1
|
Chaurasia SN, Singh V, Ekhlak M, Dash MK, Joshi N, Dash D. Ayurvedic preparations of Raudra Rasa inhibit agonist-mediated platelet activation and restrict thrombogenicity without affecting cell viability. FEBS Open Bio 2023; 13:2342-2355. [PMID: 37787005 PMCID: PMC10699108 DOI: 10.1002/2211-5463.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023] Open
Abstract
Ayurveda is considered to be one of the most ancient forms of medicine still practiced. The Ayurvedic preparation Raudra Rasa and its derivatives have been widely employed against cancer since the 12th century, but the effect of these traditional formulations on platelet function and signaling has not previously been examined. Here we demonstrate that Raudra Rasa and its derivatives significantly reduce thrombin-induced integrin activation and granule secretion in platelets, as observed by reduced PAC-1 binding and P-selectin externalization, respectively. These formulations also inhibited thrombin-stimulated phosphatidylserine exposure, mitochondrial reactive oxygen species generation, and mitochondrial transmembrane potential in platelets. Consistent with the above, Raudra Rasa significantly reduced thrombin-induced tyrosine phosphorylation of the platelet proteins, as well as phosphorylation of the enzymes AKT and GSK-3β. In summary, Raudra Rasa inhibits agonist-mediated platelet activation without affecting cell viability, suggesting it may have therapeutic potential as an anti-platelet/anti-thrombotic agent.
Collapse
Affiliation(s)
- Susheel Nidhi Chaurasia
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| | - Vipin Singh
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| | - Mohammad Ekhlak
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| | - Manoj Kumar Dash
- Department of Rasa Shastra & B KalpanaGovernment Ayurved CollegeRaipurIndia
| | - Namrata Joshi
- Department of Rasa Shastra, Faculty of Ayurveda, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| | - Debabrata Dash
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
| |
Collapse
|
2
|
Chaurasia SN, Kushwaha G, Pandey A, Dash D. Human platelets express functional ectonucleotidases that restrict platelet activation signaling. Biochem Biophys Res Commun 2020; 527:104-109. [PMID: 32446352 DOI: 10.1016/j.bbrc.2020.04.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Platelets play central role in thrombosis and haemostasis. Platelets store adenine nucleotides in their dense granules, which are released upon agonist-stimulation. Level of these nucleotides in extracellular fluid is regulated by activities of ectonucleotidases such as ectonucleoside triphosphate diphosphohydrolase-1 (CD39) and ecto-5'-nucleotidase (CD73) expressed on platelet surface. Here we demonstrate that, expression of surface-bound ectonucleotidases rose significantly in platelets, concomitant with upregulation of their enzymatic activities, when cells were stimulated with thrombin. Interestingly, inhibition of CD73 in thrombin-treated platelets led to enhanced tyrosine phosphorylation of proteins and rise in intracellular free calcium, [Ca2+]i, thus signifying the inhibitory role of the ectonucleotidase on agonist-mediated platelet signaling.
Collapse
Affiliation(s)
- Susheel N Chaurasia
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Geeta Kushwaha
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Pandey
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Debabrata Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
El Haouari M. Platelet Oxidative Stress and its Relationship with Cardiovascular Diseases in Type 2 Diabetes Mellitus Patients. Curr Med Chem 2019; 26:4145-4165. [PMID: 28982316 DOI: 10.2174/0929867324666171005114456] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 01/01/2023]
Abstract
Enhanced platelet activation and thrombosis are linked to various cardiovascular diseases (CVD). Among other mechanisms, oxidative stress seems to play a pivotal role in platelet hyperactivity. Indeed, upon stimulation by physiological agonists, human platelets generate and release several types of reactive oxygen species (ROS) such as O2 -, H2O2 or OH-, further amplifying the platelet activation response via various signalling pathways, including, formation of isoprostanes, Ca2+ mobilization and NO inactivation. Furthermore, excessive platelet ROS generation, incorporation of free radicals from environment and/or depletion of antioxidants induce pro-oxidant, pro-inflammatory and platelet hyperaggregability effects, leading to the incidence of cardiovascular events. Here, we review the current knowledge regarding the effect of oxidative stress on platelet signaling pathways and its implication in CVD such as type 2 diabetes mellitus. We also summarize the role of natural antioxidants included in vegetables, fruits and medicinal herbs in reducing platelet function via an oxidative stress-mediated mechanism.
Collapse
Affiliation(s)
- Mohammed El Haouari
- Centre Regional des Metiers de l'Education et de la Formation de Taza (CRMEF - Taza), B.P: 1178 - Taza Gare, Morocco
| |
Collapse
|
4
|
Novel compounds of hybrid structure pyridazinone–coumarin as potent inhibitors of platelet aggregation. Future Med Chem 2019; 11:2051-2062. [DOI: 10.4155/fmc-2018-0373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: The current limitations of antiplatelet therapy promote the search for new antithrombotic agents. Here we describe novel platelet aggregation inhibitors that combine pyridazinone and coumarin scaffolds in their structure. Results: The target compounds were synthesized in good yield from maleic anhydride, following a multistep strategy. The in vitro studies demonstrated significant antiplatelet activity in many of these compounds, with IC50 values in the low micromolar range, revealing that the activity was affected by the substitution pattern of the two selected cores. Additional studies point out their effect as inhibitors of glycoprotein (Gp) IIb/IIIa activation. Conclusion: This novel hybrid structure can be considered a good prototype for the development of potent platelet aggregation inhibitors.
Collapse
|
5
|
Abstract
Integrin αIIbβ3 is a highly abundant heterodimeric platelet receptor that can transmit information bidirectionally across the plasma membrane, and plays a critical role in hemostasis and thrombosis. Upon platelet activation, inside-out signaling pathways increase the affinity of αIIbβ3 for fibrinogen and other ligands. Ligand binding and integrin clustering subsequently stimulate outside-in signaling, which initiates and amplifies a range of cellular events driving essential platelet processes such as spreading, thrombus consolidation, and clot retraction. Integrin αIIbβ3 has served as an excellent model for the study of integrin biology, and it has become clear that integrin outside-in signaling is highly complex and involves a vast array of enzymes, signaling adaptors, and cytoskeletal components. In this review, we provide a concise but comprehensive overview of αIIbβ3 outside-in signaling, focusing on the key players involved, and how they cooperate to orchestrate this critical aspect of platelet biology. We also discuss gaps in the current understanding of αIIbβ3 outside-in signaling and highlight avenues for future investigation.
Collapse
|
6
|
Mallick RL, Kumari S, Singh N, Sonkar VK, Dash D. Prion protein fragment (106-126) induces prothrombotic state by raising platelet intracellular calcium and microparticle release. Cell Calcium 2015; 57:300-11. [PMID: 25749016 DOI: 10.1016/j.ceca.2015.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/19/2015] [Accepted: 02/08/2015] [Indexed: 11/28/2022]
Abstract
Prion diseases are neurodegenerative disorders where infectious prion proteins (PrP) accumulate in brain leading to aggregation of amyloid fibrils and neuronal cell death. The amino acid sequence 106-126 from prion proteins, PrP(106-126), is highly amyloidogenic and implicated in prion-induced pathologies. As PrP is known to be expressed in blood following leakage from brain tissue, we sought to investigate its biological effects on human platelets, which have been widely employed as 'peripheral' model for neurons. Our findings suggested that, PrP(106-126) (20μM) induced dramatic 30-fold rise in intracellular calcium (from 105±30 to 3425±525nM) in platelets, which was attributable to influx from extracellular fluid with comparatively less contribution from intracellular stores. Calcium mobilization was associated with 8-10-fold stimulation in the activity of thiol protease calpain that led to partial cleavage of cytoskeleton-associated protein talin and extensive shedding of microparticles from platelets, thus transforming platelets to 'activated' phenotype. Both proteolysis of talin and microparticle release were precluded by calpeptin, a specific inhibitor of calpain. As microparticles are endowed with phosphatidylserine-enriched surface and hence are pro-coagulant in nature, exposure to prion favored a thrombogenic state in the organism.
Collapse
Affiliation(s)
- Ram L Mallick
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sharda Kumari
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nitesh Singh
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vijay K Sonkar
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Debabrata Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
7
|
The N-terminal SH2 domain of Syk is required for (hem)ITAM, but not integrin, signaling in mouse platelets. Blood 2014; 125:144-54. [PMID: 25352128 DOI: 10.1182/blood-2014-05-579375] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have used a novel knockin mouse to investigate the effect of disruption of phosphotyrosine binding of the N-terminal SH2 domain of Syk on platelet activation by GPVI, CLEC-2, and integrin αIIbβ3. The Syk(R41Afl/fl) mouse was crossed to a PF4-Cre(+) mouse to induce expression of the Syk mutant in the megakaryocyte/platelet lineage. Syk(R41Afl/fl;PF4-Cre) mice are born at approximately 50% of the expected frequency and have a similar phenotype to Syk(fl/fl;PF4-Cre) mice, including blood-lymphatic mixing and chyloascites. Anastomosis of the venous and lymphatic vasculatures can be seen in the mesenteric circulation accounting for rapid and continuous mixing of the 2 vasculatures. Platelet activation by CLEC-2 and GPVI is abolished in Syk(R41Afl/fl;PF4-Cre) platelets. Syk phosphorylation on Tyr519/20 is blocked in CLEC-2-stimulated platelets, suggesting a model in which binding of Syk via its N-terminal SH2 domain regulates autophosphorylation. In contrast, outside-in signaling by integrin αIIbβ3 is not altered, but it is inhibited in the presence of inhibitors of Src and Syk tyrosine kinases. These results demonstrate that αIIbβ3 regulates Syk through an ITAM-independent pathway in mice and provide novel insight into the course of events underlying Syk activation and hemITAM phosphorylation by CLEC-2.
Collapse
|
8
|
Rao AK. Inherited platelet function disorders: overview and disorders of granules, secretion, and signal transduction. Hematol Oncol Clin North Am 2013; 27:585-611. [PMID: 23714313 DOI: 10.1016/j.hoc.2013.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Inherited disorders of platelet function are characterized by highly variable mucocutaneous bleeding manifestations. The platelet dysfunction arises by diverse mechanisms, including abnormalities in platelet membrane glycoproteins, granules and their contents, platelet signaling and secretion mechanisms: thromboxane production pathways and in platelet procoagulant activities. Platelet aggregation and secretion studies using platelet-rich plasma currently form the primary basis for the diagnosis of an inherited platelet dysfunction. In most such patients, the molecular and genetic mechanisms are unknown. Management of these patients needs to be individualized; therapeutic options include platelet transfusions, 1-desamino-8d-arginine vasopressin (DDAVP), recombinant factor VIIa, and antifibrinolytic agents.
Collapse
Affiliation(s)
- A Koneti Rao
- Hematology Section, Department of Medicine and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
9
|
Reynolds AB, Kanner SB, Bouton AH, Schaller MD, Weed SA, Flynn DC, Parsons JT. SRChing for the substrates of Src. Oncogene 2013; 33:4537-47. [PMID: 24121272 DOI: 10.1038/onc.2013.416] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/12/2022]
Abstract
By the mid 1980's, it was clear that the transforming activity of oncogenic Src was linked to the activity of its tyrosine kinase domain and attention turned to identifying substrates, the putative next level of control in the pathway to transformation. Among the first to recognize the potential of phosphotyrosine-specific antibodies, Parsons and colleagues launched a risky shotgun-based approach that led ultimately to the cDNA cloning and functional characterization of many of today's best-known Src substrates (for example, p85-Cortactin, p110-AFAP1, p130Cas, p125FAK and p120-catenin). Two decades and over 6000 citations later, the original goals of the project may be seen as secondary to the enormous impact of these protein substrates in many areas of biology. At the request of the editors, this review is not restricted to the current status of the substrates, but reflects also on the anatomy of the project itself and some of the challenges and decisions encountered along the way.
Collapse
Affiliation(s)
- A B Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - S B Kanner
- Arrowhead Research Corporation, Madison, WI, USA
| | - A H Bouton
- Departments of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - M D Schaller
- Department of Biochemistry, 3124 HSN, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - S A Weed
- Department of Neurobiology and Anatomy, 1833 Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - D C Flynn
- Department of Medical Lab Sciences, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - J T Parsons
- Departments of Microbiology, Immunology and Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, USA
| |
Collapse
|
10
|
CHEN YIXIN, CHEN XIAOWEN, LI CHANGGANG, YUE LIJIE, MAI HUIRONG, WEN FEIQIU. Effect of tumor gangliosides on tyrosine phosphorylation of p125FAK in platelet adhesion to collagen. Oncol Rep 2012; 29:343-8. [DOI: 10.3892/or.2012.2092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/28/2012] [Indexed: 11/05/2022] Open
|
11
|
Jung HJ, Kim SJ, Jeon WK, Kim BC, Ahn K, Kim K, Kim YM, Park EH, Lim CJ. Anti-inflammatory activity of n-propyl gallate through down-regulation of NF-κB and JNK pathways. Inflammation 2012; 34:352-61. [PMID: 20689985 DOI: 10.1007/s10753-010-9241-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study aimed to assess anti-inflammatory activity and underlying mechanism of n-propyl gallate, the n-propyl ester of gallic acid. n-Propyl gallate was shown to contain anti-inflammatory activity using two experimental animal models, acetic acid-induced permeability model in mice, and air pouch model in rats. It suppressed production of nitric oxide and induction of inducible nitric oxide synthase and cyclooxygenase-2 in the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. It was able to diminish reactive oxygen species level elevated in the LPS-stimulated RAW264.7 macrophage cells. It also suppressed gelatinolytic activity of matrix metalloproteinase-9 enhanced in the LPS-stimulated RAW264.7 macrophage cells. It inhibited inhibitory κB-α degradation and enhanced NF-κB promoter activity in the stimulated macrophage cells. It was able to suppress phosphorylation of c-Jun NH(2)-terminal kinase 1/2 (JNK1/2) and activation of c-Jun promoter activity in the stimulated macrophage cells. In brief, n-propyl gallate possesses anti-inflammatory activity via down-regulation of NF-κB and JNK pathways.
Collapse
Affiliation(s)
- Hyun-Joo Jung
- College of Pharmacy, Sookmyung Women's University, Seoul, 140-742, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Singh SK, Singh MK, Nayak MK, Kumari S, Shrivastava S, Grácio JJA, Dash D. Thrombus inducing property of atomically thin graphene oxide sheets. ACS NANO 2011; 5:4987-96. [PMID: 21574593 DOI: 10.1021/nn201092p] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene oxide (GO), the new two-dimensional carbon nanomaterial, is extensively investigated for potential biomedical applications. Thus, it is pertinent to critically evaluate its untoward effects on physiology of tissue systems including blood platelets, the cells responsible for maintenance of hemostasis and thrombus formation. Here we report for the first time that atomically thin GO sheets elicited strong aggregatory response in platelets through activation of Src kinases and release of calcium from intracellular stores. Compounding this, intravenous administration of GO was found to induce extensive pulmonary thromboembolism in mice. Prothrombotic character of GO was dependent on surface charge distribution as reduced GO (RGO) was significantly less effective in aggregating platelets. Our findings raise a concern on putative biomedical applications of GO in the form of diagnostic and therapeutic tools where its prothrombotic property should be carefully investigated.
Collapse
Affiliation(s)
- Sunil K Singh
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | | | | | | | | | | | | |
Collapse
|
13
|
Deb S, Patra HK, Lahiri P, Dasgupta AK, Chakrabarti K, Chaudhuri U. Multistability in platelets and their response to gold nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:376-84. [PMID: 21310267 DOI: 10.1016/j.nano.2011.01.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 01/12/2011] [Accepted: 01/16/2011] [Indexed: 10/18/2022]
Abstract
UNLABELLED The nanoparticle (NP) response of platelets is shown to be critically dependent on extent of preactivation of platelets by an agonist like ADP. A transition from de-aggregatory to aggregatory state is triggered in the presence of gold NPs (AuNP) only in such critical conditions. Adhered and suspended platelets respond differentially to NPs. Preactivation in the adhered state induced by shear force explains such observation. The NP effect is associated with enhanced release reaction, tyrosine phosphorylation and CD62P expression level. Unlike cancer cells, whose response is maximal when NP size is optimal (within the range 50 - 70 nm), the platelet response monotonically increases with reduction of the AuNP size. The uptake study, using quenching of quinacrine hydrochloride fluorescence by AuNP, indicates that accumulation 18 nm AuNP is several-fold higher than the 68 nm AuNP. It is further shown that AuNP response can provide a simple measure for thrombotic risk associated with nano-drugs. FROM THE CLINICAL EDITOR Platelet aggregation can be triggered in the presence of gold nanoparticles (AuNP). Platelet response monotonically increases with reduction of the AuNP size. AuNP response can provide a simple measure for thrombotic risk associated with nano-drugs.
Collapse
Affiliation(s)
- Suryyani Deb
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Cellular interactions with extracellular matrix play essential roles in tumor initiation, progression and metastasis. Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase identified as a key mediator of signaling by integrins, a major family of cell surface receptors for extracellular matrix, as well as other receptors in both normal and cancer cells. FAK is activated by integrins through disruption of an auto-inhibitory intra-molecular interaction between its kinase domain and the amino terminal FERM domain. The activated FAK forms a binary complex with Src family kinases which can phosphorylate other substrates and trigger multiple intracellular signaling pathways to regulate various cellular functions. Subcellular localization of FAK in focal adhesions is essential for FAK signaling, which is another distinguishing feature of the kinase. Integrin-FAK signaling has been shown to activate a number of signaling pathways through phosphorylation and protein-protein interactions to promote tumorigenesis. FAK also plays a prominent role in tumor progression and metastasis through its regulation of both cancer cells and their microenvironments including cancer cell migration, invasion, epithelial to mesenchymal transition, and angiogenesis. More recently, a role for FAK in tumor initiation and progression has been demonstrated directly using xenograft as well as conditional knockout mouse models. In agreement with these experimental data, overexpression and activation of FAK have been found in a variety of human cancers. A number of small molecule inhibitors for FAK have been developed and in various phases of testing for cancer treatments. Overall, the intensive research on FAK signaling in cancer have yielded a wealth of information on this pivotal kinase and these and future studies are leading to potentially novel therapies for cancer.
Collapse
|
15
|
Glenn J, Spangenberg P, Heptinstall S. Platelet-platelet Contact and Thromboxane A2Contribute to Actin Polymerization in Platelets Stimulated with ADP. Platelets 2009; 5:84-9. [DOI: 10.3109/09537109409005517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Abstract
Integrins are cell surface transmembrane receptors that recognize and bind to extracellular matrix proteins and counter receptors. Binding of activated integrins to their ligands induces a vast number of structural and signaling changes within the cell. Large, multimolecular complexes assemble onto the cytoplasmic tails of activated integrins to engage and organize the cytoskeleton, and activate signaling pathways that ultimately lead to changes in gene expression. Additionally, integrin-mediated signaling intersects with growth factor-mediated signaling through various levels of cross-talk. This review discusses recent work that has tremendously broadened our understanding of the complexity of integrin-mediated signaling.
Collapse
|
17
|
Reddy KB, Smith DM, Plow EF. Analysis of Fyn function in hemostasis and alphaIIbbeta3-integrin signaling. J Cell Sci 2008; 121:1641-8. [PMID: 18430780 DOI: 10.1242/jcs.014076] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Recent studies have shown that Src-family kinases (SFKs) play an important role in mediating integrin signalling, and the beta3 subunit of alphaIIbbeta3 integrin has been shown to interact with multiple SFK members. Here, we analyzed the interactions and functional consequences of Fyn and Src binding to alphaIIbbeta3. Fyn associated with the beta3 subunit in resting and thrombin-aggregated platelets, whereas interaction between Src and alphaIIbbeta3 was seen predominantly in resting but not in thrombin-aggregated platelets. We have also observed that Fyn but not Src localized to focal adhesions in CHO cells adherent to fibrinogen through alphaIIbbeta3. On the basis of these differences, we wanted to determine the sequence requirements for the interaction of Fyn and Src within the beta3-cytoplasmic domain. Whereas Src association required the C-terminal region of beta3, Fyn continued to interact with mutants that could no longer associate with Src and that contained as few as 13 membrane-proximal amino acids of the beta3-cytoplasmic tail. Using deletion mutants of beta3-cytoplasmic tails expressed as GST-fusion proteins, we narrowed down the Fyn-binding site even further to the amino acid residues 721-725 (IHDRK) of the beta3-cytoplasmic domain. On the basis of these observations, we explored whether Fyn-/- mice exhibited any abnormalities in hemostasis and platelet function. We found that Fyn-/- mice significantly differed in their second bleeding times compared with wild-type mice, and platelets from Fyn-/- mice exhibited delayed spreading on fibrinogen-coated surfaces. Using mutant forms of Fyn, it appears that its kinase activity is required for its localization to focal adhesions and to mediate alphaIIbbeta3-dependent cell spreading. Our results suggest that Fyn and Src have distinct requirements for interaction with alphaIIbbeta3; and, consequently, the two SFK can mediate different functional responses.
Collapse
Affiliation(s)
- Kumar B Reddy
- Department of Molecular Cardiology and Joseph J Jacobs Center for Thrombosis & Vascular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
18
|
Cox D. Section Review—Cardiovascular & Renal: Integrins and Cardiovascular Disease. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.5.413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Chen JJ, Su XY, Xi XD, Lin LP, Ding J, Lu H. Fibrinogen interaction of CHO cells expressing chimeric alphaIIb/alphavbeta3 integrin. Acta Pharmacol Sin 2008; 29:204-10. [PMID: 18215349 DOI: 10.1111/j.1745-7254.2008.00723.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIM The molecular mechanisms of the affinity regulation of alphavbeta3 integrin are important in tumor development, wound repairing, and angiogenesis. It has been established that the cytoplasmic domains of alphavbeta3 integrin play an important role in integrin-ligand affinity regulation. However, the relationship of structure-function within these domains remains unclear. METHODS The extracellular and transmembrane domain of alphaIIb was fused to the alphav integrin cytoplasmic domain, and the chimeric alpha subunit was coexpressed in Chinese hamster ovary (CHO) cells with the wild-type beta3 subunit or with 3 mutant beta3 sequences bearing truncations at the positions of T741, Y747, and F754, respectively. The CHO cells expressing these recombinant integrins were tested for soluble fibrinogen binding and the cell adhesion and spreading on immobilized fibrinogen. RESULTS All 4 types of integrins bound soluble fibrinogen in the absence of agonist stimulation, and only the cells expressing the chimeric alpha subunit with the wild-type beta3 subunit, but not those with truncated beta3, could adhere to and spread on immobilized fibrinogen. CONCLUSION The substitution alphaIIb at the cytoplasmic domain with the alphav cytoplasmic sequence rendered the extracellular alphaIIbbeta3 a constitutively activated conformation for ligands without the need of pinside-outq signals. Our results also indicated that the COOH-terminal sequence of beta3 might play a key role in integrin alphaIIb/alphavbeta3-mediated cell adhesion and spreading on immobilized fibrinogen. The cells expressing alphaIIb/alphavbeta3 have enormous potential for facilitating drug screening for antagonists either to alphavbeta3 intracellular interactions or to alphaIIbbeta3 receptor functions.
Collapse
Affiliation(s)
- Juan-juan Chen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | |
Collapse
|
20
|
Mitsios JV, Stamos G, Rodis FI, Tsironis LD, Stanica MR, Sakarellos C, Tsoukatos D, Tsikaris V, Tselepis AD. Investigation of the role of adjacent amino acids to the 313-320 sequence of the alphaIIb subunit on platelet activation and fibrinogen binding to alphaIIbbeta3. Platelets 2006; 17:277-82. [PMID: 16928597 DOI: 10.1080/09537100500436713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The platelet integrin receptor alphaIIbbeta3 plays a critical role in thrombosis and haemostasis by mediating interactions between platelets and several ligands, primarily fibrinogen. We have previously shown that the synthetic peptide YMESRADRKLAEVGRVYLFL corresponding to residues 313-332 of alphaIIb, is a potent inhibitor of platelet aggregation and fibrinogen binding to alphaIIbbeta3, interacting with fibrinogen rather than the receptor. Furthermore, we have demonstrated that the biological activities of the above peptide are due to the sequence YMESRADR, which corresponds to residues 313-320. By using new synthetic peptide analogues we investigated the structural characteristics responsible for the biological activity of YMESRADR as well the possible influence of the adjacent amino acids on the peptide's biological potency. According to our results, the synthetic octapeptide YMESRADR, is a potent inhibitor of platelet aggregation and P-selectin expression. Furthermore, YMESRADR inhibits fibrinogen binding but it does not significantly influence the binding of PAC-1 to ADP-activated platelets. The inhibitory potency of YMESRADR was gradually diminished by deleting the YMES sequence from the amino terminus and prolonging the carboxyl terminus of this peptide with the KLAE sequence. Extension of YMESRADR towards the amino terminus with the GAPL sequence (GAPLYMESRADR) does not modify the biological activity of YMESRADR. Furthermore, extension of GAPLYMESRADR at its carboxy terminus with the KLAE sequence (GAPLYMESRADRKLAE) significantly diminished its biological potency. Substitution of E315 with D significantly enhances antiaggregatory potency and completely abolishes the inhibitory effect on P-selectin expression. Importantly, the D315-containing peptides inhibit to a similar extent both fibrinogen and PAC-1 binding to activated alphaIIbbeta3 in contrast to the E315-containing peptide which only inhibits fibrinogen binding. In conclusion, the present study suggests that the YMESRADR sequence 313-320 of alphaIIb, is an important functional region of the insert connecting the beta2 and beta3 antiparallel beta-strands of the W5 blade of the alphaIIb subunit. Structural changes significantly modify the biological properties of this region.
Collapse
Affiliation(s)
- John V Mitsios
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lindenblatt N, Menger MD, Klar E, Vollmar B. Sustained hypothermia accelerates microvascular thrombus formation in mice. Am J Physiol Heart Circ Physiol 2005; 289:H2680-7. [PMID: 16100248 DOI: 10.1152/ajpheart.00425.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cold is supposed to be associated with alterations in blood coagulation and a pronounced risk for thrombosis. We studied the effect of clinically encountered systemic hypothermia on microvascular thrombosis in vivo and in vitro. Ferric chloride-induced microvascular thrombus formation was analyzed in cremaster muscle preparations from hypothermic mice. Additionally, flow cytometry and Western blot analysis was used to evaluate the effect of hypothermia on platelet activation. To test whether preceding hypothermia predisposes for enhanced thrombosis, experiments were repeated after hypothermia and rewarming to 37°C. Control animals revealed complete occlusion of arterioles and venules after 742 ± 150 and 824 ± 172 s, respectively. Systemic hypothermia of 34°C accelerated thrombus formation in arterioles and venules (279 ± 120 and 376 ± 121 s; P < 0.05 vs. 37°C). This was further pronounced after cooling to 31°C (163 ± 57 and 281 ± 71 s; P < 0.05 vs. 37°C). Magnitude of thrombin receptor activating peptide (TRAP)-induced platelet activation increased with decreasing temperatures, as shown by 1.8- and 3.0-fold increases in mean fluorescence after PAC-1 binding to glycoprotein (GP)IIb-IIIa and 1.6- and 2.9-fold increases of fibrinogen binding on incubation at 34°C and 31°C. Additionally, tyrosine-specific protein phosphorylation in platelets was increased at hypothermic temperatures. In rewarmed animals, kinetics of thrombus formation were comparable to those in normothermic controls. Concomitantly, spontaneous and TRAP-enhanced GPIIb-IIIa activation did not differ between rewarmed platelets and those maintained continuously at 37°C. Moderate systemic hypothermia accelerates microvascular thrombosis, which might be mediated by increased GPIIb-IIIa activation on platelets but does not cause predisposition with increased risk for microvascular thrombus formation after rewarming.
Collapse
Affiliation(s)
- Nicole Lindenblatt
- Dept. of Experimental Surgery and Dept. of General Surgery, Univ. of Rostock, Schillingallee 70, 18055 Rostock, Germany.
| | | | | | | |
Collapse
|
22
|
Kouki A, Mitsios JV, Sakarellos-Daitsiotis M, Sakarellos C, Tselepis AD, Tsikaris V, Tsoukatos DC. Highly constrained cyclic (S,S) -CXaaC- peptides as inhibitors of fibrinogen binding to platelets. J Thromb Haemost 2005; 3:2324-30. [PMID: 16129021 DOI: 10.1111/j.1538-7836.2005.01487.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Arg-Gly-Asp RGD motif of adhesive proteins is recognized by the activated platelet integrin alpha(IIb)beta3. Binding of fibrinogen (Fg) to activated alpha(IIb)beta3 causes platelet aggregation and thrombus formation. Highly constraint cyclic (S,S) -CXaaC- containing peptides incorporating the (S,S) -CDC- and (S,S) -CRC- motifs were tested for their ability to inhibit platelet aggregation and Fg binding. Our results suggest that the above cyclic scaffolds stabilize a favorable structure for the antiaggregatory activity (IC50-values ranged from 1.7 to 570 microm). The peptides inhibited Fg binding with IC50-values up to 30-fold lower than those determined for the inhibition of the adenosine diphosphate (ADP)-induced platelet aggregation. Importantly, peptides (S,S) PSRCDCR-NH2 (peptide 11) and (S,S) PRCDCK-NH2 (peptide 10) did not inhibit PAC-1 binding to the activated platelets at a concentration in which they completely inhibited Fg binding. Moreover, (S,S) PSRCDCR-NH(2) (peptide 11), one of the more active peptides, inhibited ADP-induced P-selectin exposure. By contrast, peptide (S,S) Ac-RWDCRC-NH2, incorporating the inverse (S,S) -DCRC- sequence (peptide 16), failed to inhibit P-selectin exposure whereas at the same concentration, it effectively inhibited PAC-1 and Fg binding. It is concluded that peptides containing the (S,S) -CDC- as well the (S,S) -CRC- sequences, exhibit a broad range of activities toward platelets, and could be helpful tools for elucidating the structural interaction of Fg with the integrin receptor alpha(IIb)beta3, in its activated form. Furthermore, the (S,S) -RCDC- sequence can be used as a scaffold for developing potent non-RGD-like Fg-binding inhibitors.
Collapse
Affiliation(s)
- A Kouki
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- K Burridge
- Department of Cell Biology and Anatomy, University of North Carolina at Chapel hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
24
|
Xiao H, Kovics R, Jackson V, Remick DG. Effects of platelet inhibitors on propyl gallate-induced platelet aggregation, protein tyrosine phosphorylation, and platelet factor 3 activation. Blood Coagul Fibrinolysis 2004; 15:199-206. [PMID: 15060414 DOI: 10.1097/00001721-200404000-00001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Propyl gallate (PG) is a platelet agonist characterized by inducing platelet aggregation, protein tyrosine phosphorylation, and platelet factor 3 activity. The mechanisms of platelet activation following PG stimulation were examined by pre-incubating platelets with well-defined platelet inhibitors using platelet aggregation, protein tyrosine phosphorylation, activated plasma clotting time, and annexin V binding by flow cytometry. PG-induced platelet aggregation and tyrosine phosphorylation of multiple proteins were substantially abolished by aspirin, apyrase, and abciximab (c7E3), suggesting that PG is associated with activation of platelet cyclooxygenase 1, adenosine phosphate receptors, and glycoprotein IIb/IIIa, respectively. The phosphorylation of the cytoskeletal enzyme pp60(c-src) increased following PG stimulation, but was blunted by pre-incubation of platelets with aspirin, apyrase, and c7E3, suggesting that tyrosine kinase is important for the signal transduction of platelet aggregation. Propyl gallate also activates platelet factor 3 by decreasing the platelet coagulation time and increasing platelet annexin V binding. Platelet incubation with aspirin, apyrase, and c7E3 did not alter PG-induced platelet coagulation and annexin V binding. The results suggest that platelet factor 3 activation and membrane phosphotidylserine expression were not involved with activation of platelet cyclooxygenase, adenosine phosphate receptors, and glycoprotein IIb/IIIa. PG is unique in its ability to stimulate platelet aggregation and coagulation simultaneously, and platelet inhibitors in this study affect only platelet aggregation but not platelet coagulation.
Collapse
Affiliation(s)
- Hongyan Xiao
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0602, USA.
| | | | | | | |
Collapse
|
25
|
Mitsios JV, Tambaki AP, Abatzis M, Biris N, Sakarellos-Daitsiotis M, Sakarellos C, Soteriadou K, Goudevenos J, Elisaf M, Tsoukatos D, Tsikaris V, Tselepis AD. Effect of synthetic peptides corresponding to residues 313-332 of the alphaIIb subunit on platelet activation and fibrinogen binding to alphaIIbbeta3. ACTA ACUST UNITED AC 2004; 271:855-62. [PMID: 14764102 DOI: 10.1111/j.1432-1033.2004.03990.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The platelet integrin receptor alphaIIbbeta3 plays a critical role in thrombosis and haemostasis by mediating interactions between platelets and several ligands but primarily fibrinogen. It has been shown previously that the YMESRADR KLAEVGRVYLFL (313-332) sequence of the alphaIIb subunit plays an important role in platelet activation, fibrinogen binding and alphaIIbbeta3-mediated outside-in signalling. Furthermore, we recently showed that the 20-residue peptide (20-mer) alphaIIb 313-332, is a potent inhibitor of platelet aggregation and fibrinogen binding to alphaIIbbeta3, interacting with fibrinogen rather than the receptor. In an effort to determine the sequence and the minimum length required for the biological activity of the above 20-mer, we synthesized seven octapeptides, each overlapping by six residues, covering the entire sequence and studied their effect on platelet activation as well as fibrinogen binding to activated platelets. We show for the first time that octapeptides containing the RAD sequence are capable of inhibiting platelet aggregation and secretion as well as fibrinogen binding to the activated alphaIIbbeta3, possibly interacting with the ligand rather than the receptor. This suggests that the RAD sequence, common to all the inhibitory peptides, is critical for their biological activity. However, the presence of the YMES sequence, adjacent to RAD, significantly increases the peptide's biological potency. The development of such inhibitors derived from the 313-332 region of the alphaIIb subunit may be advantageous against the RGD-like antagonists as they could inhibit platelet activation without interacting with alphaIIbbeta3, thus failing to further induce alphaIIbbeta3-mediated outside-in signalling.
Collapse
Affiliation(s)
- John V Mitsios
- Department of Chemistry Medical School, University of Ioannina, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Recent work has shown that integrin receptors serve not only as structural receptors that connect the extracellular matrix to the cytoskeleton, but also as signalling receptors that regulate intracellular pH, intracellular free calcium, phosphorylation of proteins on tyrosine and inositol lipid turnover. The ability of extracellular matrix to influence growth, differentiation and other cell functions is very likely related to their effects on signaling pathways inside the cell.
Collapse
Affiliation(s)
- M A Schwartz
- The Scripps Research Institute Committee on Vascular Biology, 10666 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
27
|
Biris N, Abatzis M, Mitsios JV, Sakarellos-Daitsiotis M, Sakarellos C, Tsoukatos D, Tselepis AD, Michalis L, Sideris D, Konidou G, Soteriadou K, Tsikaris V. Mapping the binding domains of the alpha(IIb) subunit. A study performed on the activated form of the platelet integrin alpha(IIb)beta(3). EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3760-7. [PMID: 12950259 DOI: 10.1046/j.1432-1033.2003.03762.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
alpha(IIb)beta(3), a member of the integrin family of adhesive protein receptors, is the most abundant glycoprotein on platelet plasma-membranes and binds to adhesive proteins via the recognition of short amino acid sequences, for example the ubiquitous RGD motif. However, elucidation of the ligand-binding domains of the receptor remains controversial, mainly owing to the fact that integrins are conformationally labile during purification and storage. In this study, a detailed mapping of the extracellular region of the alpha(IIb) subunit is presented, using overlapping 20-peptides, in order to identify the binding sites of alpha(IIb) potentially involved in the platelet-aggregation event. Regions alpha(IIb) 313-332, alpha(IIb) 265-284 and alpha(IIb) 57-64 of alpha(IIb)beta(3) were identified as putative fibrinogen-binding domains because the corresponding peptides inhibited platelet aggregation and antagonized fibrinogen association, possibly by interacting with this ligand. The latter is further supported by the finding that the above peptides did not interfere with the binding of PAC-1 to the activated form of alpha(IIb)beta(3). Furthermore, alpha(IIb) 313-332 was found to bind to fibrinogen in a solid-phase binding assay. It should be emphasized that all the experiments in this study were carried out on activated platelets and consequently on the activated form of this integrin receptor. We hypothesize that RAD and RAE adhesive motifs, encompassed in alpha(IIb) 313-332, 265-284 and 57-64, are capable of recognizing complementary domains of fibrinogen, thus inhibiting the binding of this ligand to platelets.
Collapse
Affiliation(s)
- Nikolaos Biris
- Department of Chemistry, University of Ioannina, Ioannina, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xi X, Bodnar RJ, Li Z, Lam SCT, Du X. Critical roles for the COOH-terminal NITY and RGT sequences of the integrin beta3 cytoplasmic domain in inside-out and outside-in signaling. J Cell Biol 2003; 162:329-39. [PMID: 12860973 PMCID: PMC2172800 DOI: 10.1083/jcb.200303120] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Bidirectional signaling of integrin alphaIIbbeta3 requires the beta3 cytoplasmic domain. To determine the sequence in the beta3 cytoplasmic domain that is critical to integrin signaling, cell lines were established that coexpress the platelet receptor for von Willebrand factor (vWF), glycoprotein Ib-IX, integrin alphaIIb, and mutants of beta3 with truncations at sites COOH terminal to T741, Y747, F754, and Y759. Truncation at Y759 did not affect integrin activation, as indicated by vWF-induced fibrinogen binding, but affected cell spreading and stable adhesion. Thus, the COOH-terminal RGT sequence of beta3 is important for outside-in signaling but not inside-out signaling. In contrast, truncation at F754, Y747, or T741 completely abolished integrin activation. A point mutation replacing Y759 with alanine also abolished integrin activation. Thus, the T755NITY759 sequence of beta3, containing an NXXY motif, is critical to inside-out signaling, whereas the intact COOH terminus is important for outside-in signaling. In addition, we found that the calcium-dependent protease calpain preferentially cleaves at Y759 in a population of beta3 during platelet aggregation and adhesion, suggesting that calpain may selectively regulate integrin outside-in signaling.
Collapse
Affiliation(s)
- Xiaodong Xi
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
29
|
Mekrache M, Bachelot-Loza C, Ajzenberg N, Saci A, Legendre P, Baruch D. Activation of pp125FAK by type 2B recombinant von Willebrand factor binding to platelet GPIb at a high shear rate occurs independently of alpha IIb beta 3 engagement. Blood 2003; 101:4363-71. [PMID: 12543870 DOI: 10.1182/blood-2002-06-1879] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shear-induced platelet aggregation (SIPA) involves the sequential interaction of von Willebrand factor (VWF) with both glycoprotein Ib (GPIb) and alphaIIbbeta3 receptors. Type 2B recombinant VWF (2B-rVWF), characterized by an increased affinity for GPIb, induces strong SIPA at a high shear rate (4000 s-1). Despite the increased affinity of 2B-rVWF for GPIb, patients with type 2B von Willebrand disease have a paradoxical bleeding disorder, which is not well understood. The purpose of this study was to determine if SIPA induced by 2B-rVWF was associated with alphaIIbbeta3-dependent platelet activation. To this end, we have addressed the influence of 2B-rVWF (Val553Met substitution) on SIPA-dependent variations of tyrosine protein phosphorylation (P-Tyr) and the effect of alphaIIbbeta3 blockers. At a high shear rate, 2B-rVWF induced a strong SIPA, as shown by a 92.7% +/- 0.4% disappearance of single platelets (DSP) after 4.5 minutes. In these conditions, increased P-Tyr of proteins migrating at positions 64 kd, 72 kd, and 125 kd were observed. The band at 125 kd was identified as pp125FAK using anti-phospho-FAK antibody. This effect, which required a high level of SIPA (> 70% DSP), was observed at 4000 s-1 but not at 200 s-1. Monoclonal antibodies (MoAbs) 6D1 (anti-GPIb) and 328 (anti-VWF A1 domain), completely abolished SIPA and p125FAK phosphorylation mediated by 2B-rVWF. In contrast, neither RGDS peptide nor MoAb 7E3, both known to block alphaIIbbeta3 engagement, had any effect on SIPA and pp125FAK. The size of aggregates formed at a high shear rate in the presence of 2B-rVWF was decreased by genistein, demonstrating the biologic relevance of pp125FAK. These findings provide a unique mechanism whereby the enhanced interaction of 2B-rVWF with GPIb, without engagement of alphaIIbbeta3, is sufficient to induce SIPA but does not lead to stable thrombus formation.
Collapse
Affiliation(s)
- Médina Mekrache
- Institut National de la Santé et de la Recherche Médicale (INSERM), Le Kremlin-Bicetre, France
| | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- A K Rao
- Department of Medicine, and the Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia 19140, USA.
| |
Collapse
|
31
|
Ishibashi Y, Yoshimura K, Nishikawa A, Claus S, Laudanna C, Relman DA. Role of phosphatidylinositol 3-kinase in the binding of Bordetella pertussis to human monocytes. Cell Microbiol 2002; 4:825-33. [PMID: 12464013 DOI: 10.1046/j.1462-5822.2002.00235.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bordetella pertussis, the causative agent of whooping cough, adheres to human monocytes by means of filamentous haemagglutinin (FHA), a bacterial surface protein that is recognized by complement receptor type 3 (CR3, alphaMbeta2 integrin). Previous work has shown that an FHA Arg-Gly-Asp (RGD, residues 1097-1099) site interacts with a complex composed of leucocyte response integrin (LRI, alphavbeta3 integrin) and integrin-associated protein (IAP, CD47) on human monocytes, resulting in enhancement of CR3-mediated bacterial binding. However, the pathway that mediates alphavbeta3-alphaMbeta2 integrin signalling remains to be characterized. Here we describe the involvement of phosphatidylinositol 3-kinase (PI3-K) in this pathway. Wortmannin and LY294002, inhibitors of PI3-K, reduced alphavbeta3/IAP-upregulated, CR3-associated bacterial binding to human monocytes. B. pertussis infection of human monocytes resulted in a marked recruitment of cellular PI3-K to the sites of B. pertussis contact. In contrast, cells infected with an isogenic strain carrying a G1098A mutation at the FHA RGD site did not show any recruitment of PI3-K. We found that ligation of FHA by alphavbeta3/IAP induced RGD-dependent tyrosine phosphorylation of a 60 kDa protein, which associated with IAP and PI3-K in human monocytes. These results suggest that PI3-K and a tyrosine phosphorylated 60 kDa protein may be involved in this biologically important integrin signalling pathway.
Collapse
Affiliation(s)
- Yoshio Ishibashi
- Department of Immunobiology, Meiji Pharmaceutical University, Noshio, Kiyose, Tokyo 204-8588, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Larrucea S, González-Manchón C, Butta N, Arias-Salgado EG, Shen L, Ayuso MS, Parrilla R. Agonist-induced aggregation of Chinese hamster ovary cells coexpressing the human receptors for fibrinogen (integrin alphaIIbbeta3) and the platelet-activating factor: dissociation between adhesion and aggregation. Blood 2002; 99:2819-27. [PMID: 11929771 DOI: 10.1182/blood.v99.8.2819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This work reports the establishment of a Chinese hamster ovary (CHO) cell line stably coexpressing the human alphaIIbbeta3 integrin and the platelet-activating factor receptor (PAFR). These cells aggregate in response to PAF in a Ca(++), alphaIIbbeta3, and soluble fibrinogen (Fg)-dependent manner that is prevented by PAF antagonists or alphaIIbbeta3 blockade. The aggregating response is accompanied by enhanced binding of fibrinogen and the activation-dependent IgM PAC1. This model has permitted us to identify, for the first time, intracellular signals distinctly associated with either alphaIIbbeta3-mediated adhesion or aggregation. Nonreceptor activation of protein kinase C (PKC) by phorbol ester produced cellular adhesion and spreading onto immobilized Fg, but it was not a sufficient signal to provoke cellular aggregation. Moreover, inhibition of PKC impeded the PAF stimulation of cellular adhesion, whereas the aggregation was not prevented. The PAF-induced cellular aggregation was distinctly associated with signaling events arising from the liganded Fg receptor and the agonist-induced stimulation of a calcium/calmodulin-dependent signaling pathway. Sustained tyrosine phosphorylation of both mitogen-activated protein kinase (MAPK) and an approximately 100-kd protein was associated with the PAF-induced aggregation, whereas phosphorylation of focal adhesion kinase (FAK) was preferably associated with cellular adherence and spreading onto immobilized Fg.
Collapse
Affiliation(s)
- Susana Larrucea
- Department of Physiopathology and Human Molecular Genetics, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Miranti CK, Brugge JS. Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol 2002; 4:E83-90. [PMID: 11944041 DOI: 10.1038/ncb0402-e83] [Citation(s) in RCA: 609] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cell adhesion mediated by integrin receptors has a critical function in organizing cells in tissues and in guiding haematopoietic cells to their sites of action. However, integrin adhesion receptors have broader functions in regulating cell behaviour through their ability to transduce bi-directional signals into and out of the cell and to engage in reciprocal interactions with other cellular receptors. This historical perspective traces the key findings that have led to our current understanding of these important functions of integrins.
Collapse
|
34
|
Jurasz P, Stewart MW, Radomski A, Khadour F, Duszyk M, Radomski MW. Role of von Willebrand factor in tumour cell-induced platelet aggregation: differential regulation by NO and prostacyclin. Br J Pharmacol 2001; 134:1104-12. [PMID: 11682459 PMCID: PMC1573036 DOI: 10.1038/sj.bjp.0704343] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2001] [Revised: 08/08/2001] [Accepted: 08/15/2001] [Indexed: 02/02/2023] Open
Abstract
1. We have studied the effects of a novel agonist, solid-phase von Willebrand Factor (sVWF), on tumour cell-induced platelet aggregation (TCIPA). 2. Washed platelet suspensions were obtained from human blood and the effects of HT-1080 human fibrosarcoma cells and sVWF on platelets were studied using aggregometry, phase-contrast microscopy, and flow cytometry. 3. Incubation of platelets with sVWF (1.2 microg ml(-1)) and HT-1080 cells (5 x 10(3) ml(-1)) resulted in a two-phased reaction characterized first by the adhesion of platelets to sVWF, then by aggregation. 4. TCIPA in the presence of sVWF was inhibited by S-nitroso-glutathione (GSNO, 100 microM) and prostacyclin (PGI(2), 30 nM). 5. Platelet activation in the presence of tumour cells and sVWF resulted in the decreased surface expression of platelet glycoprotein (GP)Ib and up-regulation of GPIIb/IIIa receptors. 6. Pre-incubation of platelets with PGI(2) (30 nM) resulted in inhibition of sVWF-tumour cell-stimulated platelet surface expression of GPIIb/IIIa as measured by flow cytometry using antibodies directed against both non-activated and activated receptor. In contrast, GSNO (100 microM) did not affect sVWF-tumour cell-stimulated platelet surface expression of GPIIb/IIIa. 7. Flow cytometry performed with PAC-1 antibodies that bind only to the activated GPIIb/IIIa revealed that GSNO (100 microM) caused inhibition of activation of GPIIb/IIIa. 8. The inhibitors exerted no significant effects on TCIPA-mediated changes in GPIb. 9. Thus, sVWF potentiates the platelet-aggregatory activity of HT-1080 cells and these effects appear to be mediated via up-regulation of platelet GPIIb/IIIa. 10. Prostacyclin and NO inhibit TCIPA-sVWF-mediated platelet aggregation. The mechanisms of inhibition of this aggregation by PGI(2) differ from those of NO.
Collapse
Affiliation(s)
- Paul Jurasz
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | - Anna Radomski
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Fadi Khadour
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Marek Duszyk
- Department of Physiology, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Marek W Radomski
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| |
Collapse
|
35
|
Reddy KB, Bialkowska K, Fox JE. Dynamic modulation of cytoskeletal proteins linking integrins to signaling complexes in spreading cells. Role of skelemin in initial integrin-induced spreading. J Biol Chem 2001; 276:28300-8. [PMID: 11382766 DOI: 10.1074/jbc.m102794200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recently we showed that signaling across beta3-integrin leads to activation of calpain and formation of integrin clusters that are involved in Rac activation. The subsequent activation of Rac and Rho leads to the formation of focal complexes and focal adhesions, respectively. The goal of the present study was to determine whether different proteins link the integrin to the cytoskeleton in the different complexes. We show that talin is present in focal adhesions but not in the calpain-induced clusters. alpha-Actinin colocalized with integrin at various sites, including the calpain-induced clusters. Skelemin, a protein shown recently to interact with beta1- and beta3-integrin in vitro, colocalized with integrin in calpain-induced clusters but was absent from focal adhesions. Cells transiently expressing skelemin C2 motifs, which contain the integrin binding site, failed to form integrin clusters or to spread on a substrate for beta1- and beta3-integrins. These results 1) suggest a dynamic reorganization of integrin complexes during cell spreading, 2) show that different cytoskeletal proteins link integrins in different complexes, and 3) demonstrate that skelemin is responsible for linking integrin to the calpain-induced clusters, and 4) show that the integrin-skelemin interaction is essential for transmission of signals leading to the initial steps of cell spreading.
Collapse
Affiliation(s)
- K B Reddy
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
36
|
Abstract
The non-receptor tyrosine kinase Src is important for many aspects of cell physiology. The viral src gene was the first retroviral oncogene to be identified, and its cellular counterpart was the first proto-oncogene to be discovered in the vertebrate genome. Src has been important, not only as an object of study in itself, but also as an entry point into the molecular genetics of cancer.
Collapse
Affiliation(s)
- G S Martin
- Department of Molecular and Cell Biology, University of California, 401 Barker Hall #3204, Berkeley, California 94720-3204, USA.
| |
Collapse
|
37
|
Ofosu FA, Nyarko KA. Human platelet thrombin receptors. Roles in platelet activation. Hematol Oncol Clin North Am 2000; 14:1185-98, x. [PMID: 11005041 DOI: 10.1016/s0889-8588(05)70178-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Platelets are essential participants in hemostasis and thrombosis. Platelets normally circulate in blood as discoid resting cells that become critical constituents of hemostatic plugs or arterial thrombi only after specific receptors on platelet membranes interact with their ligands (agonists) to initiate the reactions that lead to platelet activation. The well-characterized events associated with platelet activation include activation of membrane receptors, shape change, granular secretion, cytoskeletal reassembly, platelet cohesion, and aggregation. The plasma protease alpha-thrombin is the most potent physiologic platelet agonist; this enzyme has other key roles in hemostasis, in the genesis of arterial thrombi, and in embryonic development, inflammation, wound healing, and cell proliferation.
Collapse
Affiliation(s)
- F A Ofosu
- Canadian Blood Services, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
38
|
Tzima E, Trotter PJ, Hastings AD, Orchard MA, Walker JH. Investigation of the relocation of cytosolic phospholipase A2 and annexin V in activated platelets. Thromb Res 2000; 97:421-9. [PMID: 10704651 DOI: 10.1016/s0049-3848(99)00215-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cytosolic phospholipase A(2) is a Ca(2+)-dependent enzyme that acts on membrane phospholipids to release arachidonic acid, which in platelets is converted to thromboxane A(2). Annexin V is a Ca(2+)-dependent, phospholipid-binding protein, which is proposed to regulate inflammation by inhibiting cytosolic phospholipase A(2). Here, we have studied the association of cytosolic phospholipase A(2) and annexin V with platelet membranes after thrombin stimulation. In a time-dependent manner, an exact correlation was found between the membrane association of cytosolic phospholipase A(2) and annexin V. Calcium from the intracellular stores was sufficient for the relocation of intracellular annexin V and cytosolic phospholipase A(2) to platelet membranes. Activation in the presence of arginyl-glycyl-aspartyl-serine (RGDS), which inhibits binding of fibrinogen to its adhesive ligand, does not alter the amount of cytosolic phospholipase A(2) or annexin V that binds to membranes. When activation-induced actin polymerisation was prevented by cytochalasin E, the recovery of both annexin V and cytosolic phospholipase A(2) remained unchanged. However, complete depolymerisation of the cytoskeleton with DNase I almost abolished the association of cytosolic phospholipase A(2) with the membranes, and it completely abolished the relocation of annexin V to platelet membranes. Finally, we show that cytosolic phospholipase A(2) can be specifically purified from platelet membranes by affinity chromatography on GST-annexin V and that immunoprecipitation using antibodies against cytosolic phospholipase A(2) copurify annexin V and cytosolic phospholipase A(2) from activated platelets. These findings suggest that following platelet activation with thrombin, both cytosolic phospholipase A(2) and annexin V, relocate to platelet membranes where they interact. An intact cytoskeleton seems to be a prerequisite for the interaction of cytosolic phospholipase A(2) and annexin V with platelet membranes. The incorporation of cytosolic phospholipase A(2) into the membrane fraction of thrombin-activated platelets parallels that of annexin V, which suggests an interaction between the two proteins.
Collapse
Affiliation(s)
- E Tzima
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- A K Rao
- Department of Medicine and the Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA.
| | | |
Collapse
|
40
|
Izaguirre G, Aguirre L, Ji P, Aneskievich B, Haimovich B. Tyrosine phosphorylation of alpha-actinin in activated platelets. J Biol Chem 1999; 274:37012-20. [PMID: 10601257 DOI: 10.1074/jbc.274.52.37012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integrin alpha(IIb)beta(3) mediates tyrosine phosphorylation of a 105-kDa protein (pp105) in activated platelets. We have partially purified a 105-kDa tyrosine-phosphorylated protein from platelets stimulated with phorbol 12-myristate 13-acetate and obtained the sequence of an internal 12-mer peptide derived from this protein. The sequence was identical to human alpha-actinin sequences deposited in the Swiss Protein Database. alpha-Actinin, a 105-kDa protein in platelets, was subsequently purified from activated platelets by four sequential chromatographic steps. Fractions were analyzed by Western blotting and probed with alpha-actinin and anti-phosphotyrosine antibodies. The distribution of alpha-actinin and pp105 overlapped throughout the purification. Furthermore, in the course of this purification, a 105-kDa tyrosine-phosphorylated protein was only detected in fractions that contained alpha-actinin. The purified alpha-actinin protein was immunoprecipitated with antibodies to phosphotyrosine in the absence but not in the presence of phenyl phosphate. alpha-Actinin resolved by two-dimensional gel electrophoresis of activated platelet lysates was recognized by the antibodies to phosphotyrosine, whereas pretreatment of the platelets with bisindolylmaleimide, a protein kinase C inhibitor that prevents tyrosine phosphorylation of pp105, inhibited the reactivity of the antibodies to phosphotyrosine with alpha-actinin. Taken together, these data demonstrate that a fraction of alpha-actinin is tyrosine-phosphorylated in activated platelets.
Collapse
Affiliation(s)
- G Izaguirre
- Department of Surgery, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
41
|
Gamble J, Meyer G, Noack L, Furze J, Matthias L, Kovach N, Harlant J, Vadas M. B1 integrin activation inhibits in vitro tube formation: effects on cell migration, vacuole coalescence and lumen formation. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 1999; 7:23-34. [PMID: 10599558 DOI: 10.3109/10623329909165309] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human endothelial cells (EC), when plated onto gels of extracellular matrix proteins such as Matrigel or collagen form capillary tubes in a process thought to mimic angiogenesis. We have shown previously that the extent of tube formation and the phenotype of the lumen are regulated by integrins (Gamble et al 1993) and lumen formation occurs through a process of vacuolization, coalescence and ultimate directional fusion of these vacuoles with the plasma membrane (Meyer 1997 et al). We now show here that activation of beta1 integrins on endothelial cells inhibits tube formation. On collagen gels, endothelial cells treated with 31 activating antibody 8A2 failed to migrate into the gel and tube formation was inhibited. Although several integrins mediate EC attachment to collagen alpha2beta1 is the chief determinant of EC behaviour since a blocking antibody to (alpha2beta1 reversed the effect of 8A2. On Matrigel tube formation was also inhibited by 8A2 treatment although cell alignment and sprout formation was still evident. Electron microscopy revealed the organisation of normal numbers of cells into solid sprouts and the formation of small intracellular vacuoles suggesting that initial stages of tube formation including cell migration were unaffected. However, beta1 integrin activation inhibited the coalescence of these small vacuoles into larger vacuoles, the recruitment of more cells into the sprout and the subsequent formation of mature lumen. The inhibition of capillary tube formation by beta1 activation was time dependent and long lasting. The critical time for activation of the beta1 integrin was the initial 1-2h after plating in order to inhibit tube formation although once activated, the beta1 mediated inhibition on Matrigel was still evident 4 days later. Our results suggest that beta1 integrins are critical in capillary tube formation in at least two phases. beta1 integrins are essential for migration of EC through collagen gels. Independently, beta1 integrins, although not involved in initial vacuole formation, are involved in the process of vacuole coalescence and subsequent lumen formation since beta1 integrin activation inhibits these processes.
Collapse
Affiliation(s)
- J Gamble
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science and University of Adelaide Frome Road, South Australia.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Selheim F, Idsøe R, Fukami MH, Holmsen H, Vassbotn FS. Formation of PI 3-kinase products in platelets by thrombin, but not collagen, is dependent on synergistic autocrine stimulation, particularly through secreted ADP. Biochem Biophys Res Commun 1999; 263:780-5. [PMID: 10512757 DOI: 10.1006/bbrc.1999.1450] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Platelet activation by thrombin or collagen results in secretion and synthesis of several platelet agonists that enhance the responses to the primary agonists (autocrine stimulation). To disclose the effects of thrombin and collagen on the phosphorylation of 3-phosphoinositides per se we incubated platelets with five inhibitors of platelet autocrine stimulation (IAS) that act extracellularly. We found that IAS almost totally blocked thrombin-induced production of phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P(2)] and phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]. In contrast, collagen induced massive production of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) in the presence of IAS. When testing the effect of each inhibitor individually we found the strongest inhibition of thrombin-induced PtdIns(3,4)P(2) production with the ADP scavenger system CP/CPK. Furthermore, we found a strong synergistic effect between exogenously added ADP and thrombin on production of PtdIns(3,4)P(2). In contrast to the results from 3-phosphorylated phosphoinositides, CP/CPK had little effect on thrombin-induced protein tyrosine phosphorylation. Our results show the importance of autocrine stimulation in thrombin-induced accumulation of 3-phosphorylated phosphoinositides and raise the question as to whether thrombin by itself is capable of inducing PI 3-K activation. In marked contrast to thrombin, collagen per se appears to be able to trigger increased production of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3).
Collapse
Affiliation(s)
- F Selheim
- Department of Biochemistry and Molecular Biology, University of Bergen, Bergen, Norway.
| | | | | | | | | |
Collapse
|
43
|
Su CY, Shiao MS, Wang CT. Differential effects of ganodermic acid S on the thromboxane A2-signaling pathways in human platelets. Biochem Pharmacol 1999; 58:587-95. [PMID: 10413295 DOI: 10.1016/s0006-2952(99)00136-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ganodermic acid S (GAS) [lanosta-7,9(11),24-triene-3beta,15alpha-diacetoxy-26-oic acid], isolated from the Chinese medicinal fungus Ganoderma lucidum (Fr.) Karst (Polyporaceae), exerted a concentration-dependent inhibition on the response of human gel-filtered platelets (GFP) to U46619 (9,11-dideoxy-9alpha,11alpha-methanoepoxyprostaglandin F2alpha), a thromboxane (TX) A2 mimetic. GAS at 2 microM inhibited 50% of cell aggregation. GAS at 7.5 microM inhibited 80% of Ca2+ mobilization, 40% of phosphorylation of myosin light chain and pleckstrin, 80% of alpha-granule secretion, and over 95% of aggregation. GAS also strongly inhibited U46619-induced diacylglycerol formation, arachidonic acid release, and TXB2 formation. An immunoblotting study of protein-tyrosine phosphorylation showed that GAS inhibited the formation of phosphotyrosine proteins at the steps involving the engagement of integrin alphaIIbbeta3 and aggregation. However, GAS did not inhibit U46619-induced platelet shape change or the inhibitory effect of U46619 on the prostaglandin E1-evoked cyclic AMP level in GFP. It is concluded that GAS inhibits platelet response to TXA2 on the receptor-Gq-phospholipase Cbeta1 pathway, but not on the receptor-G1 pathway.
Collapse
Affiliation(s)
- C Y Su
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | | | | |
Collapse
|
44
|
Bertagnolli ME, Hudson LA, Stetsenko GY. Selective association of the tyrosine kinases Src, Fyn, and Lyn with integrin-rich actin cytoskeletons of activated, nonaggregated platelets. Biochem Biophys Res Commun 1999; 260:790-8. [PMID: 10403844 DOI: 10.1006/bbrc.1999.0985] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrin-mediated interactions between cytoskeletal proteins and extracellular fibrinogen are required for platelet adhesion. We have previously demonstrated that the major platelet integrin, alpha(IIb)beta(3), becomes incorporated into the actin cytoskeleton of platelets in an activation-dependent, aggregation-independent manner. To determine if regulatory molecules are also associated with these integrin-rich cytoskeletal complexes, we examined actin cytoskeletons for the presence of kinases and phosphoproteins. Western immunoblot analysis revealed that the tyrosine kinases Src, Fyn, and Lyn are specifically associated with actin cytoskeletons of activated, nonaggregated platelets. However, as noted by others, the cytoskeletal association of focal adhesion kinase depends on platelet aggregation. Actin cytoskeletons isolated from (32)P-labeled platelets also contain a number of phosphorylated proteins. Interestingly, an approximately 18-kDa phosphoprotein was uniquely present in activated platelet cytoskeletons. Collectively, our results demonstrate that actin cytoskeletons of activated, nonaggregated platelets contain not only integrins, but also kinases and phosphoproteins that could regulate platelet adhesion and transmembrane communication.
Collapse
Affiliation(s)
- M E Bertagnolli
- Department of Chemistry, Gonzaga University, Spokane, Washington, 99258, USA.
| | | | | |
Collapse
|
45
|
Pain S, Monstero-Lastres A, Falet H, Brohard-Bohn B, Fraiz N, Bachelot-Loza C, Cano E, Rendu F. Calpain controls the balance between protein tyrosine kinase and tyrosine phosphatase activities during platelet activation. FEBS Lett 1999; 453:119-23. [PMID: 10403387 DOI: 10.1016/s0014-5793(99)00698-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein phosphorylation was studied during platelet stimulation in two ranges of ionized [Ca2+]. At ionized [Ca2+]i< or = 1 microM, proteins were phosphorylated. At ionized [Ca2+]i > or = 4 microM, phosphoproteins disappeared. Protein dephosphorylation was prevented by the combined action of calpeptin and phosphatase inhibitors. Protein tyrosine phosphatase activity was stimulated regardless of the ionized [Ca2+] level. Protein tyrosine kinase activity was stimulated at ionized [Ca2+]i < or =1 microM, whereas at ionized [Ca2+]i > or =4 microM, no protein tyrosine kinase activity was observed except in the presence of calpeptin. Thus, the massive tyrosine phosphoprotein disappearance observed at a high ionized [Ca2+]i resulted not only in protein tyrosine phosphatase activation, but also in calpain-induced protein tyrosine kinase inactivation.
Collapse
Affiliation(s)
- S Pain
- U428 INSERM, Faculté de Pharmacie, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Leoncini G, Signorello MG. N-ethylmaleimide-stimulated arachidonic acid release in human platelets. Biochem Pharmacol 1999; 57:785-91. [PMID: 10075084 DOI: 10.1016/s0006-2952(98)00358-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Treatment of human platelets with the alkylating agent N-ethylmaleimide (NEM) induces arachidonic acid release. The effect was time- and dose-dependent. NEM-stimulated arachidonic acid mobilisation could be prevented by pretreating platelets with the cytosolic phospholipase A2 (cPLA2)-specific inhibitor arachidonyltrifluoromethyl ketone. Moreover, the tyrosine kinase inhibitor genistein was able to significantly inhibit arachidonic acid mobilisation. NEM-stimulated release of arachidonic acid appears to be a Ca2+-dependent mechanism, as shown by the observation that arachidonic acid mobilisation was significantly reduced by platelet treatment with EGTA and abolished by preloading platelets with the intracellular chelator 1,2-bis (o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester (BAPTA/AM). In Fura-2-loaded platelets, NEM was able to significantly increase the intracellular Ca2+ level. The Ca2+ elevation was significantly reduced in the presence of EGTA and suppressed by cell treatment with BAPTA/AM. Arachidonic acid released by NEM produced a significant increase in reactive oxygen species (ROS) intracellular levels, which was partially inhibited by diphenyleneiodonium and almost completely suppressed by 5,8,11,14-eicosatetraynoic acid. In conclusion, the results in this study demonstrate that NEM stimulates arachidonic acid release by cPLA2 activation through intracellular Ca2+ elevation. In addition, tyrosine specific protein kinases seem to be involved in arachidonic acid release. ROS was also shown to be formed during arachidonic acid metabolisation.
Collapse
Affiliation(s)
- G Leoncini
- Istituto di Chimica Biologica, Universita di Genova, Genoa, Italy.
| | | |
Collapse
|
47
|
Su CY, Shiao MS, Wang CT. Predominant inhibition of ganodermic acid S on the thromboxane A2-dependent pathway in human platelets response to collagen. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1437:223-34. [PMID: 10064905 DOI: 10.1016/s1388-1981(98)00012-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ganodermic acid S (GAS), a membrane acting agent, exerts multiple effects on human platelet function (C.N. Wang et al. (1991) Biochem. J. 277, 189-197). The study reported how GAS affected the response of human gel-filtered platelets (GFP) to collagen. The agent inhibited cell aggregation by prolonging lag and shape change periods and decreasing the initial cell aggregation rate. However, the inhibitory efficiency was less than its inhibition on GFP response to U46619, a thromboxane (TX) A2 mimetic. In the agent-effect on biochemical events, GAS effectively inhibited Ca2+ mobilization, phosphorylation of myosin light chain, dense granule secretion and TXB2 generation. The inhibitions might originate from blocking Ca2+ mobilization of the TXA2-dependent pathway. GAS partially decreased the phosphorylation of most phosphotyrosine proteins from early activation to the integrin alphaIIbbeta3-regulated steps. The agent did not affect the phosphorylation of three proteins at the steps regulated by integrin alphaIIbbeta3. The results suggest that GAS inhibits the collagen response predominantly on the TXA2-dependent signaling, and the tyrosine kinase-dependent pathway in collagen response plays a major role in aggregation.
Collapse
Affiliation(s)
- C Y Su
- Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | | |
Collapse
|
48
|
Pabla R, Weyrich AS, Dixon DA, Bray PF, McIntyre TM, Prescott SM, Zimmerman GA. Integrin-dependent control of translation: engagement of integrin alphaIIbbeta3 regulates synthesis of proteins in activated human platelets. J Cell Biol 1999; 144:175-84. [PMID: 9885253 PMCID: PMC2148114 DOI: 10.1083/jcb.144.1.175] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/1998] [Revised: 11/24/1998] [Indexed: 11/22/2022] Open
Abstract
Integrins are widely expressed plasma membrane adhesion molecules that tether cells to matrix proteins and to one another in cell-cell interactions. Integrins also transmit outside-in signals that regulate functional responses of cells, and are known to influence gene expression by regulating transcription. In previous studies we found that platelets, which are naturally occurring anucleate cytoplasts, translate preformed mRNA transcripts when they are activated by outside-in signals. Using strategies that interrupt engagement of integrin alphaIIbbeta3 by fibrinogen and platelets deficient in this integrin, we found that alphaIIbbeta3 regulates the synthesis of B cell lymphoma 3 (Bcl-3) when platelet aggregation is induced by thrombin. We also found that synthesis of Bcl-3, which occurs via a specialized translation control pathway regulated by mammalian target of rapamycin (mTOR), is induced when platelets adhere to immobilized fibrinogen in the absence of thrombin and when integrin alphaIIbbeta3 is engaged by a conformation-altering antibody against integrin alphaIIbbeta3. Thus, outside-in signals delivered by integrin alphaIIbbeta3 are required for translation of Bcl-3 in thrombin-stimulated aggregated platelets and are sufficient to induce translation of this marker protein in the absence of thrombin. Engagement of integrin alpha2beta1 by collagen also triggered synthesis of Bcl-3. Thus, control of translation may be a general mechanism by which surface adhesion molecules regulate gene expression.
Collapse
Affiliation(s)
- R Pabla
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Eccles Institute of Human Genetics
| | | | | | | | | | | | | |
Collapse
|
49
|
Reddy KB, Gascard P, Price MG, Negrescu EV, Fox JE. Identification of an interaction between the m-band protein skelemin and beta-integrin subunits. Colocalization of a skelemin-like protein with beta1- and beta3-integrins in non-muscle cells. J Biol Chem 1998; 273:35039-47. [PMID: 9857037 DOI: 10.1074/jbc.273.52.35039] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Signaling across integrins is regulated by interaction of these receptors with cytoskeletal proteins and signaling molecules. To identify molecules interacting with the cytoplasmic domain of the beta3-integrin subunit (glycoprotein IIIa), a placental cDNA library was screened in the yeast two-hybrid system. Two identical clones coding for a 96-amino acid sequence were identified. This sequence was 100% identical to a sequence in skelemin, a protein identified previously in skeletal muscle. Skelemin is a member of a superfamily of cytoskeletal proteins that contain fibronectin-type III-like motifs and immunoglobulin C2-like motifs and that regulate the organization of myosin filaments in muscle. The amino acid residues in the isolated clones encompassed C2 motifs 4 and 5 of skelemin. A recombinant skelemin protein consisting of C2 motifs 3-7 interacted with beta1- and beta3-integrin cytoplasmic domains expressed as glutathione S-transferase (GST) fusion proteins, but not with GST-beta2-integrin cytoplasmic tail or GST alone. The skelemin-binding region was in the membrane proximal cytoplasmic domains of the integrins. Full-length skelemin interacted with integrin in intact cells as demonstrated by the colocalization of hemagglutinin-tagged skelemin in Chinese hamster ovary (CHO) cells containing alphaIIbbeta3-integrin and by the finding that microinjection of C2 motif 4 of skelemin into C2C12 mouse myoblast cells caused spread cells to round up. A skelemin-like protein was detected in CHO cells, endothelial cells, and platelets, and this protein colocalized with beta1- and beta3-integrins in CHO cells. This study suggests the presence of a skelemin-like protein in non-muscle cells and provides evidence that it may be involved in linking integrins to the cytoskeleton.
Collapse
Affiliation(s)
- K B Reddy
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
50
|
Hua CT, Gamble JR, Vadas MA, Jackson DE. Recruitment and activation of SHP-1 protein-tyrosine phosphatase by human platelet endothelial cell adhesion molecule-1 (PECAM-1). Identification of immunoreceptor tyrosine-based inhibitory motif-like binding motifs and substrates. J Biol Chem 1998; 273:28332-40. [PMID: 9774457 DOI: 10.1074/jbc.273.43.28332] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of platelet aggregation leads to tyrosine phosphorylation of a number of receptors and signaling molecules including platelet endothelial cell adhesion molecule-1 (PECAM-1). In this report, we demonstrate that both protein-tyrosine phosphatases SHP-1 and SHP-2 physically associate with different kinetics of assembly with tyrosine-phosphorylated human PECAM-1 during integrin alphaIIbbeta3-mediated platelet aggregation. Peptido-precipitation analysis revealed that tyrosine-phosphorylated peptides encompassing residues 658-668 and 681-691 of PECAM-1 bound specifically to both protein-tyrosine phosphatases SHP-1 and SHP-2. We further show that the association of SHP-1 with PECAM-1 occurs through the direct interaction of the src homology region 2 domains of SHP-1 with two highly conserved phosphotyrosine binding motifs within PECAM-1 having the sequences NSDVQpY663TEVQV and DTETVpY686SEVRK (where pY represents phosphotyrosine). In vitro dephosphorylation experiments using phosphotyrosyl PECAM-1 peptides encompassing either Tyr-663 or Tyr-686 revealed induction of SHP-1 catalytic activity, suggesting that PECAM-1 serves as a SHP-1 substrate. Surface plasmon resonance studies reveal that recombinant SHP-2 binds PECAM-1 phosphopeptides with 5-fold higher affinity than recombinant SHP-1. These data suggest that in hematopoietic cells such as platelets, PECAM-1 cellular signaling is regulated by the selective recruitment and activation of two distinct protein-tyrosine phosphatases, SHP-1 and SHP-2, via a common immunoreceptor tyrosine-based inhibitory-like motif.
Collapse
Affiliation(s)
- C T Hua
- Division of Human Immunology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, South Australia, 5000 Australia
| | | | | | | |
Collapse
|