1
|
Gumà A, Díaz-Sáez F, Camps M, Zorzano A. Neuregulin, an Effector on Mitochondria Metabolism That Preserves Insulin Sensitivity. Front Physiol 2020; 11:696. [PMID: 32655416 PMCID: PMC7324780 DOI: 10.3389/fphys.2020.00696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023] Open
Abstract
Various external factors modulate the metabolic efficiency of mitochondria. This review focuses on the impact of the growth factor neuregulin and its ErbB receptors on mitochondria and their relationship with several physiopathological alterations. Neuregulin is involved in the differentiation of heart, skeletal muscle, and the neuronal system, among others; and its deficiency is deleterious for the health. Information gathered over the last two decades suggests that neuregulin plays a key role in regulating the mitochondrial oxidative machinery, which sustains cell survival and insulin sensitivity.
Collapse
Affiliation(s)
- Anna Gumà
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Francisco Díaz-Sáez
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Marta Camps
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Antonio Zorzano
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
2
|
López-Soldado I, Niisuke K, Veiga C, Adrover A, Manzano A, Martínez-Redondo V, Camps M, Bartrons R, Zorzano A, Gumà A. Neuregulin improves response to glucose tolerance test in control and diabetic rats. Am J Physiol Endocrinol Metab 2016; 310:E440-51. [PMID: 26714846 DOI: 10.1152/ajpendo.00226.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 12/20/2015] [Indexed: 12/31/2022]
Abstract
Neuregulin (NRG) is an EGF-related growth factor that binds to the tyrosine kinase receptors ErbB3 and ErbB4, thus inducing tissue development and muscle glucose utilization during contraction. Here, we analyzed whether NRG has systemic effects regulating glycemia in control and type 2 diabetic rats. To this end, recombinant NRG (rNRG) was injected into Zucker diabetic fatty (ZDF) rats and their respective lean littermates 15 min before a glucose tolerance test (GTT) was performed. rNRG enhanced glucose tolerance without promoting the activation of the insulin receptor (IR) or insulin receptor substrates (IRS) in muscle and liver. However, in control rats, rNRG induced the phosphorylation of protein kinase B (PKB) and glycogen synthase kinase-3 (GSK-3) in liver but not in muscle. In liver, rNRG increased ErbB3 tyrosine phosphorylation and its binding to phosphatidylinositol 3-kinase (PI3K), thus indicating that rNRG activates the ErbB3/PI3K/PKB signaling pathway. rNRG increased glycogen content in liver but not in muscle. rNRG also increased the content of fructose-2,6-bisphosphate (Fru-2,6-P2), an activator of hepatic glycolysis, and lactate in liver but not in muscle. Increases in lactate were abrogated by wortmannin, a PI3K inhibitor, in incubated hepatocytes. The liver of ZDF rats showed a reduced content of ErbB3 receptors, entailing a minor stimulation of the rNRG-induced PKB/GSK-3 cascade and resulting in unaltered hepatic glycogen content. Nonetheless, rNRG increased hepatic Fru-2,6-P2 and augmented lactate both in liver and in plasma of diabetic rats. As a whole, rNRG improved response to the GTT in both control and diabetic rats by enhancing hepatic glucose utilization.
Collapse
Affiliation(s)
- Iliana López-Soldado
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Center for Biomedical Investigation in Net of Diabetes and Associated Metabolic Pathologies, Madrid, Spain
| | - Katrin Niisuke
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Catarina Veiga
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Anna Adrover
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Manzano
- Department of Physiological Sciences II, Faculty of Medicine, University of Barcelona-IDIBELL: Bellvitge Institute for Biomedical Research, Barcelona, Spain; and
| | - Vicente Martínez-Redondo
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Marta Camps
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Center for Biomedical Investigation in Net of Diabetes and Associated Metabolic Pathologies, Madrid, Spain; Institute of Biomedicine from the University of Barcelona, Barcelona, Spain
| | - Ramon Bartrons
- Department of Physiological Sciences II, Faculty of Medicine, University of Barcelona-IDIBELL: Bellvitge Institute for Biomedical Research, Barcelona, Spain; and
| | - Antonio Zorzano
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Center for Biomedical Investigation in Net of Diabetes and Associated Metabolic Pathologies, Madrid, Spain
| | - Anna Gumà
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Center for Biomedical Investigation in Net of Diabetes and Associated Metabolic Pathologies, Madrid, Spain; Institute of Biomedicine from the University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Singhal N, Martin PT. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Dev Neurobiol 2012; 71:982-1005. [PMID: 21766463 DOI: 10.1002/dneu.20953] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vertebrate neuromuscular junction (NMJ) remains the best-studied model for understanding the mechanisms involved in synaptogenesis, due to its relatively large size, its simplicity of patterning, and its unparalleled experimental accessibility. During neuromuscular development, each skeletal myofiber secretes and deposits around its extracellular surface an assemblage of extracellular matrix (ECM) proteins that ultimately form a basal lamina. This is also the case at the NMJ, where the motor nerve contributes additional factors. Before most of the current molecular components were known, it was clear that the synaptic ECM of adult skeletal muscles was unique in composition and contained factors sufficient to induce the differentiation of both pre- and postsynaptic membranes. Biochemical, genetic, and microscopy studies have confirmed that agrin, laminin (221, 421, and 521), collagen IV (α3-α6), collagen XIII, perlecan, and the ColQ-bound form of acetylcholinesterase are all synaptic ECM proteins with important roles in neuromuscular development. The roles of their many potential receptors and/or binding proteins have been more difficult to assess at the genetic level due to the complexity of membrane interactions with these large proteins, but roles for MuSK-LRP4 in agrin signaling and for integrins, dystroglycan, and voltage-gated calcium channels in laminin-dependent phenotypes have been identified. Synaptic ECM proteins and their receptors are involved in almost all aspects of synaptic development, including synaptic initiation, topography, ultrastructure, maturation, stability, and transmission.
Collapse
Affiliation(s)
- Neha Singhal
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | | |
Collapse
|
4
|
Abstract
The neuregulin (NRG) family of trophic factors is present in the central and peripheral nervous systems and participates in the survival, proliferation, and differentiation of many different cell types, including motoneurons. NRG1 was first characterized by its role in the formation of the neuromuscular junction, and recently it was shown to play a crucial role in modulating glutamatergic and cholinergic transmission in the central nervous system of adult rats. However, little is known about NRG1's role in adult motor systems. Motoneurons receive dense glutamatergic and cholinergic input. We hypothesized that NRG1 is present at synapses on phrenic motoneurons. Confocal microscopy and 3D reconstruction techniques were used to determine the distribution of NRG1 and its colocalization with these different neurotransmitter systems. We found that NRG1 puncta are present around retrogradely labeled motoneurons and are distributed predominantly at motoneuron somata and primary dendrites. NRG1 is present exclusively at synaptic sites (identified using the presynaptic marker synaptophysin), making up ∼30% of all synapses at phrenic motoneurons. Overall, NRG1 immunoreactivity is found predominantly at cholinergic synapses (75% ± 14% colocalize with the vesicular acetylcholine transporter; VAChT). Nearly all (99% ± 1%) VAChT-immunoreactive synapses expressed NRG1. NRG1 also is present at a subset of glutamatergic synapses expressing the vesicular glutamate transporter (VGLUT) type 2 (∼6%) but not those expressing VGLUT type 1. Overall, 26% ± 6% of NRG1 synapses are VGLUT2 immunoreactive. These findings provide the first evidence suggesting that NRG1 may modulate synaptic activity in adult motor systems.
Collapse
Affiliation(s)
- Amine N Issa
- Department of Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
5
|
Gumà A, Martínez-Redondo V, López-Soldado I, Cantó C, Zorzano A. Emerging role of neuregulin as a modulator of muscle metabolism. Am J Physiol Endocrinol Metab 2010; 298:E742-50. [PMID: 20028964 DOI: 10.1152/ajpendo.00541.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuregulin was described initially as a neurotrophic factor involved in the formation of the neuromuscular junction in skeletal muscle. However, in recent years, neuregulin has been reported to be a myokine that exerts relevant effects on myogenesis and the regulation of muscle metabolism. In this new context, the rapid and chronic metabolic effects of neuregulin appear to be related to muscle contraction. Indeed, the effects of neuregulin resemble those of exercise, which are accompanied by an improvement in insulin sensitivity. In this review, we challenge the classical role assigned to neuregulin in muscle and propound the emerging concept of its involvement in the regulation of energetic metabolism and insulin responsiveness.
Collapse
Affiliation(s)
- Anna Gumà
- Dept. of Biochemistry and Molecular Biology, Univ. of Barcelona, Spain.
| | | | | | | | | |
Collapse
|
6
|
Shamir A, Buonanno A. Molecular and cellular characterization of Neuregulin-1 type IV isoforms. J Neurochem 2010; 113:1163-76. [PMID: 20218976 DOI: 10.1111/j.1471-4159.2010.06677.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Numerous genetic studies associated the Neuregulin 1 (NRG1) Icelandic haplotype (HAP(ice)), and its single nucleotide polymorphism SNP8NRG243177 [T/T], with schizophrenia. Because SNP8NRG243177 [T/T] has characteristics of a functional polymorphism that maps close to NRG1 type IV coding sequences, our initial goal was to map precisely the human type IV transcription initiation site. We determined that the initiation site is 23 bp upstream of the previously reported type IV exon, and that no other transcripts map to the SNP8NRG243177 region. Because NRG1 type IV transcripts are specific to human, we isolated full-length NRG1 type IV cDNAs from human hippocampi and expressed them in non-neural cells and dissociated rat hippocampal neurons to study protein expression, processing and function. Using an antiserum we generated against the NRG1 type IV-specific N-terminus, we found that the protein is targeted to the cell surface where PKC activation promotes its cleavage and release of the extracellular domain. Conditioned medium derived from type IV expressing cells stimulates ErbB receptor phosphorylation, as well as downstream Akt and Erk signaling, demonstrating that NRG1 type IV possesses biological activity similar to other releasable NRG1 isoforms. To study the subcellular targeting of distinct isoforms, neurons were transfected with the Ig-domain-containing NRG1 types I and IV, or the cysteine-rich domain type III isoform. Three dimensional confocal images from transfected neurons indicate that, whereas all isoforms are expressed on somato-dendritic membranes, only the type III-cysteine-rich domain isoform is detectable in distal axons. These results suggest that NRG1 type IV expression levels associated with SNP8NRG243177 [T/T] can selectively modify signaling of NRG1 released from somato-dendritic compartments, in contrast to the type III NRG1 that is also associated with axons.
Collapse
Affiliation(s)
- Alon Shamir
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
7
|
Ehrlichman RS, Luminais SN, White SL, Rudnick ND, Ma N, Dow HC, Kreibich AS, Abel T, Brodkin ES, Hahn CG, Siegel SJ. Neuregulin 1 transgenic mice display reduced mismatch negativity, contextual fear conditioning and social interactions. Brain Res 2009; 1294:116-27. [PMID: 19643092 DOI: 10.1016/j.brainres.2009.07.065] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 07/13/2009] [Accepted: 07/18/2009] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Neuregulin-1 (NRG1) is one of susceptibility genes for schizophrenia and plays critical roles in glutamatergic, dopaminergic and GABAergic signaling. Using mutant mice heterozygous for Nrg1 (Nrg1(+/-)) we studied the effects of Nrg1 signaling on behavioral and electrophysiological measures relevant to schizophrenia. EXPERIMENTAL PROCEDURE Behavior of Nrg1(+/-) mice and their wild type littermates was evaluated using pre-pulse inhibition, contextual fear conditioning, novel object recognition, locomotor, and social choice paradigms. Event-related potentials (ERPs) were recorded to assess auditory gating and novel stimulus detection. RESULTS Gating of ERPs was unaffected in Nrg1(+/-) mice, but mismatch negativity in response to novel stimuli was attenuated. The Nrg1(+/-) mice exhibited behavioral deficits in contextual fear conditioning and social interactions, while locomotor activity, pre-pulse inhibition and novel object recognition were not impaired. SUMMARY Nrg1(+/-) mice had impairments in a subset of behavioral and electrophysiological tasks relevant to the negative/cognitive symptom domains of schizophrenia that are thought to be influenced by glutamatergic and dopaminergic neurotransmission. These mice are a valuable tool for studying endophenotypes of schizophrenia, but highlight that single genes cannot account for the complex pathophysiology of the disorder.
Collapse
|
8
|
Eto K, Eda K, Kanemoto S, Abe SI. The immunoglobulin-like domain is involved in interaction of Neuregulin1 with ErbB. Biochem Biophys Res Commun 2006; 350:263-71. [PMID: 17007820 DOI: 10.1016/j.bbrc.2006.09.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 09/08/2006] [Indexed: 10/24/2022]
Abstract
Neuregulin1 (NRG1) is a growth factor that signals through the interaction of the epidermal growth factor (EGF)-like domain with ErbB receptors. An immunoglobulin (Ig)-like domain is contained together with EGF-like domain in the ectodomain of some isoforms generated by alternative splicing, but its role in NRG1 signaling remained unclear. In the present study, we identified a novel isoform of NRG1 containing an Ig-like domain conserved among species from adult Xenopus laevis, which is predominantly expressed in the testis and brain. We generated recombinant proteins for the whole ectodomain and EGF-like domain alone of the isoform to compare their effects on cell proliferation, and phosphorylation of and their association with ErbB receptor, demonstrating that the ectodomain had approximately 10(3)-fold higher abilities than the EGF-like domain. Therefore, the Ig-like domain is probably essential for efficient interaction of an EGF-like domain with ErbB receptors.
Collapse
Affiliation(s)
- Ko Eto
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan.
| | | | | | | |
Collapse
|
9
|
Esper RM, Pankonin MS, Loeb JA. Neuregulins: Versatile growth and differentiation factors in nervous system development and human disease. ACTA ACUST UNITED AC 2006; 51:161-75. [PMID: 16412517 DOI: 10.1016/j.brainresrev.2005.11.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 11/02/2005] [Accepted: 11/04/2005] [Indexed: 12/29/2022]
Abstract
The neuregulins are a family of growth and differentiation factors with a wide range of functions in the nervous system. The power and diversity of the neuregulin signaling system comes in part from a large number of alternatively-spliced forms of the NRG1 gene that can produce both soluble and membrane-bound forms. The soluble forms of neuregulin are unique from other factors in that they have a structurally distinct heparin-binding domain that targets and potentiates its actions. In addition, a finely tuned, bidirectional mechanism regulates when and where neuregulin is released from neurons in response to neurotrophic factors produced by both neuronal targets and supporting glial cells. Together, this produces a balanced intercellular signaling system that can be localized to distinct regions for both normal development and maintenance of the mature nervous system. Recent evidence suggests that neuregulin signaling plays important roles in many neurological disorders including multiple sclerosis, traumatic brain and spinal cord injury, peripheral neuropathy, and schizophrenia. Here, we review the basic biology of neuregulins and relate this to research suggesting their involvement with and potential therapeutic uses for neurological disorders.
Collapse
Affiliation(s)
- Raymond M Esper
- Department of Neurology, Wayne State University, Detroit, MI 48201, USA
| | | | | |
Collapse
|
10
|
Madhavan R, Peng HB. HGF induction of postsynaptic specializations at the neuromuscular junction. ACTA ACUST UNITED AC 2006; 66:134-47. [PMID: 16215993 DOI: 10.1002/neu.20206] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A critical event in the formation of vertebrate neuromuscular junctions (NMJs) is the postsynaptic clustering of acetylcholine receptors (AChRs) in muscle. AChR clustering is triggered by the activation of MuSK, a muscle-specific tyrosine kinase that is part of the functional receptor for agrin, a nerve-derived heparan sulfate proteoglycan (HSPG). At the NMJ, heparan sulfate (HS)-binding growth factors and their receptors are also localized but their involvement in postsynaptic signaling is poorly understood. In this study we found that hepatocyte growth factor (HGF), an HS-binding growth factor, surrounded muscle fibers and was localized at NMJs in rat muscle sections. In cultured Xenopus muscle cells, HGF was enriched at spontaneously occurring AChR clusters (hot spots), where HSPGs were also concentrated, and, following stimulation of muscle cells by agrin or cocultured neurons, HGF associated with newly formed AChR clusters. HGF presented locally to cultured muscle cells by latex beads induced new AChR clusters and dispersed AChR hot spots, and HGF beads also clustered phosphotyrosine, activated c-Met, and proteins of dystrophin complex; clustering of AChRs and associated proteins by HGF beads required actin polymerization. Lastly, although bath-applied HGF alone did not induce new AChR clusters, addition of HGF potentiated agrin-dependent AChR clustering in muscle. Our findings suggest that HGF promotes AChR clustering and synaptogenic signaling in muscle during NMJ development.
Collapse
Affiliation(s)
- Raghavan Madhavan
- Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|
11
|
Patton B, Burgess RW. Synaptogenesis. Dev Neurobiol 2006. [DOI: 10.1007/0-387-28117-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Jaworski A, Burden SJ. Neuromuscular synapse formation in mice lacking motor neuron- and skeletal muscle-derived Neuregulin-1. J Neurosci 2006; 26:655-61. [PMID: 16407563 PMCID: PMC6674415 DOI: 10.1523/jneurosci.4506-05.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The localization of acetylcholine receptors (AChRs) to the vertebrate neuromuscular junction is mediated, in part, through selective transcription of AChR subunit genes in myofiber subsynaptic nuclei. Agrin and the muscle-specific receptor tyrosine kinase, MuSK, have critical roles in synapse-specific transcription, because AChR genes are expressed uniformly in mice lacking either agrin or MuSK. Several lines of evidence suggest that agrin and MuSK stimulate synapse-specific transcription indirectly by regulating the distribution of other cell surface ligands, which stimulate a pathway for synapse-specific gene expression. This putative secondary signal for directing AChR gene expression to synapses is not known, but Neuregulin-1 (Nrg-1), primarily based on its presence at synapses and its ability to induce AChR gene expression in vitro, has been considered a good candidate. To study the role of Nrg-1 at neuromuscular synapses, we inactivated nrg-1 in motor neurons, skeletal muscle, or both cell types, using mice that express Cre recombinase selectively in developing motor neurons or in developing skeletal myofibers. We find that AChRs are clustered at synapses and that synapse-specific transcription is normal in mice lacking Nrg-1 in motor neurons, myofibers, or both cell types. These data indicate that Nrg-1 is dispensable for clustering AChRs and activating AChR genes in subsynaptic nuclei during development and suggest that these aspects of postsynaptic differentiation are dependent on Agrin/MuSK signaling without a requirement for a secondary signal.
Collapse
MESH Headings
- Agrin/physiology
- Animals
- Cell Differentiation
- Diaphragm/embryology
- Diaphragm/innervation
- ErbB Receptors/metabolism
- Genes, Reporter
- Integrases/genetics
- Integrases/metabolism
- Intercostal Muscles/embryology
- Intercostal Muscles/innervation
- Mice
- Mice, Knockout
- Motor Neurons/metabolism
- Motor Neurons/ultrastructure
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/embryology
- Muscle, Skeletal/innervation
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neuregulin-1
- Neuromuscular Junction/embryology
- Neuromuscular Junction/physiology
- Neuromuscular Junction/ultrastructure
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-4
- Receptors, Cholinergic/biosynthesis
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Deletion
- Viral Proteins/genetics
- Viral Proteins/metabolism
- beta-Galactosidase/analysis
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- Alexander Jaworski
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
13
|
Stankovic K, Rio C, Xia A, Sugawara M, Adams JC, Liberman MC, Corfas G. Survival of adult spiral ganglion neurons requires erbB receptor signaling in the inner ear. J Neurosci 2005; 24:8651-61. [PMID: 15470130 PMCID: PMC6729966 DOI: 10.1523/jneurosci.0733-04.2004] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Degeneration of cochlear sensory neurons is an important cause of hearing loss, but the mechanisms that maintain the survival of adult cochlear sensory neurons are not clearly defined. We now provide evidence implicating the neuregulin (NRG)-erbB receptor signaling pathway in this process. We found that NRG1 is expressed by spiral ganglion neurons (SGNs), whereas erbB2 and erbB3 are expressed by supporting cells of the organ of Corti, suggesting that these molecules mediate interactions between these cells. Transgenic mice in which erbB signaling in adult supporting cells is disrupted by expression of a dominant-negative erbB receptor show severe hearing loss and 80% postnatal loss of type-I SGNs without concomitant loss of the sensory cells that they contact. Quantitative RT-PCR analysis of neurotrophic factor expression shows a specific downregulation in expression of neurotrophin-3 (NT3) in the transgenic cochleas before the onset of neuronal death. Because NT3 is critical for survival of type I SGNs during development, these results suggest that it plays similar roles in the adult. Together, the data indicate that adult cochlear supporting cells provide critical trophic support to the neurons, that survival of postnatal cochlear sensory neurons depends on reciprocal interactions between neurons and supporting cells, and that these interactions are mediated by NRG and neurotrophins.
Collapse
|
14
|
Li Q, Esper RM, Loeb JA. Synergistic effects of neuregulin and agrin on muscle acetylcholine receptor expression. Mol Cell Neurosci 2004; 26:558-69. [PMID: 15276157 DOI: 10.1016/j.mcn.2004.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 04/19/2004] [Accepted: 04/27/2004] [Indexed: 11/24/2022] Open
Abstract
The proper function of neuromuscular junctions requires an extremely high density of acetylcholine receptors (AChRs) that may be achieved from neuron-derived factors including agrin and neuregulin. Here, we show that neuregulin-1 and agrin co-localize at neuromuscular junctions in vivo and form complexes when co-transfected into COS-7 cells. When these COS-7 cells are cultured with myotubes, synergistic effects are observed for AChR clustering, membrane insertion of new AChRs, and induction of AChR mRNA. Even a muscle form of agrin that lacks intrinsic clustering activities by itself, significantly enhances neuregulin-induced clustering and insertion of AChRs. While the heparin-binding (A) domain of agrin is required for agrin localization in the extracellular matrix adjacent to AChR clusters, the heparan sulfate-containing domain of agrin is needed for the synergistic effects and co-localization with neuregulin-1. These results suggest that matrix interactions between exogenously supplied agrin and neuregulin-1 on the muscle surface provide a localized source of signaling factors needed to produce high densities of AChRs at neuromuscular junctions.
Collapse
MESH Headings
- Agrin/genetics
- Agrin/metabolism
- Agrin/pharmacology
- Animals
- Avian Proteins
- Binding Sites/genetics
- COS Cells
- Cell Membrane/drug effects
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Chick Embryo
- Coculture Techniques
- Extracellular Matrix/drug effects
- Extracellular Matrix/genetics
- Extracellular Matrix/metabolism
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/genetics
- Heparin/metabolism
- Heparitin Sulfate/metabolism
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/embryology
- Muscle, Skeletal/innervation
- Muscle, Skeletal/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/pharmacology
- Neuregulin-1
- Neuromuscular Junction/embryology
- Neuromuscular Junction/genetics
- Neuromuscular Junction/metabolism
- Protein Binding/drug effects
- Protein Binding/genetics
- Protein Structure, Tertiary/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptor Aggregation/drug effects
- Receptor Aggregation/genetics
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Transfection
Collapse
Affiliation(s)
- Qunfang Li
- Department of Neurology and The Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
15
|
Marques MJ, Minatel E, Guimarães AO, Neto HS. Distribution of calcitonin gene-related peptide at the neuromuscular junction ofmdxmice. ACTA ACUST UNITED AC 2004; 279:798-803. [PMID: 15278951 DOI: 10.1002/ar.a.20068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In normal skeletal muscle, the protein dystrophin is associated with plasma membrane glycoproteins and may be involved in the stabilization of the sarcolemma. Mutant mdx mice are markedly deficient in dystrophin and show muscle fiber necrosis followed by regeneration. Changes in the distribution of acetylcholine receptors (AChRs) have been reported at the neuromuscular junction of mdx mice possibly as a result of alterations in the release or response to neural trophic factors. One such factor is calcitonin gene-related peptide (CGRP), which has been implicated in AChR synthesis and function. In this study, we used rhodamine-alpha-bungarotoxin and anti-CGRP IgG FITC to study AChR and CGRP distribution at the neuromuscular junction of mdx mice. Using laser scanning fluorescence confocal microscopy, it was possible to see that CGRP-like immunoreactivity had a presynaptic distribution, covering the AChRs. Thirty-four percent of dystrophic junctions were found to be labeled with CGRP compared to 80% of control endplates. Since CGRP-positive and -negative fibers showed similar changes in AChR distribution, it is suggested that CGRP is probably not directly involved in the altered pattern of AChR seen in dystrophin-deficient muscle fibers of mdx mice.
Collapse
Affiliation(s)
- Maria Julia Marques
- Department of Anatomy, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil.
| | | | | | | |
Collapse
|
16
|
Abstract
The high local concentration of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction results from their aggregation by the agrin/MuSK signaling pathway and their synthetic up-regulation by the neuregulin/ErbB pathway. Here, we show a novel role for the neuregulin/ErbB pathway, the inhibition of AChR aggregation on the muscle surface. Treatment of C2C12 myotubes with the neuregulin epidermal growth factor domain decreased the number of both spontaneous and agrin-induced AChR clusters, in part by increasing the rate of cluster disassembly. Upon cluster disassembly, AChRs were internalized into caveolae (as identified by caveolin-3). Time-lapse microscopy revealed that individual AChR clusters fragmented into puncta, and application of neuregulin accelerated the rate at which AChR clusters decreased in area without affecting the density of AChRs remaining in individual clusters (as measured by the fluorescence intensity/unit area). We propose that this novel action of neuregulin regulates synaptic competition at the developing neuromuscular junction.
Collapse
Affiliation(s)
- Jonathan C Trinidad
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
17
|
Affiliation(s)
- D A Talmage
- Institute for Human Nutrition and Department of Pediatrics, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
18
|
Fromm L, Rhode M. Neuregulin-1 induces expression of Egr-1 and activates acetylcholine receptor transcription through an Egr-1-binding site. J Mol Biol 2004; 339:483-94. [PMID: 15147836 DOI: 10.1016/j.jmb.2004.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 02/23/2004] [Accepted: 04/05/2004] [Indexed: 10/26/2022]
Abstract
Localization of acetylcholine receptors (AChRs) to neuromuscular synapses is mediated, in part, through selective transcription of AChR genes in myofiber synaptic nuclei. Neuregulin-1 (NRG-1) and its receptors, ErbBs, are concentrated at synaptic sites, and NRG-1 activates AChR synthesis in cultured muscle cells, suggesting that NRG-1-ErbB signaling functions to activate synapse-specific transcription. Previous studies have demonstrated that NRG-1-induced transcription is conferred by cis-acting elements located within 100 bp of 5' flanking DNA from the AChR epsilon subunit gene, and that it requires a GABP binding site within this region. To determine whether additional regulatory elements have a role in NRG-1 responsiveness, we used transcriptional reporter assays in a muscle cell line, and we identified an element that is required for NRG-1-induced transcription (neuregulin response element, NRE). Proteins from myotube extracts bind the NRE and NRG-1 treatment of the cells stimulates this binding. The ability of NRG-1 to stimulate formation of a protein-DNA complex with the NRE requires induction of protein expression. The complex contains early growth response-1 (Egr-1), a member of the Egr family of transcription factors, because proteins in the complex bind specifically to an Egr consensus site, and formation of the complex is inhibited by antibodies to Egr-1. NRG-1 induces expression of Egr-1 in myotubes, which presumably is responsible for the ability of NRG-1 to stimulate protein binding to the NRE. These results suggest that NRG-1 signaling in myotubes involves induction of Egr-1 expression, which in turn serves to activate transcription of the AChR epsilon subunit gene.
Collapse
Affiliation(s)
- Larry Fromm
- Center for Medical Education, Ball State University and Indiana University School of Medicine, Muncie, IN 47306, USA.
| | | |
Collapse
|
19
|
Ford BD, Han B, Fischbach GD. Differentiation-dependent regulation of skeletal myogenesis by neuregulin-1. Biochem Biophys Res Commun 2003; 306:276-81. [PMID: 12788100 DOI: 10.1016/s0006-291x(03)00964-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuregulins comprise a group of growth factor proteins that regulate the differentiation of skeletal muscle. Here, we report that neuregulins are regulators of myogenic differentiation and stimulate mitogenesis in L6 skeletal myoblasts. The mitogenic response to neuregulin-1 was differentiation-dependent and observed only in aligned, differentiating cells. Treatment of these cells with neuregulin-1 increased [3H]thymidine incorporation and cell proliferation by 2- to 5-fold, while a minimal increase was seen in proliferating myoblasts. Neuregulin-1 did not induce DNA synthesis in fused, multinucleated myotubes. The increased DNA synthesis correlated with downregulation of myogenin and inhibition of myoblast fusion and myotube formation. These data suggest that neuregulins may regulate skeletal myogenesis in vivo and that this regulation is dependent on the state of differentiation of the myocytes.
Collapse
Affiliation(s)
- Byron D Ford
- Department of Anatomy and Neurobiology, Morehouse School of Medicine, 720 Westview Drive, SW, Atlanta, GA 30310, USA.
| | | | | |
Collapse
|
20
|
Kang BH, Jo I, Eun SY, Jo SA. Cyclic AMP-dependent protein kinase A and CREB are involved in neuregulin-induced synapse-specific expression of acetylcholine receptor gene. Biochem Biophys Res Commun 2003; 304:758-65. [PMID: 12727221 DOI: 10.1016/s0006-291x(03)00660-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuregulin is reported to stimulate synapse-specific transcription of acetylcholine receptor (AChR) genes in the skeletal muscle fiber by multiple signaling pathways such as ERK, PI3K, and JNK. The co-localization of PKA mRNA with AChR and ErbBs, receptors for neuregulin, at the confined region of synapse implicates the putative role of PKA in neuregulin-induced AChR gene expression. In the present study, we found that mRNA and protein of a regulatory subunit of PKA (PKARIalpha) were concentrated at synaptic sites of the rat sternomastoid muscle fiber, while those of ERK and PI3K were uniformly distributed throughout the muscle fiber. Neuregulin (100 ng/ml) increased both PKA activity in the nucleus and AChRdelta subunit gene transcription in cultured Sol8 myotubes. These increases were significantly blocked by a specific PKA inhibitor H-89 (100 nM) and an adenylcyclase inhibitor SQ 22536 (200 microM) (72.5% and 60.1%, respectively). Furthermore, neuregulin phosphorylated CREB, a well-known down-stream transcription factor of PKA. While H-89 inhibited CREB phosphorylation, H-89 and PD098059 (50 microM), a specific MEK1/2 inhibitor, did not inhibit the phosphorylation of ERK and CREB, respectively, suggesting no cross-talk between PKA and ERK pathways. In conclusion, neuregulin increases AChRdelta subunit gene transcription, in part, by the activation of PKA/CREB, an alternative route to the previously reported ERK signaling pathway.
Collapse
Affiliation(s)
- Byung-Hak Kang
- Department of Biomedical Sciences, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul 122-701, South Korea
| | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Joshua R Sanes
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, Missouri 63110, USA.
| |
Collapse
|
22
|
Huang YZ, Wang Q, Won S, Luo ZG, Xiong WC, Mei L. Compartmentalized NRG signaling and PDZ domain-containing proteins in synapse structure and function. Int J Dev Neurosci 2002; 20:173-85. [PMID: 12175853 DOI: 10.1016/s0736-5748(02)00011-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The synapse-specific synthesis of the acetylcholine receptor (AChR) is mediated by multiple mechanisms including compartmentalized signaling induced by neuregulin (NRG). This paper presents evidence that NRG receptors--ErbB receptor tyrosine kinases interact with distinct PDZ domain-containing proteins that are localized at the neuromuscular junction (NMJ). ErbB4 associates with the PSD-95 (also known as SAP90)-family members including PSD-95, SAP97, and SAP102 whereas ErbB2 interacts with Erbin and PICK1. Although, ErbB kinases are concentrated at the NMJ, they are not colocalized with the AChR in cultured muscle cells even in the presence of agrin. Co-expression of PSD-95 causes ErbB4 to form clusters in COS cells. We propose that PDZ domain-containing proteins play a role in anchoring ErbB proteins at the neuromuscular junction, and/or mediating downstream signaling pathways. Such mechanisms could be important for the maintenance and function of the synapse.
Collapse
Affiliation(s)
- Yang Z Huang
- Department of Neurobiology, Pathology, Physical Medicine and Rehabilitation, University of Alabama at Birmingham, 35294-0021, USA
| | | | | | | | | | | |
Collapse
|
23
|
Neuregulin expression at neuromuscular synapses is modulated by synaptic activity and neurotrophic factors. J Neurosci 2002. [PMID: 11896160 DOI: 10.1523/jneurosci.22-06-02206.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The proper formation of neuromuscular synapses requires ongoing synaptic activity that is translated into complex structural changes to produce functional synapses. One mechanism by which activity could be converted into these structural changes is through the regulated expression of specific synaptic regulatory factors. Here we demonstrate that blocking synaptic activity with curare reduces synaptic neuregulin expression in a dose-dependent manner yet has little effect on synaptic agrin or a muscle-derived heparan sulfate proteoglycan. These changes are associated with a fourfold increase in number and a twofold reduction in average size of synaptic acetylcholine receptor clusters that appears to be caused by excessive axonal sprouting with the formation of new, smaller acetylcholine receptor clusters. Activity blockade also leads to threefold reductions in brain-derived neurotrophic factor and neurotrophin 3 expression in muscle without appreciably changing the expression of these same factors in spinal cord. Adding back these or other neurotrophic factors restores synaptic neuregulin expression and maintains normal end plate band architecture in the presence of activity blockade. The expression of neuregulin protein at synapses is independent of spinal cord and muscle neuregulin mRNA levels, suggesting that neuregulin accumulation at synapses is independent of transcription. These findings suggest a local, positive feedback loop between synaptic regulatory factors that translates activity into structural changes at neuromuscular synapses.
Collapse
|
24
|
Loeb JA, Hmadcha A, Fischbach GD, Land SJ, Zakarian VL. Neuregulin expression at neuromuscular synapses is modulated by synaptic activity and neurotrophic factors. J Neurosci 2002; 22:2206-14. [PMID: 11896160 PMCID: PMC6758272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The proper formation of neuromuscular synapses requires ongoing synaptic activity that is translated into complex structural changes to produce functional synapses. One mechanism by which activity could be converted into these structural changes is through the regulated expression of specific synaptic regulatory factors. Here we demonstrate that blocking synaptic activity with curare reduces synaptic neuregulin expression in a dose-dependent manner yet has little effect on synaptic agrin or a muscle-derived heparan sulfate proteoglycan. These changes are associated with a fourfold increase in number and a twofold reduction in average size of synaptic acetylcholine receptor clusters that appears to be caused by excessive axonal sprouting with the formation of new, smaller acetylcholine receptor clusters. Activity blockade also leads to threefold reductions in brain-derived neurotrophic factor and neurotrophin 3 expression in muscle without appreciably changing the expression of these same factors in spinal cord. Adding back these or other neurotrophic factors restores synaptic neuregulin expression and maintains normal end plate band architecture in the presence of activity blockade. The expression of neuregulin protein at synapses is independent of spinal cord and muscle neuregulin mRNA levels, suggesting that neuregulin accumulation at synapses is independent of transcription. These findings suggest a local, positive feedback loop between synaptic regulatory factors that translates activity into structural changes at neuromuscular synapses.
Collapse
Affiliation(s)
- Jeffrey A Loeb
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | | | |
Collapse
|
25
|
Li Q, Loeb JA. Neuregulin-heparan-sulfate proteoglycan interactions produce sustained erbB receptor activation required for the induction of acetylcholine receptors in muscle. J Biol Chem 2001; 276:38068-75. [PMID: 11502740 DOI: 10.1074/jbc.m104485200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuregulins bind to and activate members of the EGF receptor family of tyrosine kinases that initiate a signaling cascade that induces acetylcholine receptor synthesis in the postsynaptic membrane of neuromuscular synapses. In addition to an EGF-like domain, sufficient for receptor binding and tyrosine auto-phosphorylation, many spliced forms also have an IG-like domain that binds HSPGs and maintains a high concentration of neuregulin at synapses. Here, we show that the IG-like domain functions to keep the EGF-like domain at sufficiently high concentrations for a sufficiently long period of time necessary to induce acetylcholine receptor gene expression in primary chick myotubes. Using recombinant neuregulins with and without the IG-like domain, we found that IG-like domain binding to endogenous HSPGs produces a 4-fold increase in receptor phosphorylation. This enhancement of activity was blocked by soluble heparin or by pretreatment of muscle cells with heparitinase. We show that at least 12-24 h of neuregulin exposure was required to turn on substantial acetylcholine receptor gene expression and that the erbB receptors need to be kept phosphorylated during this time. The need for sustained erbB receptor activation may be the reason why neuregulins are so highly concentrated in the extracellular matrix of synapses.
Collapse
Affiliation(s)
- Q Li
- Department of Neurology and the Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
26
|
Neuregulins increase alpha7 nicotinic acetylcholine receptors and enhance excitatory synaptic transmission in GABAergic interneurons of the hippocampus. J Neurosci 2001. [PMID: 11466437 DOI: 10.1523/jneurosci.21-15-05660.2001] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuregulins are highly expressed in the CNS, especially in cholinergic neurons. We have examined the effect of neuregulin on nicotinic acetylcholine receptors (nAChRs) in neurons dissociated from the rat hippocampus. Rapid application of acetylcholine (ACh) induced a rapidly rising and decaying inward current in some of the neurons, which was completely blocked by methyllycaconitine, a specific antagonist of the alpha7 subunit of the nAChR. When the cells were treated with 5 nm neuregulin (NRG1-beta1) for 2-4 d, a twofold increase in amplitude of the peak ACh-induced current was observed, and there was a comparable increase in (125)I-alpha-bungarotoxin binding. The fast ACh-induced peak current was prominent in large neurons that also contained GABA immunoreactivity. These presumptive GABAergic neurons constituted approximately 10% of neurons present in 7- to 9-d-old cultures. In addition to the large inward peak current, ACh also evoked transmitter release from presynaptic nerve terminals. Pharmacologic experiments indicated that the shower of PSCs was mediated by glutamate, with a small minority caused by the action of GABA. Chronic exposure to NRG1-beta1 increased the amplitude of ACh-evoked PSCs but not the minimum "quantal" PSC. NRG1-beta1 also increased the percentage of neurons that exhibited ACh-evoked PSCs.
Collapse
|
27
|
Liu Y, Ford B, Mann MA, Fischbach GD. Neuregulins increase alpha7 nicotinic acetylcholine receptors and enhance excitatory synaptic transmission in GABAergic interneurons of the hippocampus. J Neurosci 2001; 21:5660-9. [PMID: 11466437 PMCID: PMC6762647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Abstract
Neuregulins are highly expressed in the CNS, especially in cholinergic neurons. We have examined the effect of neuregulin on nicotinic acetylcholine receptors (nAChRs) in neurons dissociated from the rat hippocampus. Rapid application of acetylcholine (ACh) induced a rapidly rising and decaying inward current in some of the neurons, which was completely blocked by methyllycaconitine, a specific antagonist of the alpha7 subunit of the nAChR. When the cells were treated with 5 nm neuregulin (NRG1-beta1) for 2-4 d, a twofold increase in amplitude of the peak ACh-induced current was observed, and there was a comparable increase in (125)I-alpha-bungarotoxin binding. The fast ACh-induced peak current was prominent in large neurons that also contained GABA immunoreactivity. These presumptive GABAergic neurons constituted approximately 10% of neurons present in 7- to 9-d-old cultures. In addition to the large inward peak current, ACh also evoked transmitter release from presynaptic nerve terminals. Pharmacologic experiments indicated that the shower of PSCs was mediated by glutamate, with a small minority caused by the action of GABA. Chronic exposure to NRG1-beta1 increased the amplitude of ACh-evoked PSCs but not the minimum "quantal" PSC. NRG1-beta1 also increased the percentage of neurons that exhibited ACh-evoked PSCs.
Collapse
Affiliation(s)
- Y Liu
- Section on Developmental Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
28
|
Bennett V, Baines AJ. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 2001; 81:1353-92. [PMID: 11427698 DOI: 10.1152/physrev.2001.81.3.1353] [Citation(s) in RCA: 720] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The spectrin-based membrane skeleton of the humble mammalian erythrocyte has provided biologists with a set of interacting proteins with diverse roles in organization and survival of cells in metazoan organisms. This review deals with the molecular physiology of spectrin, ankyrin, which links spectrin to the anion exchanger, and two spectrin-associated proteins that promote spectrin interactions with actin: adducin and protein 4.1. The lack of essential functions for these proteins in generic cells grown in culture and the absence of their genes in the yeast genome have, until recently, limited advances in understanding their roles outside of erythrocytes. However, completion of the genomes of simple metazoans and application of homologous recombination in mice now are providing the first glimpses of the full scope of physiological roles for spectrin, ankyrin, and their associated proteins. These functions now include targeting of ion channels and cell adhesion molecules to specialized compartments within the plasma membrane and endoplasmic reticulum of striated muscle and the nervous system, mechanical stabilization at the tissue level based on transcellular protein assemblies, participation in epithelial morphogenesis, and orientation of mitotic spindles in asymmetric cell divisions. These studies, in addition to stretching the erythrocyte paradigm beyond recognition, also are revealing novel cellular pathways essential for metazoan life. Examples are ankyrin-dependent targeting of proteins to excitable membrane domains in the plasma membrane and the Ca(2+) homeostasis compartment of the endoplasmic reticulum. Exciting questions for the future relate to the molecular basis for these pathways and their roles in a clinical context, either as the basis for disease or more positively as therapeutic targets.
Collapse
Affiliation(s)
- V Bennett
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
29
|
Huang YZ, Wang Q, Xiong WC, Mei L. Erbin is a protein concentrated at postsynaptic membranes that interacts with PSD-95. J Biol Chem 2001; 276:19318-26. [PMID: 11279080 DOI: 10.1074/jbc.m100494200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Neuregulin is a factor essential for synapse-specific transcription of acetylcholine receptor genes at the neuromuscular junction. Its receptors, ErbB receptor tyrosine kinases, are localized at the postjunctional membrane presumably to ensure localized signaling. However, the molecular mechanisms underlying synaptic localization of ErbBs are unknown. Our recent studies indicate that ErbB4 interacts with postsynaptic density (PSD)-95 (SAP90), a PDZ domain-containing protein that does not interact with ErbB2 or ErbB3. Using as bait the ErbB2 C terminus, we identified Erbin, another PDZ domain-containing protein that interacts specifically with ErbB2. Erbin is concentrated in postsynaptic membranes at the neuromuscular junction and in the central nervous system, where ErbB2 is concentrated. Expression of Erbin increases the amount of ErbB2 labeled by biotin in transfected cells, suggesting that Erbin is able to increase ErbB2 surface expression. Furthermore, we provide evidence that Erbin interacts with PSD-95 in both transfected cells and synaptosomes. Thus ErbB proteins can interact with a network of PDZ domain-containing proteins. This interaction may play an important role in regulation of neuregulin signaling and/or subcellular localization of ErbB proteins.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Biotin/metabolism
- Blotting, Northern
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Cell Line
- Cell Membrane/metabolism
- Cells, Cultured
- Cloning, Molecular
- DNA, Complementary/metabolism
- Disks Large Homolog 4 Protein
- ErbB Receptors/metabolism
- Fungal Proteins/metabolism
- Glutathione Transferase/metabolism
- Hippocampus/metabolism
- Humans
- Immunoblotting
- Immunohistochemistry
- Intracellular Signaling Peptides and Proteins
- Membrane Proteins
- Muscles/embryology
- Muscles/metabolism
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/metabolism
- Neuromuscular Junction/metabolism
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Rats
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/metabolism
- Receptor, ErbB-4
- Signal Transduction
- Subcellular Fractions
- Tissue Distribution
- Transcription, Genetic
- Transfection
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Y Z Huang
- Departments of Neurobiology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
30
|
Fromm L, Burden SJ. Neuregulin-1-stimulated phosphorylation of GABP in skeletal muscle cells. Biochemistry 2001; 40:5306-12. [PMID: 11318655 DOI: 10.1021/bi002649m] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Localization of acetylcholine receptors (AChRs) to neuromuscular synapses is mediated, in part, through selective transcription of AChR genes in myofiber synaptic nuclei. Neuregulin-1 (NRG-1) is a good candidate for the extracellular signal that induces synapse-specific gene expression, since NRG-1 is concentrated at synaptic sites and activates AChR synthesis in cultured muscle cells. NRG-1-induced transcription requires activation of Erk and Jnk MAP kinases, but the downstream substrates that mediate this transcriptional response are not known. Previous studies have demonstrated that a consensus binding site for Ets proteins is required both for NRG-1-induced transcription and for synapse-specific transcription in transgenic mice. This regulatory element binds GABPalpha, an Ets protein, and GABPbeta, a protein that dimerizes with GABPalpha, raising the possibility that phosphorylation of GABP by MAP kinases induces transcription of AChR genes. To determine whether MAP kinases might directly regulate the activity of GABP, we studied MAP kinase-catalyzed and NRG-1-induced phosphorylation of GABPalpha and GABPbeta. We show that GABPalpha and GABPbeta are phosphorylated in vitro by Erk and by Jnk. Using recombinant proteins containing mutated serine and threonine resides, we show that GABPalpha is phosphorylated predominantly at threonine 280, while serine 170 and threonine 180 are the major phosphorylation sites in GABPbeta. We generated antibodies specific to the major phosphorylation site in GABPalpha and show that NRG-1 stimulates phosphorylation of GABPalpha at threonine 280 in vivo. These results suggest that GABPalpha is a target of MAP kinases in NRG-1-stimulated muscle cells and are consistent with the idea that phosphorylation of GABPalpha contributes to transcriptional activation of AChR genes by NRG-1.
Collapse
Affiliation(s)
- L Fromm
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, NYU Medical School, New York, NY 10016, USA
| | | |
Collapse
|
31
|
The Agrin/MuSK signaling pathway is spatially segregated from the neuregulin/ErbB receptor signaling pathway at the neuromuscular junction. J Neurosci 2001. [PMID: 11102484 DOI: 10.1523/jneurosci.20-23-08762.2000] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neuregulin/erbB receptor and agrin/MuSK pathways are critical for communication between the nerve, muscle, and Schwann cell that establishes the precise topological arrangement at the vertebrate neuromuscular junction (NMJ). ErbB2, erbB3, and erbB4 as well as neuregulin, agrin, and MuSK are known to be concentrated at the NMJ. Here we have examined NMJs from gastrocnemius muscle of adult rat using immunofluorescence confocal microscopy to characterize in detail the distribution of these proteins relative to the distribution of acetylcholine receptors (AChRs). We have determined that erbB2 and erbB4 are enriched in the depths of the secondary junctional folds on the postsynaptic muscle membrane. In contrast, erbB3 at the NMJ was concentrated at presynaptic terminal Schwann cells. This distribution strongly argues that erbB2/erbB4 heterodimers are the functional postsynaptic neuregulin receptors of the NMJ. Neuregulin was localized to the axon terminal, secondary folds, and terminal Schwann cells, where it was in a position to signal through erbB receptors. MuSK was concentrated in the postsynaptic primary gutter region where it was codistributed with AChRs. Agrin was present at the axon terminal and in the basal lamina associated with the primary gutter region, but not in the secondary junctional folds. The differential distributions of the neuregulin and agrin signaling pathways argue against neuregulin and erbB receptors being localized to the NMJ via direct interactions with either agrin or MuSK.
Collapse
|
32
|
Trinidad JC, Fischbach GD, Cohen JB. The Agrin/MuSK signaling pathway is spatially segregated from the neuregulin/ErbB receptor signaling pathway at the neuromuscular junction. J Neurosci 2000; 20:8762-70. [PMID: 11102484 PMCID: PMC6773073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The neuregulin/erbB receptor and agrin/MuSK pathways are critical for communication between the nerve, muscle, and Schwann cell that establishes the precise topological arrangement at the vertebrate neuromuscular junction (NMJ). ErbB2, erbB3, and erbB4 as well as neuregulin, agrin, and MuSK are known to be concentrated at the NMJ. Here we have examined NMJs from gastrocnemius muscle of adult rat using immunofluorescence confocal microscopy to characterize in detail the distribution of these proteins relative to the distribution of acetylcholine receptors (AChRs). We have determined that erbB2 and erbB4 are enriched in the depths of the secondary junctional folds on the postsynaptic muscle membrane. In contrast, erbB3 at the NMJ was concentrated at presynaptic terminal Schwann cells. This distribution strongly argues that erbB2/erbB4 heterodimers are the functional postsynaptic neuregulin receptors of the NMJ. Neuregulin was localized to the axon terminal, secondary folds, and terminal Schwann cells, where it was in a position to signal through erbB receptors. MuSK was concentrated in the postsynaptic primary gutter region where it was codistributed with AChRs. Agrin was present at the axon terminal and in the basal lamina associated with the primary gutter region, but not in the secondary junctional folds. The differential distributions of the neuregulin and agrin signaling pathways argue against neuregulin and erbB receptors being localized to the NMJ via direct interactions with either agrin or MuSK.
Collapse
MESH Headings
- Agrin/metabolism
- Animals
- Antigens, Differentiation/metabolism
- ErbB Receptors/metabolism
- Fluorescent Antibody Technique
- Microscopy, Confocal
- Microscopy, Electron
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Neuregulins/metabolism
- Neuromuscular Junction/metabolism
- Neuromuscular Junction/ultrastructure
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/ultrastructure
- Rats
- Rats, Sprague-Dawley
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/metabolism
- Receptor, ErbB-4
- Receptors, Cholinergic
- Schwann Cells/cytology
- Schwann Cells/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- J C Trinidad
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
33
|
Vartanian T, Goodearl A, Lefebvre S, Park SK, Fischbach G. Neuregulin induces the rapid association of focal adhesion kinase with the erbB2-erbB3 receptor complex in schwann cells. Biochem Biophys Res Commun 2000; 271:414-7. [PMID: 10799311 DOI: 10.1006/bbrc.2000.2624] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuregulins signal cells by binding to an activating hetero- and homodimeric forms of the neuregulin receptors HER2 (erbB2), HER3 (erbB3), and HER4 (erbB4). Axonally derived neuregulin signals myelin forming cells of the central and peripheral nervous systems through different receptor complexes: oligodendrocytes through erbB2/erbB4 heterodimers and Schwann cells through erbB2/erbB3 heterodimers. Since the leading edge of myelinating cells interacts directly with the axonal surface, we were interested in determining if signaling molecules localized at the leading edge associate with activated neuregulin receptors. We found a novel association between neuregulin receptors and focal adhesion kinase (FAK) in primary cultures of Schwann cells. Following stimulation with ligand, maximal binding of FAK to HER2 occurred by 1 min whereas maximal binding to HER3 was delayed to approximately 7 min. FAK is localized in focal adhesions of Schwann cells. We have previously shown HER2 and HER3 are distributed evenly throughout the plasmalemma. Neuregulins thus use FAK to transmit intracellular signals and the differential kinetics of FAK association with individual neuregulin receptors, as well as its restricted subcellular localization, may play a role in specifying biologic responses.
Collapse
Affiliation(s)
- T Vartanian
- Department of Neurology, Harvard Medical School and Beth Israel Deaconess Hospitals, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
34
|
The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci U S A 2000. [PMID: 10725395 PMCID: PMC16285 DOI: 10.1073/pnas.070042497] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuregulins regulate the expression of ligand- and voltage-gated channels in neurons and skeletal muscle by the activation of their cognate tyrosine kinase receptors, ErbB 1-4. The subcellular distribution and mechanisms that regulate the localization of ErbB receptors are unknown. We have found that ErbB receptors are present in brain subcellular fractions enriched for postsynaptic densities (PSD). The ErbB-4 receptor is unique among the ErbB proteins because its C-terminal tail (T-V-V) conforms to a sequence that binds to a protein motif known as the PDZ domain. Using the yeast two-hybrid system, we found that the C-terminal region of ErbB-4 interacts with the three related membrane-associated guanylate kinases (MAGUKs) PSD-95/SAP90, PSD-93/chapsyn-110, and SAP 102, which harbor three PDZ domains, as well as with beta(2)-syntrophin, which has a single PDZ domain. As with N-methyl-D-aspartate (NMDA) receptors, ErbB4 interacts with the first two PDZ domains of PSD-95. Using coimmunoprecipitation assays, we confirmed the direct interactions between ErbB-4 and PSD-95 in transfected heterologous cells, as well as in vivo, where both proteins are coimmunoprecipitated from brain lysates. Moreover, evidence for colocalization of these proteins was also observed by immunofluorescence in cultured hippocampal neurons. ErbB-4 colocalizes with PSD-95 and NMDA receptors at a subset of excitatory synapses apposed to synaptophysin-positive presynaptic terminals. The capacity of ErbB receptors to interact with PDZ-domain proteins at cell junctions is conserved from invertebrates to mammals. As discussed, the interactions found between receptor tyrosine kinases and MAGUKs at neuronal synapses may have important implications for activity-dependent plasticity.
Collapse
|
35
|
Garcia RA, Vasudevan K, Buonanno A. The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci U S A 2000; 97:3596-601. [PMID: 10725395 PMCID: PMC16285 DOI: 10.1073/pnas.97.7.3596] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuregulins regulate the expression of ligand- and voltage-gated channels in neurons and skeletal muscle by the activation of their cognate tyrosine kinase receptors, ErbB 1-4. The subcellular distribution and mechanisms that regulate the localization of ErbB receptors are unknown. We have found that ErbB receptors are present in brain subcellular fractions enriched for postsynaptic densities (PSD). The ErbB-4 receptor is unique among the ErbB proteins because its C-terminal tail (T-V-V) conforms to a sequence that binds to a protein motif known as the PDZ domain. Using the yeast two-hybrid system, we found that the C-terminal region of ErbB-4 interacts with the three related membrane-associated guanylate kinases (MAGUKs) PSD-95/SAP90, PSD-93/chapsyn-110, and SAP 102, which harbor three PDZ domains, as well as with beta(2)-syntrophin, which has a single PDZ domain. As with N-methyl-D-aspartate (NMDA) receptors, ErbB4 interacts with the first two PDZ domains of PSD-95. Using coimmunoprecipitation assays, we confirmed the direct interactions between ErbB-4 and PSD-95 in transfected heterologous cells, as well as in vivo, where both proteins are coimmunoprecipitated from brain lysates. Moreover, evidence for colocalization of these proteins was also observed by immunofluorescence in cultured hippocampal neurons. ErbB-4 colocalizes with PSD-95 and NMDA receptors at a subset of excitatory synapses apposed to synaptophysin-positive presynaptic terminals. The capacity of ErbB receptors to interact with PDZ-domain proteins at cell junctions is conserved from invertebrates to mammals. As discussed, the interactions found between receptor tyrosine kinases and MAGUKs at neuronal synapses may have important implications for activity-dependent plasticity.
Collapse
Affiliation(s)
- R A Garcia
- Unit on Molecular Neurobiology, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
36
|
Regulation of neuregulin-mediated acetylcholine receptor synthesis by protein tyrosine phosphatase SHP2. J Neurosci 1999. [PMID: 10531446 DOI: 10.1523/jneurosci.19-21-09426.1999] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synapse-specific expression of the nicotinic acetylcholine receptor (AChR) is believed to be mediated by neuregulin, an epidermal growth factor-like trophic factor released by somatic motoneurons at the neuromuscular junction (NMJ). Neuregulin stimulates ErbB2, ErbB3, and ErbB4, members of the ErbB family of receptor tyrosine kinases. SHP2 is a cytoplasmic protein tyrosine phosphatase containing two Src homology 2 domains near its N terminus, and has been shown to be a positive mediator of mitogenic responses to various growth factors. We found that SHP2 interacted with ErbB2 and ErbB3 after neuregulin stimulation of muscle cells. Expression of SHP2 in C2C12 mouse muscle cells attenuated the neuregulin-induced expression of an AChR epsilon-promoter reporter gene, whereas a catalytically inactive SHP2 mutant or a mutant lacking the N-terminal Src homology 2 (SH2) domain enhanced reporter expression, suggesting that SHP2 negatively regulates the neuregulin signaling pathway. In fibroblast cells that express a mutant SHP2 with a targeted deletion of the N-terminal SH2 domain, neuregulin-mediated activation of the Ras/Raf/extracellular signal-regulated kinase cascade was enhanced. Furthermore, we found that SHP2 immunoreactivity colocalized with the staining of alpha-bungarotoxin, a marker of the NMJ. These results demonstrate a negative role of SHP2 in the neuregulin signal that leads to AChR gene expression at the NMJ.
Collapse
|
37
|
Tanowitz M, Si J, Yu DH, Feng GS, Mei L. Regulation of neuregulin-mediated acetylcholine receptor synthesis by protein tyrosine phosphatase SHP2. J Neurosci 1999; 19:9426-35. [PMID: 10531446 PMCID: PMC6782930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Synapse-specific expression of the nicotinic acetylcholine receptor (AChR) is believed to be mediated by neuregulin, an epidermal growth factor-like trophic factor released by somatic motoneurons at the neuromuscular junction (NMJ). Neuregulin stimulates ErbB2, ErbB3, and ErbB4, members of the ErbB family of receptor tyrosine kinases. SHP2 is a cytoplasmic protein tyrosine phosphatase containing two Src homology 2 domains near its N terminus, and has been shown to be a positive mediator of mitogenic responses to various growth factors. We found that SHP2 interacted with ErbB2 and ErbB3 after neuregulin stimulation of muscle cells. Expression of SHP2 in C2C12 mouse muscle cells attenuated the neuregulin-induced expression of an AChR epsilon-promoter reporter gene, whereas a catalytically inactive SHP2 mutant or a mutant lacking the N-terminal Src homology 2 (SH2) domain enhanced reporter expression, suggesting that SHP2 negatively regulates the neuregulin signaling pathway. In fibroblast cells that express a mutant SHP2 with a targeted deletion of the N-terminal SH2 domain, neuregulin-mediated activation of the Ras/Raf/extracellular signal-regulated kinase cascade was enhanced. Furthermore, we found that SHP2 immunoreactivity colocalized with the staining of alpha-bungarotoxin, a marker of the NMJ. These results demonstrate a negative role of SHP2 in the neuregulin signal that leads to AChR gene expression at the NMJ.
Collapse
MESH Headings
- Animals
- Cell Line
- Cells, Cultured
- Gene Expression Regulation/drug effects
- Genes, Reporter
- Intracellular Signaling Peptides and Proteins
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Skeletal/metabolism
- Neuregulin-1/pharmacology
- Neuregulin-1/physiology
- Neuromuscular Junction/metabolism
- Peptide Fragments/pharmacology
- Promoter Regions, Genetic
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/deficiency
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/metabolism
- Receptors, Cholinergic/genetics
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Proteins/pharmacology
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Sequence Deletion
- Transfection
- src Homology Domains
Collapse
Affiliation(s)
- M Tanowitz
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
38
|
Essential roles of c-JUN and c-JUN N-terminal kinase (JNK) in neuregulin-increased expression of the acetylcholine receptor epsilon-subunit. J Neurosci 1999. [PMID: 10493750 DOI: 10.1523/jneurosci.19-19-08498.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuregulin is a neural factor implicated in upregulation of acetylcholine receptor (AChR) synthesis at the neuromuscular junction. Previous studies have demonstrated that the extracellular signal-regulated kinase (ERK) subgroup of MAP kinases is required for neuregulin-induced AChR gene expression. We report here that the neuregulin-mediated increase in AChR epsilon-subunit mRNA was a delayed response in C2C12 muscle cells. Neuregulin induced expression of immediate early genes c-jun and c-fos, which followed and depended on the ERK activation. Treatment of muscle cells with cycloheximide to inhibit c-JUN synthesis at the protein level and suppression of c-JUN function by a dominant-negative mutant blocked neuregulin-induced expression of the epsilon-subunit gene, indicating an essential role of c-JUN in neuregulin signaling. Furthermore, neuregulin activated c-JUN N-terminal kinase (JNK) in C2C12 muscle cells. Blockade of JNK activation by overexpressing dominant-negative MKK4 inhibited epsilon-promoter activation. Moreover, overexpression of the JNK dominant-negative mutant inhibited neuregulin-mediated expression of the epsilon-transgene and endogenous epsilon-mRNA. Taken together, our results demonstrate important roles of c-JUN and JNK in neuregulin-mediated expression of the AChR epsilon-subunit gene and suggest that neuregulin activates multiple signaling cascades that converge to regulate AChR epsilon-subunit gene expression.
Collapse
|
39
|
Si J, Wang Q, Mei L. Essential roles of c-JUN and c-JUN N-terminal kinase (JNK) in neuregulin-increased expression of the acetylcholine receptor epsilon-subunit. J Neurosci 1999; 19:8498-508. [PMID: 10493750 PMCID: PMC6783009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Neuregulin is a neural factor implicated in upregulation of acetylcholine receptor (AChR) synthesis at the neuromuscular junction. Previous studies have demonstrated that the extracellular signal-regulated kinase (ERK) subgroup of MAP kinases is required for neuregulin-induced AChR gene expression. We report here that the neuregulin-mediated increase in AChR epsilon-subunit mRNA was a delayed response in C2C12 muscle cells. Neuregulin induced expression of immediate early genes c-jun and c-fos, which followed and depended on the ERK activation. Treatment of muscle cells with cycloheximide to inhibit c-JUN synthesis at the protein level and suppression of c-JUN function by a dominant-negative mutant blocked neuregulin-induced expression of the epsilon-subunit gene, indicating an essential role of c-JUN in neuregulin signaling. Furthermore, neuregulin activated c-JUN N-terminal kinase (JNK) in C2C12 muscle cells. Blockade of JNK activation by overexpressing dominant-negative MKK4 inhibited epsilon-promoter activation. Moreover, overexpression of the JNK dominant-negative mutant inhibited neuregulin-mediated expression of the epsilon-transgene and endogenous epsilon-mRNA. Taken together, our results demonstrate important roles of c-JUN and JNK in neuregulin-mediated expression of the AChR epsilon-subunit gene and suggest that neuregulin activates multiple signaling cascades that converge to regulate AChR epsilon-subunit gene expression.
Collapse
Affiliation(s)
- J Si
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
40
|
Yang JF, Zhou H, Choi RC, Ip NY, Peng HB, Tsim KW. A cysteine-rich form of Xenopus neuregulin induces the expression of acetylcholine receptors in cultured myotubes. Mol Cell Neurosci 1999; 13:415-29. [PMID: 10383827 DOI: 10.1006/mcne.1999.0759] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neuregulin-1 (NRG-1) has diverse functions in neural development, and one of them is to up regulate the expression of acetylcholine receptors (AChRs) at muscle fibers during the formation of neuromuscular junctions. NRG-1 has two prominent alternative splicing sites at the N-terminus; it could be an immunoglobulin (Ig)-like domain named Ig-NRG-1 or an apolar cysteine-rich domain (CRD) named CRD-NRG-1. cDNAs encoding Xenopus CRD-NRG-1 were isolated by cross-hybridization with Xenopus Ig-NRG-1 cDNA fragment. The amino acid sequence of Xenopus CRD-NRG-1 is 45 to 70% identical to the human, rat, and chick homologs. Similar to Ig-NRG-1, two variation sites within CRD-NRG-1 were identified at the spacer domain with 0 or 43 amino acids inserted and at the C-terminus of the EGF-like domain to derive either alpha or beta isoform. Two transcripts encoding CRD-NRG-1, approximately 7.5 and approximately 9.0 kb, were revealed in adult brain and spinal cord, but the expression in muscle was below the detectable level. The recombinant Xenopus CRD-NRG-1 when applied onto cultured myotubes was able to induce the tyrosine phosphorylation of ErbB receptors and the expression of AChR. The AChR-inducing activity of CRD-NRG-1 was precipitated by anti-NRG-1 antibody but not by heparin. In situ hybridization showed a strong expression of CRD-NRG-1 mRNA in developing brain, spinal cord, and myotomal muscles of Xenopus embryo. Similar to the results in other species, both CRD-NRG-1 and Ig-NRG-1 may play a role in the developing Xenopus neuromuscular junctions.
Collapse
Affiliation(s)
- J F Yang
- Department of Biology and Biotechnology Research Institute, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
41
|
Kim D, Chi S, Lee KH, Rhee S, Kwon YK, Chung CH, Kwon H, Kang MS. Neuregulin stimulates myogenic differentiation in an autocrine manner. J Biol Chem 1999; 274:15395-400. [PMID: 10336427 DOI: 10.1074/jbc.274.22.15395] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During myogenesis, mononucleated myoblasts form multinucleated myotubes by membrane fusion. Efficiency of this intercellular process can be maximized by a simultaneous progress, with a time window, of other neighboring myoblasts in the differentiation program. This phenomenon has been described as the community effect. It proposes the existence of a molecule that acts as a differentiation-inducing signal to a group of identical cells. Here, we show that neuregulin is a strong candidate for this molecule in myoblast differentiation. The expression of neuregulin increased rapidly but transiently at early stage of differentiation of rat L6 cells. Neuregulin showed a potent differentiation-promoting activity in membrane fusion and expression of myosin heavy chain. The antibodies raised against neuregulin and its cognate receptor ErbB3, which were capable of neutralizing the signal pathway, inhibited myotube formation and expression of myosin heavy chain in both L6 cells and primary rat myoblasts. The progress of differentiation was mostly halted after the expression of myogenin and cell cycle arrest. These results suggest that the activation of an autocrine signaling of neuregulin may provide a basic mechanism for the community effect observed in the differentiation of the embryonic muscle cells.
Collapse
Affiliation(s)
- D Kim
- Department of Molecular Biology and Research Center for Cell Differentiation, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
We describe the formation, maturation, elimination, maintenance, and regeneration of vertebrate neuromuscular junctions (NMJs), the best studied of all synapses. The NMJ forms in a series of steps that involve the exchange of signals among its three cellular components--nerve terminal, muscle fiber, and Schwann cell. Although essentially any motor axon can form NMJs with any muscle fiber, an additional set of cues biases synapse formation in favor of appropriate partners. The NMJ is functional at birth but undergoes numerous alterations postnatally. One step in maturation is the elimination of excess inputs, a competitive process in which the muscle is an intermediary. Once elimination is complete, the NMJ is maintained stably in a dynamic equilibrium that can be perturbed to initiate remodeling. NMJs regenerate following damage to nerve or muscle, but this process differs in fundamental ways from embryonic synaptogenesis. Finally, we consider the extent to which the NMJ is a suitable model for development of neuron-neuron synapses.
Collapse
Affiliation(s)
- J R Sanes
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
43
|
Han B, Fischbach GD. Processing of ARIA and release from isolated nerve terminals. Philos Trans R Soc Lond B Biol Sci 1999; 354:411-6. [PMID: 10212491 PMCID: PMC1692493 DOI: 10.1098/rstb.1999.0394] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The neuromuscular junction is a specialized synapse in that every action potential in the presynaptic nerve terminal results in an action potential in the postsynaptic membrane, unlike most interneuronal synapses where a single presynaptic input makes only a small contribution to the population postsynaptic response. The postsynaptic membrane at the neuromuscular junction contains a high density of neurotransmitter (acetylcholine) receptors and a high density of voltage-gated Na+ channels. Thus, the large acetylcholine activated current occurs at the same site where the threshold for action potential generation is low. Acetylcholine receptor inducing activity (ARIA), a 42 kD protein, that stimulates synthesis of acetylcholine receptors and voltage-gated Na+ channels in cultured myotubes, probably plays the same roles at developing and mature motor endplates in vivo. ARIA is synthesized as part of a larger, transmembrane, precursor protein called proARIA. Delivery of ARIA from motor neuron cell bodies in the spinal cord to the target endplates involves several steps, including proteolytic cleavage of proARIA. ARIA is also expressed in the central nervous system and it is abundant in the molecular layer of the cerebellum. In this paper we describe our first experiments on the processing and release of ARIA from subcellular fractions containing synaptosomes from the chick cerebellum as a model system.
Collapse
Affiliation(s)
- B Han
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | | |
Collapse
|
44
|
Loeb JA, Khurana TS, Robbins JT, Yee AG, Fischbach GD. Expression patterns of transmembrane and released forms of neuregulin during spinal cord and neuromuscular synapse development. Development 1999; 126:781-91. [PMID: 9895325 DOI: 10.1242/dev.126.4.781] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We mapped the distribution of neuregulin and its transmembrane precursor in developing, embryonic chick and mouse spinal cord. Neuregulin mRNA and protein were expressed in motor and sensory neurons shortly after their birth and levels steadily increased during development. Expression of the neuregulin precursor was highest in motor and sensory neuron cell bodies and axons, while soluble, released neuregulin accumulated along early motor and sensory axons, radial glia, spinal axonal tracts and neuroepithelial cells through associations with heparan sulfate proteoglycans. Neuregulin accumulation in the synaptic basal lamina of neuromuscular junctions occurred significantly later, coincident with a reorganization of muscle extracellular matrix resulting in a relative concentration of heparan sulfate proteoglycans at endplates. These results demonstrate an early axonal presence of neuregulin and its transmembrane precursor at developing synapses and a role for heparan sulfate proteoglycans in regulating the temporal and spatial sites of soluble neuregulin accumulation during development.
Collapse
Affiliation(s)
- J A Loeb
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
45
|
Bennett MR. Synapse formation molecules in muscle and autonomic ganglia: the dual constraint hypothesis. Prog Neurobiol 1999; 57:225-87. [PMID: 9987806 DOI: 10.1016/s0301-0082(98)00043-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 1970 it was thought that if the motor-nerve supply to a muscle was interrupted and then allowed to regenerate into the muscle, motor-synaptic terminals most often formed presynaptic specializations at random positions over the surface of the constituent muscle fibres, so that the original spatial pattern of synapses was not restored. However, in the early 1970s a systematic series of experiments were carried out showing that if injury to muscles was avoided then either reinnervation or cross-reinnervation reconstituted the pattern of synapses on the muscle fibres according to an analysis using the combined techniques of electrophysiology, electronmicroscopy and histology on the muscles. It was thus shown that motor-synaptic terminals are uniquely restored to their original synaptic positions. This led to the concept of the synaptic site, defined as that region on a muscle fibre that contains molecules for triggering synaptic terminal formation. However, nerves in developing muscles were found to form connections at random positions on the surface of the very short muscle cells, indicating that these molecules are not generated by the muscle but imprinted by the nerves themselves; growth in length of the cells on either side of the imprint creates the mature synaptic site in the approximate middle of the muscle fibres. This process is accompanied at first by the differentiation of an excess number of terminals at the synaptic site, and then the elimination of all but one of the terminals. In the succeeding 25 years, identification of the synaptic site molecules has been a major task of molecular neurobiology. This review presents an historical account of the developments this century of the idea that synaptic-site formation molecules exist in muscle. The properties that these molecules must possess if they are to guide the differentiation and elimination of synaptic terminals is considered in the context of a quantitative model of this process termed the dual-constraint hypothesis. It is suggested that the molecules agrin, ARIA, MuSK and S-laminin have suitable properties according to the dual-constraint hypothesis to subserve this purpose. The extent to which there is evidence for similar molecules at neuronal synapses such as those in autonomic ganglia is also considered.
Collapse
Affiliation(s)
- M R Bennett
- Neurobiology Laboratory, University of Sydney, NSW, Australia.
| |
Collapse
|
46
|
Fromm L, Burden SJ. Synapse-specific and neuregulin-induced transcription require an ets site that binds GABPalpha/GABPbeta. Genes Dev 1998; 12:3074-83. [PMID: 9765208 PMCID: PMC317195 DOI: 10.1101/gad.12.19.3074] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/1998] [Accepted: 08/11/1998] [Indexed: 11/24/2022]
Abstract
Localization of acetylcholine receptors (AChRs) to neuromuscular synapses is mediated by multiple pathways. Agrin, which is the signal for one pathway, stimulates a redistribution of previously unlocalized AChRs to synaptic sites. The signal for a second pathway is not known, but this signal stimulates selective transcription of AChR genes in myofiber nuclei located near the synaptic site. Neuregulin (NRG) is a good candidate for the extracellular signal that induces synapse-specific gene expression, since NRG is concentrated at synaptic sites and activates AChR gene expression in cultured muscle cells. Previous studies have demonstrated that 181 bp of 5' flanking DNA from the AChR delta-subunit gene are sufficient to confer synapse-specific transcription in transgenic mice and NRG responsiveness in cultured muscle cells, but the critical sequences within this cis-acting regulatory region have not been identified. We transfected AChR delta-subunit-hGH gene fusions into a muscle cell line, and we show that a potential binding site for Ets proteins is required for NRG-induced gene expression. Furthermore, we produced transgenic mice carrying AChR delta-subunit-hGH gene fusions with a mutation in this NRG-response element (NRE), and we show that this NRE is necessary for synapse-specific transcription in mice. The NRE binds proteins in myotube nuclear extracts, and nucleotides that are important for NRG responsiveness are likewise critical for formation of the protein-DNA complex. This complex contains GABPalpha, an Ets protein, and GABPbeta, a protein that lacks an Ets domain but dimerizes with GABPalpha, because formation of the protein-DNA complex is inhibited by antibodies to either GABPalpha or GABPbeta. These results demonstrate that synapse-specific and NRG-induced gene expression require an Ets-binding site and suggest that GABPalpha/GABPbeta mediates the transcriptional response of the AChR delta-subunit gene to synaptic signals, including NRG.
Collapse
Affiliation(s)
- L Fromm
- Molecular Neurobiology Program, Skirball Institute, New York University Medical Center, New York, New York 10016, USA
| | | |
Collapse
|
47
|
Rimer M, Cohen I, Lømo T, Burden SJ, McMahan UJ. Neuregulins and erbB receptors at neuromuscular junctions and at agrin-induced postsynaptic-like apparatus in skeletal muscle. Mol Cell Neurosci 1998; 12:1-15. [PMID: 9770336 DOI: 10.1006/mcne.1998.0695] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We demonstrate by immunohistochemistry that at least two isoforms of neuregulin (NRG) are concentrated at neuromuscular junctions in adult rat muscles. One is NRGbeta3, a secreted protein which is bound to basal lamina that occupies the synaptic cleft. The other(s), NRG-a, is in the muscle fibers' plasma membrane. We show further that muscle NRG, including NRG-a, is concentrated at postsynaptic-like apparatus induced to form in the extrajunctional region of the soleus muscle by exposure to neural agrin. The agrin-induced postsynaptic-like apparatus also includes aggregates of the NRG receptors erbB2 and erbB3 as does postsynaptic apparatus at neuromuscular junctions. These findings together with those of others suggest a mechanism by which neural agrin induces the expression of epsilon-AChR subunits in postsynaptic-like apparatus, and they support the hypothesis that agrin has a similar function at neuromuscular junctions.
Collapse
Affiliation(s)
- M Rimer
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | | | | | | | | |
Collapse
|
48
|
Wang JY, Frenzel KE, Wen D, Falls DL. Transmembrane neuregulins interact with LIM kinase 1, a cytoplasmic protein kinase implicated in development of visuospatial cognition. J Biol Chem 1998; 273:20525-34. [PMID: 9685409 DOI: 10.1074/jbc.273.32.20525] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuregulins are receptor tyrosine kinase ligands that play a critical role in the development of the heart, nervous system, and breast. Unlike many extracellular signaling molecules, such as the neurotrophins, most neuregulins are synthesized as transmembrane proteins. To determine the functions of the highly conserved neuregulin cytoplasmic tail, a yeast two-hybrid screen was performed to identify proteins that interact with the 157-amino acid sequence common to the cytoplasmic tails of all transmembrane neuregulin isoforms. This screen revealed that the neuregulin cytoplasmic tail interacts with the LIM domain region of the nonreceptor protein kinase LIM kinase 1 (LIMK1). Interaction between the neuregulin cytoplasmic tail and full-length LIMK1 was demonstrated by in vitro binding and co-immunoprecipitation assays. Transmembrane neuregulins with each of the three known neuregulin cytoplasmic tail isoforms interacted with LIMK1. In contrast, the cytoplasmic tail of TGF-alpha did not interact with LIMK1. In vivo, neuregulin and LIMK1 are co-localized at the neuromuscular synapse, suggesting that LIMK1, like neuregulin, may play a role in synapse formation and maintenance. To our knowledge, LIMK1 is the first identified protein shown to interact with the cytoplasmic tail of a receptor tyrosine kinase ligand.
Collapse
Affiliation(s)
- J Y Wang
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
49
|
Fromm L, Burden SJ. Transcriptional pathways for synapse-specific, neuregulin-induced and electrical activity-dependent transcription. JOURNAL OF PHYSIOLOGY, PARIS 1998; 92:173-6. [PMID: 9789803 DOI: 10.1016/s0928-4257(98)80005-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Innervation-dependent expression of acetylcholine receptor (AChR) genes in skeletal muscle is mediated by multiple transcriptional pathways. One pathway leads to activation of AChR genes selectively in synaptic nuclei and requires an Ets binding site that binds GABP. A second pathway leads to repression of AChR transcription in nuclei throughout the myofiber and requires inactivation of E-box-binding proteins, including myogenic bHLH proteins. Taken together, these studies indicate that separate pathways regulate innervation-dependent transcription.
Collapse
Affiliation(s)
- L Fromm
- Molecular Neurobiology Program, Skirball Institute, NYU Medical Center, NY 10016, USA
| | | |
Collapse
|
50
|
Meier T, Masciulli F, Moore C, Schoumacher F, Eppenberger U, Denzer AJ, Jones G, Brenner HR. Agrin can mediate acetylcholine receptor gene expression in muscle by aggregation of muscle-derived neuregulins. J Cell Biol 1998; 141:715-26. [PMID: 9566971 PMCID: PMC2132745 DOI: 10.1083/jcb.141.3.715] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The neural isoforms of agrin can stimulate transcription of the acetylcholine receptor (AChR) epsilon subunit gene in electrically active muscle fibers, as does the motor neuron upon the formation of a neuromuscular junction. It is not clear, however, whether this induction involves neuregulins (NRGs), which stimulate AChR subunit gene transcription in vitro by activating ErbB receptors. In this study, we show that agrin- induced induction of AChR epsilon subunit gene transcription is inhibited in cultured myotubes overexpressing an inactive mutant of the ErbB2 receptor, demonstrating involvement of the NRG/ErbB pathway in agrin- induced AChR expression. Furthermore, salt extracts from the surface of cultured myotubes induce tyrosine phosphorylation of ErbB2 receptors, indicating that muscle cells express biological NRG-like activity on their surface. We further demonstrate by RT-PCR analysis that muscle NRGs have Ig-like domains required for their immobilization at heparan sulfate proteoglycans (HSPGs) of the extracellular matrix. In extrasynaptic regions of innervated muscle fibers in vivo, ectopically expressed neural agrin induces the colocalized accumulation of AChRs, muscle-derived NRGs, and HSPGs. By using overlay and radioligand-binding assays we show that the Ig domain of NRGs bind to the HSPGs agrin and perlecan. These findings show that neural agrin can induce AChR subunit gene transcription by aggregating muscle HSPGs on the muscle fiber surface that then serve as a local sink for focal binding of muscle-derived NRGs to regulate AChR gene expression at the neuromuscular junction.
Collapse
Affiliation(s)
- T Meier
- Department of Physiology, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|