1
|
Corteggio A, Altamura G, Roperto F, Borzacchiello G. Bovine papillomavirus E5 and E7 oncoproteins in naturally occurring tumors: are two better than one? Infect Agent Cancer 2013; 8:1. [PMID: 23302179 PMCID: PMC3562249 DOI: 10.1186/1750-9378-8-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/07/2013] [Indexed: 11/10/2022] Open
Abstract
Bovine papillomaviruses (BPVs) are oncogenic DNA viruses, which mainly induce benign lesions of cutaneous and/or mucosal epithelia in cattle. Thirteen (BPV 1-13) different viral genotypes have been characterized so far. BPVs are usually species-specific but BPV 1/2 may also infect equids as well as buffaloes and bison and cause tumors in these species. BPV-induced benign lesions usually regress, however occasionally they develop into cancer particularly in the presence of environmental carcinogenic co-factors. The major transforming protein of BPV is E5, a very short hydrophobic, transmembrane protein with many oncogenic activities. E5 contributes to cell transformation through the activation of the cellular β receptor for the platelet-derived growth factor (PDGFβ-r), it also decreases cell surface expression of major histocompatibility complex class I (MHCI) causing viral escape from immunosurveillance, and plays a role in the inhibition of the intracellular communication by means of aberrant connexin expression. E7 is considered as a weak transforming gene, it synergies with E5 in cell transformation during cancer development. E7 expression correlates in vivo with the over-expression of β1-integrin, which plays a role in the regulation of keratinocytes proliferation and differentiation. Additionally, E7 is involved in cell-mediated immune responses leading to tumour rejection, in anoikis process by direct binding to p600, and in invasion process by upregulation of Matrix metalloproteinase1 (MMP-1) expression. Studies on the role of BPV E5 and E7 oncoproteins in naturally occurring tumours are of scientific value, as they may shed new light on the biological role of these two oncogenes in cell transformation.
Collapse
Affiliation(s)
- Annunziata Corteggio
- Department of Pathology and Animal Health, University of Naples Federico II, Via Veterinaria, Napoli 1 80137, Italy.
| | | | | | | |
Collapse
|
2
|
Kolpe AB, Kiener TK, Grotenbreg GM, Kwang J. Display of enterovirus 71 VP1 on baculovirus as a type II transmembrane protein elicits protective B and T cell responses in immunized mice. Virus Res 2012; 168:64-72. [PMID: 22728446 DOI: 10.1016/j.virusres.2012.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/22/2012] [Accepted: 06/12/2012] [Indexed: 01/24/2023]
Abstract
Human enterovirus 71 (EV71) has become a major public health threat across Asia Pacific. The virus causes hand, foot, and mouth disease which can lead to neurological complications in young children. There are no specific antivirals or vaccines against EV71 infection. The major neutralizing epitope of EV71 is located in the carboxy-terminal half of the VP1 protein at amino acid positions 215-219 (Lim et al., 2012). To study the immunogenicity of VP1 we have developed a baculovirus vector which displays VP1 as a type II transmembrane protein, providing an accessible C-terminus. Immunization of mice with this recombinant baculovirus elicited neutralizing antibodies against heterologous EV71 in an in vitro microneutralization assay. Passive protection of neonatal mice confirmed the prophylactic efficacy of the antisera. Additionally, EV71 specific T cell responses were stimulated. Taken together, our results demonstrate that the display of VP1 as a type II transmembrane protein efficiently stimulated both humoral and cellular immunities.
Collapse
Affiliation(s)
- Annasaheb B Kolpe
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
3
|
Borg J, Nevsten P, Wallenberg R, Stenstrom M, Cardell S, Falkenberg C, Holm C. Amino-terminal anchored surface display in insect cells and budded baculovirus using the amino-terminal end of neuraminidase. J Biotechnol 2005; 114:21-30. [PMID: 15464595 DOI: 10.1016/j.jbiotec.2004.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 04/29/2004] [Accepted: 05/12/2004] [Indexed: 11/23/2022]
Abstract
Methods currently used for surface display on insect cells and budded baculovirus, all utilize the sequences from class I transmembrane proteins. This gives rise to some problems when handling unknown genes or cDNAs encoding full-length proteins. First, the stop codon from the cloned gene will be located upstream of the sequence for the transmembrane region. Second, the chance of getting the sequences encoding the signal peptide and the transmembrane region in frame with the cloned gene is small. To minimize these problems, we here present a method by which cDNAs or genes of interest can be cloned and fused to the codons for the signal peptide and transmembrane region of neuraminidase (NA), a class II transmembrane protein of the influenza virus. By placing both the signal peptide and transmembrane region at the amino-terminal, potential problems regarding stop codons are eliminated and errors in frame-shift minimized. To obtain proof of principle, the gene encoding enhanced green fluorescent protein, EGFP, was subcloned into a shuttle vector downstream of the neuraminidase sequence and the fusion product was then transferred to a baculovirus vector and transfected into insect cells (Sf9). Using this method, EGFP was found to be expressed on the surface of both infected cells and budded virus in an accessible manner.
Collapse
Affiliation(s)
- Jorgen Borg
- Department of Cell and Molecular Biology, Section for Molecular Signalling, Lund University, BMC, C11, SE-221 84 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
4
|
Webster MK, D'Avis PY, Robertson SC, Donoghue DJ. Profound ligand-independent kinase activation of fibroblast growth factor receptor 3 by the activation loop mutation responsible for a lethal skeletal dysplasia, thanatophoric dysplasia type II. Mol Cell Biol 1996; 16:4081-7. [PMID: 8754806 PMCID: PMC231404 DOI: 10.1128/mcb.16.8.4081] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Thanatophoric dysplasia type II (TDII) is a neonatal lethal skeletal dysplasia caused by a recurrent Lys-650-->Glu mutation within the highly conserved activation loop of the kinase domain of fibroblast growth factor receptor 3 (FGFR3). We demonstrate here that this mutation results in profound constitutive activation of the FGFR3 tyrosine kinase, approximately 100-fold above that of wild-type FGFR3. The mechanism of FGFR3 activation in TDII was probed by constructing various point mutations in the activation loop. Substitutions at position 650 indicated that not only Glu but also Asp and, to a lesser extent, Gln and Leu result in pronounced constitutive activation of FGFR3. Additional mutagenesis within the beta10-beta11 loop region (amino acids Tyr-647 to Leu-656) demonstrated that amino acid 650 is the only residue which can activate the receptor when changed to a Glu, indicating a specificity of position as well as charge for mutations which can give rise to kinase activation. Furthermore, when predicted sites of autophosphorylation at Tyr-647 and Tyr-648 were mutated to Phe, either singly or in combination, constitutive kinase activity was still observed in response to the Lys-650-->Glu mutation, although the effect of these mutations on downstream signalling was not investigated. Our data suggest that the molecular effect of the TDII activation loop mutation is to mimic the conformational changes that activate the tyrosine kinase domain, which are normally initiated by ligand binding and autophosphorylation. These results have broad implications for understanding the molecular basis of other human developmental syndromes that involve mutations in members of the FGFR family. Moreover, these findings are relevant to the study of kinase regulation and the design of activating mutations in related tyrosine kinases.
Collapse
Affiliation(s)
- M K Webster
- Department of Chemistry and Biochemistry, Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0367, USA
| | | | | | | |
Collapse
|
5
|
Potapova O, Fakhrai H, Mercola D. Growth factor PDGF-B/v-sis confers a tumorigenic phenotype to human tumor cells bearing PDGF receptors but not to cells devoid of receptors: evidence for an autocrine, but not a paracrine, mechanism. Int J Cancer 1996; 66:669-77. [PMID: 8647631 DOI: 10.1002/(sici)1097-0215(19960529)66:5<669::aid-ijc15>3.0.co;2-#] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Numerous established human tumor lines co-express platelet-derived growth factor (PDGF) and cognate receptors, suggesting that an autocrine and/or paracrine growth mechanism may be a causal or contributing mechanism to their transformed phenotype. Indeed, it is known that a PDGF-autocrine system is functional in several established tumor lines, especially in human gliomas, and a model for a functional paracrine mechanism has been established in a human melanoma line. However, at least 168 human cell lines representing 26 different human tumor types have been reported to continuously express PDGF-A and/or -B chains, and 55 of these also express PDGF receptors. For the majority of these cases, the significance of co-expression and the relative roles of autocrine and paracrine mechanisms in transformation remains unclear. Here, we show that human glioblastoma T98G cells co-express PDGF-B/c-sis and moderate levels of the cognate beta-type PDGF receptor (PR-beta) but are not tumorigenic in athymic mice. In contrast, human breast carcinoma MCF-7 cells do not express PR-beta and are tumorigenic. Clonal lines of each cell type with greatly increased secretion of p16w(T98Gsis and MCF-7sis cells) were characterized. T98Gsis cells are 85% tumorigenic and occasionally develop pulmonary metastases, showing that endogenous PR-beta can mediate complete transformation upon sufficient stimulation. In contrast, MCF-7sis cells exhibit some growth slowing in vitro and an exactly proportional decrease in tumor growth rate. We conclude that a PDGF-autocrine, and not a paracrine, mechanism best accounts for the acquired tumorigenicity of T98Gsis cells, thereby emphasizing the potential significance of expression of even moderate levels of PR-beta by human tumor cells.
Collapse
Affiliation(s)
- O Potapova
- The Sidney Kimmel Cancer Center, San Diego, CA, USA
| | | | | |
Collapse
|
6
|
Webster MK, Donoghue DJ. Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. EMBO J 1996; 15:520-7. [PMID: 8599935 PMCID: PMC449970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Achondroplasia, the most common genetic form of dwarfism, is an autosomal dominant disorder whose underlying mechanism is a defect in the maturation of the cartilage growth plate of long bones. Achondroplasia has recently been shown to result from a Gly to Arg substitution in the transmembrane domain of the fibroblast growth factor receptor 3 (FGFR3), although the molecular consequences of this mutation have not been investigated. By substituting the transmembrane domain of the Neu receptor tyrosine kinase with the transmembrane domains of wild-type and mutant FGFR3, the Arg380 mutation in FGFR3 is shown to activate both the kinase and transforming activities of this chimeric receptor. Residues with side chains capable of participating in hydrogen bond formation, including Glu, Asp, and to a lesser extent, Gln, His and Lys, were able to substitute for the activating Arg380 mutation. The Arg380 point mutation also causes ligand-independent stimulation of the tyrosine kinase activity of FGFR3 itself, and greatly increased constitutive levels of phosphotyrosine on the receptor. These results suggest that the molecular basis of achondroplasia is unregulated signal transduction through FGFR3, which may result in inappropriate cartilage growth plate differentiation and thus abnormal long bone development. Achondroplasia may be one of the number of cogenital disorders where constitutive activation of a member of the FGFR family leads to development abnormalities.
Collapse
Affiliation(s)
- M K Webster
- Department of Chemistry and Biochemistry, University of California, San Diego, 92093-0322, USA
| | | |
Collapse
|
7
|
Hart KC, Xu YF, Meyer AN, Lee BA, Donoghue DJ. The v-sis oncoprotein loses transforming activity when targeted to the early Golgi complex. J Biophys Biochem Cytol 1994; 127:1843-57. [PMID: 7806564 PMCID: PMC2120273 DOI: 10.1083/jcb.127.6.1843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The location of autocrine interactions between the v-sis protein and PDGF receptors remains uncertain and controversial. To examine whether receptor-ligand interactions can occur intracellularly, we have constructed fusion proteins that anchor v-sis to specific intracellular membranes. Fusion of a cis-Golgi retention signal from a coronavirus E1 glycoprotein to v-sis protein completely abolished its transforming ability when transfected into NIH3T3 cells. Fusion proteins incorporating mutations in this retention signal were not retained within the Golgi complex but instead were transported to the cell surface, resulting in efficient transformation. All chimeric proteins were shown to dimerize properly. Derivatives of some of these constructs were also constructed bearing the cytoplasmic tail from the glycoprotein of vesicular stomatitis virus (VSV-G). These constructs allowed examination of subcellular localization by double-label immunofluorescence, using antibodies that distinguish between the extracellular PDGF-related domain and the VSV-G cytoplasmic tail. Colocalization of sis-E1-G with Golgi markers confirmed its targeting to the early Golgi complex. The sis-E1 constructs, targeted to the early Golgi complex, exhibited no proteolytic processing whereas the mutant forms of sis-E1 exhibited normal proteolytic processing. Treatment with suramin, a polyanionic compound that disrupts ligand/receptor interactions at the cell surface, was able to revert the transformed phenotype induced by the mutant sis-E1 constructs described here. Our results demonstrate that autocrine interactions between the v-sis oncoprotein and PDGF receptors within the early Golgi complex do not result in functional signal transduction. Another v-sis fusion protein was constructed by attaching the transmembrane domain and COOH-terminus of TGN38, a protein that localizes to the trans-Golgi network (TGN). This construct was primarily retained intracellularly, although some of the fusion protein reached the surface. Deletion of the COOH-terminal region of the TGN38 retention signal abrogated the TGN-localization, as evidenced by very prominent cell surface localization, and resulted in increased transforming activity. The behavior of the sis-TGN38 derivatives is discussed within the context of the properties of TGN38 itself, which is known to recycle from the cell surface to the TGN.
Collapse
Affiliation(s)
- K C Hart
- Molecular Pathology Program, School of Medicine, University of California, San Diego, La Jolla 92093-0322
| | | | | | | | | |
Collapse
|
8
|
Meyer AN, Xu YF, Webster MK, Smith AE, Donoghue DJ. Cellular transformation by a transmembrane peptide: structural requirements for the bovine papillomavirus E5 oncoprotein. Proc Natl Acad Sci U S A 1994; 91:4634-8. [PMID: 8197111 PMCID: PMC43842 DOI: 10.1073/pnas.91.11.4634] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The E5 oncoprotein of bovine papillomavirus, only 44 amino acids long, occurs as a disulfide-bonded transmembrane dimer. This remarkable oncoprotein stimulates signal transduction through activation of the platelet-derived growth factor (PDGF) receptor, and E5 exhibits limited amino acid sequence similarity with PDGF. Results presented here suggest that a key feature of the hydrophobic transmembrane domain is an amino acid side chain that participates in interhelical hydrogen bond formation. These data are reminiscent of the activated neu oncogene, in which a point mutation in the transmembrane domain leads to ligand-independent dimerization and activation of a receptor tyrosine kinase. Significantly, the transmembrane domain of E5 can be largely replaced by the transmembrane domain from the activated neu receptor tyrosine kinase. Extensive mutagenesis defines the minimal structural features required for transformation by the E5 oncoprotein as, first, the ability to dimerize and, second, presentation of a negatively charged residue at the extracellular side of the membrane. The biological activity of E5 mutants that lack most amino acid residues similar to PDGF suggests that E5 and PDGF activate the PDGF receptor by distinct mechanisms.
Collapse
Affiliation(s)
- A N Meyer
- Department of Chemistry/Division of Biochemistry, University of California at San Diego, La Jolla 92093-0322
| | | | | | | | | |
Collapse
|