1
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
2
|
Diffraction and Imaging from all Perspectives: Unlimited Specimen Tilting in the High-Voltage Electron Microscope. ACTA ACUST UNITED AC 2020. [DOI: 10.1017/s0424820100089287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electron diffraction patterns and images of three-dimensional (3D) objects are limited by the range of specimen tilt angles. This range is commonly limited by the specimen holder, but for angles >60°, the slab-like nature of most specimens is itself a fundamental limitation. At 60° the beam path is twice the thickness of the untilted specimen, at 70° it is three times, and at 90° it is infinite. For angles > ± 60°, the information is severely degraded or unattainable This causes serious problems for electron crystallography, and for electron microscopic tomography. For the former, it can result in series termination errors in the computation of electrostatic potential maps from the structure factor amplitudes, and for the latter, it results in reconstructions with anisotropic resolution. To overcome these limitations, we are developing specimen stages and preparation procedures based on a “cylindrical” geometry i.e. all dimensions transverse to the tilt axis are a few micrometers or less.
Collapse
|
3
|
Shi W, Zeng Y, Zhou L, Xiao Y, Cummins TR, Baker LA. Membrane patches as ion channel probes for scanning ion conductance microscopy. Faraday Discuss 2018; 193:81-97. [PMID: 27711908 DOI: 10.1039/c6fd00133e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We describe dual-barrel ion channel probes (ICPs), which consist of an open barrel and a barrel with a membrane patch directly excised from a donor cell. When incorporated with scanning ion conductance microscopy (SICM), the open barrel (SICM barrel) serves to measure the distance-dependent ion current for non-invasive imaging and positioning of the probe in the same fashion of traditional SICM. The second barrel with the membrane patch supports ion channels of interest and was used to investigate ion channel activities. To demonstrate robust probe control with the dual-barrel ICP-SICM probe and verify that the two barrels are independently addressable, current-distance characteristics (approach curves) were obtained with the SICM barrel and simultaneous, current-time (I-T) traces were recorded with the ICP barrel. To study the influence that the distance between ligand-gated ion channels (i.e., large conductance Ca2+-activated K+ channels/BK channels) and the ligand source (i.e., Ca2+ source) has on channel activations, ion channel activities were recorded at two fixed probe-substrate distances (Dps) with the ICP barrel. The two fixed positions were determined from approach curves acquired with the SICM barrel. One position was defined as the "In-control" position, where the probe was in close proximity to the ligand source; the second position was defined as the "Far" position, where the probe was retracted far away from the ligand source. Our results confirm that channel activities increased dramatically with respect to both open channel probability and single channel current when the probe was near the ligand source, as opposed to when the probe was far away from the ligand source.
Collapse
Affiliation(s)
- Wenqing Shi
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA.
| | - Yuhan Zeng
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA.
| | - Lushan Zhou
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA.
| | - Yucheng Xiao
- Department of Pharmacology and Toxicology, Indiana University-Purdue University Indianapolis, Stark Neurosciences Research Institute, 320 W. 15th St., Indianapolis, IN 46202, USA.
| | - Theodore R Cummins
- Department of Pharmacology and Toxicology, Indiana University-Purdue University Indianapolis, Stark Neurosciences Research Institute, 320 W. 15th St., Indianapolis, IN 46202, USA.
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA.
| |
Collapse
|
4
|
Marrero HG, Treistman SN, Lemos JR. Ethanol Effect on BK Channels is Modulated by Magnesium. Alcohol Clin Exp Res 2016; 39:1671-9. [PMID: 26331878 DOI: 10.1111/acer.12821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/17/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alcoholics have been reported to have reduced levels of magnesium in both their extracellular and intracellular compartments. Calcium-dependent potassium channels (BK) are known to be one of ethanol (EtOH)'s better known molecular targets. METHODS Using outside-out patches from hippocampal neuronal cultures, we examined the consequences of altered intracellular Mg(2+) on the effects that EtOH has on BK channels. RESULTS We find that the effect of EtOH is bimodally influenced by the Mg(2+) concentration on the cytoplasmic side. More specifically, when internal Mg(2+) concentrations are ≤200 μM, EtOH decreases BK activity, whereas it increases activity when Mg(2+) is at 1 mM. Similar results are obtained when using patches from HEK cells expressing only the α-subunit of BK. When patches are made with the actin destabilizer cytochalasin D present on the cytoplasmic side, the potentiation caused by EtOH becomes independent of the Mg(2+) concentration. Furthermore, in the presence of the actin stabilizer phalloidin, EtOH causes inhibition even at Mg(2+) concentrations of 1 mM. CONCLUSIONS Internal Mg(2+) can modulate the EtOH effects on BK channels only when there is an intact, internal actin interaction with the channel, as is found at synapses. We propose that the EtOH-induced decrease in cytoplasmic Mg(2+) observed in frequent/chronic drinkers would decrease EtOH's actions on synaptic (e.g., actin-bound) BK channels, producing a form of molecular tolerance.
Collapse
Affiliation(s)
| | | | - José R Lemos
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
5
|
Cox CD, Bae C, Ziegler L, Hartley S, Nikolova-Krstevski V, Rohde PR, Ng CA, Sachs F, Gottlieb PA, Martinac B. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat Commun 2016; 7:10366. [PMID: 26785635 PMCID: PMC4735864 DOI: 10.1038/ncomms10366] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 12/04/2015] [Indexed: 12/18/2022] Open
Abstract
Mechanosensitive ion channels are force-transducing enzymes that couple mechanical stimuli to ion flux. Understanding the gating mechanism of mechanosensitive channels is challenging because the stimulus seen by the channel reflects forces shared between the membrane, cytoskeleton and extracellular matrix. Here we examine whether the mechanosensitive channel PIEZO1 is activated by force-transmission through the bilayer. To achieve this, we generate HEK293 cell membrane blebs largely free of cytoskeleton. Using the bacterial channel MscL, we calibrate the bilayer tension demonstrating that activation of MscL in blebs is identical to that in reconstituted bilayers. Utilizing a novel PIEZO1-GFP fusion, we then show PIEZO1 is activated by bilayer tension in bleb membranes, gating at lower pressures indicative of removal of the cortical cytoskeleton and the mechanoprotection it provides. Thus, PIEZO1 channels must sense force directly transmitted through the bilayer.
Collapse
Affiliation(s)
- Charles D. Cox
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Chilman Bae
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Lynn Ziegler
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Silas Hartley
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | - Paul R. Rohde
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Chai-Ann Ng
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Frederick Sachs
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
- The Centre for Single Molecule Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Philip A. Gottlieb
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
- The Centre for Single Molecule Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| |
Collapse
|
6
|
Lewis AH, Grandl J. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension. eLife 2015; 4. [PMID: 26646186 PMCID: PMC4718726 DOI: 10.7554/elife.12088] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/26/2015] [Indexed: 12/17/2022] Open
Abstract
Piezo1 ion channels mediate the conversion of mechanical forces into electrical signals and are critical for responsiveness to touch in metazoans. The apparent mechanical sensitivity of Piezo1 varies substantially across cellular environments, stimulating methods and protocols, raising the fundamental questions of what precise physical stimulus activates the channel and how its stimulus sensitivity is regulated. Here, we measured Piezo1 currents evoked by membrane stretch in three patch configurations, while simultaneously visualizing and measuring membrane geometry. Building on this approach, we developed protocols to minimize resting membrane curvature and tension prior to probing Piezo1 activity. We find that Piezo1 responds to lateral membrane tension with exquisite sensitivity as compared to other mechanically activated channels and that resting tension can drive channel inactivation, thereby tuning overall mechanical sensitivity of Piezo1. Our results explain how Piezo1 can function efficiently and with adaptable sensitivity as a sensor of mechanical stimulation in diverse cellular contexts. DOI:http://dx.doi.org/10.7554/eLife.12088.001 Piezo ion channels are proteins that are embedded in the cell membranes of many types of tissue, including the heart, lung, skin and kidney. These proteins are essential for many biological processes, including sensing gentle touches and ensuring that blood vessels develop properly. When stimulated by mechanical forces, a central pore in the Piezo channel opens to allow positively charged ions to flow into the cell, which triggers electrical and chemical signaling processes inside the cell. However, it was not known exactly what type of mechanical stimulus is sensed by Piezo ion channels. Lewis and Grandl expressed Piezo ion channels in cultured human kidney cells, and opened them by applying pressure to parts of the cell membrane inside a glass pipette. This causes a number of changes to the membrane, including to its curvature and tension, either of which could potentially open the Piezo channels. However, Lewis and Grandl were able to calculate from images of the cell membrane inside the pipette that tension is the activating stimulus. Further experiments unexpectedly revealed that the tension that is usually present in the cell membrane is sufficient to inactivate Piezo channels and prevent them from responding to an additional mechanical stimulus. This suggests that Piezo ion channels are inherently more sensitive to tension than previously realized, which could explain why different cell types appear to have different sensitivities to pressure. Although Lewis and Grandl have now shown that Piezo channels are activated by tension, more work is needed to investigate how the Piezo ion channel senses this force, and how this leads to the channel pore opening. DOI:http://dx.doi.org/10.7554/eLife.12088.002
Collapse
Affiliation(s)
- Amanda H Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| |
Collapse
|
7
|
Sachs F. Mechanical transduction by ion channels: A cautionary tale. World J Neurol 2015; 5:74-87. [PMID: 28078202 PMCID: PMC5221657 DOI: 10.5316/wjn.v5.i3.74] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/23/2014] [Accepted: 07/17/2015] [Indexed: 02/06/2023] Open
Abstract
Mechanical transduction by ion channels occurs in all cells. The physiological functions of these channels have just begun to be elaborated, but if we focus on the upper animal kingdom, these channels serve the common sensory services such as hearing and touch, provide the central nervous system with information on the force and position of muscles and joints, and they provide the autonomic system with information about the filling of hollow organs such as blood vessels. However, all cells of the body have mechanosensitive channels (MSCs), including red cells. Most of these channels are cation selective and are activated by bilayer tension. There are also K+ selective MSCs found commonly in neurons where they may be responsible for both general anesthesia and knockout punches in the boxing ring by hyperpolarizing neurons to reduce excitability. The cationic MSCs are typically inactive under normal mechanical stress, but open under pathologic stress. The channels are normally inactive because they are shielded from stress by the cytoskeleton. The cationic MSCs are specifically blocked by the externally applied peptide GsMtx4 (aka, AT-300). This is the first drug of its class and provides a new approach to many pathologies since it is nontoxic, non-immunogenic, stable in a biological environment and has a long pharmacokinetic lifetime. Pathologies involving excessive stress are common. They produce cardiac arrhythmias, contraction in stretched dystrophic muscle, xerocytotic and sickled red cells, etc. The channels seem to function primarily as “fire alarms”, providing feedback to the cytoskeleton that a region of the bilayer is under excessive tension and needs reinforcing. The eukaryotic forms of MSCs have only been cloned in recent years and few people have experience working with them. “Newbies” need to become aware of the technology, potential artifacts, and the fundamentals of mechanics. The most difficult problem in studying MSCs is that the actual stimulus, the force applied to the channel, is not known. We don’t have direct access to the channels themselves but only to larger regions of the membrane as seen in patches. Cortical forces are shared by the bilayer, the cytoskeleton and the extracellular matrix. How much of an applied stimulus reaches the channel is unknown. Furthermore, many of these channels exist in spatial domains where the forces within a domain are different from forces outside the domain, although we often hope they are proportional. This review is intended to be a guide for new investigators who want to study mechanosensitive ion channels.
Collapse
|
8
|
Kurth F, Franco-Obregón A, Casarosa M, Küster SK, Wuertz-Kozak K, Dittrich PS. Transient receptor potential vanilloid 2-mediated shear-stress responses in C2C12 myoblasts are regulated by serum and extracellular matrix. FASEB J 2015. [PMID: 26207028 DOI: 10.1096/fj.15-275396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The developmental sensitivity of skeletal muscle to mechanical forces is unparalleled in other tissues. Calcium entry via reputedly mechanosensitive transient receptor potential (TRP) channel classes has been shown to play an essential role in both the early proliferative stage and subsequent differentiation of skeletal muscle myoblasts, particularly TRP canonical (TRPC) 1 and TRP vanilloid (TRPV) 2. Here we show that C2C12 murine myoblasts respond to fluid flow-induced shear stress with increments in cytosolic calcium that are largely initiated by the mechanosensitive opening of TRPV2 channels. Response to fluid flow was augmented by growth in low extracellular serum concentration (5 vs. 20% fetal bovine serum) by greater than 9-fold and at 18 h in culture, coincident with the greatest TRPV2 channel expression under identical conditions (P < 0.02). Fluid flow responses were also enhanced by substrate functionalization with laminin, rather than with fibronectin, agreeing with previous findings that the gating of TRPV2 is facilitated by laminin. Fluid flow-induced calcium increments were blocked by ruthenium red (27%) and SKF-96365 (38%), whereas they were unaltered by 2-aminoethoxydiphenyl borate, further corroborating that TRPV2 channels play a predominant role in fluid flow mechanosensitivity over that of TRPC1 and TRP melastatin (TRPM) 7.
Collapse
Affiliation(s)
- Felix Kurth
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Alfredo Franco-Obregón
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Marco Casarosa
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Simon K Küster
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Karin Wuertz-Kozak
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Petra S Dittrich
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| |
Collapse
|
9
|
Slavchov RI, Nomura T, Martinac B, Sokabe M, Sachs F. Gigaseal mechanics: creep of the gigaseal under the action of pressure, adhesion, and voltage. J Phys Chem B 2014; 118:12660-72. [PMID: 25295693 PMCID: PMC4226309 DOI: 10.1021/jp506965v] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/06/2014] [Indexed: 11/28/2022]
Abstract
Patch clamping depends on a tight seal between the cell membrane and the glass of the pipet. Why does the seal have such high electric resistance? Why does the patch adhere so strongly to the glass? Even under the action of strong hydrostatic, adhesion, and electrical forces, it creeps at a very low velocity. To explore possible explanations, we examined two physical models for the structure of the seal zone and the adhesion forces and two respective mechanisms of patch creep and electric conductivity. There is saline between the membrane and glass in the seal, and the flow of this solution under hydrostatic pressure or electroosmosis should drag a patch. There is a second possibility: the lipid core of the membrane is liquid and should be able to flow, with the inner monolayer slipping over the outer one. Both mechanisms predict the creep velocity as a function of the properties of the seal and the membrane, the pipet geometry, and the driving force. These model predictions are compared with experimental data for azolectin liposomes with added cholesterol or proteins. It turns out that to obtain experimentally observed creep velocities, a simple viscous flow in the seal zone requires ~10 Pa·s viscosity; it is unclear what structure might provide that because that viscosity alone severely constrains the electric resistance of the gigaseal. Possibly, it is the fluid bilayer that allows the motion. The two models provide an estimate of the adhesion energy of the membrane to the glass and membrane's electric characteristics through the comparison between the velocities of pressure-, adhesion-, and voltage-driven creep.
Collapse
Affiliation(s)
- Radomir I Slavchov
- Sofia University , Department of Physical Chemistry, 1 J. Bourchier Blvd., Sofia 1164, Bulgaria
| | | | | | | | | |
Collapse
|
10
|
Sensory mechanotransduction at membrane-matrix interfaces. Pflugers Arch 2014; 467:121-32. [PMID: 24981693 PMCID: PMC4281363 DOI: 10.1007/s00424-014-1563-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 01/23/2023]
Abstract
Sensory cells specialized to detect extremely small mechanical changes are common to the auditory and somatosensory systems. It is widely accepted that mechanosensitive channels form the core of the mechanoelectrical transduction in hair cells as well as the somatic sensory neurons that underlie the sense of touch and mechanical pain. Here, we will review how the activation of such channels can be measured in a meaningful physiological context. In particular, we will discuss the idea that mechanosensitive channels normally occur in transmembrane complexes that are anchored to extracellular matrix components (ECM) both in vitro and in vivo. One component of such complexes in sensory neurons is the integral membrane scaffold protein STOML3 which is a robust physiological regulator of native mechanosensitive currents. In order to better characterize such channels in transmembrane complexes, we developed a new electrophysiological method that enables the quantification of mechanosensitive current amplitude and kinetics when activated by a defined matrix movement in cultured cells. The results of such studies strongly support the idea that ion channels in transmembrane complexes are highly tuned to detect movement of the cell membrane in relation to the ECM.
Collapse
|
11
|
Boone AN, Senatore A, Chemin J, Monteil A, Spafford JD. Gd3+ and calcium sensitive, sodium leak currents are features of weak membrane-glass seals in patch clamp recordings. PLoS One 2014; 9:e98808. [PMID: 24945283 PMCID: PMC4063719 DOI: 10.1371/journal.pone.0098808] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/07/2014] [Indexed: 01/13/2023] Open
Abstract
The properties of leaky patch currents in whole cell recording of HEK-293T cells were examined as a means to separate these control currents from expressed sodium and calcium leak channel currents from snail NALCN leak channels possessing both sodium (EKEE) and calcium (EEEE) selectivity filters. Leak currents were generated by the weakening of gigaohm patch seals by artificial membrane rupture using the ZAP function on the patch clamp amplifier. Surprisingly, we found that leak currents generated from the weakened membrane/glass seal can be surprisingly stable and exhibit behavior that is consistent with a sodium leak current derived from an expressible channel. Leaky patch currents differing by 10 fold in size were similarly reduced in size when external sodium ions were replaced with the large monovalent ion NMDG+. Leaky patch currents increased when external Ca2+ (1.2 mM) was lowered to 0.1 mM and were inhibited (>40% to >90%) with 10 µM Gd3+, 100 µM La3+, 1 mM Co2+ or 1 mM Cd2+. Leaky patch currents were relatively insensitive (<30%) to 1 mM Ni2+ and exhibited a variable amount of block with 1 mM verapamil and were insensitive to 100 µM mibefradil or 100 µM nifedipine. We hypothesize that the rapid changes in leak current size in response to changing external cations or drugs relates to their influences on the membrane seal adherence and the electro-osmotic flow of mobile cations channeling in crevices of a particular pore size in the interface between the negatively charged patch electrode and the lipid membrane. Observed sodium leak conductance currents in weak patch seals are reproducible between the electrode glass interface with cell membranes, artificial lipid or Sylgard rubber.
Collapse
Affiliation(s)
| | | | - Jean Chemin
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, INSERM, U661, Universités de Montpellier 1 & 2, UMR-5203, Montpellier, France
| | - Arnaud Monteil
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, INSERM, U661, Universités de Montpellier 1 & 2, UMR-5203, Montpellier, France
| | - J. David Spafford
- Department of Biology, University of Waterloo, Waterloo, Canada
- * E-mail:
| |
Collapse
|
12
|
Malboubi M, Gu Y, Jiang K. Surface properties of glass micropipettes and their effect on biological studies. NANOSCALE RESEARCH LETTERS 2011; 6:401. [PMID: 21711929 PMCID: PMC3211496 DOI: 10.1186/1556-276x-6-401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/31/2011] [Indexed: 05/31/2023]
Abstract
In this paper, an investigation on surface properties of glass micropipettes and their effect on biological applications is reported. Pipettes were pulled under different pulling conditions and the effect of each pulling parameter was analyzed. SEM stereoscopic technique was used to reveal the surface roughness properties of pipette tip and pipette inner wall in 3D. More than 20 pipettes were reconstructed. Pipette heads were split open using focused ion beam (FIB) milling for access to the inner walls. It is found that surface roughness parameters are strongly related on the tip size. Bigger pipettes have higher average surface roughness and lower developed interfacial area ratio. Furthermore, the autocorrelation of roughness model of the inner surface shows that the inner surface does not have any tendency of orientation and is not affected by pulling direction. To investigate the effect of surface roughness properties on biological applications, patch-clamping tests were carried out by conventional and FIB-polished pipettes. The results of the experiments show that polished pipettes make significantly better seals. The results of this work are of important reference value for achieving pipettes with desired surface properties and can be used to explain biological phenomenon such as giga-seal formation.
Collapse
Affiliation(s)
- Majid Malboubi
- School of Mechanical Engineering, The University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Yuchun Gu
- IMM, Peking University, 5 Yiheyuan Road Beijing, 100871 China
| | - Kyle Jiang
- School of Mechanical Engineering, The University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
13
|
Py C, Salim D, Monette R, Comas T, Fraser J, Martinez D, Martina M, Mealing G. Cell to aperture interaction in patch-clamp chips visualized by fluorescence microscopy and focused-ion beam sections. Biotechnol Bioeng 2011; 108:1936-41. [PMID: 21391207 DOI: 10.1002/bit.23127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 02/22/2011] [Accepted: 02/28/2011] [Indexed: 11/11/2022]
Abstract
Patch-clamp is an important method to monitor the electrophysiological activity of cells and the role of pharmacological compounds on specific ion channel proteins. In recent years, planar patch-clamp chips have been developed as a higher throughput approach to the established glass-pipette method. However, proper conditions to optimize the high resistance cell-to-probe seals required to measure the small currents resulting from ion channel activity are still the subject of conjecture. Here, we report on the design of multiple-aperture (sieve) chips to rapidly facilitate assessment of cell-to-aperture interactions in statistically significant numbers. We propose a method to pre-screen the quality of seals based on a dye loading protocol through apertures in the chip and subsequent evaluation with fluorescence confocal microscopy. We also show the first scanning electron micrograph of a focused ion beam section of a cell in a patch-clamp chip aperture.
Collapse
Affiliation(s)
- Christophe Py
- Institute for Microstructural Sciences, National Research Council of Canada, 1200 Montreal Rd, Ottawa, Ontario K1A0R6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Nagarah JM, Paek E, Luo Y, Wang P, Hwang GS, Heath JR. Batch fabrication of high-performance planar patch-clamp devices in quartz. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:4622-4627. [PMID: 20830714 DOI: 10.1002/adma.201001793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- John M Nagarah
- Broad Fellows Program, Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
This review is an attempt to identify and place in context some of the many questions about voltage-gated proton channels that remain unsolved. As the gene was identified only 2 years ago, the situation is very different than in fields where the gene has been known for decades. For the proton channel, most of the obvious and less obvious structure-function questions are still wide open. Remarkably, the proton channel protein strongly resembles the voltage-sensing domain of many voltage-gated ion channels, and thus offers a novel approach to study gating mechanisms. Another surprise is that the proton channel appears to function as a dimer, with two separate conduction pathways. A number of significant biological questions remain in dispute, unanswered, or in some cases, not yet asked. This latter deficit is ascribable to the intrinsic difficulty in evaluating the importance of one component in a complex system, and in addition, to the lack, until recently, of a means of performing an unambiguous lesion experiment, that is, of selectively eliminating the molecule in question. We still lack a potent, selective pharmacological inhibitor, but the identification of the gene has allowed the development of powerful new tools including proton channel antibodies, siRNA and knockout mice.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 W. Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
16
|
Priel A, Gil Z, Moy VT, Magleby KL, Silberberg SD. Ionic requirements for membrane-glass adhesion and giga seal formation in patch-clamp recording. Biophys J 2007; 92:3893-900. [PMID: 17369408 PMCID: PMC1868979 DOI: 10.1529/biophysj.106.099119] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Patch-clamp recording has revolutionized the study of ion channels, transporters, and the electrical activity of small cells. Vital to this method is formation of a tight seal between glass recording pipette and cell membrane. To better understand seal formation and improve practical application of this technique, we examine the effects of divalent ions, protons, ionic strength, and membrane proteins on adhesion of membrane to glass and on seal resistance using both patch-clamp recording and atomic force microscopy. We find that H(+), Ca(2+), and Mg(2+) increase adhesion force between glass and membrane (lipid and cellular), decrease the time required to form a tight seal, and increase seal resistance. In the absence of H(+) (10(-10) M) and divalent cations (<10(-8) M), adhesion forces are greatly reduced and tight seals are not formed. H(+) (10(-7) M) promotes seal formation in the absence of divalent cations. A positive correlation between adhesion force and seal formation indicates that high resistance seals are associated with increased adhesion between membrane and glass. A similar ionic dependence of the adhesion of lipid membranes and cell membranes to glass indicates that lipid membranes without proteins are sufficient for the action of ions on adhesion.
Collapse
Affiliation(s)
- Avi Priel
- Department of Life Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
17
|
Hamill OP. Twenty odd years of stretch-sensitive channels. Pflugers Arch 2006; 453:333-51. [PMID: 17021800 DOI: 10.1007/s00424-006-0131-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 06/27/2006] [Indexed: 01/15/2023]
Abstract
After formation of the giga-seal, the membrane patch can be stimulated by hydrostatic or osmotic pressure gradients applied across the patch. This feature led to the discovery of stretch-sensitive or mechanosensitive (MS) channels, which are now known to be ubiquitously expressed in cells representative of all the living kingdoms. In addition to mechanosensation, MS channels have been implicated in many basic cell functions, including regulation of cell volume, shape, and motility. The successful cloning, overexpression, and crystallization of bacterial MS channel proteins combined with patch clamp and modeling studies have provided atomic insight into the working of these nanomachines. In particular, studies of MS channels have revealed new understanding of how the lipid bilayer modulates membrane protein function. Three major membrane protein families, transient receptor potential, 2 pore domain K(+), and the epithelial Na(+) channels, have been shown to form MS channels in animal cells, and their polymodal activation embrace fields far beyond mechanosensitivity. The discovery of new drugs highly selective for MS channels ("mechanopharmaceutics") and the demonstration of MS channel involvement in several major human diseases ("mechanochannelopathies") provide added motivation for devising new techniques and approaches for studying MS channels.
Collapse
Affiliation(s)
- O P Hamill
- Neurosciences and Cell Biology, UTMB, Galveston, TX, 77555, USA.
| |
Collapse
|
18
|
Suchyna TM, Besch SR, Sachs F. Dynamic regulation of mechanosensitive channels: capacitance used to monitor patch tension in real time. Phys Biol 2005; 1:1-18. [PMID: 16204817 DOI: 10.1088/1478-3967/1/1/001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
All cells, from bacteria to human, are mechanically sensitive. The most rapid of these membrane protein transducers are mechanosensitive ion channels, ionic pores in the membrane that open and close in response to membrane tension. In specific sensory organs, these channels serve the senses of touch and hearing, and inform the central nervous system about the filling of hollow organs such as the bladder. Non-specialized cells use these channels to report on changes in cell volume and local strain. To preserve dynamic sensitivity, sensory receptors adapt to steady-state stimuli. Here we show that in rat astrocytes, the most abundant cells in the brain, this apparent adaptation to the stimulus is actually an inactivation. We have been able to track the time course of local strain by measuring attofarad changes in membrane capacitance and show that it is not correlated with loss of channel activity. The reduction in current with time is caused by an increased occupancy of low conductance states, and a reduction in the probability of opening, not a relaxation of local stress. The occupancy of these substates depends on the integrity of the cell's cytoplasm. However, while disruption of the cytoskeleton leads to a loss of inactivation, it leaves activation unaffected. The activation process is voltage-insensitive, closely correlated with changes in capacitance, and seems to arise solely from stress in the bilayer. The inactivation rate decreases with depolarization, and kinetic analysis suggests that the process involves multiple cytoplasmic ligands. Surprisingly, multivalent ions such as Gd(+3) and Ca(+2) that bind to the lipids and affect channel gating, do not affect the strain-induced increase in membrane capacitance; contrary to expectations, membrane elasticity is unchanged.
Collapse
Affiliation(s)
- Thomas M Suchyna
- Department of Physiology and Biophysics, SUNY at Buffalo, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|
19
|
Huber SM, Duranton C, Lang F. Patch-clamp analysis of the "new permeability pathways" in malaria-infected erythrocytes. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 246:59-134. [PMID: 16164967 DOI: 10.1016/s0074-7696(05)46003-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intraerythrocytic amplification of the malaria parasite Plasmodium falciparum induces new pathways of solute permeability in the host cell's membrane. These pathways play a pivotal role in parasite development by supplying the parasite with nutrients, disposing of the parasite's metabolic waste and organic osmolytes, and adapting the host's electrolyte composition to the parasite's needs. The "new permeability pathways" allow the fast electrogenic diffusion of ions and thus can be analyzed by patch-clamp single-channel or whole-cell recording. By employing these techniques, several ion-channel types with different electrophysiological profiles have been identified in P. falciparum-infected erythrocytes; they have also been identified in noninfected cells. This review discusses a possible contribution of these channels to the new permeability pathways on the one hand and their supposed functions in noninfected erythrocytes on the other.
Collapse
Affiliation(s)
- Stephan M Huber
- Department of Physiology, Eberhard-Karls-University, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
20
|
Carvelli L, McDonald PW, Blakely RD, DeFelice LJ. Dopamine transporters depolarize neurons by a channel mechanism. Proc Natl Acad Sci U S A 2004; 101:16046-51. [PMID: 15520385 PMCID: PMC528740 DOI: 10.1073/pnas.0403299101] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurotransmitter transporters generate larger currents than expected if one assumes fixed stoichiometry models. It remains controversial, however, whether these depolarizing currents arise from high density and rapid turnover rates of a classical transporter, or whether transporters exhibit bona fide channel behavior. Although heterologously expressed transporters show single-channel behavior and noise analysis in native cells strongly suggests channel behavior, no directly observed single-channel events associated with transporters have been reported thus far in native cells. We describe single-channel events arising directly from the Caenorhabditis elegans dopamine transporter (DAT-1) as evidenced by DA-induced channel activity blocked by a high-affinity DAT-1 inhibitor, increased channel activity in neurons that overexpress DAT-1, and loss of channels in dat-1 knockout neurons. Our data indicate that authentic transporter channels underlie depolarizing whole-cell currents. Thus, DA transporters not only transport DA but also exhibit a channel mode of conduction that directly modulates membrane potential and neuronal function.
Collapse
Affiliation(s)
- Lucia Carvelli
- Department of Pharmacology and Center of Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, USA.
| | | | | | | |
Collapse
|
21
|
McCabe SL, Pelosi DM, Tetreault M, Miri A, Nguitragool W, Kovithvathanaphong P, Mahajan R, Zimmerman AL. All-trans-retinal is a closed-state inhibitor of rod cyclic nucleotide-gated ion channels. ACTA ACUST UNITED AC 2004; 123:521-31. [PMID: 15078915 PMCID: PMC2234497 DOI: 10.1085/jgp.200409011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rod vision begins when 11-cis-retinal absorbs a photon and isomerizes to all-trans-retinal (ATR) within the photopigment, rhodopsin. Photoactivated rhodopsin triggers an enzyme cascade that lowers the concentration of cGMP, thereby closing cyclic nucleotide–gated (CNG) ion channels. After isomerization, ATR dissociates from rhodopsin, and after a bright light, this release is expected to produce a large surge of ATR near the CNG channels. Using excised patches from Xenopus oocytes, we recently showed that ATR shuts down cloned rod CNG channels, and that this inhibition occurs in the nanomolar range (aqueous concentration) at near-physiological concentrations of cGMP. Here we further characterize the ATR effect and present mechanistic information. ATR was found to decrease the apparent cGMP affinity, as well as the maximum current at saturating cGMP. When ATR was applied to outside-out patches, inhibition was much slower and less effective than when it was applied to inside-out patches, suggesting that ATR requires access to the intracellular surface of the channel or membrane. The apparent ATR affinity and maximal inhibition of heteromeric (CNGA1/CNGB1) channels was similar to that of homomeric (CNGA1) channels. Single-channel and multichannel data suggest that channel inhibition by ATR is reversible. Inhibition by ATR was not voltage dependent, and the form of its dose–response relation suggested multiple ATR molecules interacting per channel. Modeling of the data obtained with cAMP and cGMP suggests that ATR acts by interfering with the allosteric opening transition of the channel and that it prefers closed, unliganded channels. It remains to be determined whether ATR acts directly on the channel protein or instead alters channel–bilayer interactions.
Collapse
Affiliation(s)
- Sarah L McCabe
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Niu W, Sachs F. Dynamic properties of stretch-activated K+ channels in adult rat atrial myocytes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 82:121-35. [PMID: 12732273 DOI: 10.1016/s0079-6107(03)00010-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effect of mechanical stress on the heart's electrical activity has been termed mechanoelectric feedback. The response to stretch depends upon the magnitude and the waveform of the stimulus, and upon the timing relative to the cardiac cycle. Stretch-activated ion channels (SACs) have been regarded as the most likely candidates for serving as the primary transducers of mechanical stress. We explored the steady state and dynamic responses of single channels in adult rat atrial cells using the patch clamp with a pressure clamp. Surprisingly, we only observed K(+)-selective SACs, probably of the 2P domain family. The channels were weakly outward rectifying with flickery bursts. In cell attached mode, the mean conductance was 74+/-14 and 65+/-16 pS for +60 and -60 mV, respectively (140 mM [K(+)](out), 2mM [Mg(2+)](out) and 0mM [Ca(2+)](out)). The latency of the response to pressure steps was 50-100 ms and the time to peak approximately 400 ms. About half of the channels in cell-attached patches showed adaptation/inactivation where channel activity declined to a plateau of 20-30% of peak in approximately 1s. The time dependent behavior of these SACs is generally consistent with whole-cell currents observed in chick and rat ventricular cells, although the net current was outward rather than inward.
Collapse
Affiliation(s)
- Weizhen Niu
- Department of Physiology, Capital University of Medical Sciences, 100054, Beijing, People's Republic of China
| | | |
Collapse
|
23
|
Cloning and characterization of glioma BK, a novel BK channel isoform highly expressed in human glioma cells. J Neurosci 2002. [PMID: 11880513 DOI: 10.1523/jneurosci.22-05-01840.2002] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Voltage-dependent large-conductance Ca2+-activated K+ channels (BK channels) are widely expressed in excitable and nonexcitable cells. BK channels exhibit diverse electrophysiological properties, which are attributable in part to alternative splicing of their alpha-subunits. BK currents have been implicated in the growth control of glial cells, and BK channels with novel biophysical properties have recently been characterized in human glioma cells. Here we report the isolation, cloning, and functional characterization of glioma BK (gBK), a novel splice isoform of hSlo, the gene that encodes the alpha-subunits of human BK channels. The primary sequence of gBK is 97% identical to its closest homolog hbr5, but it contains an additional 34-amino-acid exon at splice site 2 in the C-terminal tail of BK channels. hSlo transcripts containing this novel exon are expressed ubiquitously in various normal tissues as well as in neoplasmic samples, suggesting that the novel exon may modulate important physiological functions of BK channels. Expression of gBK in Xenopus oocytes gives rise to iberiotoxin-sensitive (IbTX) currents, with an IC(50) for IbTX of 5.7 nm and a Hill coefficient of 0.76. Single gBK channels have a unitary conductance of similar250 pS, and the currents show significantly slower activation and higher Ca2+ sensitivity than hbr5. Ca2+ sensitivity was enhanced specifically at physiologically relevant [Ca2+]i (100-500 nm). Examination of biopsies from patients with malignant gliomas has revealed specific overexpression of BK channels in gliomas compared with nonmalignant human cortical tissues. Importantly, tumor malignancy grades have correlated positively with BK channel expression, suggesting an important role for the gBK channel in glioma biology.
Collapse
|
24
|
Liu X, Chang Y, Reinhart PH, Sontheimer H, Chang Y. Cloning and characterization of glioma BK, a novel BK channel isoform highly expressed in human glioma cells. J Neurosci 2002; 22:1840-9. [PMID: 11880513 PMCID: PMC6758869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Voltage-dependent large-conductance Ca2+-activated K+ channels (BK channels) are widely expressed in excitable and nonexcitable cells. BK channels exhibit diverse electrophysiological properties, which are attributable in part to alternative splicing of their alpha-subunits. BK currents have been implicated in the growth control of glial cells, and BK channels with novel biophysical properties have recently been characterized in human glioma cells. Here we report the isolation, cloning, and functional characterization of glioma BK (gBK), a novel splice isoform of hSlo, the gene that encodes the alpha-subunits of human BK channels. The primary sequence of gBK is 97% identical to its closest homolog hbr5, but it contains an additional 34-amino-acid exon at splice site 2 in the C-terminal tail of BK channels. hSlo transcripts containing this novel exon are expressed ubiquitously in various normal tissues as well as in neoplasmic samples, suggesting that the novel exon may modulate important physiological functions of BK channels. Expression of gBK in Xenopus oocytes gives rise to iberiotoxin-sensitive (IbTX) currents, with an IC(50) for IbTX of 5.7 nm and a Hill coefficient of 0.76. Single gBK channels have a unitary conductance of similar250 pS, and the currents show significantly slower activation and higher Ca2+ sensitivity than hbr5. Ca2+ sensitivity was enhanced specifically at physiologically relevant [Ca2+]i (100-500 nm). Examination of biopsies from patients with malignant gliomas has revealed specific overexpression of BK channels in gliomas compared with nonmalignant human cortical tissues. Importantly, tumor malignancy grades have correlated positively with BK channel expression, suggesting an important role for the gBK channel in glioma biology.
Collapse
Affiliation(s)
- Xiaojin Liu
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
The simplest cell-like structure, the lipid bilayer vesicle, can respond to mechanical deformation by elastic membrane dilation/thinning and curvature changes. When a protein is inserted in the lipid bilayer, an energetic cost may arise because of hydrophobic mismatch between the protein and bilayer. Localized changes in bilayer thickness and curvature may compensate for this mismatch. The peptides alamethicin and gramicidin and the bacterial membrane protein MscL form mechanically gated (MG) channels when inserted in lipid bilayers. Their mechanosensitivity may arise because channel opening is associated with a change in the protein's membrane-occupied area, its hydrophobic mismatch with the bilayer, excluded water volume, or a combination of these effects. As a consequence, bilayer dilation/thinning or changes in local membrane curvature may shift the equilibrium between channel conformations. Recent evidence indicates that MG channels in specific animal cell types (e.g., Xenopus oocytes) are also gated directly by bilayer tension. However, animal cells lack the rigid cell wall that protects bacteria and plants cells from excessive expansion of their bilayer. Instead, a cortical cytoskeleton (CSK) provides a structural framework that allows the animal cell to maintain a stable excess membrane area (i.e., for its volume occupied by a sphere) in the form of membrane folds, ruffles, and microvilli. This excess membrane provides an immediate membrane reserve that may protect the bilayer from sudden changes in bilayer tension. Contractile elements within the CSK may locally slacken or tighten bilayer tension to regulate mechanosensitivity, whereas membrane blebbing and tight seal patch formation, by using up membrane reserves, may increase membrane mechanosensitivity. In specific cases, extracellular and/or CSK proteins (i.e., tethers) may transmit mechanical forces to the process (e.g., hair cell MG channels, MS intracellular Ca(2+) release, and transmitter release) without increasing tension in the lipid bilayer.
Collapse
Affiliation(s)
- O P Hamill
- Physiology and Biophysics, University Of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | |
Collapse
|
26
|
Negulyaev YA, Khaitlina SY, Hinssen H, Shumilina EV, Vedernikova EA. Sodium channel activity in leukemia cells is directly controlled by actin polymerization. J Biol Chem 2000; 275:40933-7. [PMID: 11016945 DOI: 10.1074/jbc.m008219200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The actin cytoskeleton has been shown to be involved in the regulation of sodium-selective channels in non-excitable cells. However, the molecular mechanisms underlying the changes in channel function remain to be defined. In the present work, inside-out patch experiments were employed to elucidate the role of submembranous actin dynamics in the control of sodium channels in human myeloid leukemia K562 cells. We found that the application of cytochalasin D to the cytoplasmic surface of membrane fragments resulted in activation of non-voltage-gated sodium channels of 12 picosiemens conductance. Similar effects could be evoked by addition of the actin-severing protein gelsolin to the bath cytosol-like solution containing 1 microm [Ca(2+)](i). The sodium channel activity induced by disassembly of submembranous microfilaments with cytochalasin D or gelsolin could be abolished by intact actin added to the bath cytosol-like solution in the presence of 1 mm MgCl(2) to induce actin polymerization. In the absence of MgCl(2), addition of intact actin did not abolish the channel activity. Moreover, the sodium currents were unaffected by heat-inactivated actin or by actin whose polymerizability was strongly reduced by cleavage with specific Escherichia coli A2 protease ECP32. Thus, the inhibitory effect of actin on channel activity was observed only under conditions promoting rapid polymerization. Taken together, our data show that sodium channels are directly controlled by dynamic assembly and disassembly of submembranous F-actin.
Collapse
Affiliation(s)
- Y A Negulyaev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | | | | | | | | |
Collapse
|
27
|
Nakamura M, Sunagawa M, Kosugi T, Sperelakis N. Actin filament disruption inhibits L-type Ca(2+) channel current in cultured vascular smooth muscle cells. Am J Physiol Cell Physiol 2000; 279:C480-7. [PMID: 10913014 DOI: 10.1152/ajpcell.2000.279.2.c480] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To clarify interactions between the cytoskeleton and activity of L-type Ca(2+) (Ca(L)) channels in vascular smooth muscle (VSM) cells, we investigated the effect of disruption of actin filaments and microtubules on the L-type Ca(2+) current [I(Ba(L))] of cultured VSM cells (A7r5 cell line) using whole cell voltage clamp. The cells were exposed to each disrupter for 1 h and then examined electrophysiologically and morphologically. Results of immunostaining using anti-alpha-actin and anti-alpha-tubulin antibodies showed that colchicine disrupted both actin filaments and microtubules, cytochalasin D disrupted only actin filaments, and nocodazole disrupted only microtubules. I(Ba(L)) was greatly reduced in cells that were exposed to colchicine or cytochalasin D but not to nocodazole. Colchicine even inhibited I(Ba(L)) by about 40% when the actin filaments were stabilized by phalloidin or when the cells were treated with phalloidin plus taxol to stabilize both cytoskeletal components. These results suggest that colchicine must also cause some inhibition of I(Ba(L)) due to another unknown mechanism, e.g., a direct block of Ca(L) channels. In summary, actin filament disruption of VSM cells inhibits Ca(L) channel activity, whereas disrupting the microtubules does not.
Collapse
Affiliation(s)
- M Nakamura
- Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, Ohio 45267-0576, USA.
| | | | | | | |
Collapse
|
28
|
Kaznacheyeva E, Zubov A, Nikolaev A, Alexeenko V, Bezprozvanny I, Mozhayeva GN. Plasma membrane calcium channels in human carcinoma A431 cells are functionally coupled to inositol 1,4,5-trisphosphate receptor-phosphatidylinositol 4,5-bisphosphate complexes. J Biol Chem 2000; 275:4561-4. [PMID: 10671480 DOI: 10.1074/jbc.275.7.4561] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In most nonexcitable cells, calcium (Ca(2+)) release from inositol 1,4,5-trisphosphate (InsP(3))-sensitive intracellular Ca(2+) stores is coupled to Ca(2+) influx (calcium release-activated channels (I(CRAC))) pathway. Despite intense investigation, the molecular identity of I(CRAC) and the mechanism of its activation remain poorly understood. InsP(3)-dependent miniature calcium channels (I(min)) display functional properties characteristic for I(CRAC). Here we used patch clamp recordings of I(min) channels in human carcinoma A431 cells to demonstrate that I(min) activity was greatly enchanced in the presence of anti-phosphatidylinositol 4, 5-bisphosphate antibody (PIP(2)Ab) and diminished in the presence of PIP(2). Anti-PIP(2) antibody induced a greater than 6-fold increase in I(min) sensitivity for InsP(3) activation and an almost 4-fold change in I(min) maximal open probability. The addition of exogenous PIP(2) vesicles to the cytosolic surface of inside-out patches inhibited I(min) activity. These results lead us to propose an existence of a Ca(2+) influx pathway in nonexcitable cells activated via direct conformational coupling with a selected population of InsP(3) receptors, located just underneath the plasma membrane and coupled to PIP(2). The described pathway provides for a highly compartmentalized Ca(2+) influx and intracellular Ca(2+) store refilling mechanism.
Collapse
Affiliation(s)
- E Kaznacheyeva
- Institute of Cytology RAS, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia
| | | | | | | | | | | |
Collapse
|
29
|
Zhang Y, Hamill OP. On the discrepancy between whole-cell and membrane patch mechanosensitivity in Xenopus oocytes. J Physiol 2000; 523 Pt 1:101-15. [PMID: 10673547 PMCID: PMC2269787 DOI: 10.1111/j.1469-7793.2000.00101.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. Mechanical stimulation of voltage-clamped Xenopus oocytes by inflation, aspiration, or local indentation failed to activate an increase in membrane conductance up to the point of causing visible oocyte damage. 2. The absence of mechanosensitivity is not due to the vitelline membrane, rapid MG channel adaptation or tension-sensitive recruitment of new membrane. 3. Membrane capacitance measurements indicate that the oocyte surface area is at least 5 times larger than that predicted assuming a smooth sphere. We propose that this excess membrane area provides an immediate reserve that can 'buffer' membrane tension changes and thus prevent MG channel activation. 4. High-resolution images of tightly sealed patches and patch capacitance measurements indicate a smooth membrane that is pulled flat and perpendicular across the inside of the pipette. Brief steps of pressure or suction cause rapid and reversible membrane flexing and MG channel activation. 5. We propose that changes in membrane geometry induced during cell growth and differentiation or as a consequence of specific physiological and pathological conditions may alter mechanosensitivity of a cell independently of the intrinsic properties of channel proteins.
Collapse
Affiliation(s)
- Y Zhang
- Physiology and Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0641, USA
| | | |
Collapse
|
30
|
Abstract
Mechanoelectric transduction can initiate cardiac arrhythmias. To examine the origins of this effect at the cellular level, we made whole cell voltage-clamp recordings from acutely isolated rat ventricular myocytes under controlled strain. Longitudinal stretch elicited noninactivating inward cationic currents that increased the action potential duration. These stretch-activated currents could be blocked by 100 microM Gd(3+) but not by octanol. The current-voltage relationship was nearly linear, with a reversal potential of approximately -6 mV in normal Tyrode solution. Current density varied with sarcomere length (SL) according to I (pA/pF) = 8.3 - 5.0 SL (microm). Repeated attempts to record single channel currents from stretch-activated ion channels failed, in accord with the absence of such data from the literature. The inability to record single channel currents may be a result of channels being located on internal membranes such as the T tubules or, possibly, inactivation of the channels by the mechanics of patch formation.
Collapse
Affiliation(s)
- T Zeng
- Department of Physiology and Biophysics, State University of New York, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
31
|
Chapter 8 Phototransduction mechanisms in microvillar and ciliary photoreceptors of invertebrates. HANDBOOK OF BIOLOGICAL PHYSICS 2000. [DOI: 10.1016/s1383-8121(00)80011-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
32
|
Gil Z, Silberberg SD, Magleby KL. Voltage-induced membrane displacement in patch pipettes activates mechanosensitive channels. Proc Natl Acad Sci U S A 1999; 96:14594-9. [PMID: 10588750 PMCID: PMC24481 DOI: 10.1073/pnas.96.25.14594] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The patch-clamp technique allows currents to be recorded through single ion channels in patches of cell membrane in the tips of glass pipettes. When recording, voltage is typically applied across the membrane patch to drive ions through open channels and to probe the voltage-sensitivity of channel activity. In this study, we used video microscopy and single-channel recording to show that prolonged depolarization of a membrane patch in borosilicate pipettes results in delayed slow displacement of the membrane into the pipette and that this displacement is associated with the activation of mechanosensitive (MS) channels in the same patch. The membrane displacement, approximately 1 micrometer with each prolonged depolarization, occurs after variable delays ranging from tens of milliseconds to many seconds and is correlated in time with activation of MS channels. Increasing the voltage step shortens both the delay to membrane displacement and the delay to activation. Preventing depolarization-induced membrane displacement by applying positive pressure to the shank of the pipette or by coating the tips of the borosilicate pipettes with soft glass prevents the depolarization-induced activation of MS channels. The correlation between depolarization-induced membrane displacement and activation of MS channels indicates that the membrane displacement is associated with sufficient membrane tension to activate MS channels. Because membrane tension can modulate the activity of various ligand and voltage-activated ion channels as well as some transporters, an apparent voltage dependence of a channel or transporter in a membrane patch in a borosilicate pipette may result from voltage-induced tension rather than from direct modulation by voltage.
Collapse
Affiliation(s)
- Z Gil
- Department of Life Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | |
Collapse
|
33
|
Jayaraman V, Thiran S, Hess GP. How fast does the gamma-aminobutyric acid receptor channel open? Kinetic investigations in the microsecond time region using a laser-pulse photolysis technique. Biochemistry 1999; 38:11372-8. [PMID: 10471287 DOI: 10.1021/bi990454c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gamma-aminobuytric acid(A) (GABA(A)) receptor is a membrane-bound protein that mediates signal transmission between neurons through formation of chloride ion channels. GABA is the activating ligand, which upon binding to the receptor triggers channel opening in the microsecond time domain and reversible desensitization of the receptor in the millisecond time region. We have investigated the channel-opening mechanism for this receptor in rat hippocampal neurons before the protein desensitizes by using a rapid flow method (cell-flow) with a 10 ms time resolution and a laser-pulse photolysis technique with a approximately 30 micros time resolution to determine the rate and equilibrium constants for channel opening and closing. Two different forms of the receptor, namely, a rapidly and a slowly desensitizing form, exist in the rat hippocampal cells and are characterized by their different rates for desensitization. At 250 microM GABA the rate constant for desensitization was 2.3 +/- 0.4 s(-)(1) for the rapidly desensitizing form and 0.4 +/- 0.1 s(-)(1) for the slowly desensitizing form. The dissociation constant of GABA from the site controlling channel opening was 100 +/- 40 microM for the rapidly desensitizing form and 120 +/- 60 microM for the slowly desensitizing form. The rate constants for channel closing did not differ significantly for the two forms, 85 +/- 20 s(-)(1) for the rapidly desensitizing and 100 +/- 60 s(-)(1) for the slowly desensitizing form. However, the channel-opening rate constant differed by a factor of 3, 1840 +/- 160 s(-)(1) for the rapidly desensitizing and 6700 +/- 330 s(-)(1) for the slowly desensitizing form. This difference in the rate constant for channel opening for the two forms, determined by the laser-pulse photolysis technique, is reflected as a shift in the channel-opening equilibrium constant, which is 7 +/- 5 and 20 +/- 15 for the rapidly and slowly desensitizing forms respectively, determined by the cell-flow method. These constants, together with the concentration of GABA and the concentration of receptor sites in the membrane, determine the number of channels that open as a function of GABA concentration, and the rate at which they open and close. These constants play an important role in determining the rate of the transmembrane ion flux and, therefore, the receptor-controlled changes in transmembrane voltage that trigger signal transmission.
Collapse
Affiliation(s)
- V Jayaraman
- Section of Biochemistry, Molecular and Cell Biology, Division of Biological Sciences, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | |
Collapse
|
34
|
Abstract
Studying ligand-gated ion channels often requires the ability to change solutions quickly. Using finite element models, I have examined the practical limitations of how fast solutions can be exchanged on an outside-out patch using a dual stream switcher. The primary factors controlling the speed of response are the flow velocity, proximity of the patch to the exit ports, the width of the partition between the two streams, the velocity with which the streams can be moved across the patch, and the viscosity of the solutions. The practical limit seems to be a rise time of approximately 20 microseconds. The rate-limiting step is the velocity of the (usually piezo) motor that translates the streams across the patch. Increasing the perfusate viscosity improves speed by slowing dissipation of the concentration gradients. A flow switcher can also be used for bipolar temperature jumps with a rise time of approximately 100 microseconds.
Collapse
Affiliation(s)
- F Sachs
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA.
| |
Collapse
|
35
|
Semenova SB, Kiselev KI, Mozhaeva GN. Low-conductivity calcium channels in the macrophage plasma membrane: activation by inositol-1,4,5-triphosphate. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1999; 29:339-345. [PMID: 10493548 DOI: 10.1007/bf02465347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Local voltage clamping was applied to mouse macrophage plasma membrane to study calcium channels activated by inositol-1,4,5-triphosphate (IP3) and blocked by heparin. These channels were clearly distinguished from IP3-activated channels of the endoplasmic reticulum by their low conductivity (about 1 pSm for 100 mM Ca2+), high selectivity for Ca2+ relative to K+ (P(Ca):P(K) > 1000), calcium inactivation, and activation on hyperpolarization; these properties allowed them to be assigned to the I(CRAC) family. On the other hand, the properties of the IP3 receptors of these channels (IP3R), i.e., the dose-dependent effect of IP3, the IP3 desensitization of the receptor, and the sensitivity to micromolar concentrations of heparin and arachidonic acid were close to those of the endoplasmic reticulum IP3 receptor. The most likely interpretation of these data is that IP3R are not located in the endoplasmic reticulum, but, acting via some kind of conformational change occurring on binding of IP3, transmit a signal from the endoplasmic reticulum to the highly selective Ca2+ channels. This point of view is in agreement with the published "coupling model" [1].
Collapse
Affiliation(s)
- S B Semenova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg
| | | | | |
Collapse
|
36
|
Abstract
In the phospholipase C signaling system, Ca(2+) is mobilized from intracellular stores by an action of inositol 1,4,5-trisphosphate. The depletion of intracellular calcium stores activates a calcium entry mechanism at the plasma membrane called capacitative calcium entry. The signal for activating the entry is unknown but likely involves either the generation or release, or both, from the endoplasmic reticulum of some diffusible signal. Recent research has focused on mammalian homologues of the Drosophila TRP protein as potential candidates for capacitative calcium entry channels. This review summarizes current knowledge about the nature of capacitative calcium entry signals, as well as the potential role of mammalian TRP proteins as capacitative calcium entry channel molecules.
Collapse
Affiliation(s)
- J W Putney
- Calcium Regulation Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
37
|
Chapter 14 Regulation of Ion Channels by Membrane Proteins. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)60930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
38
|
Abstract
Ion channel mapping techniques are described and the results for two fungal organisms, Saprolegnia ferax and Neurospora crassa, are presented. In these species, two channel types have been characterized, stretch-activated channels exhibiting significant calcium permeability and spontaneous channels having significant potassium permeability. Two distinct analyses of patch clamp data, analysis of channel self-clustering and association between different channel types, and localization along the hyphae, reveal significant differences between the two organisms. S. ferax maintains a tip-high gradient of both channel types which is lost after disruption of the actin cytoskeleton. There is significant self-clustering of the channels, as well as interactions between channel types. N. crassa on the other hand does not maintain tip-high gradients, and clustered distributions are observed only for the stretch-activated channels. In terms of physiological roles, evidence is quite strong that the stretch-activated channels function as a growth sensor in S. ferax, but have an unknown function in N. crassa. In both organisms, the potassium permeable channels presumably function in potassium uptake. The differences between these two organisms may be due, in part, to differences in their normal environment: aquatic versus terrestrial. Copyright 1998 Academic Press.
Collapse
Affiliation(s)
- RR Lew
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
39
|
Disruption of mitochondrial respiration inhibits volume-regulated anion channels and provokes neuronal cell swelling. J Neurosci 1998. [PMID: 9547220 DOI: 10.1523/jneurosci.18-09-03117.1998] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hypoxia and inhibitors of mitochondrial respiration impair the regulatory volume decrease (RVD) of cerebellar granule neurons after hypotonic swelling. RVD is linked to the opening of volume-regulated anion channels (VRACs). VRACs are outwardly rectifying, inactivate slowly during maintained depolarization, and are permeable to the cellular organic osmolyte taurine. Channel activation requires nonhydrolytic ATP binding and is not modulated by intracellular ADP. VRAC opening is reversibly depressed by hypoxia and by mitochondrial inhibitors such as oligomycin, rotenone, and antimycin A. These results demonstrate that neuronal VRAC activation and swelling are both tightly linked to cellular energy. Moreover, the findings reported in this work may have a particular significance for inherited mitochondrial human diseases, such as mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), which cause brain swelling and edema.
Collapse
|
40
|
Patel AJ, Lauritzen I, Lazdunski M, Honoré E. Disruption of mitochondrial respiration inhibits volume-regulated anion channels and provokes neuronal cell swelling. J Neurosci 1998; 18:3117-23. [PMID: 9547220 PMCID: PMC6792668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hypoxia and inhibitors of mitochondrial respiration impair the regulatory volume decrease (RVD) of cerebellar granule neurons after hypotonic swelling. RVD is linked to the opening of volume-regulated anion channels (VRACs). VRACs are outwardly rectifying, inactivate slowly during maintained depolarization, and are permeable to the cellular organic osmolyte taurine. Channel activation requires nonhydrolytic ATP binding and is not modulated by intracellular ADP. VRAC opening is reversibly depressed by hypoxia and by mitochondrial inhibitors such as oligomycin, rotenone, and antimycin A. These results demonstrate that neuronal VRAC activation and swelling are both tightly linked to cellular energy. Moreover, the findings reported in this work may have a particular significance for inherited mitochondrial human diseases, such as mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), which cause brain swelling and edema.
Collapse
Affiliation(s)
- A J Patel
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UPR 411, 06560 Valbonne, France
| | | | | | | |
Collapse
|
41
|
Sachs F, Morris CE. Mechanosensitive ion channels in nonspecialized cells. Rev Physiol Biochem Pharmacol 1998; 132:1-77. [PMID: 9558913 DOI: 10.1007/bfb0004985] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- F Sachs
- Biophysical Sciences, State University of New York, Buffalo 14214, USA
| | | |
Collapse
|
42
|
Wang LY, Gan L, Perney TM, Schwartz I, Kaczmarek LK. Activation of Kv3.1 channels in neuronal spine-like structures may induce local potassium ion depletion. Proc Natl Acad Sci U S A 1998; 95:1882-7. [PMID: 9465111 PMCID: PMC19207 DOI: 10.1073/pnas.95.4.1882] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spines are specialized neuronal membrane structures, often localized at sites where synaptic information is relayed from one cell to another in the central nervous system. By electron immunomicroscopy we have found that the mammalian Shaw family potassium channel Kv3.1 is localized on spine-like protrusions, adjacent to postsynaptic membranes of bushy cells in the cochlear nucleus. As direct characterization of the electrophysiological behavior of ion channels in such structures is difficult, we have used Kv3. 1-transfected CHO cells to create artificial spine-like membrane compartments. Membrane patches were sucked into microelectrodes to form small, cell-attached vesicles with dimensions comparable to those of the neuronal structures. Currents mediated by the Kv3.1 channel in these vesicles undergo rapid and complete inactivation, in contrast to their noninactivating behavior in whole-cell recordings. This apparent inactivation is caused by the rapid depletion of K+ from the vesicle and the slow refilling of K+ into the vesicle compartment from the bulk cytoplasm. Our data provide evidence that compartmentalized ionic transients can be generated in spine-like membrane structures and support the view that the localization of ion channels in spine-like structures may influence responses to synaptic stimulation.
Collapse
Affiliation(s)
- L Y Wang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
43
|
Hwang JU, Suh S, Yi H, Kim J, Lee Y. Actin Filaments Modulate Both Stomatal Opening and Inward K+-Channel Activities in Guard Cells of Vicia faba L. PLANT PHYSIOLOGY 1997; 115:335-342. [PMID: 12223811 PMCID: PMC158491 DOI: 10.1104/pp.115.2.335] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Actin antagonists have previously been shown to alter responses of Commelina communis stomata to physiological stimuli, implicating actin filaments in the control of guard cell volume changes (M. Kim, P.K. Hepler, S.-O. Eun, K.S. Ha, Y. Lee [1995] Plant Physiol 109: 1077-1084). Since K+ channels in the guard cell play an important role in stomatal movements, we examined the possible regulation of K+-channel activities by the state of actin polymerization. Agents affecting actin polymerization altered light-induced stomatal opening and inward K+-channel activities measured by patch clamping in Vicia faba. Cytochalasin D, which induces depolymerization of actin filaments, promoted light-induced stomatal opening and potentiated the inward K+ current in guard cell protoplasts. Phalloidin, a stabilizer of filamentous actin, inhibited both light-induced stomatal opening and inward K+ current. Inward K+-channel activities in outside-out membrane patches showed responses to these agents that support results at the whole-cell current level, suggesting that cytochalasin D facilitates and phalloidin inhibits K+ influx in intact guard cells, thus resulting in enhancement and inhibition of stomatal opening, respectively. To our knowledge, this is the first report that provides evidence that actin filaments may regulate an important physiological process by modulating the activities of ion channels in plant cells.
Collapse
Affiliation(s)
- J. U. Hwang
- Department of Life Science (J.-U.H., S.S., H.Y., J.K., Y.L.), School of Environmental Engineering (Y.L.), Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | |
Collapse
|
44
|
Dean JB, Huang RQ, Erlichman JS, Southard TL, Hellard DT. Cell-cell coupling occurs in dorsal medullary neurons after minimizing anatomical-coupling artifacts. Neuroscience 1997; 80:21-40. [PMID: 9252218 DOI: 10.1016/s0306-4522(97)00016-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dye (Lucifer Yellow) and tracer (Biocytin) coupling, referred to collectively as anatomical coupling, were identified in 20% of the solitary complex neurons tested in medullary tissue slices (120-350 microm) prepared from rat, postnatal day 1-18, using a modified amphotericin B-perforated patch recording technique. Ten per cent of the neurons sampled in nuclei outside the solitary complex were anatomically coupled. Fifty-eight per cent of anatomically coupled neurons exhibited electrotonic postsynaptic potential-like activity, which had peak-to-peak amplitudes of < or = 7 mV, with the same polarity as action potentials; increased and decreased in frequency during depolarizing and hyperpolarizing current injection; was maintained during high Mg2+-low Ca2+ chemical synaptic blockade; and was measured only in anatomically coupled neurons. The high correlation between anatomical coupling and electrotonic postsynaptic potential-like activity suggests that Lucifer Yellow, Biocytin and ionic current used the same pathways of intercellular communication, which were presumed to be gap junctions. Anatomical coupling was attributed solely to the junctional transfer of Lucifer Yellow and Biocytin since potential sources of non-junctional staining were minimized. Specifically, combining 0.26 mM amphotericin B and 0.15-0.5% Lucifer Yellow produced a hydrophobic, viscous solution that did not leak from the pressurized pipette tip < or = 3 microm outer diameter) submerged in artificial cerebral spinal fluid. Moreover, unintentional contact of the pipette tip with adjacent neurons that resulted in accidental staining, another source of non-junctional staining, wits averted by continuously visualizing the tip prior to tight seal formation with infrared video microscopy, used here for the first time with Hoffman modulation contrast optics. During perforated patch recording which typically lasted for 1-3 h. Lucifer Yellow was confined to the pipette, indicating that the amphotericin B patch was intact. However, once the patch was intentionally ruptured at the end of recording, the viscous, lipophilic solution entered the neuron resulting in double labeling. Placing a mixture of amphotericin B, Biocytin and Lucifer Yellow directly into the pipette tip did not compromise tight seal formation with an exposed, cleaned soma, and resulted in immediate (<1 min) steady-state perforation at 22-25 degrees C. This adaptation of conventional perforated patch recording was termed "rapid perforated patch recording". The possible functional implication of cell-cell coupling in the dorsal medulla oblongata in central CO2/H+ chemoreception for the cardiorespiratory control systems is discussed in the second paper of this set [Huang et al. (1997) Neuroscience 80, 41-57].
Collapse
Affiliation(s)
- J B Dean
- Department of Physiology and Biophysics, Wright State University, School of Medicine, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
45
|
Kiselyov KI, Mamin AG, Semyonova SB, Mozhayeva GN. Low-conductance high selective inositol (1,4,5)-trisphosphate activated Ca2+ channels in plasma membrane of A431 carcinoma cells. FEBS Lett 1997; 407:309-12. [PMID: 9175874 DOI: 10.1016/s0014-5793(97)00366-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In many cells, activation of receptors coupled to PIP2 turnover results in Ca2+ release from the intracellular stores accompanied by Ca2+ influx across the PM. It is not well established yet whether Ca2+ influx is activated by IP3 or by an unknown signal generated upon Ca2+ store depletion. We report here a single-channel study of low-conductance IP3-activated channels of very high selectivity for Ca2+ in the PM of A431 carcinoma cells. The channels are strongly potential dependent and sensitive to [Ca2+]i within the physiological range. The data obtained argues for IP3 acting directly on plasma membrane Ca2+ channels.
Collapse
Affiliation(s)
- K I Kiselyov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg
| | | | | | | |
Collapse
|
46
|
Kusaka S, Puro DG. Intracellular ATP activates inwardly rectifying K+ channels in human and monkey retinal Müller (glial) cells. J Physiol 1997; 500 ( Pt 3):593-604. [PMID: 9161978 PMCID: PMC1159411 DOI: 10.1113/jphysiol.1997.sp022045] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. In the vertebrate retina, the inwardly rectifying K+ (KIR) channels of the Müller (glial) cells are pathways for the redistribution of excess extracellular K+. Due to this role in K+ homeostasis, the activity of Müller cell KIR channels is likely to have significant functional consequences for the retina. In this study we asked whether intracellular ATP regulates the function of KIR channels expressed by Müller cells, the principal glia of the retina. 2. Freshly dissociated Müller cells from the human and monkey (Macaca fascicularis) retina were studied with various configurations of the patch-clamp technique. 3. Whole-cell recordings from Müller cells revealed that a run-down of the inwardly rectifying K+ current (IK(IR)) was prevented if the pipette solution contained Mg-ATP. Chemical ischaemia induced by inhibitors of glycolysis and oxidative phosphorylation caused a nearly 10-fold reduction in the IK(IR)) that was fully restored when metabolically inhibited Müller cells were internally perfused with ATP. 4. In recordings from membrane patches of fresh primate Müller cells, we found that inward-rectifying channels with a conductance of 20 pS in 100 mM Ko+ were the predominant type of KIR channel. In excised patches these 20 pS KIR channels were activated when Mg-ATP was at the cytoplasmic surface. Experiments with inside-out patches indicated that the activity of the 20 pS KIR channels can be maintained by ATP synthesized at sites located close to the channel. 5. The inability of the non-hydrolysable ATP analogue 5'-adenylylimidodiphosphate (AMP-PNP) to prevent the run-down of IK(IR))and the Mg2+ dependence of the ATP effect on KIR channels are consistent with a mechanism of activation requiring the hydrolysis of ATP. 6. These observations suggest that the metabolic state of a Müller cell regulates the activity of its 20 pS KIR channels and thus influences the function of the glial cell in maintaining K+ homeostasis in the retina.
Collapse
Affiliation(s)
- S Kusaka
- Department of Ophthalmology, University of Michigan, Ann Arbor 48105, USA
| | | |
Collapse
|
47
|
Allard B, Rougier O. Similarity of ATP-dependent K+ channels in skeletal muscle fibres from normal and mutant mdx mice. J Physiol 1997; 498 ( Pt 2):319-25. [PMID: 9032681 PMCID: PMC1159203 DOI: 10.1113/jphysiol.1997.sp021860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. ATP-dependent K+ (KATP) channels were studied in fibres isolated from flexor digitorum brevis and interosseal skeletal muscles of normal and mutant mdx mice using the patch clamp technique in the presence of asymmetrical K+ concentrations (5 mM K+ in the pipette and in vivo intracellular [K+] or 145 mM K+ at the cytoplasmic face). 2. In cell-attached patches from mdx muscle fibres bathed in K(+)-rich solution, cell poisoning with fluorodinitrobenzene induced partially reversible opening of channels carrying an outward current of an amplitude of 1.2 pA at 0 mV. Exposure of fibres to the K+ channel opener cromakalim led to opening of the same type of channel. These channels were assumed to be KATP channels. 3. On excision of inside-out patches from mdx muscle fibres, in the absence of intracellular ATP, KATP channels were active: they carried a unitary outward current of 1.6 pA at 0 mV and were inhibited by intracellular ATP and glibenclamide. The number of KATP channels per patch was not significantly different in muscles from normal and mdx mice. 4. In inside-out patches, in the presence of 1 mM intracellular Mg2+, slope conductances of 21 and 20.3 pS were found for KATP channels in normal and mdx muscle, respectively. In the absence of Mg2+, slope conductances of KATP channels were 31.3 and 32 pS in normal and mdx muscle, respectively and KATP channel activity was augmented in mdx muscle in the same way as in normal muscle. Activity of the same KATP channel was observed in extensor digitorum longus muscle from normal and mdx mice. 5. In inside-out patches held at 0 mV, the relationship between KATP channel activity and intracellular ATP was described by a Hill equation: Ki values were 23 and 21 microM and Hill coefficients were 1.8 and 1.9 in normal and mdx muscle, respectively. 6. These results indicate that the distribution, the conductance properties and ATP sensitivity of KATP channels do not differ in normal and in mdx mouse skeletal muscle.
Collapse
Affiliation(s)
- B Allard
- Laboratoire de Physiologie des Eléments Excitables, CNRS UMR 5578, Université C. Bernard Lyon I, Villeurbanne, France.
| | | |
Collapse
|
48
|
Mogami H, Nakano K, Tepikin AV, Petersen OH. Ca2+ flow via tunnels in polarized cells: recharging of apical Ca2+ stores by focal Ca2+ entry through basal membrane patch. Cell 1997; 88:49-55. [PMID: 9019404 DOI: 10.1016/s0092-8674(00)81857-7] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intracellular Ca2+ store depletion induces Ca2+ entry across the plasma membrane, allowing the store to recharge. In our experiments, Ca2+ stores in pancreatic acinar cells were depleted by acetylcholine (ACh) stimulation in Ca2+-free solution. Thereafter, Ca2+ entry was only allowed through a CaCl2-containing pipette attached to the basal membrane. Recharging intracellular Ca2+ stores via a patch pipette occurred without a rise in the cytosolic Ca2+ concentration and depended on the operation of a thapsigargin-sensitive Ca2+ pump. After a period of focal Ca2+ entry, ACh could again evoke a rise in the cytosolic Ca2+ concentration, and this rise always started in the apical secretory pole. Recharging the apical Ca2+ store therefore depends on Ca2+ flow through a tunnel from the basal to the secretory pole, and the endoplasmic reticulum Ca2+ pump is essential for this process.
Collapse
Affiliation(s)
- H Mogami
- Medical Research Council Secretory Control Research Group, Physiological Laboratory, University of Liverpool, United Kingdom
| | | | | | | |
Collapse
|
49
|
Negulyaev YA, Vedernikova EA, Kinev AV, Voronin AP. Exogenous heat shock protein hsp70 activates potassium channels in U937 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1282:156-62. [PMID: 8679653 DOI: 10.1016/0005-2736(96)00055-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
With the use of patch clamp technique, the effect of exogenous heat shock protein hsp70 on ion channel properties in the plasma membrane of human promonocyte U937 cells has been examined. Cell-attached experiments showed that the addition of 30-100 micrograms/ml hsp70 to the pipette solution resulted in an activation of outward currents through potassium-selective channels of 9 pS unitary conductance. The activity of K(+)-selective channels did not depend on membrane voltage and could be controlled by the intracellular free calcium concentration as revealed in inside-out recordings. K+ channels with similar conductance and kinetic behaviour were found in normal cell-attached patches very rarely. Outside-out experiments showed that the addition of hsp70 to the external solution induced a channel-like stepwise increase of inward current which may provide cation entry from the extracellular medium. The interaction of extracellular hsp70 with the membrane surface of the native cell and of the excised fragment was found to be different. The results suggest that hsp70-induced activation of Ca-dependent K channels in monocyte-macrophage cells may be due to a local increase of free Ca2+ concentration just near the inner membrane side.
Collapse
Affiliation(s)
- Y A Negulyaev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | |
Collapse
|
50
|
Terzic A, Kurachi Y. Actin microfilament disrupters enhance K(ATP) channel opening in patches from guinea-pig cardiomyocytes. J Physiol 1996; 492 ( Pt 2):395-404. [PMID: 9019537 PMCID: PMC1158835 DOI: 10.1113/jphysiol.1996.sp021316] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. To determine whether actin filament networks are associated with the regulation of ATP-sensitive K+ (K(ATP)) channel activity, single channel currents were measured in the inside-out configuration, and cytoskeletal disrupters applied to the internal side of patches excised from guinea-pig ventricular myocytes. 2. Treatment of patches with DNase I (10-200 micrograms ml(-1)), which forms complexes with G-actin and prevents actin filament formation, antagonized the ATP-induced inhibition of K(ATP) channels. 3. In the absence of ATP, DNase I did not increase K(ATP) channel activity. 4. When denatured by boiling or co-incubated with purified actin subunits (200 mu g ml(-1)), DNase I(100 mu g ml(-1)) did not antagonize the ATP-induced inhibition of K(ATP) channels. 5. The DNase I-induced decrease in the sensitivity of K(ATP) channels towards ATP-induced inhibition was partially restored by addition of purified actin subunits (200 micrograms ml(-1)). 6. Cytochalasin B (10 microM), another actin filament disrupter, but neither taxol nor nocodazole (30-100 microM), two antimicrotubule agents, enhanced K(ATP) channel activity in the presence of ATP. 7. Hence, actin filament disrupters can attenuate the ATP-dependent inhibitory gating of K(ATP) channels. This suggests that subsarcolemmal actin filament networks may be associated with the regulation of cardiac K(ATP) channels.
Collapse
Affiliation(s)
- A Terzic
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Mayo Foundation, Rochester, MN 55905, USA
| | | |
Collapse
|