1
|
Jastrząb P, Narejko K, Car H, Wielgat P. Cell Membrane Sialome: Sialic Acids as Therapeutic Targets and Regulators of Drug Resistance in Human Cancer Management. Cancers (Basel) 2023; 15:5103. [PMID: 37894470 PMCID: PMC10604966 DOI: 10.3390/cancers15205103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
A cellular sialome is a physiologically active and dynamically changing component of the cell membrane. Sialylation plays a crucial role in tumor progression, and alterations in cellular sialylation patterns have been described as modulators of chemotherapy effectiveness. However, the precise mechanisms through which altered sialylation contributes to drug resistance in cancer are not yet fully understood. This review focuses on the intricate interplay between sialylation and cancer treatment. It presents the role of sialic acids in modulating cell-cell interactions, the extracellular matrix (ECM), and the immunosuppressive processes within the context of cancer. The issue of drug resistance is also discussed, and the mechanisms that involve transporters, the tumor microenvironment, and metabolism are analyzed. The review explores drugs and therapeutic approaches that may induce modifications in sialylation processes with a primary focus on their impact on sialyltransferases or sialidases. Despite advancements in cellular glycobiology and glycoengineering, an interdisciplinary effort is required to decipher and comprehend the biological characteristics and consequences of altered sialylation. Additionally, understanding the modulatory role of sialoglycans in drug sensitivity is crucial to applying this knowledge in clinical practice for the benefit of cancer patients.
Collapse
Affiliation(s)
- Patrycja Jastrząb
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| | - Karolina Narejko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| |
Collapse
|
2
|
Amemiya T, Shibata K, Takahashi J, Watanabe M, Nakata S, Nakamura K, Yamaguchi T. Glycolytic oscillations in HeLa cervical cancer cell spheroids. FEBS J 2022; 289:5551-5570. [DOI: 10.1111/febs.16454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/07/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Takashi Amemiya
- Graduate School of Environment and Information Sciences Yokohama National University (YNU) Japan
| | - Kenichi Shibata
- Graduate School of Environment and Information Sciences Yokohama National University (YNU) Japan
| | - Junpei Takahashi
- Graduate School of Environment and Information Sciences Yokohama National University (YNU) Japan
| | | | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
| | - Kazuyuki Nakamura
- School of Interdisciplinary Mathematical Sciences Meiji University Nakano‐ku Japan
| | - Tomohiko Yamaguchi
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Meiji University Nakano‐ku Japan
| |
Collapse
|
3
|
Abstract
Neuroprosthetic devices that record and modulate neural activities have demonstrated immense potential for bypassing or restoring lost neurological functions due to neural injuries and disorders. However, implantable electrical devices interfacing with brain tissue are susceptible to a series of inflammatory tissue responses along with mechanical or electrical failures which can affect the device performance over time. Several biomaterial strategies have been implemented to improve device-tissue integration for high quality and stable performance. Ranging from developing smaller, softer, and more flexible electrode designs to introducing bioactive coatings and drug-eluting layers on the electrode surface, such strategies have shown different degrees of success but with limitations. With their hydrophilic properties and specific bioactivities, carbohydrates offer a potential solution for addressing some of the limitations of the existing biomolecular approaches. In this review, we summarize the role of polysaccharides in the central nervous system, with a primary focus on glycoproteins and proteoglycans, to shed light on their untapped potential as biomaterials for neural implants. Utilization of glycosaminoglycans for neural interface and tissue regeneration applications is comprehensively reviewed to provide the current state of carbohydrate-based biomaterials for neural implants. Finally, we will discuss the challenges and opportunities of applying carbohydrate-based biomaterials for neural tissue interfaces.
Collapse
Affiliation(s)
- Vaishnavi Dhawan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Mindler K, Ostertag E, Stehle T. The polyfunctional polysialic acid: A structural view. Carbohydr Res 2021; 507:108376. [PMID: 34273862 DOI: 10.1016/j.carres.2021.108376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Polysialic acid (polySia), a homopolymer of α2,8-linked sialic acid residues, modifies a small number of proteins and has central functions in vertebrate signalling. Here, we review the regulatory functions of polySia in signalling processes and the immune system of adult humans, as well as functions based on their chemical properties. The main focus will be on the structure-function relationship of polySia with its interaction partners in humans. Recent studies have indicated that the degree of polymerisation is an important parameter that can guide the regulatory effect of polySia in addition to its binding to target proteins. Therefore, the structures of polySia in solution and bound to interaction partners are compared in order to identify the key factors that define binding specificity.
Collapse
Affiliation(s)
- Katja Mindler
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Elena Ostertag
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
5
|
Rosenstock P, Kaufmann T. Sialic Acids and Their Influence on Human NK Cell Function. Cells 2021; 10:263. [PMID: 33572710 PMCID: PMC7911748 DOI: 10.3390/cells10020263] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Sialic acids are sugars with a nine-carbon backbone, present on the surface of all cells in humans, including immune cells and their target cells, with various functions. Natural Killer (NK) cells are cells of the innate immune system, capable of killing virus-infected and tumor cells. Sialic acids can influence the interaction of NK cells with potential targets in several ways. Different NK cell receptors can bind sialic acids, leading to NK cell inhibition or activation. Moreover, NK cells have sialic acids on their surface, which can regulate receptor abundance and activity. This review is focused on how sialic acids on NK cells and their target cells are involved in NK cell function.
Collapse
Affiliation(s)
- Philip Rosenstock
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany;
| | | |
Collapse
|
6
|
Polysialylation and disease. Mol Aspects Med 2020; 79:100892. [PMID: 32863045 DOI: 10.1016/j.mam.2020.100892] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
Polysialic acid (polySia, PSA) is a unique constituent of the glycocalyx on the surface of bacterial and vertebrate cells. In vertebrates, its biosynthesis is highly regulated, not only in quantity and quality, but also in time and location, which allows polySia to be involved in various important biological phenomena. Therefore, impairments in the expression and structure of polySia sometimes relate to diseases, such as schizophrenia, bipolar disorder, and cancer. Some bacteria express polySia as a tool for protecting themselves from the host immune system during invasion. PolySia is proven to be a biosafe material; polySia, as well as polySia-recognizing molecules, are key therapeutic agents. This review first comprehensive outlines the occurrence, features, biosynthesis, and functions of polySia and subsequently focuses on the related diseases.
Collapse
|
7
|
Abstract
Sialic acid (Sia) is involved in many biological activities and commonly occurs as a monosialyl residue at the nonreducing terminal end of glycoconjugates. The loss of activity of UDP-GlcNAc2-epimerase/ManNAc kinase, which is a key enzyme in Sia biosynthesis, is lethal to the embryo, which clearly indicates the importance of Sia in embryogenesis. Occasionally, oligo/polymeric Sia structures such as disialic acid (diSia), oligosialic acid (oligoSia), and polysialic acid (polySia) occur in glycoconjugates. In particular, polySia, a well-known epitope that commonly occurs in neuroinvasive bacteria and vertebrate brains, is one of the most well-known and biologically/neurologically important glycotopes in vertebrates. The biological effects of polySia, especially on neural cell-adhesion molecules, have been well studied, and in-depth knowledge regarding polySia has been accumulated. In addition, the importance of diSia and oligoSia epitopes has been reported. In this chapter, the recent advances in the study of diSia, oligoSia, and polySia residues in glycoproteins in neurology, and their history, definition, occurrence, analytical methods, biosynthesis, and biological functions evaluated by phenotypes of gene-targeted mice, biochemical features, and related diseases are described.
Collapse
|
8
|
Mental disorders and an acidic glycan-from the perspective of polysialic acid (PSA/polySia) and the synthesizing enzyme, ST8SIA2. Glycoconj J 2018; 35:353-373. [PMID: 30058042 DOI: 10.1007/s10719-018-9832-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 02/08/2023]
Abstract
Mental disorders, such as schizophrenia, bipolar disorder, and autism spectrum disorder, are challenging to manage, worldwide. Understanding the molecular mechanisms underlying these disorders is essential and required. Studies investigating such molecular mechanisms are well performed and important findings are accumulating apace. Based on the fact that these disorders are due in part to the accumulation of genetic and environmental risk factors, consideration of multi-molecular and/or multi-system dependent phenomena might be important. Acidic glycans are an attractive family of molecules for understanding these disorders, because impairment of the fine-tuned glycan system affects a large number of molecules that are deeply involved in normal brain function. One of the candidates of this important family of glycan epitopes in the brain is polysialic acid (PSA/polySia). PSA is a well-known molecule because of its role as an oncodevelopmental antigen and is also widely used as a marker of adult neurogenesis. Recently, several reports have suggested that PSA and PSA-related genes are associated with multiple mental disorders. The relationships among PSA, PSA-related genes, and mental disorders are reviewed here.
Collapse
|
9
|
Mori A, Hane M, Niimi Y, Kitajima K, Sato C. Different properties of polysialic acids synthesized by the polysialyltransferases ST8SIA2 and ST8SIA4. Glycobiology 2018; 27:834-846. [PMID: 28810663 DOI: 10.1093/glycob/cwx057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/17/2017] [Indexed: 12/19/2022] Open
Abstract
Polysialic acid (polySia) is mainly found as a modification of neural cell adhesion molecule (NCAM) in whole embryonic brains, as well as restricted areas of adult vertebrate brains, including the hippocampus. PolySia shows not only repulsive effects on NCAM-involved cell-cell interactions due to its bulky and hydrated properties, but also attractive effects on the interaction with neurologically active molecules, which exerts a reservoir function. Two different polysialyltransferases, ST8SIA2 and ST8SIA4, are involved in the synthesis of polySia chains; however, to date, the differences of the properties between polySia chains synthesized by these two enzymes remain unknown. In this study, to clarify this point, we first prepared polySia-NCAMs from HEK293 cells stably expressing ST8SIA4 and ST8SIA2, or ST8SIA2 (SNP-7), a mutant ST8SIA2 derived from a schizophrenia patient. The conventional sensitive chemical and immunological characterizations showed that the quantity and quality (structural features) of polySia are not so much different between ST8SIA4- and ST8SIA2-synthesized ones, apart from those of ST8SIA2 (SNP-7). Then, we assessed the homophilic and heterophilic interactions mediated by polySia-NCAM by adopting a surface plasmon resonance measurement as an in vitro analytical method. Our novel findings are as follows: (i) the ST8SIA2- and ST8SIA4-synthesized polySia-NCAMs exhibited different attractive and repulsive effects than each other; (ii) both polySia- and oligoSia-NCAMs synthesized by ST8SIA2 were able to bind polySia-NCAMs; (iii) the polySia-NCAM synthesized by a ST8SIA2 (SNP-7) showed markedly altered attractive and repulsive properties. Collectively, polySia-NCAM is suggested to simultaneously possess both attractive and repulsive properties that are highly regulated by the two polysialyltransferases.
Collapse
Affiliation(s)
- Airi Mori
- Bioscience and Biotechnology Center.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Masaya Hane
- Bioscience and Biotechnology Center.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yuki Niimi
- Bioscience and Biotechnology Center.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
10
|
Hsu HJ, Palka-Hamblin H, Bhide GP, Myung JH, Cheong M, Colley KJ, Hong S. Noncatalytic Endosialidase Enables Surface Capture of Small-Cell Lung Cancer Cells Utilizing Strong Dendrimer-Mediated Enzyme-Glycoprotein Interactions. Anal Chem 2018; 90:3670-3675. [PMID: 29473730 PMCID: PMC7038578 DOI: 10.1021/acs.analchem.8b00427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Enumeration of circulating tumor cells (CTCs) of small-cell lung cancer (SCLC) patients has been shown to predict the disease progress and long-term survival. Most CTC detection methods rely on epithelial surface markers, such as epithelial cell adhesion molecule (EpCAM). However, this marker in SCLC is reported to be often downregulated after a variety of phenotypic changes, which impairs the reliability of EpCAM-based CTC detections. In this regard, the development of an alternative CTC detection method involving different CTC surface markers is in demand. In this study, we evaluated, for the first time to our knowledge, the feasibility of detecting SCLC CTCs using a noncatalytic endosialidase (EndoN Trap, EndoNt). This noncatalytic enzyme was chosen due to its high affinity to polysialic acid (polySia), a cell-surface glycan, that is highly expressed by SCLC tissue. Furthermore, this enzyme-based system was integrated into our dendrimer-mediated CTC capture platform to further enhance the capture efficiency via multivalent binding. We found that the EndoNt-immobilized surfaces could specifically capture polySia-positive SCLC cells and the binding between SCLC cells and EndoNt surfaces was further stabilized by dendrimer-mediated multivalent binding. When compared to the EpCAM-based capture, EndoNt significantly improved the capture efficiency of polySia-positive SCLC cells under flow due to its higher binding affinity (lower dissociation rate constants). These findings suggest that this enzyme-based CTC capture strategy has the potential to be used as a superior alternative to the commonly used EpCAM-based methods, particularly for those types of cancer that overexpress polySia.
Collapse
Affiliation(s)
- Hao-jui Hsu
- Department of Biopharmaceutical Sciences, University of
Illinois at Chicago, Chicago, IL 60612
| | - Helena Palka-Hamblin
- Department of Biochemistry and Molecular Genetics,
University of Illinois at Chicago, Chicago, IL 60612
| | - Gaurang P. Bhide
- Department of Biochemistry and Molecular Genetics,
University of Illinois at Chicago, Chicago, IL 60612
| | - Ja-Hye Myung
- Department of Biopharmaceutical Sciences, University of
Illinois at Chicago, Chicago, IL 60612
| | - Michael Cheong
- Department of Biopharmaceutical Sciences, University of
Illinois at Chicago, Chicago, IL 60612
| | - Karen J. Colley
- Department of Biochemistry and Molecular Genetics,
University of Illinois at Chicago, Chicago, IL 60612
| | - Seungpyo Hong
- Department of Biopharmaceutical Sciences, University of
Illinois at Chicago, Chicago, IL 60612
- Division of Pharmaceutical Sciences, School of Pharmacy,
University of Wisconsin, Madison, WI 53705
- Division of Integrated Science and Engineering, Underwood
International College, Yonsei University, Seoul, KOREA 03706
| |
Collapse
|
11
|
Sajo M, Sugiyama H, Yamamoto H, Tanii T, Matsuki N, Ikegaya Y, Koyama R. Neuraminidase-Dependent Degradation of Polysialic Acid Is Required for the Lamination of Newly Generated Neurons. PLoS One 2016; 11:e0146398. [PMID: 26731280 PMCID: PMC4701216 DOI: 10.1371/journal.pone.0146398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022] Open
Abstract
Hippocampal granule cells (GCs) are generated throughout the lifetime and are properly incorporated into the innermost region of the granule cell layer (GCL). Hypotheses for the well-regulated lamination of newly generated GCs suggest that polysialic acid (PSA) is present on the GC surface to modulate GC-to-GC interactions, regulating the process of GC migration; however, direct evidence of this involvement is lacking. We show that PSA facilitates the migration of newly generated GCs and that the activity of N-acetyl-α-neuraminidase 1 (NEU1, sialidase 1) cleaves PSA from immature GCs, terminating their migration in the innermost GCL. Developing a migration assay of immature GCs in vitro, we found that the pharmacological depletion of PSA prevents the migration of GCs, whereas the inhibition of PSA degradation with a neuraminidase inhibitor accelerates this migration. We found that NEU1 is highly expressed in immature GCs. The knockdown of NEU1 in newly generated GCs in vivo increased PSA presence on these cells, and attenuated the proper termination of GC migration in the innermost GCL. In conclusion, this study identifies a novel mechanism that underlies the proper lamination of newly generated GCs through the modulation of PSA presence by neuronal NEU1.
Collapse
Affiliation(s)
- Mari Sajo
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroki Sugiyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideaki Yamamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, Japan
| | - Takashi Tanii
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Norio Matsuki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
12
|
Zhu X, Chen Y, Zhang N, Zheng Z, Zhao F, Liu N, Lv C, Troy FA, Wang B. Molecular characterization and expression analyses of ST8Sia II and IV in piglets during postnatal development: lack of correlation between transcription and posttranslational levels. Glycoconj J 2015; 32:715-28. [PMID: 26452605 DOI: 10.1007/s10719-015-9622-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 01/07/2023]
Abstract
The two mammalian α2,8-polysialyltransferases (polyST's), ST8Sia II (STX) and ST8Sia IV (PST), catalyze synthesis of the α2-8-linked polysialic acid (polySia) glycans on neural cell adhesion molecules (NCAMs). The objective of this study was to clone the coding sequence of the piglet ST8Sia II and determine the mRNA expression levels of ST8Sia II, ST8Sia IV, NCAM and neuropilin-2 (NRP-2), also a carrier protein of polySia, during postnatal development. The amino acid sequence deduced from the coding sequence of ST8Sia II was compared with seven other mammalian species. Piglet ST8Sia II was highly conserved and shared 67.8% sequence identity with ST8Sia IV. Genes coding for ST8Sia II and IV were differentially expressed and distinctly different in neural and non-neural tissues at postnatal days 3 and 38. Unexpectedly, the cellular levels of mRNA coding for ST8Sia II and IV showed no correlation with the posttranslational level of polySia glycans in different tissues. In contrast, mRNA abundance coding for NCAM and neuropilin-2 correlated with expression of ST8Sia II and IV. These findings show that the cellular abundance of ST8Sia II and IV in postnatal piglets is regulated at the level of translation/posttranslation, and not at the level of transcription, a finding that has not been previously reported. These studies further highlight differences in the molecular mechanisms controlling polysialylation in adult rodents and neonatal piglets.
Collapse
Affiliation(s)
- Xi Zhu
- School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - Yue Chen
- School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - Nai Zhang
- School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - Zhiqiang Zheng
- School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - Fengjun Zhao
- School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - Ni Liu
- School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - Chunlong Lv
- School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - Frederic A Troy
- School of Medicine, Xiamen University, Xiamen City, 361005, China. .,Department of Biochemistry and Molecular Medicine, University of California School of Medicine, Davis, CA, 95616, USA.
| | - Bing Wang
- School of Medicine, Xiamen University, Xiamen City, 361005, China. .,School of Animal & Veterinary Science, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| |
Collapse
|
13
|
Regulation of subventricular zone-derived cells migration in the adult brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:1-21. [PMID: 25895704 DOI: 10.1007/978-3-319-16537-0_1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The subventricular zone of the lateral ventricles (SVZ) is the largest source of neural stem cells (NSCs) in the adult mammalian brain. Newly generated neuroblasts from the SVZ form cellular chains that migrate through the rostral migratory stream (RMS) into the olfactory bulb (OB), where they become mature neurons. Migration through the RMS is a highly regulated process of intrinsic and extrinsic factors, orchestrated to achieve direction and integration of neuroblasts into OB circuitry. These factors include internal cytoskeletal and volume regulators, extracellular matrix proteins, and chemoattractant and chemorepellent proteins. All these molecules direct the cells away from the SVZ, through the RMS, and into the OB guaranteeing their correct integration. Following brain injury, some neuroblasts escape the RMS and migrate into the lesion site to participate in regeneration, a phenomenon that is also observed with brain tumors. This review focuses on factors that regulate the migration of SVZ precursor cells in the healthy and pathologic brain. A better understanding of the factors that control the movement of newly generated cells may be crucial for improving the use of NSC-replacement therapy for specific neurological diseases.
Collapse
|
14
|
Colley KJ, Kitajima K, Sato C. Polysialic acid: biosynthesis, novel functions and applications. Crit Rev Biochem Mol Biol 2014; 49:498-532. [PMID: 25373518 DOI: 10.3109/10409238.2014.976606] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As an anti-adhesive, a reservoir for key biological molecules, and a modulator of signaling, polysialic acid (polySia) is critical for nervous system development and maintenance, promotes cancer metastasis, tissue regeneration and repair, and is implicated in psychiatric diseases. In this review, we focus on the biosynthesis and functions of mammalian polySia, and the use of polySia in therapeutic applications. PolySia modifies a small subset of mammalian glycoproteins, with the neural cell adhesion molecule, NCAM, serving as its major carrier. Studies show that mammalian polysialyltransferases employ a unique recognition mechanism to limit the addition of polySia to a select group of proteins. PolySia has long been considered an anti-adhesive molecule, and its impact on cell adhesion and signaling attributed directly to this property. However, recent studies have shown that polySia specifically binds neurotrophins, growth factors, and neurotransmitters and that this binding depends on chain length. This work highlights the importance of considering polySia quality and quantity, and not simply its presence or absence, as its various roles are explored. The capsular polySia of neuroinvasive bacteria allows these organisms to evade the host immune response. While this "stealth" characteristic has made meningitis vaccine development difficult, it has also made polySia a worthy replacement for polyetheylene glycol in the generation of therapeutic proteins with low immunogenicity and improved circulating half-lives. Bacterial polysialyltransferases are more promiscuous than the protein-specific mammalian enzymes, and new studies suggest that these enzymes have tremendous therapeutic potential, especially for strategies aimed at neural regeneration and tissue repair.
Collapse
Affiliation(s)
- Karen J Colley
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago , Chicago, IL , USA and
| | | | | |
Collapse
|
15
|
Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 2014; 94:461-518. [PMID: 24692354 DOI: 10.1152/physrev.00033.2013] [Citation(s) in RCA: 541] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity, including regeneration. Together, vertebrate brain sialoglycans are key regulatory components that contribute to proper development, maintenance, and health of the nervous system.
Collapse
|
16
|
Mühlenhoff M, Rollenhagen M, Werneburg S, Gerardy-Schahn R, Hildebrandt H. Polysialic Acid: Versatile Modification of NCAM, SynCAM 1 and Neuropilin-2. Neurochem Res 2013; 38:1134-43. [DOI: 10.1007/s11064-013-0979-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 12/27/2022]
|
17
|
Cao N, Yao ZX. Oligodendrocyte N-methyl-D-aspartate receptor signaling: insights into its functions. Mol Neurobiol 2013; 47:845-56. [PMID: 23345133 DOI: 10.1007/s12035-013-8408-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/13/2013] [Indexed: 12/21/2022]
Abstract
Myelination by oligodendrocytes facilitates rapid nerve conduction. Loss of oligodendrocytes and failure of myelination lead to nerve degeneration and numerous demyelinating white matter diseases. N-methyl-D-aspartate (NMDA) receptors, which are key regulators on neuron survival and functions, have been recently identified to express in oligodendrocytes, especially in the myelin sheath. NMDA receptor signaling in oligodendrocytes plays crucial roles in energy metabolism and myelination. In the present review, we highlight the subcellular location-specific impairment of excessive NMDA receptor signaling on oligodendrocyte energy metabolism in soma and myelin, and the mechanisms including Ca(2+) overload, acidotoxicity, mitochondria dysfunction, and impairment of respiratory chains. Conversely, physiological NMDA receptor signaling regulates differentiation and migration of oligodendrocytes. How can we use above knowledge to treat excitotoxic oligodendrocyte loss, congenital myelination deficiency, or postnatal demyelination? A thorough understanding of NMDA receptor signaling-mediated cellular events in oligodendrocytes at the pathophysiological level will no doubt aid in exploring effective therapeutic strategies for demyelinating white matter diseases.
Collapse
Affiliation(s)
- Nian Cao
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | | |
Collapse
|
18
|
|
19
|
The role of microglia at synapses in the healthy CNS: novel insights from recent imaging studies. ACTA ACUST UNITED AC 2012; 7:67-76. [PMID: 22418067 DOI: 10.1017/s1740925x12000038] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the healthy brain, quiescent microglia continuously remodel their shape by extending and retracting highly motile processes. Despite a seemingly random sampling of their environment, microglial processes specifically interact with subsets of synaptic structures, as shown by recent imaging studies leading to proposed reciprocal interactions between microglia and synapses under non-pathological conditions. These studies revealed that various modalities of microglial dynamic behavior including their interactions with synaptic elements are regulated by manipulations of neurotransmission, neuronal activity and sensory experience. Conversely, these observations implied an unexpected role for quiescent microglia in the elimination of synaptic structures by specialized mechanisms that include the phagocytosis of axon terminals and dendritic spines. In light of these recent discoveries, microglia are now emerging as important effectors of neuronal circuit reorganization.
Collapse
|
20
|
Janas T, Janas T. Membrane oligo- and polysialic acids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2923-32. [DOI: 10.1016/j.bbamem.2011.08.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
|
21
|
Abstract
Phage display technology is an emerging drug discovery tool. Using that approach, short peptides that mimic part of a carbohydrate's conformation are selected by screening a peptide-displaying phage library with anti-carbohydrate antibodies. Chemically synthesized peptides with an identified sequence have been used as an alternative ligand to carbohydrate-binding proteins. These peptides represent research tools useful to assay the activities of glycosyltransferases and/or sulfotransferases or to inhibit the carbohydrate-dependent binding of proteins in vitro and in vivo. Peptides can also serve as immunogens to raise anti-carbohydrate antibodies in vivo in animals. Phage display has also been used in single-chain antibody technology by inserting an immunoglobulin's variable region sequence into the phage. A single-chain antibody library can then be screened with a carbohydrate antigen as the target, resulting in a recombinant anti-carbohydrate antibody with high affinity to the antigen. This review provides examples of successful applications of peptide-displaying phage technology to glycobiology. Such an approach should benefit translational research by supplying carbohydrate-mimetic peptides and carbohydrate-binding polypeptides.
Collapse
Affiliation(s)
- Michiko N Fukuda
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
22
|
Sato C, Kitajima K. New Functions of Polysialic Acid and Its Relationship to Schizophrenia. TRENDS GLYCOSCI GLYC 2011. [DOI: 10.4052/tigg.23.221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Tobey NA, Djukic Z, Brighton LE, Gambling TM, Carson JL, Orlando RC. Lateral cell membranes and shunt resistance in rabbit esophageal epithelium. Dig Dis Sci 2010; 55:1856-65. [PMID: 20503073 DOI: 10.1007/s10620-010-1215-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 12/10/2009] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS The structures that contribute to shunt resistance (Rs) in esophageal epithelium are incompletely understood, with 35-40% of Rs known to be calcium-dependent, reflecting the role of e-cadherin. Two calcium-independent candidates for the remaining approximately 60% of Rs have been identified: the glycoprotein matrix (GPM) within stratum corneum of esophageal epithelium, and the lateral cell membranes (LCMs) from neighboring cells. METHODS To determine the contribution of GPM and LCMs to Rs, rabbit esophageal epithelium was mounted in Ussing chambers so that transepithelial resistance (R(T)), a marker of Rs, could be monitored during luminal exposure to either glycosidases for disruption of the GPM or to hypertonic urea for separation of the LCMs. RESULTS Glycosidases had no effect on R(T). In contrast, hypertonic urea reduced R(T), increased fluorescein flux and widened the intercellular spaces. That urea reduced R(T), and so Rs, by widening the intercellular spaces, and not by altering the e-cadherin-dependent apical junctional complex, was supported by the ability of: (a) calcium-free solution to reduce R(T) beyond that produced by urea, (b) hypertonic urea to reduce R(T) beyond that produced by calcium free solution, (c) hypertonic sucrose to collapse the intercellular spaces and raise R(T), and (d) empigen, a zwitterionic detergent, to non-osmotically widen the intercellular spaces and reduce R(T). CONCLUSION These data indicate that the LCMs from neighboring cells are a major contributor to shunt resistance in esophageal epithelium. As resistor, they are distinguishable from the apical junctional complex by their sensitivity to (luminal) hypertonicity and insensitivity to removal of calcium.
Collapse
Affiliation(s)
- Nelia A Tobey
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599-7310, USA.
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Role of the growth-associated protein GAP-43 in NCAM-mediated neurite outgrowth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:169-82. [PMID: 20017022 DOI: 10.1007/978-1-4419-1170-4_11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Maarouf AE, Rutishauser U. Use of PSA-NCAM in Repair of the Central Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:137-47. [DOI: 10.1007/978-1-4419-1170-4_9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Kiselyov VV. NCAM and the FGF-Receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:67-79. [DOI: 10.1007/978-1-4419-1170-4_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Bazou D, Blain EJ, Terence Coakley W, Bazou D, Blain EJ, Terence Coakley W. NCAM and PSA-NCAM dependent membrane spreading and F-actin reorganization in suspended adhering neural cells. Mol Membr Biol 2009; 25:102-14. [DOI: 10.1080/09687680701618365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Despina Bazou
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Emma J. Blain
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | | - Despina Bazou
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Emma J. Blain
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | |
Collapse
|
29
|
Foley DA, Swartzentruber KG, Colley KJ. Identification of sequences in the polysialyltransferases ST8Sia II and ST8Sia IV that are required for the protein-specific polysialylation of the neural cell adhesion molecule, NCAM. J Biol Chem 2009; 284:15505-16. [PMID: 19336400 PMCID: PMC2708847 DOI: 10.1074/jbc.m809696200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/27/2009] [Indexed: 11/06/2022] Open
Abstract
The polysialyltransferases ST8Sia II and ST8Sia IV polysialylate the glycans of a small subset of mammalian proteins. Their most abundant substrate is the neural cell adhesion molecule (NCAM). An acidic surface patch and a novel alpha-helix in the first fibronectin type III repeat of NCAM are required for the polysialylation of N-glycans on the adjacent immunoglobulin domain. Inspection of ST8Sia IV sequences revealed two conserved polybasic regions that might interact with the NCAM acidic patch or the growing polysialic acid chain. One is the previously identified polysialyltransferase domain (Nakata, D., Zhang, L., and Troy, F. A. (2006) Glycoconj. J. 23, 423-436). The second is a 35-amino acid polybasic region that contains seven basic residues and is equidistant from the large sialyl motif in both polysialyltransferases. We replaced these basic residues to evaluate their role in enzyme autopolysialylation and NCAM-specific polysialylation. We found that replacement of Arg(276)/Arg(277) or Arg(265) in the polysialyltransferase domain of ST8Sia IV decreased both NCAM polysialylation and autopolysialylation in parallel, suggesting that these residues are important for catalytic activity. In contrast, replacing Arg(82)/Arg(93) in ST8Sia IV with alanine substantially decreased NCAM-specific polysialylation while only partially impacting autopolysialylation, suggesting that these residues may be particularly important for NCAM polysialylation. Two conserved negatively charged residues, Glu(92) and Asp(94), surround Arg(93). Replacement of these residues with alanine largely inactivated ST8Sia IV, whereas reversing these residues enhanced enzyme autopolysialylation but significantly reduced NCAM polysialylation. In sum, we have identified selected amino acids in this conserved polysialyltransferase polybasic region that are critical for the protein-specific polysialylation of NCAM.
Collapse
Affiliation(s)
- Deirdre A. Foley
- From the Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60607
| | - Kristin G. Swartzentruber
- From the Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60607
| | - Karen J. Colley
- From the Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60607
| |
Collapse
|
30
|
Bonfanti L, Theodosis DT. Polysialic acid and activity-dependent synapse remodeling. Cell Adh Migr 2009; 3:43-50. [PMID: 19372729 PMCID: PMC2675148 DOI: 10.4161/cam.3.1.7258] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 10/23/2008] [Indexed: 02/06/2023] Open
Abstract
Polysialic acid (PSA) is a large carbohydrate added post-translationally to the extracellular domain of the Neural Cell Adhesion Molecule (NCAM) that influences its adhesive and other functional properties. PSA-NCAM is widely distributed in the developing nervous system where it promotes dynamic cell interactions, like those responsible for axonal growth, terminal sprouting and target innervation. Its expression becomes restricted in the adult nervous system where it is thought to contribute to various forms of neuronal and glial plasticity. We here review evidence, obtained mainly from hypothalamic neuroendocrine centers and the olfactory system, that it intervenes in structural synaptic plasticity and accompanying neuronal-glial transformations, making possible the formation and elimination of synapses that occur under particular physiological conditions. While the mechanism of action of this complex sugar is unknown, it is now clear that it is a necessary molecular component of various cell transformations, including those responsible for activity-dependent synaptic remodeling.
Collapse
Affiliation(s)
- Luca Bonfanti
- Department of Veterinary Morphophysiology, University of Turin, Turin, Italy
| | | |
Collapse
|
31
|
Burgess A, Wainwright SR, Shihabuddin LS, Rutishauser U, Seki T, Aubert I. Polysialic acid regulates the clustering, migration, and neuronal differentiation of progenitor cells in the adult hippocampus. Dev Neurobiol 2008; 68:1580-90. [DOI: 10.1002/dneu.20681] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Abstract
Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding, or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix, and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is approximately 20% and the tortuosity is approximately 1.6 (i.e., free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge, and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases, and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties is valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain.
Collapse
Affiliation(s)
- Eva Syková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
33
|
Korshunova I, Mosevitsky M. Role of the Growth-associated Protein GAP-43 in NCAM-mediated Neurite Outgrowth. Neurochem Res 2008. [DOI: 10.1007/s11064-008-9800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Affiliation(s)
- Heather E. Murrey
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| | - Linda C. Hsieh-Wilson
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
35
|
Schreiber SC, Giehl K, Kastilan C, Hasel C, Mühlenhoff M, Adler G, Wedlich D, Menke A. Polysialylated NCAM represses E-cadherin-mediated cell-cell adhesion in pancreatic tumor cells. Gastroenterology 2008; 134:1555-66. [PMID: 18384787 DOI: 10.1053/j.gastro.2008.02.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 01/31/2008] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Inhibition of cell-cell adhesion between epithelial cells represents an early step during tumor metastasis. Down-regulation or perturbation of E-cadherin-mediated adherens junctions is an essential requirement in this process. METHODS The interaction between polysialylated neural cell adhesion molecule (PSA-NCAM) and the E-cadherin adhesion complex was studied by coimmunoprecipitation assays. The presence of PSA-NCAM was correlated with tumor invasion by using cell-cell aggregation and cell migration assays. The importance of polysialic acid (PSA) in the interaction of NCAM with E-cadherin and inhibition of cell-cell adhesion was confirmed by enzymatic removal of PSA from NCAM and down-regulation of PSA-transferases by siRNA. RESULTS Expression of oncogenic K-Ras(V12) in pancreatic carcinoma cells resulted in induction of PSA-NCAM expression and reduced E-cadherin-mediated cellular adhesion. The association of PSA-NCAM with the E-cadherin adhesion complex correlated with decreased cell-cell aggregation and elevated cell migration of pancreatic carcinoma cells. Enzymatic removal of PSA from NCAM or reduction of polysialyltransferase expression led to reduced association between NCAM and E-cadherin and subsequently increased E-cadherin-mediated cell-cell aggregation and reduced cell migration. CONCLUSIONS Our data suggest the induction of PSA-NCAM by oncogenic K-Ras as a novel molecular mechanism by which E-cadherin-mediated cellular adhesion is reduced and dissemination of tumor cells is facilitated.
Collapse
|
36
|
Kiselyov VV. WITHDRAWN: NCAM and the FGF-Receptor. Neurochem Res 2008. [PMID: 18368486 DOI: 10.1007/s11064-008-9666-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
Abstract
In this review, the structural biology of interaction between the neural cell adhesion molecule (NCAM) and the fibroblast growth factor (FGF) receptor is described and a possible mechanism of the FGF-receptor activation by NCAM is discussed. Most of the FGF-receptor molecules are thought to be constantly involved in a transient interaction with NCAM. However, the FGF-receptor becomes activated only when NCAM is involved the trans-homophilic binding (mediating cell-cell adhesion). The trans-homophilic binding between the NCAM molecules is believed to result in formation of either one- or two-dimensional 'zipper'-like arrays of the NCAM molecules, which leads to NCAM clustering and as a result to clustering of the FGF-receptor, which in turn may lead to its activation through a direct receptor-receptor dimerization (and thus activation) due to an increase in the local concentration of the receptor.
Collapse
Affiliation(s)
- Vladislav V Kiselyov
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Niels Steensens Vej 6, 2820, Gentofte, Denmark,
| |
Collapse
|
37
|
El Maarouf A, Rutishauser U. WITHDRAWN: Use of PSA-NCAM in Repair of the Central Nervous System. Neurochem Res 2008. [PMID: 18338252 DOI: 10.1007/s11064-008-9635-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 02/19/2008] [Indexed: 11/24/2022]
Abstract
Polysialic acid (PSA) is a highly hydrated polymer whose presence at the cell surface can reduce cell interactions, and thereby increase tissue and cellular plasticity. Given its ability to create a permissive environment for cell migration and axonal growth, the potential of engineered over-expression of PSA to promote tissue repair has been explored in the adult CNS. Several promising results have been obtained that suggest that PSA engineering may become a valuable therapeutic tool.
Collapse
Affiliation(s)
- Abderrahman El Maarouf
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021, USA,
| | | |
Collapse
|
38
|
Sumiyoshi M, Ricciuto J, Tisdale A, Gipson IK, Mantelli F, Argüeso P. Antiadhesive character of mucin O-glycans at the apical surface of corneal epithelial cells. Invest Ophthalmol Vis Sci 2008; 49:197-203. [PMID: 18172093 DOI: 10.1167/iovs.07-1038] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Prolonged contact of opposite mucosal surfaces, which occurs on the ocular surface, oral cavity, reproductive tract, and gut, requires a specialized apical cell surface that prevents adhesion. The purpose of this study was to evaluate the contribution of mucin O-glycans to the antiadhesive character of human corneal-limbal epithelial (HCLE) cells. METHODS Mucin O-glycan biosynthesis in HCLE cells was disrupted by metabolic interference with benzyl-alpha-GalNAc. The cell surface mucin MUC16 and its carbohydrate epitope H185 were detected by immunofluorescence and Western blot. HCLE cell surface features were assessed by field emission scanning electron microscopy. Cell-cell adhesion assays were performed under static conditions and in a parallel plate laminar flow chamber. RESULTS Benzyl-alpha-GalNAc disrupted the biosynthesis of O-glycans without affecting apomucin biosynthesis or cell surface morphology. Static adhesion assays showed that the apical surface of differentiated HCLE cells expressing MUC16 and H185 was more antiadhesive than undifferentiated HCLE cells, which lacked MUC16. Abrogation of mucin O-glycosylation in differentiated cultures with benzyl-alpha-GalNAc resulted in increased adhesion of applied corneal epithelial cells and corneal fibroblasts. The antiadhesive effect of mucin O-glycans was further demonstrated by fluorescence video microscopy in dynamic flow adhesion assays. Cationized ferritin labeling of the cell surface indicated that anionic repulsion did not contribute to the antiadhesive character of the apical surface. CONCLUSIONS These results indicate that epithelial O-glycans contribute to the antiadhesive properties of cell surface-associated mucins in corneal epithelial cells and suggest that alterations in mucin O-glycosylation are involved in the pathology of drying mucosal diseases (e.g., dry eye).
Collapse
Affiliation(s)
- Mika Sumiyoshi
- Schepens Eye Research Institute and the Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
39
|
Ditlevsen DK, Povlsen GK, Berezin V, Bock E. NCAM-induced intracellular signaling revisited. J Neurosci Res 2008; 86:727-43. [DOI: 10.1002/jnr.21551] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Conchonaud F, Nicolas S, Amoureux MC, Ménager C, Marguet D, Lenne PF, Rougon G, Matarazzo V. Polysialylation increases lateral diffusion of neural cell adhesion molecule in the cell membrane. J Biol Chem 2007; 282:26266-74. [PMID: 17623676 DOI: 10.1074/jbc.m608590200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Polysialic acid (PSA) is a polymer of N-acetylneuraminic acid residues added post-translationally to the membrane-bound neural cell adhesion molecule (NCAM). The large excluded volume created by PSA polymer is thought to facilitate cell migration by decreasing cell adhesion. Here we used live cell imaging (spot fluorescence recovery after photobleaching and fluorescence correlation spectroscopy) combined with biochemical approaches in an attempt to uncover a link between cell motility and the impact of polysialylation on NCAM dynamics. We show that PSA regulates specifically NCAM lateral diffusion and this is dependent on the integrity of the cytoskeleton. However, whereas the glial-derivative neurotrophic factor chemotactic effect is dependent on PSA, the molecular dynamics of PSA-NCAM is not directly affected by glial-derivative neurotrophic factor. These findings reveal a new intrinsic mechanism by which polysialylation regulates NCAM dynamics and thereby a biological function like cell migration.
Collapse
Affiliation(s)
- Fabien Conchonaud
- Institut de Biologie du Développement de Marseille-Luminy and Centre d'Immunologie de Marseille Luminy, MOSAIC Group, Université de la Méditerranée, 13288 Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Murphy JA, Nickerson PEB, Clarke DB. Injury to retinal ganglion cell axons increases polysialylated neural cell adhesion molecule (PSA-NCAM) in the adult rodent superior colliculus. Brain Res 2007; 1163:21-32. [PMID: 17631281 DOI: 10.1016/j.brainres.2007.05.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 05/15/2007] [Accepted: 05/21/2007] [Indexed: 11/27/2022]
Abstract
The adult mammalian central nervous system (CNS) exhibits a limited regenerative response to injury. It is well established that polysialylated neural cell adhesion molecule (PSA-NCAM) contributes to nervous system plasticity. In the visual system, PSA-NCAM participates in retinal ganglion cell (RGC) axon growth during development and specifically influences RGC innervation of its principle target tissue, the superior colliculus (SC). The goals of this study were to determine whether PSA-NCAM is expressed in the normal adult mouse SC and to evaluate PSA-NCAM expression following RGC injury. In the normal rostral, but not caudal, SC we find that PSA-NCAM is present in the retinorecipient layers; however, PSA-NCAM and RGC axons do not co-localize. In the deeper collicular layers, PSA-NCAM is observed as several distinct patches that occur at the same depth along the medial-lateral axis throughout the colliculus. RGC axotomy denervates predominantly the contralateral colliculus, where increased PSA-NCAM levels are seen at 7 and 10 days after the injury. Further evaluation of the retinorecipient layers of the partially denervated SC reveals that some intact CTB-traced RGC axons (less than 5%) labeled from the ipsilateral eye do co-localize with PSA-NCAM. This study is the first characterization of PSA-NCAM expression in the normal and partially denervated adult SC and may indicate that PSA-NCAM is involved in attempted visual system remodeling after injury.
Collapse
Affiliation(s)
- J A Murphy
- Neuron Survival and Regeneration Laboratory, Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | |
Collapse
|
42
|
Bonfanti L. PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 2006; 80:129-64. [PMID: 17029752 DOI: 10.1016/j.pneurobio.2006.08.003] [Citation(s) in RCA: 347] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/04/2006] [Accepted: 08/21/2006] [Indexed: 12/14/2022]
Abstract
Polysialic acid (PSA) is a linear homopolymer of alpha2-8-N acetylneuraminic acid whose major carrier in vertebrates is the neural cell adhesion molecule (NCAM). PSA serves as a potent negative regulator of cell interactions via its unusual biophysical properties. PSA on NCAM is developmentally regulated thus playing a prominent role in different forms of neural plasticity spanning from embryonic to adult nervous system, including axonal growth, outgrowth and fasciculation, cell migration, synaptic plasticity, activity-induced plasticity, neuronal-glial plasticity, embryonic and adult neurogenesis. The cellular distribution, developmental changes and possible function(s) of PSA-NCAM in the central nervous system of mammals here are reviewed, along with recent findings and theories about the relationships between NCAM protein and PSA as well as the role of different polysialyltransferases. Particular attention is focused on postnatal/adult neurogenesis, an issue which has been deeply investigated in the last decade as an example of persisting structural plasticity with potential implications for brain repair strategies. Adult neurogenic sites, although harbouring all subsequent steps of cell differentiation, from stem cell division to cell replacement, do not faithfully recapitulate development. After birth, they undergo morphological and molecular modifications allowing structural plasticity to adapt to the non-permissive environment of the mature nervous tissue, that are paralled by changes in the expression of PSA-NCAM. The use of PSA-NCAM as a marker for exploring differences in structural plasticity and neurogenesis among mammalian species is also discussed.
Collapse
Affiliation(s)
- Luca Bonfanti
- Department of Veterinary Morphophysiology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco, Italy.
| |
Collapse
|
43
|
Anderson AA, Kendal CE, Garcia-Maya M, Kenny AV, Morris-Triggs SA, Wu T, Reynolds R, Hohenester E, Saffell JL. A peptide from the first fibronectin domain of NCAM acts as an inverse agonist and stimulates FGF receptor activation, neurite outgrowth and survival. J Neurochem 2005; 95:570-83. [PMID: 16135080 DOI: 10.1111/j.1471-4159.2005.03417.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neural cell adhesion molecule (NCAM) contributes to axon growth and guidance during development and learning and memory in adulthood. Although the Ig domains mediate homophilic binding, outgrowth activity localizes to two membrane proximal fibronectin-like domains. The first of these contains a site identified as a potential FGF receptor (FGFR) activation motif (FRM) important for NCAM stimulation of neurite outgrowth, but its activity has hitherto remained hypothetical. Here, we have tested the effects of a domain-specific antibody and peptides corresponding to the FRM in cellular assays in vitro. The first fibronectin domain antibody inhibited NCAM-stimulated outgrowth, indicating the importance of the domain for NCAM function. Monomeric FRM peptide behaved as an inverse agonist; low concentrations specifically inhibited neurite outgrowth stimulated by NCAM and cellular responses to FGF2, while saturating concentrations stimulated FGFR-dependent neurite outgrowth equivalent to NCAM itself. Dendrimeric FRM peptide was 125-fold more active and stimulated FGFR activation, FGFR-dependent and FGF-mimetic neurite outgrowth and cell survival (but not proliferation). We conclude that the FRM peptide contains NCAM-mimetic bioactivity accounted for by stimulation of FGF signalling pathways at the level of or upstream from FGF receptors, and discuss the possibility that FRM comprises part of an FGFR activation site on NCAM.
Collapse
Affiliation(s)
- Alexandra A Anderson
- Division of Cell and Molecular Biology, Faculty of Life Sciences, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kiselyov VV, Soroka V, Berezin V, Bock E. Structural biology of NCAM homophilic binding and activation of FGFR. J Neurochem 2005; 94:1169-79. [PMID: 16045455 DOI: 10.1111/j.1471-4159.2005.03284.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this review, we analyse the structural basis of the homophilic interactions of the neural cell adhesion molecule (NCAM) and the NCAM-mediated activation of the fibroblast growth factor receptor (FGFR). Recent structural evidence suggests that NCAM molecules form cis-dimers in the cell membrane through a high affinity interaction. These cis-dimers, in turn, mediate low affinity trans-interactions between cells via formation of either one- or two-dimensional 'zippers'. We provide evidence that FGFR is probably activated by NCAM very differently from the way by which it is activated by FGFs, reflecting the different conditions for NCAM-FGFR and FGF-FGFR interactions. The affinity of FGF for FGFR is approximately 10(6) times higher than that of NCAM for FGFR. Moreover, in the brain NCAM is constantly present on the cell surface in a concentration of about 50 microm, whereas FGFs only appear transiently in the extracellular environment and in concentrations in the nanomolar range. We discuss the structural basis for the regulation of NCAM-FGFR interactions by two molecular 'switches', polysialic acid (PSA) and adenosine triphosphate (ATP), which determine whether NCAM acts as a signalling or an adhesion molecule.
Collapse
Affiliation(s)
- Vladislav V Kiselyov
- Protein Laboratory, Institute of Molecular Pathology, Panum Institute, School of Medicine, University of Copenhagen, Blegdamsvej 3C, Building 6.2, Copenhagen, Denmark
| | | | | | | |
Collapse
|
45
|
Peretto P, Giachino C, Aimar P, Fasolo A, Bonfanti L. Chain formation and glial tube assembly in the shift from neonatal to adult subventricular zone of the rodent forebrain. J Comp Neurol 2005; 487:407-27. [PMID: 15906315 DOI: 10.1002/cne.20576] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The subventricular zone (SVZ) is regarded as an embryonic germinal layer persisting at the end of cerebral cortex neurogenesis and capable of generating neuronal precursors throughout life. The two distinct compartments of the adult rodent forebrain SVZ, astrocytic glial tubes and chains of migrating cells, are not distinguishable in the embryonic and early postnatal counterpart. In this study we analyzed the SVZ of mice and rats around birth and throughout different postnatal stages, describing molecular and morphological changes which lead to the typical structural arrangement of adult SVZ. In both species studied, most changes occurred during the first month of life, the transition being slightly delayed in mice, in spite of their earlier development. Important modifications affected the glial cells, eventually leading to glial tube assembly. These changes involved an overall reorganization of glial processes and their mutual relationships, as well as gliogenesis occurring within the SVZ which gives rise to glial cell subpopulations. The neuroblast cell population remained qualitatively quite homogeneous throughout all the stages investigated, changes being restricted to the relationships among cells and consequent formation of chains at about the third postnatal week. Electron microscopy showed that chain formation is not directly linked to glial tube assembly, generally preceding the occurrence of complete glial ensheathment. Moreover, chain and glial tube formation is asymmetric in the medial/lateral aspect of the SVZ, being inversely related. The attainment of an adult SVZ compartmentalization, on the other hand, seems linked to the pattern of expression of adhesion and extracellular matrix molecules.
Collapse
Affiliation(s)
- Paolo Peretto
- Department of Animal and Human Biology, University of Turin, 10153 Turin, Italy
| | | | | | | | | |
Collapse
|
46
|
El Maarouf A, Kolesnikov Y, Pasternak G, Rutishauser U. Polysialic acid-induced plasticity reduces neuropathic insult to the central nervous system. Proc Natl Acad Sci U S A 2005; 102:11516-20. [PMID: 16055555 PMCID: PMC1183577 DOI: 10.1073/pnas.0504718102] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Under chronic conditions of neuropathic pain, nociceptive C terminals are lost from their target region in spinal lamina II, leading to reduced thermal hyperalgesia. This region of the spinal cord expresses high levels of polysialic acid (PSA), a cell surface carbohydrate known to weaken cell-cell interactions and promote plasticity. Experimental removal of PSA from the spinal cord exacerbates hyperalgesia and results in retention of C terminals, whereas it has no effect on plasticity of touch Abeta fibers and allodynia. We propose that expression of PSA at this stress pathway relay point could serve to protect central circuitry from chronic sensory overload.
Collapse
Affiliation(s)
- Abderrahman El Maarouf
- Department of Cell Biology, Cellular and Developmental Neuroscience, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
47
|
Syková E. Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience 2005; 129:861-76. [PMID: 15561404 DOI: 10.1016/j.neuroscience.2004.06.077] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2004] [Indexed: 10/26/2022]
Abstract
Extrasynaptic communication between neurons or neurons and glia is mediated by the diffusion of neuroactive substances in the volume of the extracellular space (ECS). The size and irregular geometry of the diffusion channels in the ECS substantially differ not only around individual cells but also in different CNS regions and thus affect and direct the movement of various neuroactive substances in the ECS. Diffusion in the CNS is therefore not only inhomogeneous, but often also anisotropic. The diffusion parameters in adult mammals (including humans), ECS volume fraction alpha (alpha=ECS volume/total tissue volume) and tortuosity lambda (lambda(2)=free/apparent diffusion coefficient), are typically 0.20-0.25 and 1.5-1.6, respectively, and as such hinder the diffusion of neuroactive substances and water. These diffusion parameters modulate neuronal signaling, neuron-glia communication and extrasynaptic "volume" transmission. A significant decrease in ECS volume fraction and an increase in diffusion barriers (tortuosity) occur during neuronal activity and pathological states. The changes are often related to cell swelling, cell loss, astrogliosis, the rearrangement of neuronal and astrocytic processes and changes in the extracellular matrix. They are also altered during physiological states such as development, lactation and aging. Plastic changes in ECS volume, tortuosity and anisotropy significantly affect neuron-glia communication, the spatial relation of glial processes toward synapses, glutamate or GABA "spillover" and synaptic crosstalk. The various changes in tissue diffusivity occurring during many pathological states are important for diagnosis, drug delivery and treatment.
Collapse
Affiliation(s)
- E Syková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague and Department of Neuroscience, Charles University, Second Medical Faculty, Vídenská 1083, 14220 Prague 4, Czech Republic.
| |
Collapse
|
48
|
Johnson CP, Fujimoto I, Rutishauser U, Leckband DE. Direct Evidence That Neural Cell Adhesion Molecule (NCAM) Polysialylation Increases Intermembrane Repulsion and Abrogates Adhesion. J Biol Chem 2005; 280:137-45. [PMID: 15504723 DOI: 10.1074/jbc.m410216200] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular force measurements quantified the impact of polysialylation on the adhesive properties both of membrane-bound neural cell adhesion molecule (NCAM) and of other proteins on the same membrane. These results show quantitatively that NCAM polysialylation increases the range and magnitude of intermembrane repulsion. The repulsion is sufficient to overwhelm both homophilic NCAM and cadherin attraction at physiological ionic strength, and it abrogates the protein-mediated intermembrane adhesion. The steric repulsion is ionic strength dependent and decreases substantially at high monovalent salt concentrations with a concomitant increase in the intermembrane attraction. The magnitude of the repulsion also depends on the amount of polysialic acid (PSA) on the membranes, and the PSA-dependent attenuation of cadherin adhesion increases with increasing PSA-NCAM:cadherin ratios. These findings agree qualitatively with independent reports based on cell adhesion studies and reveal the likely molecular mechanism by which NCAM polysialylation regulates cell adhesion and intermembrane space.
Collapse
Affiliation(s)
- Colin P Johnson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Extrasynaptic transmission between neurons and communication between neurons and glia are mediated by the diffusion of neuroactive substances in the extracellular space (ECS)--volume transmission. Diffusion in the CNS is inhomogeneous and often not uniform in all directions (anisotropic). Ionic changes and amino acid release result in cellular (particularly glial) swelling, compensated for by ECS shrinkage and a decrease in the apparent diffusion coefficients of neuroactive substances or water (ADCW). The diffusion parameters of the CNS in adult mammals (including humans), ECS volume fraction alpha (alpha = ECS volume/total tissue volume; normally 0.20-0.25) and tortuosity lambda (lambda2 = D/ADC; normally 1.5-1.6), hinder the diffusion of neuroactive substances and water. A significant decrease in ECS volume and an increase in diffusion barriers (tortuosity) and anisoptropy have been observed during stimulation, lactation or learning deficits during aging, due to structural changes such as astrogliosis, the re-arrangement of astrocytic processes and a loss of extracellular matrix. Decreases in the apparent diffusion coefficient of tetramethylammonium (ADCTMA) and ADCW due to astrogliosis and increased proteoglycan expression were found in the brain after injury and in grafts of fetal tissue. Tenascin-R and tenascin C-deficient mice also showed significant changes in ADCTMA and ADCW, suggesting an important role for extracellular matrix molecules in ECS diffusion. Changes in ECS volume, tortuosity and anisotropy significantly affect neuron-glia communication, the spatial relation of glial processes towards synapses, the efficacy of glutamate or GABA 'spillover' and synaptic crosstalk, the migration of cells, the action of hormones and the toxic effects of neuroactive substances and can be important for diagnosis, drug delivery and new treatment strategies.
Collapse
Affiliation(s)
- Eva Syková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic.
| |
Collapse
|
50
|
Murase SI, Horwitz AF. Directions in Cell Migration Along the Rostral Migratory Stream: The Pathway for Migration in the Brain. Curr Top Dev Biol 2004; 61:135-52. [PMID: 15350400 DOI: 10.1016/s0070-2153(04)61006-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shin-Ichi Murase
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|