. Towards an understanding of regulating Cajal body activity by protein modification. RNA Biol 2016; 14:761-778. [PMID: 27819531 DOI: 10.1080/15476286.2016.1243649] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The biogenesis of small nuclear ribonucleoproteins (snRNPs), small Cajal body-specific RNPs (scaRNPs), small nucleolar RNPs (snoRNPs) and the telomerase RNP involves Cajal bodies (CBs). Although many components enriched in the CB contain post-translational modifications (PTMs), little is known about how these modifications impact individual protein function within the CB and, in concert with other modified factors, collectively regulate CB activity. Since all components of the CB also reside in other cellular locations, it is also important that we understand how PTMs affect the subcellular localization of CB components. In this review, we explore the current knowledge of PTMs on the activity of proteins known to enrich in CBs in an effort to highlight current progress as well as illuminate paths for future investigation.
Collapse
Affiliation(s)
- Michael D Hebert
- a Department of Biochemistry , The University of Mississippi Medical Center , Jackson , MS , USA
| | - Aaron R Poole
- a Department of Biochemistry , The University of Mississippi Medical Center , Jackson , MS , USA
| |
Collapse
|
22
|
Koné MC, Fleurot R, Chebrout M, Debey P, Beaujean N, Bonnet-Garnier A. Three-Dimensional Distribution of UBF and Nopp140 in Relationship to Ribosomal DNA Transcription During Mouse Preimplantation Development. Biol Reprod 2016; 94:95. [PMID: 26984997 DOI: 10.1095/biolreprod.115.136366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/08/2016] [Indexed: 12/31/2022] Open
Abstract
The nucleolus is a dynamic nuclear compartment that is mostly involved in ribosome subunit biogenesis; however, it may also play a role in many other biological processes, such as stress response and the cell cycle. Mainly using electron microscopy, several studies have tried to decipher how active nucleoli are set up during early development in mice. In this study, we analyzed nucleologenesis during mouse early embryonic development using 3D-immunofluorescent detection of UBF and Nopp140, two proteins associated with different nucleolar compartments. UBF is a transcription factor that helps maintain the euchromatic state of ribosomal genes; Nopp140 is a phosphoprotein that has been implicated in pre-rRNA processing. First, using detailed image analyses and the in situ proximity ligation assay technique, we demonstrate that UBF and Nopp140 dynamic redistribution between the two-cell and blastocyst stages (time of implantation) is correlated with morphological and structural modifications that occur in embryonic nucleolar compartments. Our results also support the hypothesis that nucleoli develop at the periphery of nucleolar precursor bodies. Finally, we show that the RNA polymerase I inhibitor CX-5461: 1) disrupts transcriptional activity, 2) alters preimplantation development, and 3) leads to a complete reorganization of UBF and Nopp140 distribution. Altogether, our results underscore that highly dynamic changes are occurring in the nucleoli of embryos and confirm a close link between ribosomal gene transcription and nucleologenesis during the early stages of development.
Collapse
Affiliation(s)
| | - Renaud Fleurot
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Martine Chebrout
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Pascale Debey
- Sorbonne-Universités, MNHN, CNRS, INSERM, Structure et instabilité des génomes, Paris, France
| | | | | |
Collapse
|
23
|
Becerra S, Montes M, Hernández-Munain C, Suñé C. Prp40 pre-mRNA processing factor 40 homolog B (PRPF40B) associates with SF1 and U2AF65 and modulates alternative pre-mRNA splicing in vivo. RNA (NEW YORK, N.Y.) 2015; 21:438-57. [PMID: 25605964 PMCID: PMC4338339 DOI: 10.1261/rna.047258.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The first stable complex formed during the assembly of spliceosomes onto pre-mRNA substrates in mammals includes U1 snRNP, which recognizes the 5' splice site, and the splicing factors SF1 and U2AF, which bind the branch point sequence, polypyrimidine tract, and 3' splice site. The 5' and 3' splice site complexes are thought to be joined together by protein-protein interactions mediated by factors that ensure the fidelity of the initial splice site recognition. In this study, we identified and characterized PRPF40B, a putative mammalian ortholog of the U1 snRNP-associated yeast splicing factor Prp40. PRPF40B is highly enriched in speckles with a behavior similar to splicing factors. We demonstrated that PRPF40B interacts directly with SF1 and associates with U2AF(65). Accordingly, PRPF40B colocalizes with these splicing factors in the cell nucleus. Splicing assays with reporter minigenes revealed that PRPF40B modulates alternative splice site selection. In the case of Fas regulation of alternative splicing, weak 5' and 3' splice sites and exonic sequences are required for PRPF40B function. Placing our data in a functional context, we also show that PRPF40B depletion increased Fas/CD95 receptor number and cell apoptosis, which suggests the ability of PRPF40B to alter the alternative splicing of key apoptotic genes to regulate cell survival.
Collapse
Affiliation(s)
| | | | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra" (IPBLN-CSIC), PTS, Granada 18016, Spain
| | | |
Collapse
|
24
|
Lee CC, Tsai YT, Kao CW, Lee LW, Lai HJ, Ma TH, Chang YS, Yeh NH, Lo SJ. Mutation of a Nopp140 gene dao-5 alters rDNA transcription and increases germ cell apoptosis in C. elegans. Cell Death Dis 2014; 5:e1158. [PMID: 24722283 PMCID: PMC5424100 DOI: 10.1038/cddis.2014.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 01/03/2023]
Abstract
Human diseases of impaired ribosome biogenesis resulting from disruption of rRNA biosynthesis or loss of ribosomal components are collectively described as ‘ribosomopathies'. Treacher Collins syndrome (TCS), a representative human ribosomopathy with craniofacial abnormalities, is attributed to mutations in the tcof1 gene that has a homologous gene called nopp140. Previous studies demonstrated that the dao-5 (dauer and aged animal overexpression gene 5) of Caenorhabditis elegans is a member of nopp140 gene family and plays a role in nucleogenesis in the early embryo. Here, we established a C. elegans model for studying Nopp140-associated ribosomopathy. A null dao-5 mutant ok542 with a semi-infertile phenotype showed a delay in gonadogenesis, as well as a higher incidence of germline apoptosis. These phenotypes in dao-5(ok542) are likely resulted from inefficient rDNA transcription that was observed by run-on analyses and chromatin immunoprecipitation (ChIP) assays measuring the RNA Pol I occupancy on the rDNA promoter. ChIP assays further showed that the modifications of acetylated histone 4 (H4Ac) and dimethylation at the lysine 9 of histone 3 (H3K9me2) around the rDNA promoter were altered in dao-5 mutants compared with the N2 wild type. In addition, activated CEP-1 (a C. elegans p53 homolog) activity was also linked to the loss of DAO-5 in terms of the transcriptional upregulation of two CEP-1 downstream effectors, EGL-1 and CED-13. We propose that the dao-5 mutant of C. elegans can be a valuable model for studying human Nopp140-associated ribosomopathy at the cellular and molecular levels.
Collapse
Affiliation(s)
- C-C Lee
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Y-T Tsai
- 1] Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan [2] Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - C-W Kao
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - L-W Lee
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - H-J Lai
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - T-H Ma
- 1] Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan [2] Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Y-S Chang
- 1] Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan [2] Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - N-H Yeh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - S J Lo
- 1] Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan [2] Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
25
|
Duan X, Zhang J, Liu S, Zhang M, Wang Q, Cheng J. Methylation of nucleolar and coiled-body phosphoprotein 1 is associated with the mechanism of tumorigenesis in hepatocellular carcinoma. Oncol Rep 2013; 30:2220-8. [PMID: 23970161 DOI: 10.3892/or.2013.2676] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/25/2013] [Indexed: 11/06/2022] Open
Abstract
Nucleolar and coiled-body phosphoprotein 1 (NOLC1) plays an essential role in the synthesis of rRNA and the biosynthesis of ribosomes. Previous studies suggest that NOLC1 is crucial for normal cell growth, and plays a role in the regulation of tumorigenesis of nasopharyngeal carcinoma (NPC) and demonstrate that both NOLC1 and tumor protein 53 work synergistically to activate the MDM2 promoter in NPC cells. Yet, the functioning of NOLC1 in liver cancer remains unknown. The aim of the present study was to understand how the NOLC1 gene is regulated in liver carcinogenesis. In this study, we showed that NOLC1 was silenced or downregulated in liver tumor tissues when compared with that in the matched non-cancer tissues. In addition, human hepatoma cells weakly expressed NOLC1, whereas cultured human normal liver cell lines expressed abundant levels. The hypermethylation status in the promoter CpG1 start region appeared to be correlated with the NOLC1 expression levels in liver cell lines or liver normal and tissue specimens. We found that four CpG dinucleotides were located at the CpG1 start region. Further molecular analysis of mutagenesis indicated that the four CpG dinucleotides play a role in the promoter activity of the NOLC1 gene. The expression of NOLC1 and DNA methylation of its promoter affected cell proliferation and apoptosis. The expression of NOLC1 in hepatoma cell lines was restored following exposure to the demethylation agent, 5-azacytidine. Low expression of NOLC1 in hepatoma cell lines and liver cancer tissues was associated with cyclin D3. In conclusion, our study demonstrated that DNA methylation is a key mechanism of silenced NOLC1 expression in human hepatocellular carcinoma cells, and NOLC1 gene hypermethylation of the four CpG dinucleotides is a potential biomarker for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xuefei Duan
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | | | | | | | | | | |
Collapse
|
26
|
Lee WK, Lee SY, Na JH, Jang SW, Park CR, Kim SY, Lee SH, Han KH, Yu YG. Mitoxantrone Binds to Nopp140, an Intrinsically Unstructured Protein, and Modulate its Interaction with Protein Kinase CK2. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.6.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Kumar M, Kumar R, Tanwar M, Ghose S, Kaur J, Dada R. Cytogenetic and clinical assessment of a family with treacher collins syndrome. Case Rep Med 2011; 2011:708450. [PMID: 21765846 PMCID: PMC3135159 DOI: 10.1155/2011/708450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/31/2011] [Indexed: 11/18/2022] Open
Abstract
Treacher Collins syndrome (TCS) is a rare autosomal dominant disorder characterized by craniofacial deformities. It is the most common type of mandibulofacial dysostosis (MFD). The objective of this study is to do cytogenetic analysis of a TCS family. Physical examination and all available medical records were reviewed. 50 GTG-banded metaphases were analysed to detect any structural or numerical chromosomal abnormality. Downward slanting of palpebral fissures, hypoplasia of zygomatic arch complex, and hypoplasia of mandible were present in all. Cytogenetic findings show interstitial deletion in chromosomes 5(q32-q33) and 3(q23-q25). We report four members of three generations of a family having TCS in a unique way that the deletion has been found in 3q and 5q which has not been reported. Mosaicism of deletion on 5q was detected in all affected members whereas 3q deletion was found only in one member (II.2). This finding may represent a more severe manifestation of the TCS. Thus the evaluation and counselling of the TCS patients should be undertaken with caution.
Collapse
Affiliation(s)
- Manoj Kumar
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rakesh Kumar
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mukesh Tanwar
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Supriyo Ghose
- Dr. R.P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jasbir Kaur
- Department of Ocular Biochemistry, Dr. R.P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rima Dada
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
28
|
Gao X, Wang Q, Li W, Yang B, Song H, Ju W, Liu S, Cheng J. Identification of nucleolar and coiled-body phosphoprotein 1 (NOLC1) minimal promoter regulated by NF-κB and CREB. BMB Rep 2011; 44:70-5. [DOI: 10.5483/bmbrep.2011.44.1.70] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Hadwiger G, Dour S, Arur S, Fox P, Nonet ML. A monoclonal antibody toolkit for C. elegans. PLoS One 2010; 5:e10161. [PMID: 20405020 PMCID: PMC2854156 DOI: 10.1371/journal.pone.0010161] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/22/2010] [Indexed: 01/12/2023] Open
Abstract
Background Antibodies are critical tools in many avenues of biological research. Though antibodies can be produced in the research laboratory setting, most research labs working with vertebrates avail themselves of the wide array of commercially available reagents. By contrast, few such reagents are available for work with model organisms. Methodology/Principal Findings We report the production of monoclonal antibodies directed against a wide range of proteins that label specific subcellular and cellular components, and macromolecular complexes. Antibodies were made to synaptobrevin (SNB-1), a component of synaptic vesicles; to Rim (UNC-10), a protein localized to synaptic active zones; to transforming acidic coiled-coil protein (TAC-1), a component of centrosomes; to CENP-C (HCP-4), which in worms labels the entire length of their holocentric chromosomes; to ORC2 (ORC-2), a subunit of the DNA origin replication complex; to the nucleolar phosphoprotein NOPP140 (DAO-5); to the nuclear envelope protein lamin (LMN-1); to EHD1 (RME-1) a marker for recycling endosomes; to caveolin (CAV-1), a marker for caveolae; to the cytochrome P450 (CYP-33E1), a resident of the endoplasmic reticulum; to β-1,3-glucuronyltransferase (SQV-8) that labels the Golgi; to a chaperonin (HSP-60) targeted to mitochondria; to LAMP (LMP-1), a resident protein of lysosomes; to the alpha subunit of the 20S subcomplex (PAS-7) of the 26S proteasome; to dynamin (DYN-1) and to the α-subunit of the adaptor complex 2 (APA-2) as markers for sites of clathrin-mediated endocytosis; to the MAGUK, protein disks large (DLG-1) and cadherin (HMR-1), both of which label adherens junctions; to a cytoskeletal linker of the ezrin-radixin-moesin family (ERM-1), which localized to apical membranes; to an ERBIN family protein (LET-413) which localizes to the basolateral membrane of epithelial cells and to an adhesion molecule (SAX-7) which localizes to the plasma membrane at cell-cell contacts. In addition to working in whole mount immunocytochemistry, most of these antibodies work on western blots and thus should be of use for biochemical fractionation studies. Conclusions/Significance We have produced a set of monoclonal antibodies to subcellular components of the nematode C. elegans for the research community. These reagents are being made available through the Developmental Studies Hybridoma Bank (DSHB).
Collapse
Affiliation(s)
- Gayla Hadwiger
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott Dour
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Swathi Arur
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul Fox
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael L. Nonet
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
30
|
Thiry M, Cheutin T, Lamaye F, Thelen N, Meier UT, O'Donohue MF, Ploton D. Localization of Nopp140 within mammalian cells during interphase and mitosis. Histochem Cell Biol 2009; 132:129-40. [PMID: 19381672 PMCID: PMC2995257 DOI: 10.1007/s00418-009-0599-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
Abstract
We investigated distribution of the nucleolar phosphoprotein Nopp140 within mammalian cells, using immunofluorescence confocal microscopy and immunoelectron microscopy. During interphase, three-dimensional image reconstructions of confocal sections revealed that nucleolar labelling appeared as several tiny spheres organized in necklaces. Moreover, after an immunogold labelling procedure, gold particles were detected not only over the dense fibrillar component but also over the fibrillar centres of nucleoli in untreated and actinomycin D-treated cells. Labelling was also consistently present in Cajal bodies. After pulse-chase experiments with BrUTP, colocalization was more prominent after a 10- to 15-min chase than after a 5-min chase. During mitosis, confocal analysis indicated that Nopp140 organization was lost. The protein dispersed between and around the chromosomes in prophase. From prometaphase to telophase, it was also detected in numerous cytoplasmic nucleolus-derived foci. During telophase, it reappeared in the reforming nucleoli of daughter nuclei. This strongly suggests that Nopp140 could be a component implicated in the early steps of pre-rRNA processing.
Collapse
Affiliation(s)
- Marc Thiry
- Laboratoire de Biologie Cellulaire et Tissulaire, Université de Liège, 20 rue de Pitteurs, 4020, Liege, Belgium.
| | | | | | | | | | | | | |
Collapse
|
31
|
Lee WK, Lee SY, Kim WI, Rho YH, Bae YS, Lee C, Kim IY, Yu YG. Characterization of the InsP6-dependent interaction between CK2 and Nopp140. Biochem Biophys Res Commun 2008; 376:439-44. [DOI: 10.1016/j.bbrc.2008.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 12/15/2022]
|
32
|
Amazit L, Pasini L, Szafran AT, Berno V, Wu RC, Mielke M, Jones ED, Mancini MG, Hinojos CA, O'Malley BW, Mancini MA. Regulation of SRC-3 intercompartmental dynamics by estrogen receptor and phosphorylation. Mol Cell Biol 2007; 27:6913-32. [PMID: 17646391 PMCID: PMC2099228 DOI: 10.1128/mcb.01695-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The steroid receptor coactivator 3 gene (SRC-3) (AIB1/ACTR/pCIP/RAC3/TRAM1) is a p160 family transcription coactivator and a known oncogene. Despite its importance, the functional regulation of SRC-3 remains poorly understood within a cellular context. Using a novel combination of live-cell, high-throughput, and fluorescent microscopy, we report SRC-3 to be a nucleocytoplasmic shuttling protein whose intracellular mobility, solubility, and cellular localization are regulated by phosphorylation and estrogen receptor alpha (ERalpha) interactions. We show that both chemical inhibition and small interfering RNA reduction of the mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (MEK1/2) pathway induce a cytoplasmic shift in SRC-3 localization, whereas stimulation by epidermal growth factor signaling enhances its nuclear localization by inducing phosphorylation at T24, S857, and S860, known participants in the phosphocode that regulates SRC-3 activity. Accordingly, the cytoplasmic localization of a nonphosphorylatable SRC-3 mutant further supported these results. In the presence of ERalpha, U0126 also dramatically reduces (i) ligand-dependent colocalization of SRC-3 and ERalpha, (ii) the formation of ER-SRC-3 complexes in cell lysates, and (iii) SRC-3 targeting to a visible, ERalpha-occupied and -regulated prolactin promoter array. Taken together, these results indicate that phosphorylation coordinates SRC-3 coactivator function by linking the probabilistic formation of transient nuclear receptor-coactivator complexes with its molecular dynamics and cellular compartmentalization. Technically and conceptually, these findings have a new and broad impact upon evaluating mechanisms of action of gene regulators at a cellular system level.
Collapse
Affiliation(s)
- Larbi Amazit
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cui Z, DiMario PJ. RNAi knockdown of Nopp140 induces Minute-like phenotypes in Drosophila. Mol Biol Cell 2007; 18:2179-91. [PMID: 17392509 PMCID: PMC1877096 DOI: 10.1091/mbc.e07-01-0074] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/13/2007] [Accepted: 03/20/2007] [Indexed: 01/04/2023] Open
Abstract
Nopp140 associates with small nucleolar RNPs to chaperone pre-rRNA processing and ribosome assembly. Alternative splicing yields two isoforms in Drosophila: Nopp140-True is homologous to vertebrate Nopp140 particularly in its carboxy terminus, whereas Nopp140-RGG contains a glycine and arginine-rich (RGG) carboxy terminus typically found in vertebrate nucleolin. Loss of ribosome function or production at critical points in development leads to Minute phenotypes in Drosophila or the Treacher Collins syndrome (TCS) in humans. To ascertain the functional significance of Nopp140 in Drosophila development, we expressed interfering RNA using the GAL4/UAS system. Reverse transcription-PCR showed variable losses of Nopp140 mRNA in larvae from separate RNAi-expressing transgenic lines, whereas immunofluorescence microscopy with isoform-specific antibodies showed losses of Nopp140 in imaginal and polyploid tissues. Phenotypic expression correlated with the percent loss of Nopp140 transcripts: a >or=50% loss correlated with larval and pupal lethality, disrupted nuclear structures, and in some cases melanotic tumors, whereas a 30% loss correlated with adult wing, leg, and tergite deformities. We consider these adult phenotypes to be Minute-like and reminiscent of human craniofacial malformations associated with TCS. Similarly, overexpression of either isoform caused embryonic and larval lethality, thus indicating proper expression of Nopp140 is critical for normal development.
Collapse
Affiliation(s)
- Zhengfang Cui
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
34
|
Abstract
The nucleolus is the most prominent compartment in the nucleus and known as the site for ribosome biogenesis in eucaryotes. In contrast, there is no such equivalent structure for ribosome synthesis in procaryotes. This raises two concerns that how does the nucleolus evolve and that whether the nucleolus remains playing a single role in ribosome biogenesis along the evolution. Increasing data support new nucleolus functions, including signal recognition particle assembly, small RNA modification, telomerase maturation, cell-cycle and aging control, and cell stress sensor. Multiple functions of the nucleolus possibly result from the plurifunctionality of nucleolar proteins, such as nucleolin and Nopp140. Proteomic analyses of human and Arabidopsis nucleolus lead a remarkable progress in understanding the evolution and new functions of nucleoli. In this review, we present a brief history of nucleolus research and new concepts and unresolved questions. Also, we introduce hepatitis D virus for studying the communication between the nucleolus and other subnuclear compartments, and Caenorhabditis elegans for the role of nucleolus in the development and the epistatic control of nucleologenesis.
Collapse
Affiliation(s)
- Szecheng J Lo
- Department of Life Science, Graduate Institute of Basic Medical Science, 259, Wen-Hwa 1st Road, Chang Gung University, TaoYuan 333.
| | | | | |
Collapse
|
35
|
McCain J, Danzy L, Hamdi A, Dellafosse O, DiMario P. Tracking nucleolar dynamics with GFP-Nopp140 during Drosophila oogenesis and embryogenesis. Cell Tissue Res 2005; 323:105-15. [PMID: 16158326 DOI: 10.1007/s00441-005-0044-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 06/21/2005] [Indexed: 11/28/2022]
Abstract
We expressed two green fluorescent protein (GFP)-tagged Nopp140 isoforms in transgenic Drosophila melanogaster to study nucleolar dynamics during oogenesis and early embryogenesis. Specifically, we wanted to test whether the quiescent oocyte nucleus stored maternal Nopp140 and then to determine precisely when nucleoli formed during embryogenesis. During oogenesis nurse cell nucleoli accumulated GFP-Nopp140 gradually such that posterior nurse cell nucleoli in egg chambers at stage 10 were usually brighter than the more anterior nurse cell nucleoli. Nucleoli within apoptotic nurse cells disassembled in stages 12 and 13, but not all GFP-Nopp140 entered the oocyte through inter-connecting cytoplasmic bridges. Oocytes, on the other hand, lost their nucleoli by stage 3, but GFP-Nopp140 gradually accumulated in oocyte nuclei during stages 8-13. Most oocyte nuclei at stage 10 stored GFP-Nopp140 uniformly, but many stage 10 oocytes accumulated GFP-Nopp140 in presumed endobodies or in multiple smaller spheres. All oocyte nuclei at stages 11-12 were uniformly labeled, and GFP-Nopp140 diffused to the cytoplasm upon nuclear disassembly in stage 13. GFP-Nopp140 reappeared during embryogenesis; initial nucleologenesis occurred in peripheral somatic nuclei during embryonic stage 13, one stage earlier than reported previously. These GFP-Nopp140-containing foci disassembled at the 13th syncytial mitosis, and a second nucleologenesis occurred in early stage 14. The resulting nucleoli occupied nuclear regions closest to the periphery of the embryos. Pole cells contained GFP-Nopp140 during the syncytial embryonic stages, but their nucleologenesis started at gastrulation.
Collapse
Affiliation(s)
- Jennifer McCain
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, 70803-1715, USA
| | | | | | | | | |
Collapse
|
36
|
Quality not Quantity: The Role of Marine Natural Products in Drug Discovery and Reverse Chemical Proteomics. Mar Drugs 2005. [DOI: 10.3390/md302036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
37
|
Mogass M, York TP, Li L, Rujirabanjerd S, Shiang R. Genomewide analysis of gene expression associated with Tcof1 in mouse neuroblastoma. Biochem Biophys Res Commun 2004; 325:124-32. [PMID: 15522210 DOI: 10.1016/j.bbrc.2004.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2004] [Indexed: 11/28/2022]
Abstract
Mutations in the Treacher Collins syndrome gene, TCOF1, cause a disorder of craniofacial development. We manipulated the levels of Tcof1 and its protein treacle in a murine neuroblastoma cell line to identify downstream changes in gene expression using a microarray platform. We identified a set of genes that have similar expression with Tcof1 as well as a set of genes that are negatively correlated with Tcof1 expression. We also showed that the level of Tcof1 and treacle expression is downregulated during differentiation of neuroblastoma cells into neuronal cells. Inhibition of Tcof1 expression by siRNA induced morphological changes in neuroblastoma cells that mimic differentiation. Thus, expression of Tcof1 and treacle synthesis play an important role in the proliferation of neuroblastoma cells and we have identified genes that may be important in this pathway.
Collapse
Affiliation(s)
- Michael Mogass
- Department of Human Genetics, Virginia Commonwealth University Medical Center, P.O. Box 980033, Richmond, VA 23298-0033, USA
| | | | | | | | | |
Collapse
|
38
|
So RB, Gonzales B, Henning D, Dixon J, Dixon MJ, Valdez BC. Another face of the Treacher Collins syndrome (TCOF1) gene: identification of additional exons. Gene 2004; 328:49-57. [PMID: 15019983 DOI: 10.1016/j.gene.2003.11.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 11/11/2003] [Accepted: 11/24/2003] [Indexed: 10/26/2022]
Abstract
Treacher Collins syndrome (TCS) is characterized by an abnormality in craniofacial development during early embryogenesis. TCS is caused by mutations in the gene TCOF1, which encodes the nucleolar phosphoprotein treacle. Genetic and proteomic characterizations of TCS/treacle are based on the previously reported 26 exons of TCOF1. Here, we report the identification of 231-nucleotide (nt) exon 6A (between exons 6 and 7) and 108-nt exon 16A (between exons 16 and 17). Isoforms with exon 6A are up to 3.7-fold more abundant than alternatively spliced variants without exon 6A, but only minor isoforms contain exon 16A. Exon 6A encodes a peptide sequence containing basic and acidic domains similar to 10 other exons of TCOF1. Unlike the other exons, exon 6A encodes a nuclear localization signal (NLS) which does not, however, alter the nucleolar localization of full-length treacle. The discovery of exons 6A and 16A is relevant to mutational analysis of the TCOF1 gene in TCS patients, and to functional analysis of its gene product.
Collapse
Affiliation(s)
- Rolando B So
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
39
|
Eilbracht J, Reichenzeller M, Hergt M, Schnölzer M, Heid H, Stöhr M, Franke WW, Schmidt-Zachmann MS. NO66, a highly conserved dual location protein in the nucleolus and in a special type of synchronously replicating chromatin. Mol Biol Cell 2004; 15:1816-32. [PMID: 14742713 PMCID: PMC379278 DOI: 10.1091/mbc.e03-08-0623] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It has recently become clear that the nucleolus, the most prominent nuclear subcompartment, harbors diverse functions beyond its classic role in ribosome biogenesis. To gain insight into nucleolar functions, we have purified amplified nucleoli from Xenopus laevis oocytes using a novel approach involving fluorescence-activated cell sorting techniques. The resulting protein fraction was analyzed by mass spectrometry and used for the generation of monoclonal antibodies directed against nucleolar components. Here, we report the identification and molecular characterization of a novel, ubiquitous protein, which in most cell types appears to be a constitutive nucleolar component. Immunolocalization studies have revealed that this protein, termed NO66, is highly conserved during evolution and shows in most cells analyzed a dual localization pattern, i.e., a strong enrichment in the granular part of nucleoli and in distinct nucleoplasmic entities. Colocalizations with proteins Ki-67, HP1alpha, and PCNA, respectively, have further shown that the staining pattern of NO66 overlaps with certain clusters of late replicating chromatin. Biochemical experiments have revealed that protein NO66 cofractionates with large preribosomal particles but is absent from cytoplasmic ribosomes. We propose that in addition to its role in ribosome biogenesis protein NO66 has functions in the replication or remodeling of certain heterochromatic regions.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Nucleolus/metabolism
- Cell Nucleus/metabolism
- Cell Separation
- Cells, Cultured
- Centrifugation, Density Gradient
- Chromatin/chemistry
- Chromatin/metabolism
- Chromatography, Gel
- Chromobox Protein Homolog 5
- Chromosomal Proteins, Non-Histone/biosynthesis
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/physiology
- Conserved Sequence
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Dioxygenases
- Flow Cytometry
- HeLa Cells
- Heterochromatin/chemistry
- Histone Demethylases
- Humans
- Ki-67 Antigen/biosynthesis
- Microscopy, Electron
- Microscopy, Fluorescence
- Molecular Sequence Data
- Peptides/chemistry
- Precipitin Tests
- Proliferating Cell Nuclear Antigen/biosynthesis
- Protein Biosynthesis
- RNA/metabolism
- Ribosomes/metabolism
- Sequence Homology, Amino Acid
- Sucrose/pharmacology
- Time Factors
- Transcription, Genetic
- Xenopus Proteins/biosynthesis
- Xenopus Proteins/physiology
- Xenopus laevis/metabolism
Collapse
Affiliation(s)
- Jens Eilbracht
- Division of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Dimario PJ. Cell and Molecular Biology of Nucleolar Assembly and Disassembly. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 239:99-178. [PMID: 15464853 DOI: 10.1016/s0074-7696(04)39003-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleoli disassemble in prophase of the metazoan mitotic cycle, and they begin their reassembly (nucleologenesis) in late anaphase?early telophase. Nucleolar disassembly and reassembly were obvious to the early cytologists of the eighteenth and nineteenth centuries, and although this has lead to a plethora of literature describing these events, our understanding of the molecular mechanisms regulating nucleolar assembly and disassembly has expanded immensely just within the last 10-15 years. We briefly survey the findings of nineteenth-century cytologists on nucleolar assembly and disassembly, followed by the work of Heitz and McClintock on nucleolar organizers. A primer review of nucleolar structure and functions precedes detailed descriptions of modern molecular and microscopic studies of nucleolar assembly and disassembly. Nucleologenesis is concurrent with the reinitiation of rDNA transcription in telophase. The perichromosomal sheath, prenucleolar bodies, and nucleolar-derived foci serve as repositories for nucleolar processing components used in the previous interphase. Disassembly of the perichromosomal sheath along with the dynamic movements and compositional changes of the prenucleolar bodies and nucleolus-derived foci coincide with reactivation of rDNA synthesis within the chromosomal nucleolar organizers during telophase. Nucleologenesis is considered in various model organisms to provide breadth to our understanding. Nucleolar disassembly occurs at the onset of mitosis primarily as a result of the mitosis-specific phosphorylation of Pol I transcription factors and processing components. Although we have learned much regarding nucleolar assembly and disassembly, many questions still remain, and these questions are as vibrant for us today as early questions were for nineteenth- and early twentieth-century cytologists.
Collapse
Affiliation(s)
- Patrick J Dimario
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803-1715, USA
| |
Collapse
|
41
|
Baran V, Pavlok A, Bjerregaard B, Wrenzycki C, Hermann D, Philimonenko VV, Lapathitis G, Hozak P, Niemann H, Motlik J. Immunolocalization of upstream binding factor and pocket protein p130 during final stages of bovine oocyte growth. Biol Reprod 2003; 70:877-86. [PMID: 14613906 DOI: 10.1095/biolreprod.103.018408] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The aim of this study was to describe the dynamic changes in the localization of the key nucleolar protein markers, fibrillarin, B23/nucleophosmin, C23/nucleolin, protein Nopp140, during the final stages of bovine oocyte growth. All these proteins were present in the large reticulated nucleoli of oocytes from the small-size category follicles (<1 mm). The entire nucleolus exhibited strong positivity for UBF (upstream binding factor, RNA polymerase I-specific transcription initiation factor), which displayed a dotted staining pattern. In contrast, protein p130 was diffusely distributed throughout the nucleus and excluded from nucleoli. In oocytes approaching the late period of growth (2-3-mm follicles), UBF localization shifted to the nucleolar periphery. Double staining of UBF-p130 revealed a gradual accumulation of p130 at the periphery shell around the nucleolus. In fully grown oocytes (>3-mm follicles), all studied nucleolar proteins were detected in the small compact nucleoli. The cap structure, attached to the compact nucleolus surface, was positive for UBF and PAF53 (subunit of RNA polymerase I). The UBF-positive cap showed a close structural association with p130. It is concluded that, during the process of oocyte nucleolus compaction, UBF and PAF53, proteins involved in the rDNA transcription, are segregated from fibrillarin and Nopp140, proteins essential for early steps of pre-rRNA processing. The observed changes may reflect the transition from pre-rRNA synthesis to pre-rRNA processing as an analysis of the relative abundance of the developmentally important gene transcripts confirmed. In addition, discovered structural association between UBF and p130 suggests a role for pocket proteins in ribosomal gene silencing in mammalian oocytes.
Collapse
Affiliation(s)
- Vladimir Baran
- Institute of Animal Physiology, Slovak Academy of Sciences, 040 01Kosice, Slovakia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kim YK, Jin Y, Vukoti KM, Park JK, Kim EE, Lee KJ, Yu YG. Purification and characterization of human nucleolar phosphoprotein 140 expressed in Escherichia coli. Protein Expr Purif 2003; 31:260-4. [PMID: 14550645 DOI: 10.1016/s1046-5928(03)00194-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human nucleolar phosphoprotein 140, hNopp140, is one of the most highly phosphorylated mammalian proteins, which is involved in the biogenesis of nucleolus. It regulates the transcription of rDNA and has a tendency to bind to doxorubicin, which is widely used as an anti-cancer drug. The biochemical and biophysical property of hNopp140 has not been reported due to the fact that it is rather difficult to obtain protein in large enough quantity. In this paper, we report the cloning and overexpression of the soluble form of hNopp140 in Escherichia coli. The protein was purified to more than 90% homogeneity using hydroxyapatite and ion exchange chromatography. The purified protein can be extensively phosphorylated by casein kinase II and oligomerized into an insoluble aggregate in the presence of magnesium, carbonate, and fluoride ions.
Collapse
Affiliation(s)
- Yun-Kyeong Kim
- Division of Life Sciences, Korea Institute of Science and Technology, 39-1, Hwawolkok-dong, Songbuk-ku, 136-791 Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Wang C, Query CC, Meier UT. Immunopurified small nucleolar ribonucleoprotein particles pseudouridylate rRNA independently of their association with phosphorylated Nopp140. Mol Cell Biol 2002; 22:8457-66. [PMID: 12446766 PMCID: PMC139890 DOI: 10.1128/mcb.22.24.8457-8466.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The isomerization of up to 100 uridines to pseudouridines (Psis) in eukaryotic rRNA is guided by a similar number of box H/ACA small nucleolar RNAs (snoRNAs), each forming a unique small nucleolar ribonucleoprotein particle (snoRNP) with the same four core proteins, NAP57 (also known as dyskerin or Cbf5p), GAR1, NHP2, and NOP10. Additionally, the nucleolar and Cajal body protein Nopp140 (Srp40p) associates with the snoRNPs. To understand the role of these factors in pseudouridylation, we established an in vitro assay system. Short site-specifically (32)P-labeled rRNA substrates were incubated with subcellular fractions, and the conversion of uridine to Psi was monitored by thin-layer chromatography after digestion to single nucleotides. Immunopurified box H/ACA core particles were sufficient for the reaction. SnoRNPs associated quantitatively and reversibly with Nopp140. However, pseudouridylation activity was independent of Nopp140, consistent with a chaperoning role for this highly phosphorylated protein. Although up to 14 bp between the snoRNA and rRNA were required for the in vitro reaction, rRNA pseudouridylation and release occurred in the absence of ATP and magnesium. These data suggest that substrate release takes place without RNA helicase activity but may be aided by the snoRNP core proteins.
Collapse
Affiliation(s)
- Chen Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
44
|
Wehner KA, Ayala L, Kim Y, Young PJ, Hosler BA, Lorson CL, Baserga SJ, Francis JW. Survival motor neuron protein in the nucleolus of mammalian neurons. Brain Res 2002; 945:160-73. [PMID: 12126878 DOI: 10.1016/s0006-8993(02)02750-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Spinal muscular atrophy (SMA) is an inherited motor neuron disease caused by mutations in the survival motor neuron gene (SMN1). While it has been shown that the SMN protein is involved in spliceosome biogenesis and pre-mRNA splicing, there is increasing evidence indicating that SMN may also perform important functions in the nucleolus. We demonstrate here through the use of a previously characterized polyclonal anti-SMN antibody, abSMN, that the SMN protein shows a striking colocalization with the nucleolar protein, fibrillarin, in both nucleoli and Cajal bodies/gems of primary neurons. Immunoblot analysis with antifibrillarin and two different anti-SMN antibodies reveals that SMN and fibrillarin also cofractionate in the insoluble protein fraction of cultured cell lysates. Immunoprecipitation experiments using whole cell extracts of HeLa cells and cultured neurons revealed that abSMN coprecipitated small amounts of the U3 small nucleolar RNA (snoRNA) previously shown to be associated with fibrillarin in vivo. These studies raise the possibility that SMN may serve a function in rRNA maturation/ribosome synthesis similar to its role in spliceosome biogenesis.
Collapse
Affiliation(s)
- Karen A Wehner
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sun X, Zhao J, Jin S, Palka K, Visa N, Aissouni Y, Daneholt B, Alzhanova-Ericsson AT. A novel protein localized to the fibrillar compartment of the nucleolus and to the brush border of a secretory cell. Eur J Cell Biol 2002; 81:125-37. [PMID: 11998864 DOI: 10.1078/0171-9335-00231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the identification and molecular characterization of a novel abundant nucleolar protein of the dipteran Chironomus tentans. As shown by Western blot analysis, this protein is present in nuclear extracts in a phosphorylated form with a mobility corresponding to 100 kDa. Therefore, the protein has been termed Chironomus tentans p100, or p100 for short. Analysis of the cDNA-derived primary structure of p100 indicates a protein that contains a combination of structural domains which could be involved in interactions with proteins and nucleic acids: twelve alternating acidic and basic repeats, a glycine-arginine-rich domain and a region with two zinc fingers of the C4-type. Acidic and basic repeats are typical for a group of nonribosomal nucleolar proteins. The best-studied representatives of this group are Nopp140 and nucleolin, proteins with structural and regulatory functions in rDNA transcription. Immunocytology and immunoelectron microscopy of Chironomus tentans salivary gland cells have shown that the p100 protein is located in the fibrillar compartment of the nucleolus, while it is almost absent from the granular compartment and from the nucleoplasm. The p100 protein remains in the nucleolus after removal of RNA and DNA by digestion with nucleases. This indicates that p100 might be a constituent of the nucleolar proteinaceous framework. Remarkably, p100 is also localized in the brush border in the apical part of the salivary gland cell. The presence of p100 both in the nucleolus and at the apical plasma membrane suggests that it could be involved in coordination of the level of protein production and export from the cell through regulation of the level of rRNA production in the nucleolus.
Collapse
Affiliation(s)
- Xin Sun
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The Nopp140 gene of Drosophila maps within 79A5 of chromosome 3. Alternative splicing yields two variants. DmNopp140 (654 residues) is the sequence homolog of vertebrate Nopp140. Its carboxy terminus is 64% identical to that of the prototypical rat Nopp140. DmNopp140-RGG (688 residues) is identical to DmNopp140 throughout its first 551 residues, but its carboxy terminus contains a glycine/arginine-rich domain that is often found in RNA-binding proteins such as vertebrate nucleolin. Both Drosophila variants localize to nucleoli in Drosophila Schneider II cells and Xenopus oocytes, specifically within the dense fibrillar components. In HeLa cells, DmNopp140-RGG localizes to intact nucleoli, whereas DmNopp140 partitions HeLa nucleoli into phase-light and phase-dark regions. The phase-light regions contain DmNopp140 and endogenous fibrillarin, whereas the phase-dark regions contain endogenous nucleolin. When coexpressed, both Drosophila variants colocalize to HeLa cell nucleoli. Both variants fail to localize to endogenous Cajal bodies in Xenopus oocyte nuclei and in HeLa cell nuclei. Endogenous HeLa coilin, however, accumulates around the periphery of phase-light regions in cells expressing DmNopp140. The carboxy truncation (DmNopp140DeltaRGG) also fails to localize to Cajal bodies, but it forms similar phase-light regions that peripherally accumulate endogenous coilin. Conversely, we see no unusual accumulation of coilin in cells expressing DmNopp140-RGG.
Collapse
Affiliation(s)
- John M Waggener
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803-1715, USA
| | | |
Collapse
|
47
|
Baran V, Brochard V, Renard JP, Flechon JE. Nopp 140 involvement in nucleologenesis of mouse preimplantation embryos. Mol Reprod Dev 2001; 59:277-84. [PMID: 11424213 DOI: 10.1002/mrd.1032] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As it was shown earlier, resumption of rRNA transcription in early mouse embryo is localized in the peripheral region of nucleolus precursor body/NPB/during the two-cell stage. Recently, nucleolar phosphoprotein Nopp140 was presented to shuttle between the nucleolus and cytoplasm as chaperone of snoRNPs. Nopp140 interacts with RNA polymerase I in nucleolus and also accumulates in CBs, suggesting a pathway between the two organelles. The aim of the study was to describe the changing location of Nopp140 during the first cleavage stages of mouse embryos and its re-location after inhibition of rRNA synthesis with actinomycin D. Light microscope immunocytochemical staining showed Nopp140 in the periphery of NPBs before activation of rDNA transcription and in addition confirmed its localization in CBs. Immunolabelling with antibodies against RNA Pol I and UBF gave co-localization of these proteins, implicating that Nopp140 may actively participate to rDNA transcription. We suggest that fundamental differences in molecular organization of rDNA synthesis and postranscriptional processes between cycling somatic and pre-implantation embryonic cells may be in selective transport of transcription and/or processing-complexes of proteins to the nucleolar organizer regions (NOR). Mol. Reprod. Dev. 59:277-284, 2001.
Collapse
Affiliation(s)
- V Baran
- Institute of Animal Physiology, SAS, Kosice, Slovakia.
| | | | | | | |
Collapse
|
48
|
Abstract
Cajal bodies are small nuclear organelles first described nearly 100 years ago by Ramón y Cajal in vertebrate neural tissues. They have since been found in a variety of animal and plant nuclei, suggesting that they are involved in basic cellular processes. Cajal bodies contain a marker protein of unknown function, p80-coilin, and many components involved in transcription and processing of nuclear RNAs. Among these are the three eukaryotic RNA polymerases and factors required for transcribing and processing their respective nuclear transcripts: mRNA, rRNA, and pol III transcripts. A model is discussed in which Cajal bodies are the sites for preassembly of transcriptosomes, unitary particles involved in transcription and processing of RNA. A parallel is drawn to the nucleolus and the preassembly of ribosomes, which are unitary particles involved in translation of proteins.
Collapse
Affiliation(s)
- J G Gall
- Department of Embryology, Carnegie Institution, Baltimore, Maryland 21210, USA.
| |
Collapse
|
49
|
Isaac C, Marsh KL, Paznekas WA, Dixon J, Dixon MJ, Jabs EW, Meier UT. Characterization of the nucleolar gene product, treacle, in Treacher Collins syndrome. Mol Biol Cell 2000; 11:3061-71. [PMID: 10982400 PMCID: PMC14975 DOI: 10.1091/mbc.11.9.3061] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development caused by mutations in the gene TCOF1. Its gene product, treacle, consists mainly of a central repeat domain, which shows it to be structurally related to the nucleolar phosphoprotein Nopp140. Treacle remains mostly uncharacterized to date. Herein we show that it, like Nopp140, is a highly phosphorylated nucleolar protein. However, treacle fails to colocalize with Nopp140 to Cajal (coiled) bodies. As in the case of Nopp140, casein kinase 2 appears to be responsible for the unusually high degree of phosphorylation as evidenced by its coimmunoprecipitation with treacle. Based on these and other observations, treacle and Nopp140 exhibit distinct but overlapping functions. The majority of TCOF1 mutations in TCS lead to premature termination codons that could affect the cellular levels of the full-length treacle. We demonstrate however, that the cellular amount of treacle varies less than twofold among a collection of primary fibroblasts and lymphoblasts and regardless of whether the cells were derived from TCS patients or healthy individuals. Therefore, cells of TCS patients possess a mechanism to maintain wild-type levels of full-length treacle from a single allele.
Collapse
Affiliation(s)
- C Isaac
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Deicher R, Exner M, Cohen G, Haag-Weber M, Hörl WH. Neutrophil beta(2)-microglobulin and lactoferrin content in renal failure patients. Am J Kidney Dis 2000; 35:1117-26. [PMID: 10845826 DOI: 10.1016/s0272-6386(00)70049-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Multiple dysfunctions of polymorphonuclear leukocytes (PMNLs) contribute significantly to the increased morbidity and mortality among patients with end-stage renal disease. In the present study, we measured the PMNL content of beta(2)-microglobulin (beta(2)m) and lactoferrin in different states of renal insufficiency and after kidney transplantation. PMNLs were lysed ultrasonically and, after centrifugation, both proteins were assayed in the supernatant by enzyme-linked immunosorbent assay technique. Despite marked differences in plasma beta(2)m levels, no significant difference in PMNL content of beta(2)m and lactoferrin could be shown among the groups analyzed. There was also no correlation between plasma beta(2)m level and PMNL beta(2)m content. In control subjects, as well as in renal allograft recipients with a well-functioning graft, PMNL beta(2)m level correlated positively with PMNL lactoferrin level (pooled data, r = 0.55; P < 0.001; n = 55). Both proteins are considered to colocalize in peroxidase-negative PMNL granules. However, no correlation was found in the azotemic and uremic patient groups. Standard immunofluorescence staining of control PMNLs showed a cytoplasmic granular distribution of both granule proteins. However, in PMNLs of uremic patients, lactoferrin shifted to a perinuclear localization. PMNLs obtained from uremic individuals failed to elicit an increase in lactoferrin release after stimulation with the chemotactic peptide f-Met-Leu-Phe compared with PMNLs obtained from healthy volunteers. These data indicate abnormalities in uremic patients of PMNL granule lactoferrin content and release that are reversible after successful renal transplantation.
Collapse
Affiliation(s)
- R Deicher
- Universitätsklinik für Innere Medizin III, Klinische Abteilung für Nephrologie und Dialyse, Wein, Austria.
| | | | | | | | | |
Collapse
|